[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2018030157A - Baseboard support member with shaft and its manufacturing method - Google Patents

Baseboard support member with shaft and its manufacturing method Download PDF

Info

Publication number
JP2018030157A
JP2018030157A JP2016164817A JP2016164817A JP2018030157A JP 2018030157 A JP2018030157 A JP 2018030157A JP 2016164817 A JP2016164817 A JP 2016164817A JP 2016164817 A JP2016164817 A JP 2016164817A JP 2018030157 A JP2018030157 A JP 2018030157A
Authority
JP
Japan
Prior art keywords
shaft
support member
substrate support
flange
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016164817A
Other languages
Japanese (ja)
Other versions
JP6875805B2 (en
Inventor
健一 深澤
Kenichi Fukazawa
健一 深澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2016164817A priority Critical patent/JP6875805B2/en
Publication of JP2018030157A publication Critical patent/JP2018030157A/en
Application granted granted Critical
Publication of JP6875805B2 publication Critical patent/JP6875805B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a baseboard support member with a shaft which can prevent deformation when joining the shaft to the baseboard support member so as to be diffusible, and the baseboard support member with the shaft which can be obtained by the manufacturing method.SOLUTION: In a manufacturing method of a baseboard support member with a shaft including a process for joining a flange side of the hollow shaft having at least a flange at one end so as to be diffusible in a lower face center of the disc circular shape baseboard support member, when setting an outside diameter of the shaft as D, a length of the shaft in a longitudinal direction as L, and a cross section area along a face in which the longitudinal direction of the shaft is set as a normal direction as S, when a relationship of L/D≥2, or L/S≥3 is satisfied at the joining of the baseboard support member and the shaft so as to be diffusible, the flange is pressed in a state that the flange of the shaft abuts on the baseboard support member.SELECTED DRAWING: Figure 1

Description

本発明は、半導体製造装置などに用いられるシャフト付き基板支持部材及びその製造方法に関する。   The present invention relates to a substrate supporting member with a shaft used in a semiconductor manufacturing apparatus or the like and a manufacturing method thereof.

CVD、スパッタリングなどの半導体製造装置に用いられる熱源たるセラミックヒータとして、抵抗発熱体が埋設された円盤状の基板支持部材と、この基板支持部材の下面中央に取り付けられた中空形状のシャフトとを具備するシャフト付きセラミックヒータが知られている(例えば、特許文献1参照)。このようなシャフト付きセラミックヒータは、製造に際し、基板支持部材の下面中央にシャフトを押圧状態で加熱する拡散接合することにより一体化される。そして、基板支持部材に対するシャフトの押圧は、シャフトの端面(基板支持部材との非接触側)を基板支持部材方向に力を印加することにより行われる。   As a ceramic heater as a heat source used in semiconductor manufacturing equipment such as CVD and sputtering, a disk-shaped substrate support member in which a resistance heating element is embedded, and a hollow shaft attached to the center of the lower surface of the substrate support member A ceramic heater with a shaft is known (see, for example, Patent Document 1). In manufacturing, such a ceramic heater with a shaft is integrated by diffusion bonding in which the shaft is heated in a pressed state at the center of the lower surface of the substrate support member. The shaft is pressed against the substrate support member by applying a force in the direction of the substrate support member on the end surface of the shaft (the non-contact side with the substrate support member).

特開平11−339939号公報Japanese Patent Laid-Open No. 11-339939

しかしながら、加熱されたシャフトは軟化状態にあり、上記のように押圧すると、シャフトの形状によっては、撓んだり、大きく変形したりするといった問題があった。   However, the heated shaft is in a softened state, and when pressed as described above, there is a problem that the shaft is bent or greatly deformed depending on the shape of the shaft.

本発明は、以上の従来の問題点に鑑みなされたものであり、その目的は、基板支持部材にシャフトを拡散接合する際の変形を防止し得るシャフト付き基板支持部材の製造方法及び該製造方法により得られるシャフト付き基板支持部材を提供することにある。   The present invention has been made in view of the above-described conventional problems, and an object of the present invention is to provide a method for manufacturing a substrate supporting member with a shaft capable of preventing deformation when the shaft is diffusion bonded to the substrate supporting member, and the manufacturing method. It is in providing the substrate support member with a shaft obtained by these.

