[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6650332B2 - Substrate holding device and method of manufacturing the same - Google Patents

Substrate holding device and method of manufacturing the same Download PDF

Info

Publication number
JP6650332B2
JP6650332B2 JP2016082195A JP2016082195A JP6650332B2 JP 6650332 B2 JP6650332 B2 JP 6650332B2 JP 2016082195 A JP2016082195 A JP 2016082195A JP 2016082195 A JP2016082195 A JP 2016082195A JP 6650332 B2 JP6650332 B2 JP 6650332B2
Authority
JP
Japan
Prior art keywords
outer peripheral
flange portion
chamfered
base material
peripheral edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016082195A
Other languages
Japanese (ja)
Other versions
JP2017191910A (en
Inventor
健一 深澤
健一 深澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2016082195A priority Critical patent/JP6650332B2/en
Publication of JP2017191910A publication Critical patent/JP2017191910A/en
Application granted granted Critical
Publication of JP6650332B2 publication Critical patent/JP6650332B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Ceramic Products (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Description

本発明は、半導体ウエハなどの基板を基材に保持する基板保持装置及びその製造方法に関する。   The present invention relates to a substrate holding device for holding a substrate such as a semiconductor wafer on a base material and a method for manufacturing the same.

従来から、基板を保持するために、セラミックスからなり上面に基板を支持する基材と、セラミックスからなりフランジ部を上部に有する中空のシャフトとを備える基板保持装置が用いられている。   2. Description of the Related Art Conventionally, in order to hold a substrate, a substrate holding device including a base material made of ceramics and supporting the substrate on an upper surface, and a hollow shaft made of ceramics and having a flange portion on an upper portion has been used.

特許文献1には、基材の下面の中央部に周辺部より厚さが厚くなるように下方に突出した突出部(凸状部)を設け、この突出部の下面と接合される上面を有するフランジ部をシャフトの上部に設けることが開示されている。そして、突出部の外周側面とフランジ部の外周側面とより連続的な面を構成することにより、基材とフランジ部との接合部における温度勾配が小さくなり、熱応力集中が緩和されるので、接合部にクラックが生じるおそれが低減されるとしている。   In Patent Literature 1, a protruding portion (convex portion) is provided at a central portion of a lower surface of a base material so as to protrude downward so as to be thicker than a peripheral portion, and has an upper surface joined to a lower surface of the protruding portion. It is disclosed that a flange portion is provided on an upper portion of a shaft. And, by forming a more continuous surface with the outer peripheral side surface of the protruding portion and the outer peripheral side surface of the flange portion, the temperature gradient at the joint between the base material and the flange portion is reduced, and thermal stress concentration is reduced, It is stated that the risk of cracks occurring at the joint is reduced.

特許第3810216号公報Japanese Patent No. 3810216

しかしながら、上記特許文献1に開示されたように突出部の外周側面とフランジ部の外周側面とより連続的な面を構成するためには、突出部及びフランジ部の接続部の角部を直角にする必要がある。このように接合部の角部が直角であると、そこからチッピングやマイクロクラックが生じやすく、損傷、剥離などが生じるおそれが大きい。   However, as disclosed in Patent Document 1, in order to form a more continuous surface between the outer peripheral side surface of the protrusion and the outer peripheral side surface of the flange portion, the corner portion of the connection portion between the protrusion portion and the flange portion is formed at a right angle. There is a need to. When the corners of the joining portion are right angles, chipping and microcracks are liable to occur therefrom, and there is a high possibility that damage and peeling will occur.

なお、基材とシャフトの接合の際に接合材を介在させる場合、比較的小さな加圧での接合が可能であるので、接合時のチッピングやマイクロクラックの発生は抑制される。しかしながら、接合材のプラズマ耐性やより高温下での用途を想定しての接合材を介さない固相接合の場合は、高い接合温度及び大きな加圧が必要であり、チッピングやマイクロクラックが生じるおそれが大きい。   When a joining material is interposed at the time of joining the base material and the shaft, the joining can be performed with a relatively small pressure, so that the occurrence of chipping and micro cracks at the time of joining is suppressed. However, in the case of solid-state bonding that does not involve a bonding material, assuming the plasma resistance of the bonding material and applications under higher temperatures, a high bonding temperature and a large pressure are required, and chipping and micro cracks may occur. Is big.

そこで、本発明は、接合材を介さない固相接合において、基材とシャフトとの接合部からチッピングやマイクロクラックが生じるおそれの低減を図り得る基板保持装置及びその製造方法を提供することを目的とする。   Accordingly, an object of the present invention is to provide a substrate holding device and a method for manufacturing the substrate holding device, which can reduce the possibility of chipping or microcracking occurring from a joint between a substrate and a shaft in solid-state joining without a joining material. And

本発明の基板保持装置は、セラミックスからなり、上面に基板を支持し、下面の中央部に周辺部より厚さが厚くなるように下方に突出した突出部を有する基材と、セラミックスからなり、前記突出部に接続されるフランジ部を上部に有する中空のシャフトとを備える基板保持装置であって、前記突出部は下端部の外周縁又は前記フランジ部は上端部の外周縁の少なくとも一方に全周に亘る面取部を有していることを特徴とする。   The substrate holding device of the present invention is made of ceramics, supports the substrate on the upper surface, a base material having a protruding portion that protrudes downward so as to be thicker than the peripheral portion at the center of the lower surface, and is made of ceramics, A hollow shaft having a flange portion connected to the projecting portion at an upper portion thereof, wherein the projecting portion is entirely formed on at least one of an outer peripheral edge of a lower end portion and an outer peripheral edge of an upper end portion. It is characterized by having a chamfer over the circumference.

本発明の基板保持装置によれば、基材又はシャフトの接合部には少なくとも一方に全周に亘る面取部を有している。そのため、従来のようにこれらの部分が共に直角である場合と比較して、接合部からチッピングやマイクロクラックなどの損傷が生じるおそれの低減を図ることが可能となる。   According to the substrate holding device of the present invention, at least one of the joining portions of the base material and the shaft has a chamfered portion over the entire circumference. For this reason, it is possible to reduce the possibility that damage such as chipping or microcracks may occur from the joint, as compared with a case where both of these portions are perpendicular at a conventional angle.

本発明の基板保持装置において、前記フランジ部の上端部の内周縁に全周に亘る面取部を有していることが好ましい。   In the substrate holding device of the present invention, it is preferable that the inner peripheral edge of the upper end portion of the flange portion has a chamfered portion over the entire circumference.

この場合、シャフトの接合部の内周縁においても面取部を有している。そのため、従来のようにこの部分が直角である場合と比較して、接合部からチッピングやマイクロクラックなどの損傷が生じるおそれの低減を図ることが可能となる。   In this case, the inner peripheral edge of the joint of the shaft also has a chamfer. For this reason, it is possible to reduce the possibility that damage such as chipping or microcracks may occur from the joint, as compared with the case where this portion is a right angle as in the related art.

