JP6875805B2 - Substrate support member with shaft and its manufacturing method - Google Patents
Substrate support member with shaft and its manufacturing method Download PDFInfo
- Publication number
- JP6875805B2 JP6875805B2 JP2016164817A JP2016164817A JP6875805B2 JP 6875805 B2 JP6875805 B2 JP 6875805B2 JP 2016164817 A JP2016164817 A JP 2016164817A JP 2016164817 A JP2016164817 A JP 2016164817A JP 6875805 B2 JP6875805 B2 JP 6875805B2
- Authority
- JP
- Japan
- Prior art keywords
- shaft
- support member
- substrate support
- flange
- manufacturing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000758 substrate Substances 0.000 title claims description 65
- 238000004519 manufacturing process Methods 0.000 title claims description 16
- 238000009792 diffusion process Methods 0.000 claims description 24
- 238000003825 pressing Methods 0.000 claims description 17
- 238000005304 joining Methods 0.000 claims description 11
- 238000000034 method Methods 0.000 claims description 9
- 239000000919 ceramic Substances 0.000 description 10
- 238000010438 heat treatment Methods 0.000 description 8
- 238000005452 bending Methods 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 238000000635 electron micrograph Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
Images
Landscapes
- Pressure Welding/Diffusion-Bonding (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
Description
本発明は、半導体製造装置などに用いられるシャフト付き基板支持部材及びその製造方法に関する。 The present invention relates to a substrate support member with a shaft used in a semiconductor manufacturing apparatus and the like, and a method for manufacturing the same.
CVD、スパッタリングなどの半導体製造装置に用いられる熱源たるセラミックヒータとして、抵抗発熱体が埋設された円盤状の基板支持部材と、この基板支持部材の下面中央に取り付けられた中空形状のシャフトとを具備するシャフト付きセラミックヒータが知られている(例えば、特許文献1参照)。このようなシャフト付きセラミックヒータは、製造に際し、基板支持部材の下面中央にシャフトを押圧状態で加熱する拡散接合することにより一体化される。そして、基板支持部材に対するシャフトの押圧は、シャフトの端面(基板支持部材との非接触側)を基板支持部材方向に力を印加することにより行われる。 As a ceramic heater as a heat source used in semiconductor manufacturing equipment such as CVD and sputtering, a disk-shaped substrate support member in which a resistance heating element is embedded and a hollow shaft attached to the center of the lower surface of the substrate support member are provided. A ceramic heater with a shaft is known (see, for example, Patent Document 1). Such a ceramic heater with a shaft is integrated by diffusion bonding in which the shaft is heated in a pressed state at the center of the lower surface of the substrate support member during manufacturing. Then, the pressing of the shaft against the substrate support member is performed by applying a force toward the substrate support member on the end surface (non-contact side with the substrate support member) of the shaft.
しかしながら、加熱されたシャフトは軟化状態にあり、上記のように押圧すると、シャフトの形状によっては、撓んだり、大きく変形したりするといった問題があった。 However, the heated shaft is in a softened state, and when pressed as described above, there is a problem that the heated shaft is bent or greatly deformed depending on the shape of the shaft.
本発明は、以上の従来の問題点に鑑みなされたものであり、その目的は、基板支持部材にシャフトを拡散接合する際の変形を防止し得るシャフト付き基板支持部材の製造方法及び該製造方法により得られるシャフト付き基板支持部材を提供することにある。 The present invention has been made in view of the above conventional problems, and an object of the present invention is a method for manufacturing a substrate support member with a shaft capable of preventing deformation when the shaft is diffusion-bonded to the substrate support member, and a method for manufacturing the same. To provide a substrate support member with a shaft obtained by the above.
本発明のシャフト付き基板支持部材の製造方法は、円盤状の基板支持部材の下面中央に、少なくとも一端にフランジを有する中空形状のシャフトのフランジ側を拡散接合する工程を含むシャフト付き基板支持部材の製造方法であって、
前記シャフトの外径をD、前記シャフトの長手方向の長さをL、前記シャフトの長手方向を法線方向とする面に沿った断面積をSとしたとき、L/D≧2又はL/S0.5≧3の場合においては、前記基板支持部材とシャフトとの拡散接合に際し、前記シャフトのフランジを前記基板支持部材に当接させた状態で前記フランジを押圧することを特徴とする。
The method for manufacturing a substrate support member with a shaft of the present invention includes a step of diffusing joining the flange side of a hollow shaft having a flange at least one end at the center of the lower surface of the disk-shaped substrate support member. It ’s a manufacturing method,
When the outer diameter of the shaft is D, the length of the shaft in the longitudinal direction is L, and the cross-sectional area along the plane whose longitudinal direction is the normal direction is S, L / D ≧ 2 or L / In the case of S 0.5 ≥ 3, the flange is pressed in a state where the flange of the shaft is in contact with the substrate support member at the time of diffusion joining between the substrate support member and the shaft.