本発明のシャフト付き基板支持部材の製造方法は、円盤状の基板支持部材の下面中央に、少なくとも一端にフランジを有する中空形状のシャフトのフランジ側を拡散接合する工程を含むシャフト付き基板支持部材の製造方法であって、
前記シャフトの外径をD、前記シャフトの長手方向の長さをL、前記シャフトの長手方向を法線方向とする面に沿った断面積をSとしたとき、L/D≧2又はL/S0.5≧3の場合においては、前記基板支持部材とシャフトとの拡散接合に際し、前記シャフトのフランジを前記基板支持部材に当接させた状態で前記フランジを押圧することを特徴とする。
The method for manufacturing a substrate support member with a shaft according to the present invention includes a step of diffusion bonding a flange side of a hollow shaft having a flange at least at one end at the center of the lower surface of a disk-shaped substrate support member. A manufacturing method comprising:
When the outer diameter of the shaft is D, the length in the longitudinal direction of the shaft is L, and the cross-sectional area along the surface having the longitudinal direction of the shaft as the normal direction is S, L / D ≧ 2 or L / In the case of S 0.5 ≧ 3, the flange is pressed in a state where the flange of the shaft is in contact with the substrate support member during diffusion bonding of the substrate support member and the shaft.

本発明のシャフト付き基板支持部材の製造方法においては、基板支持部材にフランジ付きシャフトのフランジ側を拡散接合するに際し、加熱時に変形しやすい所定の形状の場合には、拡散接合時にシャフトの上端ではなく、フランジ部分を基板支持部材に向けて押圧するため、シャフトの上側部には外力がかからず撓みや変形を防止することができる。   In the method for manufacturing a substrate support member with a shaft according to the present invention, when the flange side of the flanged shaft is diffusion bonded to the substrate support member, in the case of a predetermined shape that easily deforms during heating, Since the flange portion is pressed toward the substrate support member, no external force is applied to the upper portion of the shaft, and bending and deformation can be prevented.

本発明のシャフト付き基板支持部材は、円盤状の基板支持部材の下面中央に、フランジを有する中空形状のシャフトの前記フランジ側が接合されたシャフト付き基板支持部材であって、
前記基板支持部材と、前記フランジとの界面に拡散接合層を有し、前記拡散接合層の厚みが50μm以下であることを特徴とする。本発明のシャフト付き基板支持部材は、上記本発明の製造方法により製造されるものであり、拡散接合層の厚みが50μm以下であり、シャフトの撓みや変形がないか、あったとしても少ない。
The substrate support member with a shaft of the present invention is a substrate support member with a shaft in which the flange side of a hollow shaft having a flange is joined to the center of the lower surface of a disk-shaped substrate support member,
A diffusion bonding layer is provided at an interface between the substrate support member and the flange, and the thickness of the diffusion bonding layer is 50 μm or less. The substrate support member with a shaft of the present invention is manufactured by the manufacturing method of the present invention, and the thickness of the diffusion bonding layer is 50 μm or less, and there is little or no bending or deformation of the shaft.

本発明の実施形態に係るシャフト付きセラミックスヒータの(A)シャフト部分の(B)のA−A線に沿った断面図、(B)(A)のB−B線に沿った断面図。Sectional drawing along the AA line of (B) of the (A) shaft part of the ceramic heater with a shaft which concerns on embodiment of this invention, Sectional drawing along the BB line of (B) (A). 割スリーブ状の押し治具がシャフトの下部フランジを押圧している状態を示す概念図。The conceptual diagram which shows the state which the split sleeve-shaped pushing jig is pressing the lower flange of a shaft. 押し治具がシャフトの上部フランジを押圧している状態を示す概念図。The conceptual diagram which shows the state which the pressing jig is pressing the upper flange of a shaft. 本発明の実施形態に係るシャフト付き基板支持部材の、基板支持部材及びシャフトの接合部分を示す図面代用写真。The drawing substitute photograph which shows the junctional part of a board | substrate support member and a shaft of the board | substrate support member with a shaft which concerns on embodiment of this invention. 本発明の実施形態に係るシャフト付き基板支持部材の、基板支持部材及びシャフトの接合部分を示す図面代用写真。The drawing substitute photograph which shows the junctional part of a board | substrate support member and a shaft of the board | substrate support member with a shaft which concerns on embodiment of this invention.