また、本発明の基板保持装置において、前記突出部の外周側面と前記フランジ部の外周側面は略面一である。 Further, in the substrate holding apparatus of the present invention, the outer peripheral side of the outer peripheral side and the flange portion of the projection Ru substantially flush der.

なお、本発明において、突出部の外周側面とフランジ部の外周側面が略面一であるとは、面一である場合のほかに、多少、例えば0.2mm、好ましくは1mm以下であればずれていてもよいことを意味している。   In the present invention, the phrase that the outer peripheral side surface of the protruding portion and the outer peripheral side surface of the flange portion are substantially flush is not limited to the case where they are flush with each other, but is slightly shifted, for example, 0.2 mm, preferably 1 mm or less. It means that you may.

本発明の基板保持装置の製造方法は、セラミックスからなり、下面の中央部に周辺部より厚さが厚くなるように下方に突出した突出部を有する基材を用意する工程と、セラミックスからなり、前記突出部に接続されるフランジ部を上部に有する中空のシャフトを用意する工程と、前記突出部の下端部の外周縁又は前記フランジ部の上端部の外周縁の少なくとも一方を全周に亘って面取り加工する工程と、前記突出部の下面と前記フランジ部の上面を当接させた状態でこれらの面を固相接合により接合する工程とを備えることを特徴とする。   The method for manufacturing a substrate holding device of the present invention includes a step of preparing a substrate made of ceramics and having a protruding portion that protrudes downward so as to be thicker than a peripheral portion in a central portion of a lower surface; A step of preparing a hollow shaft having a flange portion connected to the projecting portion at an upper portion, and at least one of an outer peripheral edge of a lower end portion of the projecting portion or an outer peripheral edge of an upper end portion of the flange portion over the entire circumference; The method includes a step of chamfering, and a step of joining the surfaces by solid phase joining in a state where the lower surface of the protruding portion and the upper surface of the flange portion are in contact with each other.

本発明の基板保持装置の製造方法によれば、固相接合により接合する工程において、基材とシャフトとが当接する部分の少なくとも一方に面取り加工がされている。そのため、従来のように当接する部分の角部が共に直角である場合と比較して、当該接合する工程において、チッピングやマイクロクラックなどの損傷が生じるおそれの低減を図ることが可能となる。   According to the method of manufacturing a substrate holding device of the present invention, in the step of joining by solid-phase joining, at least one of the portions where the base material and the shaft contact each other is chamfered. For this reason, it is possible to reduce the possibility of damage such as chipping and micro cracks occurring in the joining step, as compared with the case where the corners of the contacting parts are both right angles as in the related art.

また、本発明の基板保持装置の製造方法において、前記突出部の外周側面と前記フランジ部の外周側面と略面一に加工する工程を備える。 In the manufacturing method of the substrate holding apparatus of the present invention, Ru comprising the step of machining the outer peripheral side surface substantially flush to the outer peripheral side and the flange portion of the protruding portion.

本発明の実施形態に係るセラミックスヒータの模式断面図。FIG. 1 is a schematic sectional view of a ceramic heater according to an embodiment of the present invention. 本発明の実施形態の別態様に係るセラミックスヒータの模式断面図。FIG. 4 is a schematic cross-sectional view of a ceramic heater according to another aspect of the embodiment of the present invention. 本発明の実施形態の変形例に係るセラミックスヒータの模式部分断面図。FIG. 9 is a schematic partial cross-sectional view of a ceramic heater according to a modification of the embodiment of the present invention. 本発明の実施形態の他の変形例に係るセラミックスヒータの模式部分断面図。FIG. 9 is a schematic partial cross-sectional view of a ceramic heater according to another modification of the embodiment of the present invention.

(実施形態)
本発明の基板保持装置の実施形態に係るセラミックスヒータ100について、図1を参照して説明する。
(Embodiment)
A ceramic heater 100 according to an embodiment of the substrate holding device of the present invention will be described with reference to FIG.

セラミックスヒータ100は、基材10、電極20、シャフト30及び給電ロッド40を備えている。   The ceramic heater 100 includes a base material 10, an electrode 20, a shaft 30, and a power supply rod 40.

本実施形態では、セラミックスヒータ100は、電極20が発熱抵抗体(ヒータ)として機能し、このヒータに給電ロッド40から電圧が印加されることによって発生する熱により、基材10の上面である支持面に支持される半導体ウエハ等の基板を加熱する。なお、セラミックスヒータ100は、互いに電気的に独立した複数の電極20が存在し、これら電極20に供給する電圧を独立して制御可能なマルチゾーンヒータであってもよい。   In the present embodiment, in the ceramic heater 100, the electrode 20 functions as a heating resistor (heater), and the heat generated when a voltage is applied to the heater from the power supply rod 40 supports the upper surface of the base material 10. A substrate such as a semiconductor wafer supported on the surface is heated. Note that the ceramic heater 100 may be a multi-zone heater in which a plurality of electrodes 20 that are electrically independent of each other exist, and a voltage supplied to these electrodes 20 can be controlled independently.

ただし、本発明の基板保持装置は、電極20に給電ロッド40から電圧が印加されることによって発生するクーロン力により、基材10の表面に基板を吸引する静電チャックであってもよい。   However, the substrate holding device of the present invention may be an electrostatic chuck that attracts the substrate to the surface of the substrate 10 by Coulomb force generated by applying a voltage to the electrode 20 from the power supply rod 40.

また、本発明の基板保持装置は、表面に近い電極20が電極として機能し、表面から離れた電極20が抵抗発熱体として機能するヒータ機能付きの静電チャックであってもよい。   Further, the substrate holding device of the present invention may be an electrostatic chuck with a heater function in which the electrode 20 close to the surface functions as an electrode and the electrode 20 remote from the surface functions as a resistance heating element.

なお、基材10の表面の上に、保護層などが形成されていてもよい。また、基材10内に、冷却構造を設けてもよい。   Note that a protective layer or the like may be formed on the surface of the substrate 10. Further, a cooling structure may be provided in the base material 10.

基材10は、アルミナ(Al)、窒化アルミニウム(AlN)又は窒化珪素(Si)等のセラミックス焼結体などからなっている。ただし、基材10は、セラミックスヒータ又は静電チャックの基材の材料として使用される素材からなるものであればよい。 The base material 10 is made of a ceramic sintered body such as alumina (Al 2 O 3 ), aluminum nitride (AlN), or silicon nitride (Si 3 N 4 ). However, the base material 10 may be made of a material used as a base material of the ceramic heater or the electrostatic chuck.

