[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5325017B2 - 固体酸化物型燃料電池、及び、その組立方法 - Google Patents

固体酸化物型燃料電池、及び、その組立方法 Download PDF

Info

Publication number
JP5325017B2
JP5325017B2 JP2009117318A JP2009117318A JP5325017B2 JP 5325017 B2 JP5325017 B2 JP 5325017B2 JP 2009117318 A JP2009117318 A JP 2009117318A JP 2009117318 A JP2009117318 A JP 2009117318A JP 5325017 B2 JP5325017 B2 JP 5325017B2
Authority
JP
Japan
Prior art keywords
thin plate
support member
electrode layer
peripheral portion
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009117318A
Other languages
English (en)
Other versions
JP2010080428A (ja
Inventor
誠 大森
夏己 下河
正幸 新海
俊之 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2009117318A priority Critical patent/JP5325017B2/ja
Priority to US12/539,808 priority patent/US8968962B2/en
Publication of JP2010080428A publication Critical patent/JP2010080428A/ja
Application granted granted Critical
Publication of JP5325017B2 publication Critical patent/JP5325017B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0273Sealing or supporting means around electrodes, matrices or membranes with sealing or supporting means in the form of a frame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0297Arrangements for joining electrodes, reservoir layers, heat exchange units or bipolar separators to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2457Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • Y10T29/4911Electric battery cell making including sealing

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Fuel Cell (AREA)