以下、図面を参照して本発明の実施形態について説明するが、本発明は以下の実施形態に限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited to the following embodiments.

<シャフト付き基板支持部材の製造方法>
図1は、本発明の実施形態に係るシャフト付きセラミックスヒータ10を示す図であり、(A)は(B)のA−A線に沿った断面図、(B)は(A)のB−B線に沿った断面図である。図1に示すシャフト付きセラミックスヒータ10は、円盤状の基板支持部材12に、シャフト14が接合してなるものであり、図1はその基板支持部材12とシャフト14とを拡散接合するときの状態を示している。
<Manufacturing method of substrate support member with shaft>
FIG. 1 is a view showing a shaft-equipped ceramic heater 10 according to an embodiment of the present invention, in which (A) is a cross-sectional view taken along line AA in (B), and (B) is B- in (A). It is sectional drawing along a B line. The shaft-equipped ceramic heater 10 shown in FIG. 1 is formed by joining a shaft 14 to a disk-like substrate support member 12, and FIG. 1 shows a state when the substrate support member 12 and the shaft 14 are diffusion-bonded. Is shown.

基板支持部材12は、円盤状のセラミックスからなる部材であり、例えば窒化アルミニウムなどから構成される。この基板支持部材12は、ウェハの支持面(表面)である加熱面12Aを加熱する抵抗発熱体が埋設されており、他方の面にシャフト14が接合される。   The substrate support member 12 is a member made of a disk-shaped ceramic, and is made of, for example, aluminum nitride. In this substrate support member 12, a resistance heating element for heating a heating surface 12A which is a support surface (surface) of the wafer is embedded, and a shaft 14 is joined to the other surface.

シャフト14の上端には上部フランジ16が、下端には下部フランジ18が、いずれもシャフト14の径方向外部に突出した状態で形成されている。   An upper flange 16 is formed at the upper end of the shaft 14, and a lower flange 18 is formed at the lower end of the shaft 14 so as to protrude outward in the radial direction of the shaft 14.

以上の構成において、基板支持部材12に対するシャフト14の拡散接合は、シャフト14の形状に応じてその工程が異なる。すなわち、シャフト14の外径をD、シャフト14の長手方向の長さをL、シャフト14の長手方向を法線方向とする面に沿った断面積をSとしたとき、L/D≧2又はL/S0.5≧3の場合においては、拡散接合に際し、下部フランジ18を押圧する。シャフト14がL/D≧2又はL/S0.5≧3の場合、加熱時の軟化状態のシャフト14は外力により変形しやすく、上部フランジ16から押圧すると、外力がシャフト14に伝わり、撓みや変形が大きくなる。そのような撓みや変形を防ぐため、下部フランジ18を押圧するのである。反対に、シャフト14がL/D<2及びL/S0.5<3の場合は、加熱時の軟化状態でも外力により変形し難く、上部フランジ16から押圧しても撓みや変形が大きくなることはない。 In the above configuration, the diffusion bonding of the shaft 14 to the substrate support member 12 has a different process depending on the shape of the shaft 14. That is, when the outer diameter of the shaft 14 is D, the length in the longitudinal direction of the shaft 14 is L, and the cross-sectional area along the plane whose normal direction is the longitudinal direction of the shaft 14 is S, L / D ≧ 2 or In the case of L / S 0.5 ≧ 3, the lower flange 18 is pressed during diffusion bonding. When the shaft 14 is L / D ≧ 2 or L / S 0.5 ≧ 3, the softened shaft 14 is easily deformed by an external force, and when pressed from the upper flange 16, the external force is transmitted to the shaft 14 and bent. And deformation increases. In order to prevent such bending and deformation, the lower flange 18 is pressed. On the other hand, when the shaft 14 is L / D <2 and L / S 0.5 <3, it is difficult to be deformed by an external force even in a softened state at the time of heating, and even if it is pressed from the upper flange 16, the deflection and deformation are increased. There is nothing.