基材10は、例えば高純度(例えば純度99.9%以上)の窒化アルミニウム粉末、アルミナ粉末、窒化珪素粉末、炭化珪素粉末、ジルコニア粉末、必要に応じてこれに適量の酸化イットリウム粉末などの焼結助剤が添加された混合原料粉末を型に充填し、ホットプレス焼結することにより形成されたセラミックス焼結体から構成されている。   The substrate 10 is made of, for example, a high-purity (eg, 99.9% or more) aluminum nitride powder, alumina powder, silicon nitride powder, silicon carbide powder, zirconia powder, and, if necessary, an appropriate amount of yttrium oxide powder. It is composed of a ceramic sintered body formed by filling a mixed raw material powder with a binder added thereto and performing hot press sintering.

基材10の中に、メッシュ金属や金属箔からなる電極20を埋め込まれている。電極20は、タングステン、モリブデン、これら合金、白金、チタンなどの金属からなり、薄板、薄膜、メッシュ状、線状などのものである。   An electrode 20 made of mesh metal or metal foil is embedded in the base material 10. The electrode 20 is made of a metal such as tungsten, molybdenum, an alloy thereof, platinum, or titanium, and has a thin plate, a thin film, a mesh shape, a linear shape, or the like.

そして、基材10は、その下面の中央部に、周辺部11より厚さが厚くなるように下方に突出した突出部12を有している。突出部12は、例えば、周辺部11よりも1mmから10mm厚くなっている。   The base material 10 has a protruding part 12 protruding downward so as to be thicker than the peripheral part 11 at the center of the lower surface. The protruding portion 12 is, for example, 1 mm to 10 mm thicker than the peripheral portion 11.

突出部12は、円板形状であり、その下端部の外周縁に全周に亘る面取部12aを有している。面取部12aは、例えば、面取角度が45度であり、面取寸法が0.5mmから5mmである。ただし、面取部12aは、例えば、面取角度が45度以外の角面取部であっても、図3を参照して、面取部12Aaのように、丸面取部であってもよい。   The protruding portion 12 is disk-shaped, and has a chamfered portion 12a over the entire periphery at the outer peripheral edge of the lower end portion. For example, the chamfered portion 12a has a chamfer angle of 45 degrees and a chamfer dimension of 0.5 mm to 5 mm. However, the chamfered portion 12a may be, for example, a chamfered portion having a chamfered angle other than 45 degrees or a rounded chamfered portion like the chamfered portion 12Aa with reference to FIG. Good.

なお、突出部12Aの面取部12Aaが丸面取部となっているとは、突出部12Aの外周縁が丸みを帯びていることを意味しており、突出部12Aの底面及び側周面と面取部12Aaの両端部がなだらかに連続している。   The fact that the chamfered portion 12Aa of the protruding portion 12A is a round chamfered portion means that the outer peripheral edge of the protruding portion 12A is rounded, and the bottom surface and the side peripheral surface of the protruding portion 12A. And both end portions of the chamfered portion 12Aa are smoothly continued.

ただし、図4を参照して、突出部12Bの外周縁は、内側に丸みを帯びて窪む丸窪部12Baとして形成されていてもよい。この場合、突出部12Bの底面及び側周面と外周縁の丸窪部12Baの間には角部が形成されるが、その角部は直角の角部と比較して角部の傾斜が緩やかとなっている。   However, referring to FIG. 4, the outer peripheral edge of protrusion 12 </ b> B may be formed as a round recess 12 </ b> Ba that is rounded inward and recessed. In this case, a corner portion is formed between the bottom surface and the side peripheral surface of the protruding portion 12B and the round concave portion 12Ba of the outer peripheral edge, and the corner portion has a gentler inclination than the right-angled corner portion. It has become.

また、突出部12の基端部は、その全周に亘って丸みを帯びた形状となっており、応力集中の緩和が図られている。   Further, the base end of the protruding portion 12 has a rounded shape over the entire periphery thereof, so that stress concentration is eased.

シャフト30は、アルミナ(Al)、窒化アルミニウム(AlN)又は窒化珪素(Si)等のセラミックス焼結体からなり、全体として中空を有する大略円筒形状に形成されている。 The shaft 30 is made of a ceramic sintered body such as alumina (Al 2 O 3 ), aluminum nitride (AlN), or silicon nitride (Si 3 N 4 ), and is formed in a substantially cylindrical shape having a hollow as a whole.

シャフト30は、基材10の下面に取り付けられている。シャフト30は、中間部31に比べて拡径したフランジ部32を上部に有している。フランジ部32の外周側面と突出部12の外周側面とは面一となっている。   The shaft 30 is attached to the lower surface of the substrate 10. The shaft 30 has a flange portion 32 whose diameter is larger than that of the intermediate portion 31 at an upper portion. The outer peripheral side surface of the flange portion 32 and the outer peripheral side surface of the protrusion 12 are flush with each other.

ただし、フランジ部32の外周側面と突出部12の外周側面は面一でなくてもよく、多少、例えば0.2mm、好ましくは1mm以下であればずれていてもよく、略面一であればよい。   However, the outer peripheral side surface of the flange portion 32 and the outer peripheral side surface of the protruding portion 12 need not be flush with each other, and may be slightly shifted, for example, 0.2 mm, preferably 1 mm or less. Good.

フランジ部32は、短円筒形状であり、その上端部の外周縁に全周に亘る面取部32aを有している。面取部32aは、例えば、面取角度が45度であり、面取寸法が0.5mmから5mmである。ただし、面取部32aは、例えば、面取角度が45度以外の角面取部であっても、図3を参照して、面取部32Baのように、丸面取部であってもよい。   The flange portion 32 has a short cylindrical shape, and has a chamfered portion 32a over the entire periphery at the outer peripheral edge of the upper end portion. For example, the chamfered portion 32a has a chamfer angle of 45 degrees and a chamfer dimension of 0.5 mm to 5 mm. However, the chamfered portion 32a may be, for example, a chamfered portion having a chamfered angle other than 45 degrees or a rounded chamfered portion like the chamfered portion 32Ba with reference to FIG. Good.

なお、フランジ部32Bの面取部32Baが丸面取部となっているとは、フランジ部32Bの外周縁が丸みを帯びていることを意味しており、フランジ部32Bの上面及び側周面と面取部32Baの両端部が連続している。   The fact that the chamfered portion 32Ba of the flange portion 32B is a round chamfered portion means that the outer peripheral edge of the flange portion 32B is rounded, and the upper surface and the side peripheral surface of the flange portion 32B. And both end portions of the chamfered portion 32Ba are continuous.