Description

本発明は、固体酸化物型燃料電池(Solid Oxide Fuel Cell:SOFC)、及び、その組立方法に係わり、特に、薄板体とその薄板体を支持する支持部材とが1つずつ交互に積層されてなる(平板)スタック構造を有するSOFC、及び、その組立方法に関する。
従来から、上記スタック構造を有するSOFCが知られている(例えば、特許文献1を参照)。このSOFCにおいて、薄板体(「単セル」とも称呼される。)としては、ジルコニアから構成される固体電解質層と、その固体電解質層の上面に形成された燃料極層と、その固体電解質層の下面に形成された空気極層と、が積層されてなる平板状の焼成体が使用され得る。以下、各薄板体について、薄板体の上方、下方に隣接する支持部材(「セパレータ」とも称呼される。)をそれぞれ、「上方支持部材」、「下方支持部材」とも称呼する。
上記SOFCでは、上記各薄板体について、薄板体の周縁部が上方支持部材の周縁部の下面と下方支持部材の周縁部の上面との間に挟持されシールされることで、上方支持部材の周縁部よりも内側に位置する平面部の下面と薄板体の燃料極層の上面との間の空間に燃料ガスが供給される燃料流路が区画・形成されるとともに、下方支持部材の周縁部よりも内側に位置する平面部の上面と薄板体の空気極層の下面との間の空間に酸素を含むガス(空気)が供給される空気流路が区画・形成されている。
係る構成にて、SOFCの作動温度(例えば、800℃、以下、単に「作動温度」と称呼する。)まで薄板体を加熱した状態で、燃料流路及び空気流路に燃料ガス及び空気がそれぞれ供給されることで、各薄板体の上面及び下面に燃料ガス及び空気がそれぞれ接触し、この結果、各薄板体にて発電反応が発生する。
特開2004−342584号公報
ところで、上記のように薄板体として焼成体が使用される場合、上記燃料極層をSOFCの燃料極電極(アノード電極)として機能させるためには、焼成後の薄板体の上記燃料極層に対して還元処理を行う必要がある。この還元処理は、上記燃料極層の表面に還元ガス(例えば、水素)を供給することで実行される。このとき、上記空気極層の表面に還元ガスが供給されないような処置を併せて施す必要がある。空気極層に還元ガスが供給されると、空気極層を構成する材料が分解して空気極としての機能が達成されなくなるからである。
ここで、積層される前の薄板体単独の状態で、その薄板体の燃料極層に対して上記還元処理を実行すると、上記燃料極層が収縮することに起因して、薄板体(特に、薄板体の中央部)が、燃料極層側の表面が凹形状となる方向に大きく変形する(反る)傾向がある。近年、SOFCの小型化、内部電気抵抗の低減等の目的を達成するため、薄板体を極めて薄く形成する試みがなされてきている。薄板体が極めて薄い場合、還元処理による上述した薄板体の反りが特に顕著となる。例えば、厚さが150μm、平面視にて1辺の長さが3cmの正方形を呈した薄板体単独の状態で、その薄板体の燃料極層に対して上記還元処理を実行すると、上記還元処理後の常温下にて、薄板体における平面に垂直な方向の反りの高さが3mm以上と非常に大きくなる。
このように、燃料極層側の表面が凹形状となる方向に大きく反った薄板体を用いて上記スタック構造が組み立てられる場合、例えば、スタックの組立がし難い、空気流路が狭くなって空気が空気流路を流れる際の圧力損失が増大する等、種々の問題が発生し得る。
加えて、上述のように、積層される前の薄板体単独の状態で、その薄板体の燃料極層に対して上記還元処理を実行すると、上記空気極層の表面への還元ガスの供給を防止するための特別の処置を施す必要も発生する。
以上より、本発明の目的は、固体電解質層、燃料極層、及び空気極層からなる焼成体である薄板体と、支持部材とが1つずつ交互に積層されてなる(平板)スタック構造を有する小型のSOFCにおいて、焼成後の薄板体の燃料極層に対して還元処理を施す際に発生する薄板体の反りを抑制し得るものを提供することにある。
上記目的を達成するための本発明によるSOFCは、上記背景技術の欄に記載したものと同様、固体電解質層と、前記固体電解質層の上面に形成された燃料極層と、前記固体電解質層の下面に形成された空気極層と、が積層・焼成されてなる1又は複数の薄板体と、前記1又は複数の薄板体を支持する複数の支持部材と、を備え、前記薄板体と前記支持部材とが1つずつ交互に積層されてなるSOFCであって、前記各薄板体について、前記薄板体の周縁部が前記上方支持部材の周縁部の下面と前記下方支持部材の周縁部の上面との間に挟持されるように、前記薄板体の周縁部の上面と前記上方支持部材の周縁部の下面、及び前記薄板体の周縁部の下面と前記下方支持部材の周縁部の上面がそれぞれシールされていて、前記各薄板体について、前記上方支持部材の周縁部よりも内側に位置する平面部の下面と前記薄板体の燃料極層の上面との間の空間に燃料ガスが供給される燃料流路が区画・形成されるとともに、前記下方支持部材の周縁部よりも内側に位置する平面部の上面と前記薄板体の空気極層の下面との間の空間に酸素を含むガスが供給される空気流路が区画・形成されている。
また、本発明によるSOFCでは、反応装置全体を小型化する観点から、各薄板体の厚さが、20μm以上且つ500μm以下であり薄板体の平面に垂直な方向に対する前記各支持部材の前記平面部の正射影面積(平面視での前記平面部の面積)が、1cm以上且つ100cm以下である。具体的には、前記支持部材の前記平面部の正射影形状は、円形、楕円形、正方形、又は長方形であり、前記円形の直径、前記楕円形の長径、前記正方形の1辺の長さ、又は前記長方形の長辺の長さは、1cm以上且つ10cm以下である。
また、本発明によるSOFCでは、前記固体電解質層の厚さ及び前記空気極層の厚さよりも前記燃料極層の厚さが大きい。即ち、3層のうちで燃料極層の剛性が最も高く、燃料極層は薄板体の支持層として機能し得る。ここで、各層の厚さの比較において、層の「厚さ」とは、例えば、層の局所的な厚さのばらつきにおける平均値、最小値等を指す。各層の厚さは、層全体に亘って均一であることが好ましい。また、各薄板体の厚さは、薄板体全体に亘って均一であることが好ましい。
上記本発明によるSOFCの特徴は、前記各燃料極層に対する還元処理の実行後の常温の状態で、前記平面部の正射影面積に対する前記各薄板体における反りの高さ(以下、単に「反り高さ」とも称呼する。)の割合である反り割合(=(反り高さ)/(平面部の正射影面積))が0.05cm−1以下であることにある。反り高さとは、例えば、薄板体の周縁部に対する中央部の前記平面に垂直な方向の反り高さを指す。上述のように、積層される前の極めて薄い薄板体単独の状態で、その薄板体の燃料極層に対して上記還元処理を実行すると、上記還元処理後の常温下にて反り割合は0.05cm−1に対して著しく大きくなる。従って、「還元処理後における常温での反り割合が0.05cm−1以下」は、積層される前の極めて薄い薄板体単独の状態で上記還元処理が実行される場合には達成し得ない。
本発明者は、各薄板体の厚さが20μm以上且つ500μm以下と極めて薄く且つ固体電解質層の厚さ及び空気極層の厚さよりも燃料極層の厚さが大きく、各支持部材の平面部の正射影面積が1cm以上且つ100cm以下という条件下において、前記各燃料極層に対する還元処理を、前記各薄板体の周縁部が前記上方支持部材の周縁部の下面と前記下方支持部材の周縁部の上面とにより挟持されてシールされた状態において前記各燃料流路内に還元ガスを流入させることで実行すると、「還元処理後における常温での反り割合が0.05cm−1以下」を達成できることを見出した。これは、上記条件下では、各薄板体の周縁部が上記「挟持」「シール」により(ある程度)拘束されていることに起因して、還元処理による燃料極層の収縮に伴う上述した薄板体の反りの進行を阻害する作用が特に強く働くことに基づくものと考えられる。
以下、各薄板体の周縁部がある程度拘束された状態で燃料極層に対して還元処理を行うことによる各薄板体の反りの低減(平坦化)について付言する。一般に、燃料極層が薄板体の支持層として機能する場合、焼成時において、層間の焼結開始温度の相違、層間の焼成収縮量の相違、層間の熱膨張率の相違等により、薄板体に歪応力が発生する。薄板体が極めて薄い場合、この歪応力に起因して薄板体に反りが不可避的に発生する。このように反りが既に発生している焼成後の極めて薄い各薄板体の周縁部をある程度拘束した状態で燃料極層に対して還元処理を行うと、常温での反り割合が極めて小さい(平坦性の高い)薄板体が得られることが見出された。これは、燃料極層内の酸化物(酸化ニッケル等)が還元・焼結されていく過程において、極めて薄い薄板体が塑性変形を伴いながら変態することに起因すると考えられる。実際、還元処理後の高温のスタックを中性雰囲気内で(薄板体が再酸化されないように)降温、回収し、支持部材(セパレータ)の一部を切除して周縁部が拘束された状態にある各薄板体を観察すると、(焼成後且つ還元処理前と比較して)常温での反りが小さくなっていた。この状態にて、各薄板体の周縁部における隣接する支持部材との接合部をレーザー加工により切断して各薄板体を単独の状態で回収しても、常温での反りが小さい状態が維持されていた。以上のことから、還元処理時において、極めて薄い薄板体が塑性変形していると考えられる。