シャフト14の外径Dは、シャフト14の上部フランジ16及び下部フランジ18の部位以外の外径である。また、シャフト14の長手方向の長さLは、シャフト14の上端から下端までの長さである。さらに、シャフト14の長手方向を法線方向とする面に沿った断面積Sは、シャフト14のフランジ16、18の部位以外の断面の面積(図1(A)のハッチングを付した領域)である。   The outer diameter D of the shaft 14 is an outer diameter other than the portions of the upper flange 16 and the lower flange 18 of the shaft 14. The length L in the longitudinal direction of the shaft 14 is a length from the upper end to the lower end of the shaft 14. Furthermore, the cross-sectional area S along the surface whose normal direction is the longitudinal direction of the shaft 14 is an area of a cross section other than the flanges 16 and 18 of the shaft 14 (the hatched region in FIG. 1A). is there.

基板支持部材12にシャフト14を拡散接合するに際し、下部フランジ18を押圧する場合、略円筒をその中心軸を中心にして複数に分割された割スリーブ状の押し治具などを用い、当該割スリーブ状の押し治具の一端をシャフト14の下部フランジ18に載せて、プレス圧が割スリーブ状の押し治具に直接負荷されるようにして押圧することができる。   When the lower flange 18 is pressed when the shaft 14 is diffusion-bonded to the substrate support member 12, a split sleeve-like pressing jig or the like that is divided into a plurality of cylinders around the central axis is used. One end of the shaped pressing jig can be placed on the lower flange 18 of the shaft 14 and pressed so that the pressing pressure is directly applied to the split sleeve shaped pressing jig.

図2に、割スリーブ状の押し治具20がシャフト14の下部フランジ18を押圧している状態を概念的に示す。割スリーブ状の押し治具20の下端の押圧部を下部フランジ18に載せた状態で割スリーブ状の押し治具20の上端部24を下方に向けて押圧することで下部フランジ18は基板支持部材12に向けて押圧することができる。   FIG. 2 conceptually shows a state in which the split sleeve-shaped pressing jig 20 presses the lower flange 18 of the shaft 14. By pressing the upper end portion 24 of the split sleeve-shaped pressing jig 20 downward while the pressing portion at the lower end of the split sleeve-shaped pressing jig 20 is placed on the lower flange 18, the lower flange 18 becomes the substrate support member. 12 can be pressed.

一方、本発明においては、L/D≧2及びL/S0.5≧3のいずれも満たさない場合、図3に示すように、上部フランジ16に押し治具30を載せ、その押し治具の上面を押圧することによって下部フランジ18は基板支持部材12に向けて押圧することができる。 On the other hand, in the present invention, when neither L / D ≧ 2 nor L / S 0.5 ≧ 3 is satisfied, a pressing jig 30 is placed on the upper flange 16 as shown in FIG. By pressing the upper surface of the lower flange 18, the lower flange 18 can be pressed toward the substrate support member 12.

本実施形態において、拡散接合時の温度としては、1400〜1900℃とすることが好ましい。また、拡散接合時の押圧力としては、0.01〜40MPaとすることが好ましい。更に好ましくは拡散接合時の温度としては、1500〜1800℃とすることが好ましい。また、拡散接合時の押圧力としては、0.02〜8MPaである。ここで、押圧力とは、接合時の全荷重をシャフトと基板支持部材との間の接合面積で割った値を意味する。   In this embodiment, the temperature during diffusion bonding is preferably 1400 to 1900 ° C. Moreover, it is preferable to set it as 0.01-40 Mpa as pressing force at the time of diffusion bonding. More preferably, the temperature during diffusion bonding is preferably 1500 to 1800 ° C. The pressing force during diffusion bonding is 0.02 to 8 MPa. Here, the pressing force means a value obtained by dividing the total load at the time of joining by the joining area between the shaft and the substrate support member.