ただし、図4を参照して、フランジ部32Cの外周縁は、内側に丸みを帯びて窪む丸窪部32Caとして形成されていてもよい。この場合、フランジ部32Cの底面及び側周面と外周縁の丸窪部32Caとの間には角部が形成されるが、その角部は直角の角部と比較して角部の傾斜が緩やかとなっている。特に、突出部12Bの外周縁も内側に丸みを帯びて窪むように形成されている場合、突出部12Bの丸窪部12Baとフランジ部32Cの丸窪部32Caは、その端部が一致又は略一致することが好ましい。   However, referring to FIG. 4, the outer peripheral edge of flange portion 32C may be formed as a round concave portion 32Ca that is rounded inward and concave. In this case, a corner portion is formed between the bottom surface and the side peripheral surface of the flange portion 32C and the round concave portion 32Ca on the outer peripheral edge, and the corner portion has a smaller inclination than the right-angled corner portion. It has become moderate. In particular, when the outer peripheral edge of the protruding portion 12B is also formed so as to be rounded inward and depressed, the round concave portion 12Ba of the protruding portion 12B and the round concave portion 32Ca of the flange portion 32C have the same or substantially the same ends. Is preferred.

また、フランジ部32の基端部は、その全周に亘って丸みを帯びた形状となっており、応力集中の緩和が図られている。   Further, the base end of the flange portion 32 has a rounded shape over the entire periphery thereof, so that stress concentration is eased.

そして、突出部12の下面とフランジ部32の上面とを接触させて接合面として、基材10とシャフト30とは接合材を使用しない固相接合により接合されている。接合材を使用しないので、従来懸念された接合材のプラズマ耐性は問題とならず、接合材の耐熱温度より高温下での使用が可能になる。   The lower surface of the protruding portion 12 and the upper surface of the flange portion 32 are brought into contact with each other, and the base material 10 and the shaft 30 are joined by solid-phase joining without using a joining material. Since the bonding material is not used, the plasma resistance of the bonding material, which has been a concern in the past, does not matter, and the bonding material can be used at a temperature higher than the heat-resistant temperature.

給電ロッド40は、チタン(Ti)、ニッケル(Ni)などの耐熱性、耐酸性及び導電性の優れた金属から形成されており、本実施形態では、丸棒状となっている。給電ロッド40は、その下端側に図示しない電源が電気的に接続されている。   The power supply rod 40 is formed of a metal having excellent heat resistance, acid resistance, and conductivity, such as titanium (Ti) and nickel (Ni), and has a round bar shape in the present embodiment. The power supply rod 40 is electrically connected to a power source (not shown) at a lower end thereof.

給電ロッド40は、その上端面が電極20の裏面と接触されており、これらの電気的な接続が図られている。   The upper end surface of the power supply rod 40 is in contact with the back surface of the electrode 20, and these are electrically connected.

以上に説明したセラミックスヒータ100においては、基材10及びシャフト30は、接合部にそれぞれ面取部12a,32aを有している。そのため、上記特許文献1に開示されたように接合部における角部が共に直角である場合と比較して、これら角部からマイクロクラックなどの損傷が生じるおそれの低減を図り得る。また、損傷によって剥離が生じるおそれも低減できるので、これらによって、セラミックスヒータ100を長期間に亘って使用することが可能となり得る。   In the ceramic heater 100 described above, the base member 10 and the shaft 30 have chamfered portions 12a and 32a at joints, respectively. Therefore, as compared with the case where both the corners of the joining portion are right angles as disclosed in Patent Document 1, it is possible to reduce the possibility that damage such as micro cracks may occur from these corners. In addition, since the possibility of peeling due to damage can be reduced, these can make it possible to use the ceramic heater 100 for a long period of time.

なお、基材10又はシャフト30の何れかの接合部に面取部12a,32aを有していればよい。この場合も、角部が共に直角である場合と比較して、これら角部からマイクロクラックなどの損傷が生じるおそれの低減を図り得る。   In addition, it is only necessary to have the chamfered portions 12a and 32a at the joining portion of either the base material 10 or the shaft 30. Also in this case, it is possible to reduce the risk of damage such as microcracks from these corners, as compared to the case where the corners are both right angles.

(製造方法)
次に、セラミックスヒータ100の製造方法について説明する。
(Production method)
Next, a method for manufacturing the ceramic heater 100 will be described.

まず、基材10を形成するセラミックス焼結体の原料粉末である窒化アルミニウム粉末、アルミナ粉末、窒化珪素粉末、炭化珪素粉末、ジルコニア粉末などからなるセラミックス粉末に、焼結助剤等を添加した混合原料粉末を得る。そして、この混合原料粉末を用いて、公知の方法で焼結して、セラミックス焼結体を得る。焼結方法は、常圧焼結、ホットプレス法(熱間加圧法)、反応焼結などの公知の方法を用いればよい。   First, a ceramic powder composed of aluminum nitride powder, alumina powder, silicon nitride powder, silicon carbide powder, zirconia powder, or the like, which is a raw material powder of a ceramic sintered body forming the base material 10, is mixed with a sintering aid or the like. Obtain raw material powder. Then, using the mixed raw material powder, sintering is performed by a known method to obtain a ceramic sintered body. As a sintering method, a known method such as normal pressure sintering, hot pressing (hot pressing), and reaction sintering may be used.

なお、セラミックス焼結体の間に電極20を挟んで焼成を行うことにより、メッシュ金属や金属箔からなる電極20を基材10の中に埋め込む。ただし、埋め込みの方法は、これに限定されない。例えば、電極20の材料となる金属を前記原料粉末の間に挟み込んで、全体を焼結してもよい。また、セラミックス成形体に凹部を形成して電極20を埋め込み、その後、セラミックス成形体同士を重ね合わせて焼成してもよい。また、セラミックス焼結体の接合面に凹部を形成して電極20を埋め込み、その後、セラミックス焼結体同士を接合してもよい。   The electrode 20 made of a mesh metal or a metal foil is embedded in the base material 10 by baking the electrode 20 between ceramic sintered bodies. However, the embedding method is not limited to this. For example, the metal as the material of the electrode 20 may be sandwiched between the raw material powders and the whole may be sintered. Alternatively, a concave portion may be formed in the ceramic molded body, the electrode 20 may be embedded, and then the ceramic molded bodies may be stacked and fired. Alternatively, a concave portion may be formed on the joining surface of the ceramic sintered body to embed the electrode 20, and thereafter, the ceramic sintered body may be joined.

このセラミックス焼結体に対して周辺部11及び突出部12が所定の形状となるように必要に応じて切削加工を行う。突出部12の下端部の外周縁に全周に亘って面取り加工を行い、面取部12aを形成する。そして、突出部12の下面は、鏡面加工を行い、表面粗さRaを0.01μm以上0.1μm以下、平面度を1μm以下とする。これにより、基材10が完成する。   Cutting is performed on the ceramic sintered body as necessary so that the peripheral portion 11 and the protruding portion 12 have a predetermined shape. Chamfering is performed on the entire outer periphery of the lower end of the protruding portion 12 to form a chamfered portion 12a. The lower surface of the protrusion 12 is mirror-finished to have a surface roughness Ra of 0.01 μm or more and 0.1 μm or less and a flatness of 1 μm or less. Thereby, the base material 10 is completed.