加えて、前記シールが達成された後では、上記燃料流路と空気流路とがシール材により気密的に区画されている。従って、上述のように前記シール達成後において各燃料流路に還元ガスを供給して上記還元処理を行うと、上記空気極層の表面への還元ガスの供給を防止するための特別の処置を施すことなく上記空気極層の表面への還元ガスの供給を防止することができる。
更には、前記各薄板体について、対応する前記燃料流路及び前記空気流路内のそれぞれにおいて、互いに隣接する前記支持部材と前記薄板体との間の電気的接続を確保する集電部材が内装され、且つ、前記各集電部材が、前記薄板体の平面に垂直な方向において弾性を有するとともに、互いに隣接する前記支持部材と前記薄板体とを前記垂直方向において互いに引き離す方向の弾性力が発生するように内装される場合において、本発明者は、前記各集電部材の前記弾性に関する弾性係数が0.1〜8N/μmであると、隣接する支持部材と薄板体との間の電気的接続が確実に確保され、且つ、上記還元処理中における薄板体の割れの発生を抑制できるとともに、「還元処理後における常温での反り割合」を小さくできることを見出した。
上記説明した「還元処理後における常温での反り割合が0.05cm−1以下」を達成するための本発明に係るSOFCの組立方法は、各薄板体の厚さが20μm以上且つ500μm以下と極めて薄く且つ固体電解質層の厚さ及び空気極層の厚さよりも燃料極層の厚さが大きく、各支持部材の平面部の正射影面積が1cm以上且つ100cm以下という条件下において適用され、互いに隣接する前記薄板体の周縁部と前記支持部材の周縁部との間にシール材が介在した状態で、前記薄板体と前記支持部材とを1つずつ交互に積層し、前記各薄板体の周縁部を前記上方支持部材の周縁部の下面と前記下方支持部材の周縁部の上面とにより挟持してシールする積層・シール工程と、前記シールが施された前記積層体内に区画・形成されている前記各燃料流路内に還元ガスを流入させることで、前記各燃料極層に対する還元処理を行う還元処理工程と、を含む。
これにより、上述と同様、各薄板体の周縁部が上記「挟持」「シール」により(ある程度)拘束された状態で還元処理が実行されるから、「還元処理後における常温での反り割合が0.05cm−1以下」が達成され得る。
前記積層・シール工程では、互いに隣接する前記薄板体と前記支持部材との間における前記燃料流路及び前記空気流路に対応する各空間内に、互いに隣接する前記支持部材と前記薄板体との間の電気的接続を確保する集電部材が内装されて、互いに隣接する前記支持部材と前記薄板体との間の電気的接続が確保されることが好ましい。
本発明の実施形態に係る固体酸化物型燃料電池の破断斜視図である。 図1に示した燃料電池の部分分解斜視図である。 図2に示した1−1線を含むとともにx−z平面と平行な平面に沿って支持部材を切断した支持部材の断面図である。 図1に示した薄板体及び薄板体を支持した状態における支持部材を、図2に示した2−2線を含むとともにy−z平面と平行な平面に沿って切断した縦断面図である。 図1に示した燃料電池における燃料と空気の流通を説明する図である。 図1に示した燃料電池のシール材周りを誇張して示した積層工程における図4に対応する模式図である。 図1に示した燃料電池のシール材周りを誇張して示したシール工程における図4に対応する模式図である。 図1に示した燃料電池のシール材周りを誇張して示した還元処理工程における図4に対応する模式図である。
以下、図面を参照しつつ本発明の実施形態に係る固体酸化物型燃料電池について説明する。
(燃料電池の全体構造)
図1は、本発明の一実施形態に係るデバイスである固体酸化物型燃料電池(以下、単に「燃料電池」と称呼する。)10の破断斜視図である。図2は、燃料電池10の部分分解斜視図である。燃料電池10は、薄板体11と支持部材12とが交互に積層されることにより形成されている。即ち、燃料電池10は、平板スタック構造を備えている。薄板体11は、燃料電池10の「単セル」とも称呼される。支持部材12は、「セパレータ」とも称呼される。
図2の円A内に拡大して示したように、薄板体11は、電解質層(固体電解質層)11aと、電解質層11aの上(上面)に形成された燃料極層11bと、電解質層11a上の燃料極層11bとは反対の面(下面)に形成された空気極層11cと、を有している。薄板体11の平面形状は、互いに直交するx軸及びy軸の方向に沿う辺を有する正方形(1辺の長さ=A)である。薄板体11は、x軸及びy軸に直交するz軸方向に厚み方向を有する板体(厚さ=t1)である。
本例において、電解質層11aは、YSZ(イットリア安定化ジルコニア)の緻密な焼成体である。燃料極層11bは、Ni−YSZからなる焼成体(後述する還元処理後の状態であり、還元処理前はNiO−YSZからなる焼成体)であり、多孔質電極層である。空気極層11cは、LSCF(ランタンストロンチウムコバルトフェライト)からなる焼成体であり、多孔質電極層である。電解質層11a、燃料極層11b、及び空気極層11cの常温から1000℃での平均熱膨張率はそれぞれ、およそ、10.8ppm/K、12.5ppm/K、及び12ppm/Kである。
薄板体11は、一対のセル貫通孔11d,11dを備えている。それぞれのセル貫通孔11dは、電解質層11a、燃料極層11b及び空気極層11cを貫通している。一対のセル貫通孔11d,11dは、薄板体11の一つの辺の近傍であってその辺の両端部近傍領域に形成されている。
図3は、図2においてx軸と平行な1−1線を含むとともにx−z平面と平行な平面に沿って支持部材12を切断した支持部材12の断面図である。図2及び図3に示したように、支持部材12は、平面部12aと、上方枠体部12b(周縁部)と、下方枠体部12c(周縁部)と、を備えている。支持部材12の平面形状は、互いに直交するx軸及びy軸の方向に沿う辺を有する正方形(1辺の長さ=A)である。平面部12aの厚さはtzであり、「枠体部」(周縁部)の厚さはt2(>tz)である。
支持部材12は、Ni系耐熱合金(例えば、フェライト系SUS、インコネル600及びハステロイ等)から構成されている。支持部材12の常温から1000℃での平均熱膨張率は、例えばフェライト系SUSであるSUS430の場合、およそ12.5ppm/Kである。従って、支持部材12の熱膨張率は、薄板体11の平均熱膨張率よりも大きい。従って、燃料電池10の温度が変化したとき、薄板体11と支持部材12との間にて伸縮量差が生じる。
平面部12aは、z軸方向に厚み方向を有する薄い平板体である。平面部12aの平面形状は、x軸及びy軸方向に沿う辺を有する正方形(1辺の長さ=L(<A))である。
上方枠体部12bは、平面部12aの周囲(4つの辺の近傍領域、即ち、外周近傍領域)において上方に向けて立設された枠体である。上方枠体部12bは、外周枠部12b1と段差形成部12b2とからなっている。
外周枠部12b1は、支持部材12の最外周側に位置している。外周枠部12b1の縦断面(例えば、y軸方向に長手方向を有する外周枠部12b1をx−z平面に平行な平面に沿って切断した断面)の形状は長方形(又は正方形)である。
段差形成部12b2は、平面部12aの四つの角部のうちの一つの角部において、外周枠部12b1の内周面から支持部材12の中央に向けて延設された部分である。段差形成部12b2の下面は平面部12aと連接している。段差形成部12b2の平面視における形状は略正方形である。段差形成部12b2の上面(平面)は、外周枠部12b1の上面(平面)と連続している。段差形成部12b2には、貫通孔THが形成されている。貫通孔THは、段差形成部12b2の下方に位置する平面部12aにも貫通している。