本発明のシャフト付き基板支持部材の製造方法においては、基板支持部材にフランジ付きシャフトのフランジ側を拡散接合するに際し、加熱時に変形しやすい所定の形状の場合には、拡散接合時にシャフトの上端ではなく、フランジ部分を基板支持部材に向けて押圧するため、シャフトの上側部には外力がかからず撓みや変形を防止することができる。 In the method for manufacturing a substrate support member with a shaft of the present invention, when the flange side of the flanged shaft is diffusion-bonded to the substrate support member, in the case of a predetermined shape that is easily deformed during heating, the upper end of the shaft is diffusion-bonded. Instead, since the flange portion is pressed toward the substrate support member, no external force is applied to the upper portion of the shaft, and bending and deformation can be prevented.
本発明のシャフト付き基板支持部材は、円盤状の基板支持部材の下面中央に、フランジを有する中空形状のシャフトの前記フランジ側が接合されたシャフト付き基板支持部材であって、
前記基板支持部材と、前記フランジとの界面に拡散接合層を有し、前記拡散接合層の厚みが50μm以下であることを特徴とする。本発明のシャフト付き基板支持部材は、上記本発明の製造方法により製造されるものであり、拡散接合層の厚みが50μm以下であり、シャフトの撓みや変形がないか、あったとしても少ない。
The substrate support member with a shaft of the present invention is a substrate support member with a shaft in which the flange side of a hollow shaft having a flange is joined to the center of the lower surface of the disk-shaped substrate support member.
A diffusion bonding layer is provided at an interface between the substrate support member and the flange, and the thickness of the diffusion bonding layer is 50 μm or less. The substrate support member with a shaft of the present invention is manufactured by the above-mentioned manufacturing method of the present invention, the thickness of the diffusion bonding layer is 50 μm or less, and there is no bending or deformation of the shaft, if any.
以下、図面を参照して本発明の実施形態について説明するが、本発明は以下の実施形態に限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited to the following embodiments.
<シャフト付き基板支持部材の製造方法>
図1は、本発明の実施形態に係るシャフト付きセラミックスヒータ10を示す図であり、(A)は(B)のA−A線に沿った断面図、(B)は(A)のB−B線に沿った断面図である。図1に示すシャフト付きセラミックスヒータ10は、円盤状の基板支持部材12に、シャフト14が接合してなるものであり、図1はその基板支持部材12とシャフト14とを拡散接合するときの状態を示している。
<Manufacturing method of substrate support member with shaft>
1A and 1B are views showing a
基板支持部材12は、円盤状のセラミックスからなる部材であり、例えば窒化アルミニウムなどから構成される。この基板支持部材12は、ウェハの支持面(表面)である加熱面12Aを加熱する抵抗発熱体が埋設されており、他方の面にシャフト14が接合される。
The
シャフト14の上端には上部フランジ16が、下端には下部フランジ18が、いずれもシャフト14の径方向外部に突出した状態で形成されている。
An
以上の構成において、基板支持部材12に対するシャフト14の拡散接合は、シャフト14の形状に応じてその工程が異なる。すなわち、シャフト14の外径をD、シャフト14の長手方向の長さをL、シャフト14の長手方向を法線方向とする面に沿った断面積をSとしたとき、L/D≧2又はL/S0.5≧3の場合においては、拡散接合に際し、下部フランジ18を押圧する。シャフト14がL/D≧2又はL/S0.5≧3の場合、加熱時の軟化状態のシャフト14は外力により変形しやすく、上部フランジ16から押圧すると、外力がシャフト14に伝わり、撓みや変形が大きくなる。そのような撓みや変形を防ぐため、下部フランジ18を押圧するのである。反対に、シャフト14がL/D<2及びL/S0.5<3の場合は、加熱時の軟化状態でも外力により変形し難く、上部フランジ16から押圧しても撓みや変形が大きくなることはない。
In the above configuration, the process of diffusion bonding of the