次に、シャフト30を形成するセラミックス焼結体の原料粉末である窒化アルミニウム粉末、アルミナ粉末、窒化珪素粉末、炭化珪素粉末、ジルコニア粉末などからなるセラミックス粉末にIPA及び有機バインダと可塑剤を添加し、混合、スプレードライ乾燥をすることにより、セラミックス顆粒を得る。この顆粒をCIP成形し、常圧焼成することによりセラミックス焼結体を得る。焼結方法は、常圧焼結、ホットプレス法(熱間加圧法)、反応焼結などの公知の方法を用いればよい。   Next, IPA, an organic binder, and a plasticizer are added to a ceramic powder composed of aluminum nitride powder, alumina powder, silicon nitride powder, silicon carbide powder, zirconia powder, and the like, which are raw material powders of the ceramic sintered body forming the shaft 30. , Mixing and spray-drying to obtain ceramic granules. The granules are subjected to CIP molding and fired under normal pressure to obtain a ceramic sintered body. As the sintering method, a known method such as normal pressure sintering, hot pressing (hot pressing), and reaction sintering may be used.

このセラミックス焼結体に対して中間部31及びフランジ部32が所定の形状になるように必要に応じて切削加工を行う。フランジ部32の上端部の外周縁に全周に亘って面取り加工を行い、面取部32aを形成する。そして、フランジ部32の上面は、鏡面加工を行い、表面粗さRaを0.01μm以上0.1μm以下、平面度を1μm以下とする。これにより、シャフト30が完成する。   Cutting is performed on the ceramic sintered body as necessary so that the intermediate portion 31 and the flange portion 32 have predetermined shapes. Chamfering is performed on the entire outer periphery of the upper end of the flange portion 32 to form a chamfered portion 32a. The upper surface of the flange portion 32 is mirror-finished to have a surface roughness Ra of 0.01 μm or more and 0.1 μm or less and a flatness of 1 μm or less. Thereby, the shaft 30 is completed.

次に、基材10とシャフト30とを1MPa以上10MPa以下で加圧して、突出部12の下面とフランジ部32の上面とを当接した状態で炉内に設置し、不活性ガス雰囲気下で1500℃以上1900℃以下に加熱した状態を0.2時間以上10時間以下保持する。これにより、基材10とシャフト30とが固相接合により接合される。   Next, the base material 10 and the shaft 30 are pressurized at 1 MPa or more and 10 MPa or less, and placed in a furnace in a state where the lower surface of the protruding portion 12 and the upper surface of the flange portion 32 are in contact with each other. The state heated to 1500 ° C. or more and 1900 ° C. or less is maintained for 0.2 hours or more and 10 hours or less. Thereby, the base material 10 and the shaft 30 are joined by solid-phase joining.

接合後、基材10の突出部12の外周側面とシャフト30のフランジ部32の外周側面とが略同一外径となるように、円筒研削により研削加工する。研削加工後も、基材10の突出部12の面取部12a及びシャフト30のフランジ部32の面取部32aの一部は外観に残る。   After joining, grinding is performed by cylindrical grinding so that the outer peripheral side surface of the protruding portion 12 of the base material 10 and the outer peripheral side surface of the flange portion 32 of the shaft 30 have substantially the same outer diameter. After the grinding, a part of the chamfered portion 12a of the protruding portion 12 of the base material 10 and a portion of the chamfered portion 32a of the flange portion 32 of the shaft 30 remain in appearance.

その後、給電ロッド40の上端面を電極20の裏面と接触した状態でロウ付けで固定し、これらの電気的な接続を図る。これにより、セラミックスヒータ100を得ることができる。   Thereafter, the upper end surface of the power supply rod 40 is fixed by brazing in a state of being in contact with the back surface of the electrode 20, and the electrical connection is established. Thereby, the ceramic heater 100 can be obtained.

ただし、電極20と給電ロッド40の電気的な接続はロウ付けに限定されず、公知のセラミックスヒータで用いられる接続方法であればよい。例えば、電極20の裏面に端子を固定し、この端子に給電ロッド40の先端を取り外し可能に固定してもよい。   However, the electrical connection between the electrode 20 and the power supply rod 40 is not limited to brazing, and may be any connection method used in a known ceramic heater. For example, a terminal may be fixed to the back surface of the electrode 20, and the tip of the power supply rod 40 may be detachably fixed to this terminal.

以上に説明したセラミックスヒータ100の製造方法においては、焼結時に互いに対して加圧される基材10及びシャフト30とは、その当接する部分においてそれぞれ面取部12a,32aを有している。そのため、上記特許文献1に開示されたように当接する部分における角部が直角である場合と比較して、焼結時の加圧によってマイクロクラックなどが発生するおそれが低減できるので、製造時の歩留りの向上を図ることが可能となる。   In the above-described method for manufacturing the ceramic heater 100, the base material 10 and the shaft 30 that are pressed against each other during sintering have chamfered portions 12a and 32a, respectively, at their abutting portions. Therefore, as compared with the case where the corner portion in the contact portion is a right angle as disclosed in the above-mentioned Patent Document 1, it is possible to reduce the possibility that microcracks and the like are generated by pressure during sintering. It is possible to improve the yield.

なお、基材10とシャフト30とは、固相接合以外の接合方法、例えば、ガラス接合などで接合してもよい。   In addition, the base material 10 and the shaft 30 may be joined by a joining method other than solid-phase joining, for example, glass joining.

(実施形態の変形例)
本発明は、上述した実施形態におけるセラミックスヒータ100に限定されない。
(Modification of Embodiment)
The present invention is not limited to the ceramic heater 100 in the above embodiment.

例えば、シャフト30のフランジ部32の上端部の外周縁にのみ全周に亘って面取り部32aを有する場合について説明した。しかし、図2に示すセラミックスヒータ100Aのように、シャフト30Aのフランジ部32Aの上端部の内周縁にも全周に亘って面取り部32Abを有することが好ましい。   For example, the case where the chamfered portion 32a is provided over the entire periphery only at the outer peripheral edge of the upper end portion of the flange portion 32 of the shaft 30 has been described. However, like the ceramic heater 100A shown in FIG. 2, it is preferable that the inner peripheral edge of the upper end of the flange portion 32A of the shaft 30A also have a chamfered portion 32Ab over the entire circumference.

これらにより、フランジ部32Aの上端部の内周縁が直角である場合と比較して、この部分からチッピングやマイクロクラックなどの損傷が生じるおそれが低減でき、さらに損傷によって剥離が生じるおそれも低減できるので、長期間に亘る使用を図ることが可能となる。そして、焼結時においても、焼結時の加圧によって角部からチッピングやマイクロクラックなどが発生するおそれが低減できるので、製造時の歩留りの向上を図ることが可能となる。   As a result, as compared with the case where the inner peripheral edge of the upper end of the flange portion 32A is at a right angle, the risk of damage such as chipping and microcracks from this portion can be reduced, and the risk of peeling due to damage can be reduced. Thus, it can be used for a long time. Further, also at the time of sintering, the possibility that chipping, micro cracks and the like are generated from the corners due to the pressure at the time of sintering can be reduced, so that the yield at the time of manufacturing can be improved.