下方枠体部12cは、平面部12aの周囲(4つの辺の近傍領域、即ち、外周近傍領域)において下方に向けて立設された枠体である。下方枠体部12cは、平面部12aの厚さ方向の中心線CLに対して上方枠体部12bと対称形状を有している。従って、下方枠体部12cは、外周枠部12b1、及び段差形成部12b2とそれぞれ同一形状の外周枠部12c1、及び段差形成部12c2を備えている。但し、段差形成部12c2は、平面部12aの四つの角部のうち段差形成部12b2が形成されている角部と隣り合う2つの角部のうちの一方の角部に配置・形成されている。
図4は、薄板体11及び薄板体11を支持(挟持)した状態における一対の支持部材12を、図2においてy軸と平行な2−2線を含むとともにy−z平面と平行な平面に沿って切断した縦断面図である。上述したように、燃料電池10は、薄板体11と支持部材12とが交互に積層されることにより形成されている。
ここで、この一対の支持部材12のうち、薄板体11に対してその下方・上方に隣接するものをそれぞれ、便宜上、下方支持部材121及び上方支持部材122と称呼する。図4に示したように、下方支持部材121及び上方支持部材122は、下方支持部材121の上方枠体部12bの上に上方支持部材122の下方枠体部12cが対向するように互いに同軸的に配置される。
薄板体11は、その周縁部全周が、下方支持部材121の上方枠体部12b(周縁部)の上面と上方支持部材122の下方枠体部12c(周縁部)の下面との間に挟持される。このとき、薄板体11は、下方支持部材121の平面部12aの上面に空気極層11cが対向するように配置され、上方支持部材122の平面部12aの下面に燃料極層11bが対向するように配置される。
薄板体11の周縁部全周と下方支持部材121の上方枠体部12bの全周、並びに、薄板体11の周縁部全周と上方支持部材122の下方枠体部12cの全周は、シール材13により互いにシール(接合)され且つ相対移動不能に固定されている。シール材13としては、結晶化ガラス(非晶質領域が残存していてもよい。)が使用される。燃料電池10の組立に際し、この結晶化ガラスの結晶化率が段階的に調整されるが、この点については後述する。
以上により、図4に示したように、下方支持部材121の平面部12aの上面と、下方支持部材121の上方枠体部12b(外周枠部12b1及び段差形成部12b2)の内側壁面と、薄板体11の空気極層11cの下面と、により酸素を含む気体が供給される空気流路21が形成される。酸素を含む気体は、図4の破線の矢印により示したように、上方支持部材122の貫通孔THと薄板体11のセル貫通孔11dとを通して空気流路21に流入する。
また、上方支持部材122の平面部12aの下面と、上方支持部材122の下方枠体部12c(外周枠部12c1及び段差形成部12c2)の内側壁面と、薄板体11の燃料極層11bの上面と、により水素を含む燃料が供給される燃料流路22が形成される。燃料は、図4の実線の矢印により示したように、下方支持部材121の貫通孔THと薄板体11のセル貫通孔11dとを通して燃料流路22に流入する。
また、図4に示すように、空気流路21及び燃料流路22中において、集電用の金属メッシュ(例えば、エンボス構造の金属メッシュ)が内装されている。各金属メッシュは、積層方向において弾性を有する。加えて、各金属メッシュは、対応する支持部材12と薄板体11とを積層方向において互いに引き離す方向の弾性力が発生するように(即ち、プレ荷重が発生するように)内装されている。
これにより、下方支持部材121と薄板体11との電気的接続、及び上方支持部材122と薄板体11との電気的接続が確保される。加えて、係る金属メッシュの内装により、ガスの流通経路が規制される。この結果、空気流路21及び燃料流路22中において、平面視にてガスの流通により発電反応が実質的に発生し得る領域の面積(流通面積)が拡大され得、薄板体11にて発電反応が効果的に発生し得る。
以上のように構成された燃料電池10は、例えば、図5に示したように、薄板体11の燃料極層11bと支持部材12の平面部12aの下面との間に形成された燃料流路22に燃料が供給され、且つ、薄板体11の空気極層11cと支持部材12の平面部12aの上面との間に形成された空気流路21に空気が供給されることにより、以下に示す化学反応式(1)及び(2)に基づく発電を行う。
(1/2)・O+2e−→O2− (於:空気極層11c) …(1)
+O2−→HO+2e− (於:燃料極層11b) …(2)
燃料電池(SOFC)10は、固体電解質層11aの酸素伝導度を利用して発電するので、燃料電池10としての作動温度は最低600℃以上であることが一般的である。このため、燃料電池10は、常温から作動温度(例えば800℃)まで外部の加熱機構(例えば、抵抗加熱ヒータ方式の加熱機構、或いは、燃料ガスを燃焼して得られる熱を利用する加熱機構等)により昇温された状態で使用される。
薄板体11(従って、支持部材12)の平面形状(=正方形)の1辺の長さAは、本例では、1.1cm以上且つ11cm以下である。薄板体11の厚さt1は、全体に渡って均一であり、本例では、20μm以上且つ500μm以下である。燃料極層11bの厚さは、固体電解質層11aの厚さ及び空気極層11cの厚さよりも大きい。即ち、3層のうちで燃料極層11bの剛性が最も高く、燃料極層11bは薄板体11の支持層として機能し得る。電解質層11a、燃料極層11b、及び空気極層11cの厚さはそれぞれ、例えば、1μm以上且つ50μm以下、20μm以上且つ400μm以下、及び、5μm以上且つ50μm以下である。
支持部材12の平面部12aの平面形状(=正方形)の1辺の長さLは、本例では、1cm以上且つ10cm以下である。支持部材12の「枠体部」(周縁部)の幅((A−L)/2)は、0.05cm以上且つ0.5cm以下である。従って、平面視での支持部材12の平面部12aの面積は、1cm以上且つ100cm以下である。支持部材12の「枠体部」(周縁部)の厚さt2は、200μm以上且つ1000μm以下である。支持部材12の平面部12aの厚さtzは、50μm以上且つ100μm以下である。
(燃料電池の組立、及び燃料極層の還元処理)
次に、燃料電池10を組み立てる方法、並びに、燃料極層11bの還元処理の一例について説明する。
先ず、燃料電池10の組立に使用される薄板体11の製造について説明する。薄板体11が燃料極支持型(支持基板が燃料極層)の場合について説明すると、先ず、NiO及びYSZからなるシート(燃料極層11bとなる層)が準備される。次いで、このシートの下面にグリーンシート法により作成したセラミックスシート(YSZのテープ)が積層され、この積層体が1400℃・1時間にて焼成される。次いで、その積層体(焼成体)の下面にLSCFからなるシート(空気極層11cとなる層)が印刷法により形成され、この積層体が850℃・1時間にて焼成される。これにより(還元処理前の)薄板体10が形成される。なお、この場合、上記YSZのテープを使用することに代えて、NiO及びYSZからなるシート(燃料極層11bとなる層)の下面に、セラミックスシートが印刷法により形成されてもよい。また、電解質層と空気極層の間に、反応防止層としてセリア層などを設けても良い。更には、燃料極層に熱膨張率が小さいジルコンを加えてもよい。これにより、燃料極層の平均熱膨張率を低下させて燃料極層と空気極層との熱膨張率差を小さくすることができる。この結果、薄板体内の層間の熱膨張率差に起因する薄板体の反りを小さくすることができる。
燃料電池10の組立に使用される支持部材12は、エッチング、切削等により形成され得る。
以上のようにして、薄板体10及び支持部材12が必要な枚数だけ準備されると、以下のように、燃料電池10の組立が進行する。以下、図6〜図8を参照しながら説明する。図6〜図8は、薄板体11及び薄板体11を支持(挟持)した状態における一対の支持部材12を、図2においてx軸と平行な3−3線を含むとともにx−z平面と平行な平面に沿って切断した縦断面の模式図である。3−3線は、支持部材12の平面形状(=正方形)の中心(=薄板体11の平面形状(=正方形)の中心)を通る線である。図6〜図8では、シール材13の形状を見やすくするため、シール材13の形状(特に、厚さ等)が誇張して描かれている。
ここまでは、薄板体11が変形していない場合について説明した。しかしながら、薄板体11が極めて薄いこと、並びに、薄板体11を構成する上記3層の熱膨張率が相違すること等に起因して、実際には、図6〜図8に示すように、常温にて、焼成後(且つ還元処理前)の薄板体11が、単独の状態で、その中央部が下方向(即ち、燃料極層11b側の表面が凹形状となる方向)に反る傾向がある。以下、図6〜図8に示すように、薄板体11の周縁部に対する中央部の積層方向の反り高さを「反り高さh」と称呼する。また、支持部材12の平面部12aの平面視での面積に対する反り高さhの割合を「反り割合」と称呼する。反り高さhは、例えば、側面視での薄板体11の断面を観察すること等により測定され得る。