以上の実施形態においては、シャフト付き基板支持部材の製造方法における基板支持部材と、シャフトとの拡散接合のみを示したが、基板支持部材内における抵抗発熱体の埋設、該抵抗発熱体に電流を供給する給電端子の配設などは定法に従い行うことができる。   In the above embodiment, only diffusion bonding between the substrate support member and the shaft in the method of manufacturing the substrate support member with a shaft is shown. However, the resistance heating element is embedded in the substrate support member, and current is supplied to the resistance heating element. Arrangement of the feeding terminal to be supplied can be performed according to a standard method.

図1においては、シャフト14に上部フランジ16が設けられた形態を示したが、上部フランジ16は不要であれば設けなくてもよい。   In FIG. 1, the upper flange 16 is provided on the shaft 14. However, the upper flange 16 may be omitted if not necessary.

一方、フランジを有しないシャフトを基板支持部材に拡散接合しようとする場合において、当該シャフトがL/D≧2又はL/S0.5≧3を満たすときには、シャフトの一端(基板支持部材に拡散接合する側)に意図的にフランジを設け、拡散接合時にそのフランジを押圧することでシャフトの撓みや変形を防止することができる。 On the other hand, when a shaft having no flange is diffusion bonded to the substrate support member, when the shaft satisfies L / D ≧ 2 or L / S 0.5 ≧ 3, one end of the shaft (diffuses to the substrate support member). It is possible to prevent the shaft from being bent or deformed by intentionally providing a flange on the joining side) and pressing the flange during diffusion joining.

<シャフト付き基板支持部材>
以上の製造方法により得られる本実施形態のシャフト付き基板支持部材は、基板支持部材12と、フランジ18との界面に拡散接合層を有し、前記拡散接合層の厚みが、50μm以下である。すなわち、シャフト14の下部フランジ18を押圧して拡散接合した場合の拡散接合層は、厚みが50μm以下となっている。ここで、拡散接合層とは、フランジと基板支持部材とを拡散接合した後の境界部分に生じる層であるが、層状になっていない場合における「拡散接合層の厚み」とは、接合界面において粒界成分が移動した部分の厚みをいう。以下に、図面代用写真を参照して説明する。
<Substrate support member with shaft>
The substrate support member with a shaft of the present embodiment obtained by the above manufacturing method has a diffusion bonding layer at the interface between the substrate support member 12 and the flange 18, and the thickness of the diffusion bonding layer is 50 μm or less. That is, the thickness of the diffusion bonding layer when the lower flange 18 of the shaft 14 is pressed and diffusion bonded is 50 μm or less. Here, the diffusion bonding layer is a layer generated at the boundary portion after the flange and the substrate support member are diffusion bonded, but the “thickness of the diffusion bonding layer” in the case where the flange is not layered is the bonding interface. The thickness of the part where the grain boundary component has moved. The following description will be given with reference to a drawing substitute photograph.

図4及び図5は、基板支持部材と、フランジとの界面を示す電子顕微鏡写真である。図4においては、白く見える点状のものが焼結助剤(Y成分)を含む組織であり、焼結助剤を含む当該組織が点在する領域と、点在しない領域との界面が接合面である。図4に示す例では、接合界面において粒界成分は移動していない。図5においては、焼結助剤成分が接合面より上側に線状に拡散している領域が見られ、この領域が接合面より50μm以内と認められる。 4 and 5 are electron micrographs showing the interface between the substrate support member and the flange. In FIG. 4, the point-like thing that looks white is a structure containing a sintering aid (Y 2 O 3 component), and a region where the structure containing the sintering aid is scattered and a region not scattered The interface is the joint surface. In the example shown in FIG. 4, the grain boundary component does not move at the bonding interface. In FIG. 5, a region where the sintering aid component is linearly diffused above the joining surface is seen, and this region is recognized to be within 50 μm from the joining surface.

以上の実施形態においては、基板支持部材をセラミックスヒータとした形態を示したが、基板支持部材としては、セラミックスヒータ以外に、真空チャック、静電チャック、電極内蔵サセプタなどが挙げられる。   In the above embodiments, the substrate support member is a ceramic heater, but examples of the substrate support member include a vacuum chuck, an electrostatic chuck, and a built-in electrode susceptor in addition to the ceramic heater.

以下に、実施例により本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples.