さらに、基材10の突出部12が円板形状である場合について説明した。しかし、図4を参照して、基材10Bの突出部12Bはドーナツ板形状であってもよい。この場合、図示しないが、突出部12Bは、その下端部の内周縁に全周に亘って面取りされた面取部を有していることが好ましい。この面取部は、下端部の外周縁に全周に亘って面取りされた面取部12Baと同じであっても、異なっていてもよい。   Furthermore, the case where the protruding portion 12 of the base material 10 has a disk shape has been described. However, referring to FIG. 4, projecting portion 12B of base material 10B may have a donut plate shape. In this case, although not shown, it is preferable that the protruding portion 12B has a chamfered portion that is chamfered over the entire periphery at the inner peripheral edge of the lower end portion. This chamfered portion may be the same as or different from the chamfered portion 12Ba chamfered over the entire outer periphery of the lower end portion.

そして、ドーナツ状の突出部12Bの内周側面は、フランジ部の内周側面と略面一であることが好ましい。また、突出部12Bの下端部の内周縁は、その全周に亘って丸みを帯びた形状として、応力集中の緩和を図ることが好ましい。   The inner peripheral side surface of the donut-shaped protrusion 12B is preferably substantially flush with the inner peripheral side surface of the flange portion. Further, it is preferable that the inner peripheral edge of the lower end portion of the protruding portion 12B be rounded over its entire periphery to reduce stress concentration.

また、図4に示すように、突出部12Bの内周縁は、内側に丸みを帯びて窪む丸窪部12Bbとして形成され、フランジ部32Cの内周縁は、内側に丸みを帯びて窪む丸窪部32Cbとして形成されていてもよい。この場合、突出部12Bの丸窪部12Bbとフランジ部32Cの丸窪部32Cbは、その端部が一致又は略一致することが好ましい。   Further, as shown in FIG. 4, the inner peripheral edge of the protruding portion 12B is formed as a round concave portion 12Bb that is rounded inward and is depressed, and the inner peripheral edge of the flange portion 32C is rounded and depressed inward. It may be formed as the recess 32Cb. In this case, it is preferable that the round concave portion 12Bb of the protruding portion 12B and the circular concave portion 32Cb of the flange portion 32C have the same or substantially the same end.

以下、本発明の実施例及び比較例を具体的に挙げ、本発明を説明する。   Hereinafter, the present invention will be described with specific examples and comparative examples of the present invention.

(実施例1)
実施例1では、図1を参照して、金属なる電極20を埋設した酸化イットリウムを添加した窒化アルミニウムからなる基材10と、窒化アルミニウムのみからなるシャフト30を接合してセラミックスヒータ100を得た。
(Example 1)
In Example 1, with reference to FIG. 1, a ceramic heater 100 was obtained by joining a base material 10 made of aluminum nitride doped with yttrium oxide in which a metal electrode 20 was embedded and a shaft 30 made of only aluminum nitride. .

[基材の作製]
窒化アルミニウム粉末97質量%、酸化イットリウム粉末3質量%からなる粉末混合物を得て、これを型に充填して一軸加圧処理を施した。これによって、直径240mm、厚さ10mmの第一層を形成した。
[Preparation of base material]
A powder mixture consisting of 97% by mass of aluminum nitride powder and 3% by mass of yttrium oxide powder was obtained, filled in a mold, and subjected to a uniaxial pressing treatment. Thus, a first layer having a diameter of 240 mm and a thickness of 10 mm was formed.

次に、この第一層の上に、電極20となる直径190mmのモリブデン製のメッシュ(線径0.1mm、目開き50メッシュ)を載置した。続いて、先に形成した粉末混合物を電極20の上に所定の厚さに充填し、第二層を形成した。そして、10MPaの圧力で、焼成温度1800℃、焼成時間2時間でホットプレス焼成を行い、直径240mm、厚さ20mmのセラミックス焼結体を得た。   Next, a molybdenum mesh (diameter: 0.1 mm, mesh size: 50 mesh) having a diameter of 190 mm serving as the electrode 20 was placed on the first layer. Subsequently, the previously formed powder mixture was filled on the electrode 20 to a predetermined thickness to form a second layer. Then, hot press firing was performed at a pressure of 10 MPa and a firing temperature of 1800 ° C. for a firing time of 2 hours to obtain a ceramic sintered body having a diameter of 240 mm and a thickness of 20 mm.

セラミックス焼結体の裏面を、中心から直径60mmの領域を残しその外側の領域を厚さ5mm研削加工し、中央部に直径60mm、高さ5mmの突出部12を形成した。次に、突出部12の外周縁にC3mmの面取り加工を行い、面取部12aを形成した。その後、突出部12の下面に研磨加工を行い、表面粗さをRa0.03μm、平面度0.4μmとした。これにより、基材10を得た。   The back surface of the ceramic sintered body was ground 5 mm in thickness while leaving a region 60 mm in diameter from the center, and a protrusion 12 having a diameter of 60 mm and a height of 5 mm was formed in the center. Next, C3 mm chamfering was performed on the outer peripheral edge of the protruding portion 12 to form a chamfered portion 12a. Thereafter, the lower surface of the protrusion 12 was polished to have a surface roughness Ra of 0.03 μm and a flatness of 0.4 μm. Thereby, the base material 10 was obtained.

[シャフトの作製]
原料となる窒化アルミニウムの粉末にIPA及び有機バインダと可塑剤を添加し、混合、スプレードライ乾燥をすることで、窒化アルミニウム顆粒を得た。この顆粒をCIP成形し、焼成温度1900℃で焼成時間6時間、常圧焼成した後、円筒加工を行い、フランジ部32の外径60mm、フランジ部32の厚み8mm、中間部31の外径42mm、内径32mm、長さ160mmのシャフト30を得た。フランジ部32の端面外周縁にC3mmの面取り加工を行い、面取部32aを形成した。その後、フランジ部32の上面に研磨加工を行い、表面粗さをRa0.04μm、平面度0.5μmとした。
[Production of shaft]
IPA, an organic binder, and a plasticizer were added to aluminum nitride powder as a raw material, mixed, and spray-dried to obtain aluminum nitride granules. The granules are subjected to CIP molding, baked at a sintering temperature of 1900 ° C. for 6 hours, baked at normal pressure, and then subjected to cylindrical processing. The shaft 30 having an inner diameter of 32 mm and a length of 160 mm was obtained. Chamfering of C3 mm was performed on the outer peripheral edge of the end surface of the flange portion 32 to form a chamfered portion 32a. Thereafter, the upper surface of the flange portion 32 was polished to have a surface roughness Ra of 0.04 μm and a flatness of 0.5 μm.