シャフト14の外径Dは、シャフト14の上部フランジ16及び下部フランジ18の部位以外の外径である。また、シャフト14の長手方向の長さLは、シャフト14の上端から下端までの長さである。さらに、シャフト14の長手方向を法線方向とする面に沿った断面積Sは、シャフト14のフランジ16、18の部位以外の断面の面積(図1(A)のハッチングを付した領域)である。
The outer diameter D of the
基板支持部材12にシャフト14を拡散接合するに際し、下部フランジ18を押圧する場合、略円筒をその中心軸を中心にして複数に分割された割スリーブ状の押し治具などを用い、当該割スリーブ状の押し治具の一端をシャフト14の下部フランジ18に載せて、プレス圧が割スリーブ状の押し治具に直接負荷されるようにして押圧することができる。
When the
図2に、割スリーブ状の押し治具20がシャフト14の下部フランジ18を押圧している状態を概念的に示す。割スリーブ状の押し治具20の下端の押圧部を下部フランジ18に載せた状態で割スリーブ状の押し治具20の上端部24を下方に向けて押圧することで下部フランジ18は基板支持部材12に向けて押圧することができる。
FIG. 2 conceptually shows a state in which the split sleeve-shaped pushing
一方、本発明においては、L/D≧2及びL/S0.5≧3のいずれも満たさない場合、図3に示すように、上部フランジ16に押し治具30を載せ、その押し治具の上面を押圧することによって下部フランジ18は基板支持部材12に向けて押圧することができる。
On the other hand, in the present invention, when neither L / D ≧ 2 nor L / S 0.5 ≧ 3 is satisfied, the pushing
本実施形態において、拡散接合時の温度としては、1400〜1900℃とすることが好ましい。また、拡散接合時の押圧力としては、0.01〜40MPaとすることが好ましい。更に好ましくは拡散接合時の温度としては、1500〜1800℃とすることが好ましい。また、拡散接合時の押圧力としては、0.02〜8MPaである。ここで、押圧力とは、接合時の全荷重をシャフトと基板支持部材との間の接合面積で割った値を意味する。 In the present embodiment, the temperature at the time of diffusion bonding is preferably 1400 to 1900 ° C. The pressing force at the time of diffusion bonding is preferably 0.01 to 40 MPa. More preferably, the temperature at the time of diffusion bonding is preferably 1500 to 1800 ° C. The pressing force at the time of diffusion bonding is 0.02 to 8 MPa. Here, the pressing force means a value obtained by dividing the total load at the time of joining by the joining area between the shaft and the substrate support member.
以上の実施形態においては、シャフト付き基板支持部材の製造方法における基板支持部材と、シャフトとの拡散接合のみを示したが、基板支持部材内における抵抗発熱体の埋設、該抵抗発熱体に電流を供給する給電端子の配設などは定法に従い行うことができる。 In the above embodiments, only the diffusion bonding between the substrate support member and the shaft in the method for manufacturing the substrate support member with a shaft is shown, but the resistance heating element is embedded in the substrate support member and a current is applied to the resistance heating element. The power supply terminals to be supplied can be arranged according to a standard method.
図1においては、シャフト14に上部フランジ16が設けられた形態を示したが、上部フランジ16は不要であれば設けなくてもよい。
Although FIG. 1 shows a form in which the
一方、フランジを有しないシャフトを基板支持部材に拡散接合しようとする場合において、当該シャフトがL/D≧2又はL/S0.5≧3を満たすときには、シャフトの一端(基板支持部材に拡散接合する側)に意図的にフランジを設け、拡散接合時にそのフランジを押圧することでシャフトの撓みや変形を防止することができる。 On the other hand, when a shaft having no flange is to be diffusely joined to the substrate support member, when the shaft satisfies L / D ≧ 2 or L / S 0.5 ≧ 3, one end of the shaft (diffuse to the substrate support member). By intentionally providing a flange on the joining side) and pressing the flange during diffusion joining, it is possible to prevent the shaft from bending or deforming.