<積層工程>
先ず、各支持部材12の周縁部において薄板体11を挟持する部分(即ち、下方枠体部12cの下面、及び上方枠体部12bの上面、支持部材12の周縁部の上下面)にシール材13としての結晶化ガラスの材料(例えば、ホウ酸珪系結晶化ガラス等のスラリー)が、常温にて塗布される。或いは、各薄板体11の周縁部において上方・下方支持部材12から挟持される部分(即ち、薄板体11の周縁部の上下面)にシール材13としての結晶化ガラスの材料(ホウ酸珪系結晶化ガラス等のスラリー)が、常温にて塗布されてもよい。この例では、結晶化ガラスの結晶化ピーク温度は850℃であり、結晶化ガラスの軟化点は650℃である。また、この段階における結晶化ガラスの結晶化率は、略0%である。結晶化率とは、結晶化ガラス材料中における結晶質領域の存在割合(体積割合)を指す。測定対象の結晶化ガラス材料の結晶化率は、例えば、十分に高い温度で熱処理が行われてX線回折及び熱分析により非晶質領域が存在しないことが確認されている結晶化ガラス材料(基準品)と、前記測定対象の結晶化ガラス材料との間での、X線回折での主相の回折ピーク比を利用して測定され得る。
次いで、図6に示すように、前記集電用の金属メッシュを内装しながら支持部材12と薄板体11とが交互に積層される。これにより、互いに隣接する薄板体11の周縁部と支持部材12の周縁部との間に結晶化ガラスの材料が介在した状態で薄板体11と支持部材12とが1つずつ交互に積層された状態が得られる。
各金属メッシュ(の上側の凸部)と、隣接する空気極層11c(の下面)との接合は、白金、銀、銀系合金、導電性セラミックス等の接着剤を用いて達成される。各金属メッシュ(の下側の凸部)と、隣接する燃料極層11b(の上面)との接合は、白金、銀系合金、ニッケル、ニッケル系合金等の接着剤を用いて達成される。また、各金属メッシュと、隣接する支持部材12との接合は、上述の接着剤を用いて達成されてもよいし、スポット溶接、拡散接合等の手法を用いて達成されてもよい。
なお、この積層工程後における上記反り高さhを低減するため、薄板体11に対して平面方向において周縁部を広げる方向の引っ張り力を付与しながら薄板体11と支持部材12とを積層してもよい。後述する「還元処理後における常温での反り割合が0.05cm−1以下」を達成するためには、積層工程終了後の状態において、反り割合が0.03cm−1以下であることが好適である。
<シール工程>
次いで、この積層体に熱処理が施されて、この積層体の温度が第1温度(例えば、700℃)に所定時間だけ維持される。この結果、図7に示すように、結晶化ガラスの結晶化率が0〜50%まで増大させられる。なお、図中において、シール材13としての結晶化ガラス内の微細なドットの数が多いほど結晶化率が大きいことを示す(図8も同様)。これにより、互いに隣接する薄板体11の周縁部と支持部材12の周縁部とが一体化され且つシール(接合)される。この結果、各燃料流路22と各空気流路21とが結晶化ガラスにより気密的にそれぞれ区画・形成される。
加えて、結晶化率が0〜50%に留められて、結晶化ガラス内において非晶質領域が敢えて十分に残される。この結果、このシール工程終了後において、積層体の温度が結晶化ガラスの軟化点(結晶化温度よりも低い)未満の状態では互いに隣接する薄板体11の周縁部と支持部材12の周縁部とが相対移動不能に固定される一方で、その後において積層体の温度が結晶化ガラスの軟化点(結晶化温度よりも低い)以上になった場合、非晶質領域が軟化することで隣接する薄板体11の周縁部と支持部材12の周縁部とが拘束されつつも(或る程度)相対移動可能な状態を得ることができる。後述する「還元処理後における常温での反り割合が0.05cm−1以下」を達成するためには、シール工程終了後の状態において、反り割合が0.03cm−1以下であることが好適である。
<還元処理工程>
次に、この積層体に再び熱処理が施されて、この積層体の温度が第2温度(例えば、800℃、第1温度よりも高い)に所定時間だけ維持される。これと同時に、各燃料流路22内に還元ガス(本例では、水素ガス)が流入させられる。
この熱処理により、積層体の温度が前記軟化点以上となって互いに隣接する薄板体11の周縁部と支持部材12の周縁部とが拘束されつつも(或る程度)相対移動可能な状態が得られる。係る状態が得られている間において、上記還元ガスの流入により、各燃料極層11bの還元処理が行われ、燃料極層11bを構成するNiOとYSZのうちNiOが還元される。この結果、燃料極層11bがNi−YSZサーメットとなって燃料極電極(アノード電極)として機能し得るようなる。
燃料極層11bに対して上記還元処理を実行すると、燃料極層11bが収縮し、この結果、図8に示すように、薄板体11全体も収縮する(図8中の黒矢印を参照)。この結果、薄板体11はその周縁部において隣接する支持部材12(上方・下方支持部材)から平面方向に沿った方向の引っ張り力を受ける。しかしながら、本例では、上述のように、互いに隣接する薄板体11の周縁部と支持部材12の周縁部とが拘束されつつも(或る程度)相対移動可能な状態において還元処理が行われる。従って、薄板体11が隣接する支持部材12から上述の引っ張り力を受けても、その引っ張り力が過大となることが抑制され得る。
加えて、現段階では、燃料流路22と空気流路21とが結晶化ガラスにより気密的に区画されている。従って、還元処理中において、空気極層21の表面への還元ガスの供給を防止するための特別の処置を施すことなく空気極層21の表面への還元ガスの供給を防止することができる。
そして、この還元処理工程では、図8に示すように、結晶化率が70〜100%まで十分に増大させられる(非晶質領域が殆どなくなる)。これにより、互いに隣接する薄板体11の周縁部と支持部材12の周縁部とが結晶化ガラスにより、温度にかかわらずに相対移動し難い状態で固定される。以上にて、燃料電池10の組立が完了する。
以上のように、本例では、燃料極層11bに対する還元処理が、シール工程終了後の状態、即ち、各薄板体11の周縁部が上方支持部材122の周縁部の下面と下方支持部材121の周縁部の上面とにより「挟持」され「シール」された状態において、各燃料流路22内に還元ガスが供給されることで、実行される。
この結果、「還元処理後の常温での反り割合が0.05cm−1以下」を達成できることが見出された。上述のように、「還元処理後における常温での反り割合が0.05cm−1以下」は、積層される前の極めて薄い薄板体11単独の状態で上記還元処理が実行される場合には達成し得ない。即ち、この結果は、各薄板体11の厚さが20μm以上且つ500μm以下と極めて薄く且つ固体電解質層11aの厚さ及び空気極層11cの厚さよりも燃料極層11bの厚さが大きく、各支持部材12の平面部12aの正射影面積が1cm以上且つ100cm以下という条件下において、各薄板体11の周縁部が上記「挟持」「シール」により(ある程度)拘束されていることに起因して、還元処理による燃料極層11bの収縮に伴う上述した薄板体の反りの進行を阻害する作用が特に強く働くことに基づくものと考えられる。
より具体的には、本例のように、燃料極層11bが薄板体11の支持層として機能する場合、焼成時において、層間の焼結開始温度の相違、層間の焼成収縮量の相違、層間の熱膨張率の相違等により、薄板体11に歪応力が発生する。本例のように薄板体11が極めて薄い場合、この歪応力に起因して薄板体11に反りが不可避的に発生する。このように反りが既に発生している焼成後の極めて薄い各薄板体11の周縁部をある程度拘束した状態で燃料極層11bに対して還元処理を行うと、常温での反り割合が極めて小さい(平坦性の高い)薄板体11が得られることが見出された。これは、燃料極層11b内のNiOがNiに還元・焼結されていく過程において、極めて薄い薄板体11が塑性変形を伴いながら変態することに起因すると考えられる。実際、還元処理後の高温のスタックを中性雰囲気内で(薄板体11が再酸化されないように)降温、回収し、支持部材12(セパレータ)の一部を切除して周縁部が拘束された状態にある各薄板体11を観察すると、(焼成後且つ還元処理前と比較して)常温での反りが小さくなっていた。この状態にて、各薄板体11の周縁部における隣接する支持部材12との接合部をレーザー加工により切断して各薄板体11を単独の状態で回収しても、常温での反りが小さい状態が維持されていた。以上のことから、極めて薄い薄板体11の周縁部がある程度拘束された状態で燃料極層11bに対して還元処理を行うと、薄板体11が塑性変形することで薄板体11の反りが低減される(平坦化される)作用・効果が発生すると考えられる。