[接合、加工]
基材10の接合面とシャフト30の接合面とを重ね合わせ、ホットプレス焼成により接合した。温度は1600℃、圧力は6MPa、時間は4時間とした。接合後、基材10の突出部12の外周側面とシャフト30のフランジ部32の外周側面を円筒研削により略同一外径となるように研削加工した。この際、接合前に加工した基材10の突出部12の面取部12a及びシャフト30のフランジ部32の面取部32aの一部が外観に残った。
[Joining, processing]
The joining surface of the base material 10 and the joining surface of the shaft 30 were overlapped and joined by hot press firing. The temperature was 1600 ° C., the pressure was 6 MPa, and the time was 4 hours. After the joining, the outer peripheral side surface of the protruding portion 12 of the base material 10 and the outer peripheral side surface of the flange portion 32 of the shaft 30 were ground by cylindrical grinding so as to have substantially the same outer diameter. At this time, a part of the chamfered portion 12a of the protruding portion 12 of the base material 10 and a part of the chamfered portion 32a of the flange portion 32 of the shaft 30 which were processed before joining remained in the appearance.

[評価]
接合部の目視をしたが、チッピングやクラックなどの損傷は見つからず、良好であった。なお、シャフト30の内側はファイバースコープを使用した。そして、接合部の気密度をボンビング法によりヘリウムリークディテクターで測定した。測定限度である1×10−12Pam/sでリークはないと判定された。
[Evaluation]
The joint was visually inspected, but no damage such as chipping or crack was found, and it was good. Note that a fiberscope was used inside the shaft 30. Then, the air density of the joint was measured by a helium leak detector by a bombing method. It was determined that there was no leak at the measurement limit of 1 × 10 −12 Pam 3 / s.

(実施例2)
以下の作製条件を除き、実施例1と同様にセラミックスヒータ100Aを作製した。
(Example 2)
A ceramic heater 100A was manufactured in the same manner as in Example 1 except for the following manufacturing conditions.

[基材の作製]
セラミックス焼結体の裏面を、中心から直径60mmの領域を残しその外側の領域を厚さ3mm研削加工し、中央部に直径60mm、高さ3mmの突出部12を形成した。次に、突出部12の外周縁にC1.5mmの面取り加工を行い、面取部12aを形成した。その後、突出部12の下面に研磨加工を行い、表面粗さをRa0.02μm、平面度0.3μmとした。これにより、基材10を得た。
[Preparation of base material]
The rear surface of the ceramic sintered body was ground with a thickness of 3 mm while leaving a region with a diameter of 60 mm from the center, and a projection 12 with a diameter of 60 mm and a height of 3 mm was formed at the center. Next, the outer peripheral edge of the protruding portion 12 was chamfered by 1.5 mm to form a chamfered portion 12a. Thereafter, the lower surface of the protrusion 12 was polished to have a surface roughness of Ra 0.02 μm and a flatness of 0.3 μm. Thereby, the base material 10 was obtained.

[シャフトの作製]
図2を参照して、フランジ部32Aの外径60mm、フランジ部32Aの厚み5mm、中間部31Aの外径38mm、内径30mm、長さ120mmのシャフト30Aを得た。フランジ部32Aの端面の外周縁及び内周縁にC1.5mmの面取り加工を行い、面取部32Aa,32Abを形成した。その後、フランジ部32Aの上面に研磨加工を行い、表面粗さをRa0.03μm、平面度0.3μmとした。
[Production of shaft]
Referring to FIG. 2, a shaft 30A having an outer diameter of the flange portion 32A of 60 mm, a thickness of the flange portion 32A of 5 mm, an outer diameter of the intermediate portion 31A of 38 mm, an inner diameter of 30 mm, and a length of 120 mm was obtained. The outer peripheral edge and the inner peripheral edge of the end face of the flange portion 32A were chamfered by 1.5 mm to form chamfered portions 32Aa and 32Ab. Thereafter, the upper surface of the flange portion 32A was polished to have a surface roughness Ra of 0.03 μm and a flatness of 0.3 μm.

[評価]
接合部の目視をしたが、チッピングやクラックなどの損傷は見つからず、良好であった。なお、シャフト30の内側はファイバースコープを使用した。そして、接合部の気密度をボンビング法によりヘリウムリークディテクターで測定した。測定限度である1×10−12Pam/sでリークはないと判定された。
[Evaluation]
The joint was visually inspected, but no damage such as chipping or crack was found, and it was good. Note that a fiberscope was used inside the shaft 30. Then, the air density of the joint was measured by a helium leak detector by a bombing method. It was determined that there was no leak at the measurement limit of 1 × 10 −12 Pam 3 / s.

(実施例3)
面取部12a及び面取部32aを共に、曲率半径が3mmの丸面取部としたこと以外は実施例1と同じとした。
(Example 3)
Example 1 was the same as Example 1 except that both the chamfered portion 12a and the chamfered portion 32a were round chamfers having a radius of curvature of 3 mm.

[評価]
接合部の目視をしたが、チッピングやクラックなどの損傷は見つからず、良好であった。なお、シャフト30の内側はファイバースコープを使用した。そして、接合部の気密度をボンビング法によりヘリウムリークディテクターで測定した。測定限度である1×10−12Pam/sでリークはないと判定された。
[Evaluation]
The joint was visually inspected, but no damage such as chipping or crack was found, and it was good. Note that a fiberscope was used inside the shaft 30. Then, the air density of the joint was measured by a helium leak detector by a bombing method. It was determined that there was no leak at the measurement limit of 1 × 10 −12 Pam 3 / s.

(比較例)
比較例として、基材10の突出部12の外縁及びシャフト30のフランジ部32の端面外縁に面取り加工を行わないで、基材10とシャフト30とを接合した。なお、その他の作製条件は実施例1と同一とした。
(Comparative example)
As a comparative example, the substrate 10 and the shaft 30 were joined without chamfering the outer edge of the protruding portion 12 of the substrate 10 and the outer edge of the end surface of the flange portion 32 of the shaft 30. The other manufacturing conditions were the same as in Example 1.

[評価]
接合部の目視をしたが、接合面にクラックが発生していた。そして、接合部の気密度をボンビング法によりヘリウムリークディテクターで測定した。1×10−6Pam/sでリークが生じた。
[Evaluation]
The joint was visually observed, but cracks were found on the joint surface. Then, the air density of the joint was measured by a helium leak detector by a bombing method. Leakage occurred at 1 × 10 −6 Pam 3 / s.

実施例1から3及び比較例の評価結果を表1にまとめた。   Table 1 summarizes the evaluation results of Examples 1 to 3 and Comparative Example.