[実施例1〜4、参考例1]
(円盤状の基板支持部材)
円盤状の基板支持部材として、素材がALN(Yを3%含む)であり、寸法が直径:350mm、厚み:25mmのものを準備した。
[Examples 1 to 4, Reference Example 1]
(Disc-shaped substrate support member)
A disk-shaped substrate support member having a material of ALN (containing 3% of Y 2 O 3 ) and having a diameter of 350 mm and a thickness of 25 mm was prepared.

(中空形状のシャフト)
中空形状のシャフトとして、素材がALNであり、寸法が異なるシャフト(1)〜(5)(上部フランジ形状は省略した)を準備した。各シャフトの寸法を表1に示す。シャフト(1)〜(4)はL/D≧2及びL/S0.5≧3のいずれも満たすのに対し、シャフト(5)はいずれの不等式をも満たさない。
(Hollow shaft)
As hollow shafts, shafts (1) to (5) (the upper flange shape was omitted) having a material of ALN and different dimensions were prepared. Table 1 shows the dimensions of each shaft. The shafts (1) to (4) satisfy both L / D ≧ 2 and L / S 0.5 ≧ 3, while the shaft (5) does not satisfy any inequality.

(シャフトの基板支持部材への拡散接合)
実施例1〜4のそれぞれにおいて、シャフト(1)〜(4)を基板支持部材に拡散接合した。ここで、シャフト(1)〜(4)は、L/D≧2及びL/S0.5≧3のいずれも満たすため、準備した上記基板支持部材に対し、図2に示すような割スリーブ状の押し治具を用い、シャフトのフランジを温度:1600℃、押圧力:6MPa、接合時間:4時間の条件で拡散接合した。ここで押圧力とは、接合時の全荷重をシャフトと基板支持部材との間の接合面積で割った値を意味する。
また、参考例1においては、シャフト(5)を基板支持部材に拡散接合した。シャフト(5)は、L/D≧2及びL/S0.5≧3のいずれも満たさないが、シャフト(1)〜(4)と同様に拡散接合した。
(Diffusion bonding of shaft to substrate support member)
In each of Examples 1 to 4, the shafts (1) to (4) were diffusion bonded to the substrate support member. Here, since the shafts (1) to (4) satisfy both L / D ≧ 2 and L / S 0.5 ≧ 3, the split sleeve as shown in FIG. The shaft flange was diffusion bonded under the conditions of a temperature of 1600 ° C., a pressing force of 6 MPa, and a bonding time of 4 hours. Here, the pressing force means a value obtained by dividing the total load at the time of joining by the joining area between the shaft and the substrate support member.
In Reference Example 1, the shaft (5) was diffusion bonded to the substrate support member. The shaft (5) did not satisfy both L / D ≧ 2 and L / S 0.5 ≧ 3, but was diffusion bonded in the same manner as the shafts (1) to (4).

[比較例1〜4]
比較例1〜4のそれぞれにおいて、上記シャフト(1)〜(4)を基板支持部材に拡散接合した。ここで、シャフト(1)〜(4)は、L/D≧2及びL/S0.5≧3のいずれも満たすが、準備した上記基板支持部材に対し、図3に示すような押し治具を用い、シャフトの上部を温度:1600℃、押圧力:6MPa、接合時間4時間の条件で拡散接合した。
[Comparative Examples 1-4]
In each of Comparative Examples 1 to 4, the shafts (1) to (4) were diffusion bonded to the substrate support member. Here, the shafts (1) to (4) satisfy both L / D ≧ 2 and L / S 0.5 ≧ 3, but the prepared substrate support member is pushed as shown in FIG. Using the tool, the upper part of the shaft was diffusion bonded under the conditions of a temperature of 1600 ° C., a pressing force of 6 MPa, and a bonding time of 4 hours.

[参考例2]
参考例2においては、上記シャフト(5)を基板支持部材に拡散接合した。ここで、シャフト(5)は、L/D≧2及びL/S0.5≧3のいずれも満たさないが、準備した上記基板支持部材に対し、図3に示すような押し治具を用い、シャフトの上部を温度:1600℃、押圧力:6MPa、接合時間4時間の条件で拡散接合した。
[Reference Example 2]
In Reference Example 2, the shaft (5) was diffusion bonded to the substrate support member. Here, the shaft (5) does not satisfy both L / D ≧ 2 and L / S 0.5 ≧ 3, but a pressing jig as shown in FIG. 3 is used for the prepared substrate support member. The upper part of the shaft was diffusion bonded under the conditions of a temperature of 1600 ° C., a pressing force of 6 MPa, and a bonding time of 4 hours.