以下、薄板体の支持層(3層のうちで厚さが最も大きい層)を変更した場合についての実験結果について付言する。この実験では、各薄板体を構成する3層の厚さの配分を除いて各部材の形状、寸法等は全て上述した実施形態のものと同じとされた。上述した実施形態のように燃料極層の厚さを最も大きくして燃料極層を支持層として機能させた場合、「還元処理後の常温での反り割合が0.05cm−1以下」となるのに対し、固体電解質層の厚さを最も大きくして固体電解質層を支持層として機能させた場合、「還元処理後の常温での反り割合が0.30cm−1」となり、空気極層の厚さを最も大きくして空気極層を支持層として機能させた場合、多くの場合に薄板体が破損する結果となった。これは支持層が脆弱な多孔質セラミックスであることに起因すると考える。この実験結果から、還元処理の対象となる燃料極層を薄板体の支持層として機能させることで、還元処理による燃料極層の収縮に伴う上述した薄板体の反りの進行を阻害する作用が特に強くなることが判る。
加えて、「還元処理後の反り」の低減には、各燃料流路22及び空気流路21に内装されている集電用の金属メッシュの前記弾性力(プレ荷重、図6〜図8中の白矢印を参照)が大きく貢献していることも見出された。これは以下の理由に基づく。即ち、薄板体11(特に、中央部)の上下の一方側の表面が凸形状となる方向への薄板体11の変形量が次第に増大していくと、薄板体11の上下の一方側・他方側に内装された金属メッシュの積層方向の高さが前記変形量の増大に応じてそれぞれ減少・増大していく。これに伴い、前記一方側・他方側に内装された金属メッシュの前記弾性力がそれぞれ増大・減少していき、前記一方側・他方側に内装された金属メッシュの前記弾性力の差が増大していく。この弾性力差は、前記変形量を低減する方向に働く。このような状況において、金属メッシュを内装しない場合に比して、上述のように金属メッシュを内装した場合の方が、「還元処理後の反り高さh(反り割合)」が小さくなる。
次に、上述した金属メッシュの積層方向についての弾性係数(弾性領域内における、積層方向における金属メッシュの高さの変化に対する弾性力の変化割合)の好ましい範囲について説明する。上述した実施形態における燃料電池10のサイズでは、金属メッシュの弾性係数は、0.1〜8N/μmであることが好ましい。これによれば、隣接する支持部材12と薄板体11との間の電気的接続が確実に確保され、且つ、前記還元処理工程中における薄板体11の割れの発生を抑制できることが判明した。
以下、このことを確認した試験について説明する。この試験では、薄板体として、平面視にて1辺の長さが3cmの正方形を呈していて、8YSZからなる電解質層(厚さ:3μm)、NiO−8YSZからなる燃料極層(厚さ:150μm)、及びLSCFからなる空気極層(厚さ:15μm)が積層された燃料極支持型(支持基板が燃料極層)のものが使用された。そして、この薄板体を使用して3層のスタックが作製され、この3層のスタックを用いて試験が行われた。
なお、金属メッシュの弾性係数は、メッシュの仕様(例えば、メッシュ材の線径、エンボス部の形状、エンボス部の配置ピッチ等)により任意に調整可能である。上述の3層のスタックの組み立ては、形状が付与された金属メッシュを支持部材側に(拡散接合、スポット溶接等により)接合した状態で実施された。
Figure 0005325017
表1は、上記積層工程・シール工程・還元処理工程の一連の工程を、金属メッシュの弾性係数を変更しながら繰り返し行った場合の結果を示している。なお、金属メッシュの弾性係数は、燃料極側と空気極側とで同じとした。なお、金属メッシュの弾性係数は、燃料側、空気側のそれぞれに対して個別に適正化が可能である。薄板体の割れの有無は、スタックへのガス流量の収支を測定することで評価した。電気的接続の確保については、作動温度700℃、定格0.7V時におけるスタックの出力密度を計測することで評価した。
表1に示すように、金属メッシュの弾性係数が8N/μmよりも大きい場合、還元処理工程中において薄板体11の割れが発生し易くなることが判明した。これは、弾性係数が大きいと、還元処理工程中に発生する薄板体11の変形量の変化に対する金属メッシュの弾性力の変化量(前記弾性力差の変化量)が大きくなり、この結果、薄板体11の内部で局所的に応力が過大となる部分が発生し易くなることに起因するものと考えられる。
一方、金属メッシュの弾性係数が0.1N/μmよりも小さい場合、スタックの出力密度が低下することが判明した。これは、弾性係数が小さいと、金属メッシュのプレ荷重が小さくなり、この結果、金属メッシュと、支持部材12又は薄板体11との接触部(接点)において接触不良が発生し易くなること起因するものと考えられる。
他方、金属メッシュの弾性係数が0.1〜8N/μmである場合、スタックの出力密度の低下が発生せず、且つ、還元処理工程中において薄板体11の割れが発生しない。以上より、上述したサイズの燃料電池10では、金属メッシュの弾性係数は、0.1〜8N/μmであることが好適である。
以上、説明したように、本発明の実施形態に係る、固体電解質層、燃料極層、及び空気極層からなる焼成体である薄板体(単セル)と、支持部材(セパレータ)とが1つずつ交互に積層されてなる(平板)スタック構造を有する固体酸化物型燃料電池10の組立方法では、先ず、積層工程において、互いに隣接する薄板体11の周縁部と支持部材12の周縁部との間に結晶化ガラスの材料が介在した状態で薄板体11と支持部材12とが1つずつ交互に積層される。次いで、シール工程において、積層体を第1温度(例えば、700℃)に加熱して結晶化ガラスの結晶化率が0〜50%まで増大させられる。これにより、互いに隣接する薄板体11の周縁部と支持部材12の周縁部とが一体化され且つシールされる。次いで、還元処理工程において、積層体を第2温度(例えば、800℃、第2温度>第1温度)に加熱し且つ燃料流路22内に還元ガスを流入させて、結晶化ガラスの結晶化率を70〜100%まで増大させるとともに燃料極層11bに対する還元処理が行われる。
このように、燃料極層11bに対する還元処理が、シール工程終了後の状態、即ち、各薄板体11の周縁部が上方支持部材122の周縁部の下面と下方支持部材121の周縁部の上面とにより「挟持」され「シール」されて(ある程度)拘束された状態において、各燃料流路22内に還元ガスが供給されることで、実行される。
この結果、各薄板体11の厚さが20μm以上且つ500μm以下であり且つ固体電解質層の厚さ及び空気極層の厚さよりも燃料極層の厚さが大きく、且つ、各支持部材12の平面部12aの正射影面積が1mm以上且つ100mm以下である、小型の燃料電池10において、「還元処理後の常温での反り割合が0.05cm−1以下」を達成できた。
なお、本発明は上記実施形態に限定されることはなく、本発明の範囲内において種々の変形例を採用することができる。例えば、上記実施形態では、燃料極層11bは、白金、白金−ジルコニアサーメット、白金−酸化セリウムサーメット、ルテニウム、ルテニウム−ジルコニアサーメット等から構成することができる。
また、空気極層11cは、例えば、ランタンを含有するペロブスカイト型複合酸化物(例えば、上述のランタンマンガナイトのほか、ランタンコバルタイト)から構成することができる。ランタンコバルタイト及びランタンマンガナイトは、ストロンチウム、カルシウム、クロム、コバルト(ランタンマンガナイトの場合)、鉄、ニッケル、アルミニウム等をドープしたものであってよい。また、パラジウム、白金、ルテニウム、白金−ジルコニアサーメット、パラジウム−ジルコニアサーメット、ルテニウム−ジルコニアサーメット、白金−酸化セリウムサーメット、パラジウム−酸化セリウムサーメット、ルテニウム−酸化セリウムサーメットであってもよい。
加えて、上記実施形態においては、薄板体11及び支持部材12の平面形状は正方形であるが、長方形、円形、楕円形等であってもよい。
10…燃料電池、11…薄板体、11a…ジルコニア固体電解質層、11b…燃料極層、11c…空気極層、12…支持部材、12a…平面部、12b…上方枠体部、12c…下方枠体部、13…シール材、21…空気流路、22…燃料流路、121…下方支持部材、122…上方支持部材