10,10A,10B…基材、 11…周辺部、 12,12A,12B…突出部、 12a,12Aa,12Ba…面取部、 12Ba,12Bb…丸窪部、 20…電極、 30,30A,30B,30C…シャフト、 31…中間部、 32,32A,32B,32C…フランジ部、 32a,32Aa,32Ab…面取部、 32Ca,32Cb…丸窪部、 40…給電ロッド、 100,100A…セラミックスヒータ(基板保持装置)。   10, 10A, 10B: base material, 11: peripheral portion, 12, 12A, 12B: projecting portion, 12a, 12Aa, 12Ba: chamfered portion, 12Ba, 12Bb: round hollow portion, 20: electrode, 30, 30A, 30B , 30C: shaft, 31: middle part, 32, 32A, 32B, 32C: flange part, 32a, 32Aa, 32Ab: chamfered part, 32Ca, 32Cb: round hollow part, 40: power supply rod, 100, 100A: ceramic heater (Substrate holding device).

Claims (3)

セラミックスからなり、上面に基板を支持し、下面の中央部に周辺部より厚さが厚くなるように下方に突出した突出部を有する基材と、
セラミックスからなり、前記突出部に接続されるフランジ部を上部に有する中空のシャフトとを備える基板保持装置であって、
前記突出部は下端部の外周縁又は前記フランジ部は上端部の外周縁の少なくとも一方に全周に亘る面取部を有し、前記突出部の外周側面と前記フランジ部の外周側面は略面一であることを特徴とする基板保持装置。
A base material made of ceramics, supporting the substrate on the upper surface, and having a protruding portion that protrudes downward at the center of the lower surface so as to be thicker than the peripheral portion;
A substrate holding device comprising a ceramic, and a hollow shaft having a flange portion on an upper portion connected to the protruding portion,
The protruding portion has a chamfered portion on at least one of an outer peripheral edge of a lower end portion and an outer peripheral edge of the upper end portion, and an outer peripheral side surface of the protruding portion and an outer peripheral side surface of the flange portion are substantially flat. substrate holding apparatus, characterized in that one.
前記フランジ部の上端部の内周縁に全周に亘る面取部を有していることを特徴とする請求項1に記載の基板保持装置。   The substrate holding device according to claim 1, further comprising a chamfered portion on an inner peripheral edge of an upper end portion of the flange portion over the entire periphery. セラミックスからなり、下面の中央部に周辺部より厚さが厚くなるように下方に突出した突出部を有する基材を用意する工程と、
セラミックスからなり、前記突出部に接続されるフランジ部を上部に有する中空のシャフトを用意する工程と、
前記突出部の下端部の外周縁又は前記フランジ部の上端部の外周縁の少なくとも一方を全周に亘って面取り加工する工程と、
前記突出部の下面と前記フランジ部の上面を当接させた状態でこれらの面を固相接合により接合する工程と
前記突出部の外周側面と前記フランジ部の外周側面と略面一に加工する工程とを備えることを特徴とする基板保持装置の製造方法。
A step of preparing a base material made of ceramics and having a protruding portion that protrudes downward so as to be thicker than a peripheral portion in a central portion of the lower surface,
A step of preparing a hollow shaft made of ceramics and having a flange portion on the upper portion connected to the protrusion,
A step of chamfering at least one of an outer peripheral edge of a lower end portion of the protruding portion or an outer peripheral edge of an upper end portion of the flange portion over the entire circumference,
A step of joining these surfaces by solid-phase joining in a state where the lower surface of the protruding portion and the upper surface of the flange portion are in contact with each other ;
A method of processing the outer peripheral side surface of the projecting portion and the outer peripheral side surface of the flange portion so as to be substantially flush with each other.
JP2016082195A 2016-04-15 2016-04-15 Substrate holding device and method of manufacturing the same Active JP6650332B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016082195A JP6650332B2 (en) 2016-04-15 2016-04-15 Substrate holding device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016082195A JP6650332B2 (en) 2016-04-15 2016-04-15 Substrate holding device and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JP2017191910A JP2017191910A (en) 2017-10-19
JP6650332B2 true JP6650332B2 (en) 2020-02-19

Family

ID=60084956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016082195A Active JP6650332B2 (en) 2016-04-15 2016-04-15 Substrate holding device and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP6650332B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6878677B2 (en) * 2018-07-13 2021-06-02 日本碍子株式会社 Ceramic heater
JP6743325B1 (en) 2018-12-20 2020-08-19 日本碍子株式会社 Ceramic heater

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3810216B2 (en) * 1998-07-01 2006-08-16 京セラ株式会社 Sample heating apparatus, processing apparatus, and sample processing method using the same
JP2003300784A (en) * 2002-04-02 2003-10-21 Ibiden Co Ltd Ceramic jointed body
JP2007258115A (en) * 2006-03-24 2007-10-04 Ngk Insulators Ltd Heating device
JP5851665B1 (en) * 2014-03-27 2016-02-03 日本碍子株式会社 Bonding structure of ceramic plate and metal cylindrical member

Also Published As

Publication number Publication date
JP2017191910A (en) 2017-10-19

Similar Documents

Publication Publication Date Title
JP4476701B2 (en) Manufacturing method of sintered body with built-in electrode
KR100672802B1 (en) Substrate heating apparatus and manufacturing method for the same
KR20010076378A (en) Wafer holder for semiconductor manufacturing apparatus, method of manufacturing wafer holder, and semiconductor manufacturing apparatus
JP2001274230A (en) Wafer holder for semiconductor manufacturing device
JP6618409B2 (en) Substrate holding device and manufacturing method thereof
KR100634182B1 (en) Substrate heater and fabrication method for the same
JP2007258608A (en) Heating apparatus
JP6650332B2 (en) Substrate holding device and method of manufacturing the same
JP6389802B2 (en) Heating apparatus and manufacturing method thereof
US11142484B2 (en) Component for semiconductor production device, and production method of component for semiconductor production device
JP4703442B2 (en) Substrate heating device
JP2004146568A (en) Ceramic heater for semiconductor manufacturing device
JP2005285355A (en) Heating apparatus
JP2011011931A (en) Ceramic joined body, ceramic heater, electrostatic chuck and susceptor
JP7519168B2 (en) Manufacturing method of ceramic member
JP6438352B2 (en) Heating device
TW446692B (en) Ceramic joint body and process for manufacturing the same
JP6973995B2 (en) Ceramic heater
JP2003224044A (en) Sample heating unit and its manufacturing method
JP2023023670A (en) ceramic heater
JP6370062B2 (en) Aluminum nitride joined body and manufacturing method thereof
JP2023072822A (en) Electrode embedded material
US11869796B2 (en) Electrode-embedded member and method for manufacturing same, electrostatic chuck, and ceramic heater
JP2020033247A (en) Conjugate
JPH09306642A (en) Ceramic heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200120

R150 Certificate of patent or registration of utility model

Ref document number: 6650332

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250