[評価]
1.シャフトの撓み
拡散接合後、シャフトはシャフト高さ中央部付近で太鼓状に膨らむ。その時のシャフトの外径の接合前後の変化率を測定した。結果を表2、3に示す。
[Evaluation]
1. Shaft deflection After diffusion bonding, the shaft swells in a drum shape near the center of the shaft height. The rate of change of the outer diameter of the shaft before and after joining was measured. The results are shown in Tables 2 and 3.

表2、3より、実施例1〜4においては、いずれも撓みが小さく拡散接合の前後の形状を十分に保持することができたことが分かる。
これに対して、比較例1〜4はいずれも接合後、シャフトのたわみが大きくなり形状を保持することができなかった。なお、参考例1および2は、L/D≧2及びL/S0.5≧3のいずれも満たさないシャフト(5)を用いた例であり、シャフトの下部フランジまたは上部フランジを押圧しても撓みは小さかった。
From Tables 2 and 3, it can be seen that in Examples 1 to 4, the bending was small and the shapes before and after diffusion bonding could be sufficiently retained.
On the other hand, in all of Comparative Examples 1 to 4, after joining, the deflection of the shaft increased and the shape could not be maintained. Reference Examples 1 and 2 are examples in which a shaft (5) that does not satisfy both L / D ≧ 2 and L / S 0.5 ≧ 3 is used, and the lower flange or the upper flange of the shaft is pressed. The deflection was small.

10 シャフト付きセラミックスヒータ
12 基板支持部材
14 シャフト
16 上部フランジ
18 下部フランジ
20 割スリーブ状の押し治具
22 押圧部
24 上端部
DESCRIPTION OF SYMBOLS 10 Ceramic heater with a shaft 12 Board | substrate support member 14 Shaft 16 Upper flange 18 Lower flange 20 Split sleeve-shaped pressing jig 22 Press part 24 Upper end part

Claims (2)

円盤状の基板支持部材の下面中央に、少なくとも一端にフランジを有する中空形状のシャフトのフランジ側を拡散接合する工程を含むシャフト付き基板支持部材の製造方法であって、
前記シャフトの外径をD、前記シャフトの長手方向の長さをL、前記シャフトの長手方向を法線方向とする面に沿った断面積をSとしたとき、L/D≧2又はL/S0.5≧3の場合においては、前記基板支持部材とシャフトとの拡散接合に際し、前記シャフトのフランジを前記基板支持部材に当接させた状態で前記フランジを押圧することを特徴とするシャフト付き基板支持部材の製造方法。
A method of manufacturing a substrate support member with a shaft including a step of diffusion bonding a flange side of a hollow shaft having a flange at least at one end at a center of a lower surface of a disk-shaped substrate support member,
When the outer diameter of the shaft is D, the length in the longitudinal direction of the shaft is L, and the cross-sectional area along the surface having the longitudinal direction of the shaft as the normal direction is S, L / D ≧ 2 or L / In the case of S 0.5 ≧ 3, in the diffusion bonding between the substrate support member and the shaft, the shaft is pressed in a state where the flange of the shaft is in contact with the substrate support member. A manufacturing method of an attached substrate support member.
円盤状の基板支持部材の下面中央に、フランジを有する中空形状のシャフトの前記フランジ側が接合されたシャフト付き基板支持部材であって、
前記基板支持部材と、前記フランジとの界面に拡散接合層を有し、前記拡散接合層の厚みが50μm以下であることを特徴とするシャフト付き基板支持部材。
A substrate support member with a shaft in which the flange side of a hollow shaft having a flange is joined to the center of the lower surface of a disk-shaped substrate support member,
A substrate support member with a shaft having a diffusion bonding layer at an interface between the substrate support member and the flange, wherein the diffusion bonding layer has a thickness of 50 μm or less.
JP2016164817A 2016-08-25 2016-08-25 Substrate support member with shaft and its manufacturing method Active JP6875805B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016164817A JP6875805B2 (en) 2016-08-25 2016-08-25 Substrate support member with shaft and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016164817A JP6875805B2 (en) 2016-08-25 2016-08-25 Substrate support member with shaft and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2018030157A true JP2018030157A (en) 2018-03-01
JP6875805B2 JP6875805B2 (en) 2021-05-26