<シャフト付き基板支持部材>
以上の製造方法により得られる本実施形態のシャフト付き基板支持部材は、基板支持部材12と、フランジ18との界面に拡散接合層を有し、前記拡散接合層の厚みが、50μm以下である。すなわち、シャフト14の下部フランジ18を押圧して拡散接合した場合の拡散接合層は、厚みが50μm以下となっている。ここで、拡散接合層とは、フランジと基板支持部材とを拡散接合した後の境界部分に生じる層であるが、層状になっていない場合における「拡散接合層の厚み」とは、接合界面において粒界成分が移動した部分の厚みをいう。以下に、図面代用写真を参照して説明する。
<Board support member with shaft>
The substrate support member with a shaft of the present embodiment obtained by the above manufacturing method has a diffusion bonding layer at the interface between the
図4及び図5は、基板支持部材と、フランジとの界面を示す電子顕微鏡写真である。図4においては、白く見える点状のものが焼結助剤(Y2O3成分)を含む組織であり、焼結助剤を含む当該組織が点在する領域と、点在しない領域との界面が接合面である。図4に示す例では、接合界面において粒界成分は移動していない。図5においては、焼結助剤成分が接合面より上側に線状に拡散している領域が見られ、この領域が接合面より50μm以内と認められる。 4 and 5 are electron micrographs showing the interface between the substrate support member and the flange. In FIG. 4, a tissue that point appears white like comprises a sintering aid (Y 2 O 3 component), a region where the tissue containing the sintering aid is dotted, the dotted region not The interface is the joint surface. In the example shown in FIG. 4, the grain boundary component does not move at the bonding interface. In FIG. 5, a region in which the sintering aid component is linearly diffused above the joint surface is seen, and this region is recognized to be within 50 μm from the joint surface.
以上の実施形態においては、基板支持部材をセラミックスヒータとした形態を示したが、基板支持部材としては、セラミックスヒータ以外に、真空チャック、静電チャック、電極内蔵サセプタなどが挙げられる。 In the above embodiments, the substrate support member is a ceramic heater, and examples of the substrate support member include a vacuum chuck, an electrostatic chuck, a susceptor with a built-in electrode, and the like, in addition to the ceramic heater.
以下に、実施例により本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples.
[実施例1〜4、参考例1]
(円盤状の基板支持部材)
円盤状の基板支持部材として、素材がALN(Y2O3を3%含む)であり、寸法が直径:350mm、厚み:25mmのものを準備した。
[Examples 1 to 4, Reference Example 1]
(Disc-shaped substrate support member)
As disc-shaped substrate supporting member, the material is ALN (Y including 2 O 3 3%), size diameter: 350 mm, thickness: were prepared as the 25 mm.
(中空形状のシャフト)
中空形状のシャフトとして、素材がALNであり、寸法が異なるシャフト(1)〜(5)(上部フランジ形状は省略した)を準備した。各シャフトの寸法を表1に示す。シャフト(1)〜(4)はL/D≧2及びL/S0.5≧3のいずれも満たすのに対し、シャフト(5)はいずれの不等式をも満たさない。
(Hollow shaft)
As hollow shafts, shafts (1) to (5) (upper flange shape omitted) having different dimensions and made of ALN as a material were prepared. The dimensions of each shaft are shown in Table 1. The shafts (1) to (4) satisfy both L / D ≧ 2 and L / S 0.5 ≧ 3, whereas the shaft (5) does not satisfy any of the inequalities.
(シャフトの基板支持部材への拡散接合)
実施例1〜4のそれぞれにおいて、シャフト(1)〜(4)を基板支持部材に拡散接合した。ここで、シャフト(1)〜(4)は、L/D≧2及びL/S0.5≧3のいずれも満たすため、準備した上記基板支持部材に対し、図2に示すような割スリーブ状の押し治具を用い、シャフトのフランジを温度:1600℃、押圧力:6MPa、接合時間:4時間の条件で拡散接合した。ここで押圧力とは、接合時の全荷重をシャフトと基板支持部材との間の接合面積で割った値を意味する。
また、参考例1においては、シャフト(5)を基板支持部材に拡散接合した。シャフト(5)は、L/D≧2及びL/S0.5≧3のいずれも満たさないが、シャフト(1)〜(4)と同様に拡散接合した。
(Diffusion bonding of the shaft to the substrate support member)
In each of Examples 1 to 4, the shafts (1) to (4) were diffusion-bonded to the substrate support member. Here, since the shafts (1) to (4) satisfy both L / D ≧ 2 and L / S 0.5 ≧ 3, the split sleeve as shown in FIG. 2 is used with respect to the prepared substrate support member. The flange of the shaft was diffusively bonded under the conditions of a temperature of 1600 ° C., a pressing pressure of 6 MPa, and a bonding time of 4 hours using a conventional pressing jig. Here, the pressing force means a value obtained by dividing the total load at the time of joining by the joining area between the shaft and the substrate support member.