Claims (6)

  1. 固体電解質層と、前記固体電解質層の上面に形成された燃料極層と、前記固体電解質層の下面に形成された空気極層と、が積層・焼成されてなる1又は複数の薄板体と、
    前記1又は複数の薄板体を支持する複数の支持部材と、
    を備え、前記薄板体と前記支持部材とが1つずつ交互に積層されてなる固体酸化物型燃料電池であって、
    前記各薄板体について、前記薄板体の周縁部が前記薄板体の上方に隣接する前記支持部材である上方支持部材の周縁部の下面と前記薄板体の下方に隣接する前記支持部材である下方支持部材の周縁部の上面との間に挟持されるように、前記薄板体の周縁部の上面と前記上方支持部材の周縁部の下面、及び前記薄板体の周縁部の下面と前記下方支持部材の周縁部の上面がそれぞれシールされていて、
    前記各薄板体について、前記上方支持部材の周縁部よりも内側に位置する平面部の下面と前記薄板体の燃料極層の上面との間の空間に燃料ガスが供給される燃料流路が区画・形成されるとともに、前記下方支持部材の周縁部よりも内側に位置する平面部の上面と前記薄板体の空気極層の下面との間の空間に酸素を含むガスが供給される空気流路が区画・形成された固体酸化物型燃料電池において、
    前記各薄板体の厚さは、20μm以上且つ500μm以下であり、且つ、前記固体電解質層の厚さ及び前記空気極層の厚さよりも前記燃料極層の厚さが大きく、
    前記薄板体の平面に垂直な方向に対する前記各支持部材の前記平面部の正射影面積は、1cm以上且つ100cm以下であり、
    前記各燃料極層に対する還元処理の実行後の常温の状態で、前記平面部の正射影面積に対する前記各薄板体における前記平面に垂直な方向の反りの高さの割合である反り割合は0.05cm−1以下である、固体酸化物型燃料電池。
  2. 請求項1に記載の固体酸化物型燃料電池において、
    前記支持部材の前記平面部の正射影形状は、円形、楕円形、正方形、又は長方形であり、前記円形の直径、前記楕円形の長径、前記正方形の1辺の長さ、又は前記長方形の長辺の長さは、1cm以上且つ10cm以下である、固体酸化物型燃料電池。
  3. 請求項1又は請求項2に記載の固体酸化物型燃料電池において、
    前記各燃料極層に対する還元処理が、前記各薄板体の周縁部が前記上方支持部材の周縁部の下面と前記下方支持部材の周縁部の上面とにより挟持されてシールされた状態において前記各燃料流路内に還元ガスを流入させることで実行された固体酸化物型燃料電池。
  4. 請求項1乃至請求項3の何れか一項に記載の固体酸化物型燃料電池において、
    前記各薄板体について、対応する前記燃料流路及び前記空気流路内のそれぞれにおいて、互いに隣接する前記支持部材と前記薄板体との間の電気的接続を確保する集電部材が内装されていて、
    前記各集電部材は、前記薄板体の平面に垂直な方向において弾性を有するとともに、互いに隣接する前記支持部材と前記薄板体とを前記垂直方向において互いに引き離す方向の弾性力が発生するように内装されていて、
    前記各集電部材の前記弾性に関する弾性係数は、0.1〜8N/μmである固体酸化物型燃料電池。
  5. 固体電解質層と、前記固体電解質層の上面に形成された燃料極層と、前記固体電解質層の下面に形成された空気極層と、が積層・焼成されてなる1又は複数の薄板体と、
    前記1又は複数の薄板体を支持する複数の支持部材と、
    を備え、前記薄板体と前記支持部材とが1つずつ交互に積層されてなる固体酸化物型燃料電池であって、
    前記各薄板体について、前記薄板体の周縁部が前記薄板体の上方に隣接する前記支持部材である上方支持部材の周縁部の下面と前記薄板体の下方に隣接する前記支持部材である下方支持部材の周縁部の上面との間に挟持されるように、前記薄板体の周縁部の上面と前記上方支持部材の周縁部の下面、及び前記薄板体の周縁部の下面と前記下方支持部材の周縁部の上面がそれぞれシールされていて、
    前記各薄板体について、前記上方支持部材の周縁部よりも内側に位置する平面部の下面と前記薄板体の燃料極層の上面との間の空間に燃料ガスが供給される燃料流路が区画・形成されるとともに、前記下方支持部材の周縁部よりも内側に位置する平面部の上面と前記薄板体の空気極層の下面との間の空間に酸素を含むガスが供給される空気流路が区画・形成された固体酸化物型燃料電池であって、
    前記各薄板体の厚さが20μm以上且つ500μm以下であり、且つ、前記固体電解質層の厚さ及び前記空気極層の厚さよりも前記燃料極層の厚さが大きく、
    前記薄板体の平面に垂直な方向に対する前記各支持部材の前記平面部の正射影面積が1cm以上且つ100cm以下である固体酸化物型燃料電池の組立方法であって、
    互いに隣接する前記薄板体の周縁部と前記支持部材の周縁部との間にシール材が介在した状態で、前記薄板体と前記支持部材とを1つずつ交互に積層し、前記各薄板体の周縁部を前記上方支持部材の周縁部の下面と前記下方支持部材の周縁部の上面とにより挟持してシールする積層・シール工程と、
    前記シールが施された前記積層体内に区画・形成されている前記各燃料流路内に還元ガスを流入させることで、前記各燃料極層に対する還元処理を行う還元処理工程と、
    を含み、
    前記各燃料極層に対する前記還元処理の実行後の常温の状態で、前記平面部の正射影面積に対する前記各薄板体における前記平面に垂直な方向の反りの高さの割合である反り割合が0.05cm−1以下となる、固体酸化物型燃料電池の組立方法。
  6. 請求項5に記載の固体酸化物型燃料電池の組立方法において、
    前記積層・シール工程では、互いに隣接する前記薄板体と前記支持部材との間における前記燃料流路及び前記空気流路に対応する各空間内に、互いに隣接する前記支持部材と前記薄板体との間の電気的接続を確保する集電部材が内装されて、互いに隣接する前記支持部材と前記薄板体との間の電気的接続が確保される、固体酸化物型燃料電池の組立方法。
JP2009117318A 2008-08-27 2009-05-14 固体酸化物型燃料電池、及び、その組立方法 Active JP5325017B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009117318A JP5325017B2 (ja) 2008-08-27 2009-05-14 固体酸化物型燃料電池、及び、その組立方法
US12/539,808 US8968962B2 (en) 2008-08-27 2009-08-12 Solid oxide fuel cell, and assembling method of the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008217679 2008-08-27
JP2008217679 2008-08-27
JP2009117318A JP5325017B2 (ja) 2008-08-27 2009-05-14 固体酸化物型燃料電池、及び、その組立方法

Publications (2)

Publication Number Publication Date
JP2010080428A JP2010080428A (ja) 2010-04-08
JP5325017B2 true JP5325017B2 (ja) 2013-10-23

Family

ID=41725931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009117318A Active JP5325017B2 (ja) 2008-08-27 2009-05-14 固体酸化物型燃料電池、及び、その組立方法

Country Status (2)

Country Link
US (1) US8968962B2 (ja)
JP (1) JP5325017B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5640502B2 (ja) * 2010-07-01 2014-12-17 住友電気工業株式会社 電極接続構造および電極接続構造の製造方法
DK2955777T3 (da) * 2013-02-07 2020-04-20 Morimura Sofc Tech Co Ltd Brændselscelle og fremgangsmåde til fremstilling af samme
FR3014247B1 (fr) * 2013-11-29 2016-01-01 Commissariat Energie Atomique Procede de fabrication d'un assemblage membrane/electrodes comportant des renforts
FR3056337B1 (fr) * 2016-09-22 2021-01-22 Commissariat Energie Atomique Reacteur d'electrolyse de l'eau (soec) ou pile a combustible (sofc) a taux d'utilisation de vapeur d'eau ou respectivement de combustible augmente
JP6772861B2 (ja) 2017-01-30 2020-10-21 株式会社デンソー 燃料電池セルスタック
JP7080090B2 (ja) * 2018-03-30 2022-06-03 大阪瓦斯株式会社 電気化学素子の金属支持体、電気化学素子、電気化学モジュール、電気化学装置、エネルギーシステム、固体酸化物形燃料電池及び金属支持体の製造方法
KR20210067753A (ko) * 2019-11-29 2021-06-08 삼성전자주식회사 금속-공기 전지

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0355764A (ja) * 1989-07-21 1991-03-11 Fuji Electric Co Ltd 固体電解質型燃料電池
DE69015939T2 (de) * 1989-09-18 1995-07-06 Ngk Insulators Ltd Brennstoffzellengenerator.
JPH04249864A (ja) * 1990-07-02 1992-09-04 Fuji Electric Co Ltd 固体電解質型燃料電池
US5273837A (en) * 1992-12-23 1993-12-28 Corning Incorporated Solid electrolyte fuel cells
US6165634A (en) * 1998-10-21 2000-12-26 International Fuel Cells Llc Fuel cell with improved sealing between individual membrane assemblies and plate assemblies
US7189468B2 (en) * 2001-03-16 2007-03-13 Creare Inc. Lightweight direct methanol fuel cell
US6653009B2 (en) * 2001-10-19 2003-11-25 Sarnoff Corporation Solid oxide fuel cells and interconnectors
JP4341259B2 (ja) * 2002-03-04 2009-10-07 三菱マテリアル株式会社 固体電解質型燃料電池およびセパレータ
CA2452657C (en) 2003-02-18 2009-03-03 Sulzer Markets And Technology Ag A power source with solid oxide fuel cells
JP4069759B2 (ja) * 2003-02-21 2008-04-02 京セラ株式会社 平板型燃料電池セルスタック及び平板型燃料電池
KR100528339B1 (ko) * 2003-10-01 2005-11-15 삼성에스디아이 주식회사 직접액체연료전지 스택
US20060228613A1 (en) * 2005-04-07 2006-10-12 Bourgeois Richard S System and method for manufacturing fuel cell stacks
US8173010B2 (en) * 2005-05-19 2012-05-08 Massachusetts Institute Of Technology Method of dry reforming a reactant gas with intermetallic catalyst
JP2007265939A (ja) * 2006-03-30 2007-10-11 Ngk Insulators Ltd 電気化学装置

Also Published As

Publication number Publication date
US8968962B2 (en) 2015-03-03
US20100055531A1 (en) 2010-03-04
JP2010080428A (ja) 2010-04-08

Similar Documents

Publication Publication Date Title
JP5325017B2 (ja) 固体酸化物型燃料電池、及び、その組立方法
JP5172207B2 (ja) 固体酸化物型燃料電池の単セル用の薄板体
JP2010199059A (ja) 固体酸化物形燃料電池のスタック構造体
JP2006236989A (ja) 燃料電池用単電池セル
JP5255327B2 (ja) 反応装置
JP5727428B2 (ja) セパレータ付燃料電池セル,および燃料電池
JP5280151B2 (ja) 固体酸化物型燃料電池の薄板体、及び固体酸化物型燃料電池
JP5208622B2 (ja) 固体酸化物型燃料電池の組立方法
JP6378337B2 (ja) 平板型固体酸化物形燃料電池のスタック構造体及び固体酸化物形燃料電池システム
JP5284921B2 (ja) 反応装置、及び、反応装置の製造方法
EP2017914A1 (en) Reactor
JP5280173B2 (ja) 反応装置
JP2011165379A (ja) 固体酸化物形燃料電池セル
JP5368062B2 (ja) 固体酸化物型燃料電池
JP5378062B2 (ja) 固体酸化物型燃料電池の薄板体、及び固体酸化物型燃料電池
JP5237614B2 (ja) 固体酸化物型燃料電池
JP5717559B2 (ja) 被覆膜付部材および集電部材ならびに燃料電池セル装置
JP5255324B2 (ja) 反応装置
JP2005317291A (ja) 支持膜式固体酸化物形燃料電池スタック及びその作製方法
JP6675218B2 (ja) セパレータ付電気化学反応単セルの製造方法
JP7552073B2 (ja) 固体酸化物形燃料電池
CN112166518B (zh) 电池堆装置
JP2009245603A (ja) 固体酸化物形燃料電池の製造方法、及びこの方法により製造された固体酸化物形燃料電池
JP2009252474A (ja) 固体電解質形燃料電池とその製造方法
JP2014049322A (ja) セパレータ付燃料電池セル,および燃料電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130719

R150 Certificate of patent or registration of utility model

Ref document number: 5325017

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250