Family

ID=61304378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016164817A Active JP6875805B2 (en) 2016-08-25 2016-08-25 Substrate support member with shaft and its manufacturing method

Country Status (1)

Country Link
JP (1) JP6875805B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220254670A1 (en) * 2021-02-09 2022-08-11 Applied Materials, Inc. Electrostatic chuck with metal bond

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003073177A (en) * 2001-08-31 2003-03-12 Kyocera Corp Ceramic compact bonding device and method of manufacturing ceramic bonded compact
JP2003165779A (en) * 2001-11-29 2003-06-10 Kyocera Corp Ceramic joining device and manufacturing method for joined ceramic article using the same
JP2006232576A (en) * 2005-02-22 2006-09-07 Ngk Insulators Ltd Ceramic sintered compact joining device and ceramic sintered compact joining method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003073177A (en) * 2001-08-31 2003-03-12 Kyocera Corp Ceramic compact bonding device and method of manufacturing ceramic bonded compact
JP2003165779A (en) * 2001-11-29 2003-06-10 Kyocera Corp Ceramic joining device and manufacturing method for joined ceramic article using the same
JP2006232576A (en) * 2005-02-22 2006-09-07 Ngk Insulators Ltd Ceramic sintered compact joining device and ceramic sintered compact joining method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220254670A1 (en) * 2021-02-09 2022-08-11 Applied Materials, Inc. Electrostatic chuck with metal bond
US11881423B2 (en) * 2021-02-09 2024-01-23 Applied Materials, Inc. Electrostatic chuck with metal bond

Also Published As

Publication number Publication date
JP6875805B2 (en) 2021-05-26

Similar Documents

Publication Publication Date Title
KR100859182B1 (en) Heating device
KR100672802B1 (en) Substrate heating apparatus and manufacturing method for the same
JP5008875B2 (en) JOINT BODY AND MANUFACTURING METHOD THEREOF
JP6287695B2 (en) Electrostatic chuck device and manufacturing method thereof
US7800029B2 (en) Heating device
JP6820451B1 (en) Dual purpose vias for use in ceramic pedestals
KR102368742B1 (en) Holding device and manufacturing method of holding device
TWI686368B (en) Parts for semiconductor manufacturing equipment, and method for manufacturing parts for semiconductor manufacturing equipment
JP6843320B1 (en) Ceramic heater
JP6495536B2 (en) Manufacturing method of parts for semiconductor manufacturing equipment and parts for semiconductor manufacturing equipment
JP2018030157A (en) Baseboard support member with shaft and its manufacturing method
JP7110828B2 (en) Electrostatic chuck device
JP6618409B2 (en) Substrate holding device and manufacturing method thereof
US12087613B2 (en) Wafer placement table and method of manufacturing the same
KR20160000970A (en) Heater manufacturing method of semiconductor manufacturing apparatus and heater damage portion treating method
JP6650332B2 (en) Substrate holding device and method of manufacturing the same
JP2023023670A (en) ceramic heater
JP6370062B2 (en) Aluminum nitride joined body and manufacturing method thereof
JP6642170B2 (en) Electrostatic chuck device and manufacturing method thereof
JP6867907B2 (en) Ceramic joints and methods for manufacturing ceramic joints
CN110959306A (en) Ceramic heater
CN104412360A (en) Method for manufacturing composite structure by metal/metal combination
US20220030669A1 (en) Ceramic heater with shaft
JP2019202331A (en) Joining method of dissimilar material, and joined body of dissimilar material
JP4567486B2 (en) Ceramic sintered body joining apparatus and ceramic sintered body joining method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190408

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210413

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210423

R150 Certificate of patent or registration of utility model

Ref document number: 6875805

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE

Ref document number: 6875805

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250