Further, in Reference Example 1, the shaft (5) was diffusion-bonded to the substrate support member. The shaft (5) does not satisfy either L / D ≧ 2 and L / S 0.5 ≧ 3, but is diffusion-bonded in the same manner as the shafts (1) to (4).
[比較例1〜4]
比較例1〜4のそれぞれにおいて、上記シャフト(1)〜(4)を基板支持部材に拡散接合した。ここで、シャフト(1)〜(4)は、L/D≧2及びL/S0.5≧3のいずれも満たすが、準備した上記基板支持部材に対し、図3に示すような押し治具を用い、シャフトの上部を温度:1600℃、押圧力:6MPa、接合時間4時間の条件で拡散接合した。
[Comparative Examples 1 to 4]
In each of Comparative Examples 1 to 4, the shafts (1) to (4) were diffusion-bonded to the substrate support member. Here, the shafts (1) to (4) satisfy both L / D ≧ 2 and L / S 0.5 ≧ 3, but the prepared substrate support member is pressed against the prepared substrate support member as shown in FIG. Using a jig, the upper part of the shaft was diffusively bonded under the conditions of a temperature of 1600 ° C., a pressing force of 6 MPa, and a bonding time of 4 hours.
[参考例2]
参考例2においては、上記シャフト(5)を基板支持部材に拡散接合した。ここで、シャフト(5)は、L/D≧2及びL/S0.5≧3のいずれも満たさないが、準備した上記基板支持部材に対し、図3に示すような押し治具を用い、シャフトの上部を温度:1600℃、押圧力:6MPa、接合時間4時間の条件で拡散接合した。
[Reference example 2]
In Reference Example 2, the shaft (5) was diffusion-bonded to the substrate support member. Here, the shaft (5) does not satisfy either L / D ≧ 2 and L / S 0.5 ≧ 3, but a pushing jig as shown in FIG. 3 is used for the prepared substrate support member. , The upper part of the shaft was diffusively bonded under the conditions of a temperature of 1600 ° C., a pressing force of 6 MPa, and a bonding time of 4 hours.
[評価]
1.シャフトの撓み
拡散接合後、シャフトはシャフト高さ中央部付近で太鼓状に膨らむ。その時のシャフトの外径の接合前後の変化率を測定した。結果を表2、3に示す。
[Evaluation]
1. 1. Shaft flexion After diffusion bonding, the shaft swells like a drum near the center of the shaft height. The rate of change of the outer diameter of the shaft at that time before and after joining was measured. The results are shown in Tables 2 and 3.
表2、3より、実施例1〜4においては、いずれも撓みが小さく拡散接合の前後の形状を十分に保持することができたことが分かる。
これに対して、比較例1〜4はいずれも接合後、シャフトのたわみが大きくなり形状を保持することができなかった。なお、参考例1および2は、L/D≧2及びL/S0.5≧3のいずれも満たさないシャフト(5)を用いた例であり、シャフトの下部フランジまたは上部フランジを押圧しても撓みは小さかった。
From Tables 2 and 3, it can be seen that in Examples 1 to 4, the deflection was small and the shapes before and after the diffusion bonding could be sufficiently maintained.
On the other hand, in all of Comparative Examples 1 to 4, the deflection of the shaft became large after joining, and the shape could not be maintained. Reference examples 1 and 2 are examples in which a shaft (5) that does not satisfy either L / D ≧ 2 and L / S 0.5 ≧ 3 is used, and the lower flange or the upper flange of the shaft is pressed. The deflection was small.
10 シャフト付きセラミックスヒータ
12 基板支持部材
14 シャフト
16 上部フランジ
18 下部フランジ
20 割スリーブ状の押し治具
22 押圧部
24 上端部
10 Ceramic heater with
Claims (1)
前記シャフトの外径をD、前記シャフトの長手方向の長さをL、前記シャフトの長手方向を法線方向とする面に沿った断面積をSとしたとき、6.21≧L/D≧2又は13.64≧L/S0.5≧3の場合においては、前記基板支持部材とシャフトとの拡散接合に際し、前記シャフトの前記基板支持部材側のフランジを前記基板支持部材に当接させた状態で前記フランジを割スリーブ状の押し治具を用い、6MPa以上40MPa以下の押圧力で押圧することを特徴とするシャフト付き基板支持部材の製造方法。 A method for manufacturing a substrate support member with a shaft, which comprises a step of diffusing and joining the flange side of a hollow shaft having flanges at both ends at the center of the lower surface of the disk-shaped substrate support member.
When the outer diameter of the shaft is D, the length of the shaft in the longitudinal direction is L, and the cross-sectional area along the plane whose longitudinal direction is the normal direction is S, 6.21 ≧ L / D ≧ In the case of 2 or 13.64 ≧ L / S0.5 ≧ 3, the flange of the shaft on the board support member side was brought into contact with the board support member at the time of diffusion bonding between the board support member and the shaft. A method for manufacturing a substrate support member with a shaft, which comprises pressing the flange with a pressing force of 6 MPa or more and 40 MPa or less using a split sleeve-shaped pressing jig in this state.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016164817A JP6875805B2 (en) | 2016-08-25 | 2016-08-25 | Substrate support member with shaft and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016164817A JP6875805B2 (en) | 2016-08-25 | 2016-08-25 | Substrate support member with shaft and its manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018030157A JP2018030157A (en) | 2018-03-01 |
JP6875805B2 true JP6875805B2 (en) | 2021-05-26 |
Family
ID=61304378
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016164817A Active JP6875805B2 (en) | 2016-08-25 | 2016-08-25 | Substrate support member with shaft and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6875805B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11881423B2 (en) * | 2021-02-09 | 2024-01-23 | Applied Materials, Inc. | Electrostatic chuck with metal bond |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4651240B2 (en) * | 2001-08-31 | 2011-03-16 | 京セラ株式会社 | Ceramic bonding apparatus and method for manufacturing ceramic bonded body using the same. |
JP3720757B2 (en) * | 2001-11-29 | 2005-11-30 | 京セラ株式会社 | Ceramic bonding apparatus and method for manufacturing ceramic bonded body using the same. |
JP4739774B2 (en) * | 2005-02-22 | 2011-08-03 | 日本碍子株式会社 | Ceramic sintered body joining apparatus and ceramic sintered body joining method |
-
2016
- 2016-08-25 JP JP2016164817A patent/JP6875805B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2018030157A (en) | 2018-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100859182B1 (en) | Heating device | |
KR100672802B1 (en) | Substrate heating apparatus and manufacturing method for the same | |
US7800029B2 (en) | Heating device | |
JP6287695B2 (en) | Electrostatic chuck device and manufacturing method thereof | |
JP6820451B1 (en) | Dual purpose vias for use in ceramic pedestals | |
JP6704837B2 (en) | Holding device | |
KR100634182B1 (en) | Substrate heater and fabrication method for the same | |
JP6875805B2 (en) | Substrate support member with shaft and its manufacturing method | |
JP6490296B2 (en) | Parts for semiconductor manufacturing equipment | |
JP6618409B2 (en) | Substrate holding device and manufacturing method thereof | |
CN105798448A (en) | Manufacturing method for radiator and radiator | |
US9829145B2 (en) | Manufacturing method of heat insulation wall body and heat insulation wall body | |
JP2004146568A (en) | Ceramic heater for semiconductor manufacturing device | |
JP2009176569A (en) | Ceramic heater and its manufacturing method | |
JP3833974B2 (en) | Manufacturing method of heating device | |
JP6650332B2 (en) | Substrate holding device and method of manufacturing the same | |
JP2023023670A (en) | ceramic heater | |
US6306325B1 (en) | Method of manufacturing ceramic sintered bodies | |
JP6370062B2 (en) | Aluminum nitride joined body and manufacturing method thereof | |
JP4567486B2 (en) | Ceramic sintered body joining apparatus and ceramic sintered body joining method | |
JP2766443B2 (en) | Manufacturing method of ceramic heater | |
JP6867907B2 (en) | Ceramic joints and methods for manufacturing ceramic joints | |
JP2007088498A (en) | Ceramic heater for semiconductor manufacturing apparatus | |
JP2019220554A (en) | Substrate placement member | |
JP6605947B2 (en) | Sample holder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190408 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200228 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200310 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200407 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200908 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20201014 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210413 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210423 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6875805 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE Ref document number: 6875805 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |