JP2008238048A - 精密フィルターユニット - Google Patents
精密フィルターユニット Download PDFInfo
- Publication number
- JP2008238048A JP2008238048A JP2007081831A JP2007081831A JP2008238048A JP 2008238048 A JP2008238048 A JP 2008238048A JP 2007081831 A JP2007081831 A JP 2007081831A JP 2007081831 A JP2007081831 A JP 2007081831A JP 2008238048 A JP2008238048 A JP 2008238048A
- Authority
- JP
- Japan
- Prior art keywords
- treatment
- micropore
- oxide film
- micropores
- membrane filter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
【解決手段】アルミニウムの陽極酸化皮膜からなり、規則化度が50%以上であり、かつ、孔径の標準偏差が平均孔径の10%以内であるマイクロポアを有するポーラスアルミナメンブレンフィルターと、
前記ポーラスアルミナメンブレンフィルターの少なくとも片側の表面に接する孔状素材であって、平均孔径が500nm〜10mmであり、単位面積あたりの開孔面積が前記ポーラスアルミナメンブレンフィルターの単位面積あたりの開孔面積よりも広く、かつ、ヤング係数が660MPaよりも大きい孔状素材と、
を少なくとも具備する精密フィルターユニット。
【選択図】なし
Description
しかしながら、このトラックエッチング方式は、有機皮膜に対して直行した細孔径分布の狭い独立した細孔が得られるが、飛跡形成時に重複して粒子が入射することによる二重孔の発生を避けるため、孔密度、いわゆる空隙率を上げることができないという問題があった。
このポーラスアルミナメンブレンフィルタは、アルミニウムを酸性電解液中で陽極酸化処理することで、細孔径分布の狭い独立した細孔が、高い空隙率で配置されているため、時間当たりの濾過流量の高く、また安価に製造することができる。
そのため、例えば、特許文献1等に記載されているように、フィルター素材本体をカートリッジで固定化する方法が提案されているが、この方法では破損を十分に防ぐことができず、更なる改良が望まれている。
(i)アルミニウムの陽極酸化皮膜からなり、下記式(1)により定義される規則化度が50%以上であり、かつ、孔径の標準偏差が平均孔径の10%以内であるマイクロポアを有するポーラスアルミナメンブレンフィルターと、
上記ポーラスアルミナメンブレンフィルターの少なくとも片側の表面に接する孔状素材であって、平均孔径が500nm〜10mmであり、単位面積あたりの開孔面積(以下、「開孔率」ともいう。)が上記ポーラスアルミナメンブレンフィルターの単位面積あたりの開孔面積よりも広く、かつ、ヤング係数が660MPaよりも大きい孔状素材と、
を少なくとも具備する精密フィルターユニット。
規則化度(%)=B/A×100 (1)
上記式(1)中、Aは、測定範囲におけるマイクロポアの全数を表す。Bは、一のマイクロポアの重心を中心とし、他のマイクロポアの縁に内接する最も半径が短い円を描いた場合に、その円の内部に上記一のマイクロポア以外のマイクロポアの重心を6個含むことになる上記一のマイクロポアの測定範囲における数を表す。
アルミニウム基板を陽極酸化してマイクロポアを有する酸化皮膜を形成する陽極酸化処理と、
上記陽極酸化処理後にアルミニウム基板を除去し、上記酸化皮膜をアルミニウム基板から分離する分離処理と、
上記分離処理により分離された酸化皮膜のマイクロポアを貫通させる貫通化処理と、
をこの順に施すことにより形成される上記(i)または(ii)に記載の精密フィルターユニット。
(v)前記貫通化処理の後に、酸化皮膜の表面に水和を妨げる保護膜を形成する保護処理を施す上記(iii)または(iv)に記載の精密フィルターユニット。
本発明の精密フィルターユニットは、高圧条件での濾過処理でもフィルター自体が壊れないため、濾過流量を向上させることができ、非常に有用である。
本発明の精密フィルターユニットは、アルミニウムの陽極酸化皮膜からなり、上記式(1)により定義される規則化度が50%以上であり、かつ、孔径の標準偏差が平均孔径の10%以内であるマイクロポアを有するポーラスアルミナメンブレンフィルターと、
上記ポーラスアルミナメンブレンフィルターの少なくとも片側の表面に接する孔状素材であって、平均孔径が500nm〜10mmであり、開孔率が上記ポーラスアルミナメンブレンフィルターの開孔率よりも高く、かつ、ヤング係数が660MPaよりも大きい孔状素材と、を少なくとも具備する精密フィルターユニットである。
次に、本発明の精密フィルターユニットに用いられるポーラスアルミナメンブレンフィルターおよび孔状素材について詳述する。
本発明の精密フィルターユニットを構成するポーラスアルミナメンブレンフィルターは、アルミニウムの陽極酸化皮膜からなり、下記式(1)により定義される規則化度が50%以上であり、かつ、孔径の標準偏差が平均孔径の10%以内であるマイクロポアを有するものである。
図1(A)に示されるマイクロポア1は、マイクロポア1の重心を中心とし、他のマイクロポアの縁に内接する最も半径が短い円3(マイクロポア2に内接している。)を描いた場合に、円3の内部にマイクロポア1以外のマイクロポアの重心を6個含んでいる。したがって、マイクロポア1は、Bに算入される。
図1(B)に示されるマイクロポア4は、マイクロポア4の重心を中心とし、他のマイクロポアの縁に内接する最も半径が短い円6(マイクロポア5に内接している。)を描いた場合に、円6の内部にマイクロポア4以外のマイクロポアの重心を5個含んでいる。したがって、マイクロポア4は、Bに算入されない。
また、図1(B)に示されるマイクロポア7は、マイクロポア7の重心を中心とし、他のマイクロポアの縁に内接する最も半径が短い円9(マイクロポア8に内接している。)を描いた場合に、円9の内部にマイクロポア7以外のマイクロポアの重心を7個含んでいる。したがって、マイクロポア7は、Bに算入されない。
また、規則化度は60%以上であるのが好ましく、80%以上であるのが更に好ましい。
また、孔径の標準偏差は、7%以内であるのが好ましく、5%以内であるのがより好ましい。
また、上記分離処理の前に、上記陽極酸化処理により形成した酸化皮膜を50℃以上の温度で少なくとも10分間加熱する加熱処理(以下、「加熱処理(B)」ともいう。)を施すのがより好ましい。
更に、上記貫通化処理の後に、酸化皮膜の表面に水和を妨げる保護膜を形成する保護処理(以下、「保護処理(E)」ともいう。)を施すのが更に好ましい。
以下に、アルミニウム基板および各処理について詳述する。
アルミニウム基板は、特に限定されず、その具体例としては、純アルミニウム板;アルミニウムを主成分とし微量の異元素を含む合金板;低純度のアルミニウム(例えば、リサイクル材料)に高純度アルミニウムを蒸着させた基板;シリコンウエハー、石英、ガラス等の表面に蒸着、スパッタ等の方法により高純度アルミニウムを被覆させた基板;アルミニウムをラミネートした樹脂基板;等が挙げられる。
熱処理を施す場合は、200〜350℃で30秒〜2分程度施すのが好ましい。具体的には、例えば、アルミニウム基板を加熱オーブンに入れる方法等が挙げられる。
このような熱処理を施すことにより、後述する陽極酸化処理により生成するマイクロポアの配列の規則性が向上する。
また、熱処理後のアルミニウム基板は、急速に冷却するのが好ましい。冷却する方法としては、例えば、水等に直接投入する方法等が挙げられる。
脱脂処理は、酸、アルカリ、有機溶剤等を用いて、アルミニウム基板表面に付着した、ほこり、脂、樹脂等の有機成分等を溶解させて除去し、有機成分を原因とする後述の各処理における欠陥の発生を防止することを目的として行われる。
鏡面仕上げ処理は、アルミニウム基板の表面の凹凸、例えば、アルミニウム基板の圧延時に発生した圧延筋等をなくして、電着法等による封孔処理の均一性や再現性を向上させるために行われる。
本発明において、鏡面仕上げ処理は、特に限定されず、従来公知の方法を用いることができる。例えば、機械研磨、化学研磨、電解研磨が挙げられる。
また、リン酸−硝酸法、Alupol I法、Alupol V法、Alcoa R5法、H3PO4−CH3COOH−Cu法、H3PO4−HNO3−CH3COOH法が好適に挙げられる。中でも、リン酸−硝酸法、H3PO4−CH3COOH−Cu法、H3PO4−HNO3−CH3COOH法が好ましい。
化学研磨により、光沢度を70%以上(圧延アルミニウムである場合、その圧延方向および幅方向ともに70%以上)とすることができる。
電解研磨により、光沢度を70%以上(圧延アルミニウムである場合、その圧延方向および幅方向ともに70%以上)とすることができる。
なお、光沢度は、圧延方向に垂直な方向において、JIS Z8741−1997の「方法3 60度鏡面光沢」の規定に準じて求められる正反射率である。具体的には、変角光沢度計(例えば、VG−1D、日本電色工業社製)を用いて、正反射率70%以下の場合には入反射角度60度で、正反射率70%を超える場合には入反射角度20度で、測定する。
陽極酸化処理(A)は、アルミニウム基板を陽極酸化することにより、該アルミニウム基板表面にマイクロポアを有する酸化皮膜を形成する処理である。
陽極酸化処理としては、従来公知の方法を用いることができる。具体的には、後述する自己規則化法を用いるのが好ましい。
この方法においては、ポア径は電圧に依存するので、電圧を制御することにより、ある程度所望のポア径を得ることができる。
陽極酸化処理をする際の平均流速は、0.5〜20.0m/minであるのが好ましく、1.0〜15.0m/minであるのがより好ましく、2.0〜10.0m/minであるのが更に好ましい。上記範囲の流速で陽極酸化処理を行うことにより、均一かつ高い規則性を有することができる。
また、電解液を上記条件で流動させる方法は、特に限定されないが、例えば、スターラーのような一般的なかくはん装置を使用する方法が用いられる。特に、かくはん速度をデジタル表示でコントロールできるようなスターラーを用いると、平均流速が制御できるため、好ましい。このようなかくはん装置としては、例えば、「マグネティックスターラーHS−50D(AS ONE製)」等が挙げられる。
陽極酸化処理(a−1)に用いられる溶液としては、酸溶液であることが好ましく、硫酸、リン酸、クロム酸、シュウ酸、スルファミン酸、ベンゼンスルホン酸、アミドスルホン酸、グリコール酸、酒石酸、りんご酸、クエン酸等がより好ましく、中でも硫酸、リン酸、シュウ酸が特に好ましい。これらの酸は単独でまたは2種以上を組み合わせて用いることができる。
また、マイクロポアの平均ポア密度は、50〜1500個/μm2であるのが好ましい。
更に、マイクロポアの占める面積率は、20〜50%であるのが好ましい。
ここで、マイクロポアの占める面積率は、アルミニウム表面の面積に対するマイクロポアの開口部の面積の合計の割合で定義される。
脱膜処理(a−2)は、上記陽極酸化処理(a−1)によりアルミニウム基板表面に形成した陽極酸化皮膜を溶解させて除去する処理である。
上記陽極酸化処理(a−1)によりアルミニウム基板表面に陽極酸化皮膜を形成した後、後述する加熱処理(B)または分離処理(C)を直ちに施してもよいが、上記陽極酸化処理(a−1)の後、更に脱膜処理(a−2)および後述する再陽極酸化処理(a−3)をこの順で施した後に、後述する加熱処理(B)または分離処理(C)を施すのが好ましい。
ジルコニウム系化合物としては、例えば、フッ化ジルコンアンモニウム、フッ化ジルコニウム、塩化ジルコニウムが挙げられる。
チタン化合物としては、例えば、酸化チタン、硫化チタンが挙げられる。
リチウム塩としては、例えば、フッ化リチウム、塩化リチウムが挙げられる。
セリウム塩としては、例えば、フッ化セリウム、塩化セリウムが挙げられる。
マグネシウム塩としては、例えば、硫化マグネシウムが挙げられる。
マンガン化合物としては、例えば、過マンガン酸ナトリウム、過マンガン酸カルシウムが挙げられる。
モリブデン化合物としては、例えば、モリブデン酸ナトリウムが挙げられる。
マグネシウム化合物としては、例えば、フッ化マグネシウム・五水和物が挙げられる。
バリウム化合物としては、例えば、酸化バリウム、酢酸バリウム、炭酸バリウム、塩素酸バリウム、塩化バリウム、フッ化バリウム、ヨウ化バリウム、乳酸バリウム、シュウ酸バリウム、過塩素酸バリウム、セレン酸バリウム、亜セレン酸バリウム、ステアリン酸バリウム、亜硫酸バリウム、チタン酸バリウム、水酸化バリウム、硝酸バリウム、あるいはこれらの水和物等が挙げられる。上記バリウム化合物の中でも、酸化バリウム、酢酸バリウム、炭酸バリウムが好ましく、酸化バリウムが特に好ましい。
ハロゲン単体としては、例えば、塩素、フッ素、臭素が挙げられる。
酸濃度としては、0.01mol/L以上であるのが好ましく、0.05mol/L以上であるのがより好ましく、0.1mol/L以上であるのが更に好ましい。上限は特にないが、一般的には10mol/L以下であるのが好ましく、5mol/L以下であるのがより好ましい。不要に高い濃度は経済的でないし、より高いとアルミニウム基板が溶解するおそれがある。
浸せき処理の時間は、10分以上であるのが好ましく、1時間以上であるのがより好ましく、3時間以上、5時間以上であるのが更に好ましい。
上記脱膜処理(a−2)により陽極酸化皮膜を除去して、アルミニウム基板の表面に規則的な窪みを形成した後、再び陽極酸化処理を施すことで、マイクロポアの規則化度がより高い陽極酸化皮膜を形成することができる。
再陽極酸化処理(a−3)は、従来公知の方法を用いることができるが、上述した陽極酸化処理(a−1)と同一の条件で行われるのが好ましい。
また、直流電圧を一定としつつ、断続的に電流のオンおよびオフを繰り返す方法、直流電圧を断続的に変化させつつ、電流のオンおよびオフを繰り返す方法も好適に用いることができる。これらの方法によれば、陽極酸化皮膜に微細なマイクロポアが生成するため、特に電着処理により封孔処理する際に、均一性が向上する点で、好ましい。
一方、再陽極酸化処理(a−3)を比較的高温で行うことにより、マイクロポアの配列を乱し、また、ポア径のばらつきを所定の範囲にすることができる。また、処理時間によっても、ポア径のばらつきを制御することができる。
平均ポア密度は50〜1500個/μm2であるのが好ましい。
例えば、インプリント法(突起を有する基板またはロールをアルミニウム板に圧接し、凹部を形成する、転写法、プレスパターニング法)を用いる方法が挙げられる。具体的には、複数の突起を表面に有する基板をアルミニウム表面に押し付けて窪みを形成させる方法が挙げられる。例えば、特開平10−121292号公報に記載されている方法を用いることができる。
また、アルミニウム表面にポリスチレン球を稠密状態で配列させ、その上からSiO2を蒸着した後、ポリスチレン球を除去し、蒸着されたSiO2をマスクとして基板をエッチングして窪みを形成させる方法も挙げられる。
粒子線法は、アルミニウム表面に粒子線を照射して窪みを形成させる方法である。粒子線法は、窪みの位置を自由に制御することができるという利点を有する。
粒子線としては、例えば、荷電粒子ビーム、集束イオンビーム(FIB:Focused Ion Beam)、電子ビームが挙げられる。
粒子線法としては、例えば、特開2001−105400号公報に記載されている方法を用いることもできる。
ブロックコポリマー法は、アルミニウム表面にブロックコポリマー層を形成させ、熱アニールによりブロックコポリマー層に海島構造を形成させた後、島部分を除去して窪みを形成させる方法である。
ブロックコポリマー法としては、例えば、特開2003−129288号公報に記載されている方法を用いることができる。
レジストパターン・露光・エッチング法は、フォトリソグラフィあるいは電子ビームリソグラフィ法によりアルミニウム板表面のレジストに露光および現像を施し、レジストパタンを形成した後これをエッチングする。レジストを設け、エッチングしてアルミニウム表面まで貫通した窪みを形成させる方法である。
(1)アルミニウム基板の表面を陽極酸化して、アルミニウム基板の表面にマイクロポアを有する陽極酸化皮膜を形成する工程
(2)酸またはアルカリを用いて、上記陽極酸化皮膜を部分的に溶解させる工程
(3)陽極酸化処理を実施して上記マイクロポアを深さ方向に成長させる工程
(4)上記マイクロポアの断面形状の変曲点よりも上方の陽極酸化皮膜を除去する工程
工程(1)では、アルミニウム基板の少なくとも一方の表面を陽極酸化処理して、該アルミニウム基板の表面にマイクロポアを有する陽極酸化皮膜を形成する。
工程(1)は、上記陽極酸化処理(a−1)と同様の手順で実施することができる。
図2は、本発明で用いるポーラスアルミナメンブレンフィルターを説明するための、アルミニウム基板および該アルミニウム基板上に形成される陽極酸化皮膜の模式的な端面図である。
図2(A)は、工程(1)により、アルミニウム基板12a表面に、マイクロポア16aを有する陽極酸化皮膜14aが形成された状態を示している。
工程(2)では、工程(1)で形成した陽極酸化皮膜を、酸またはアルカリを用いて、部分的に溶解させる。
ここで、陽極酸化皮膜を部分的に溶解させるとは、工程(1)で形成した陽極酸化皮膜を完全に溶解させるのではなく、図2(B)に示されるように、アルミニウム基板12a上に、マイクロポア16bを有する陽極酸化皮膜14bが残存するように、図2(A)に示す陽極酸化皮膜14aの表面およびマイクロポア16aの内部を部分的に溶解させることを示す。
また、陽極酸化皮膜の溶解量は、陽極酸化皮膜全体の0.001〜50質量%であるのが好ましく、0.005〜30質量%であるのがより好ましく、0.01〜15質量%であるのが更に好ましい。溶解量が上記範囲であると、陽極酸化皮膜の表面の配列が不規則な部分を溶解させて、マイクロポアの配列の規則性を高くすることができるとともに、マイクロポアの底部分に陽極酸化皮膜を残存させて、工程(3)で実施する陽極酸化処理の起点を残すことができる。
工程(2)にアルカリ水溶液を用いる場合は、水酸化ナトリウム、水酸化カリウムおよび水酸化リチウムからなる群から選ばれる少なくとも一つのアルカリの水溶液を用いることが好ましい。アルカリ水溶液の濃度は0.01〜1mol/Lであるのが好ましい。アルカリ水溶液の温度は、20〜35℃であるのが好ましい。
具体的には、例えば、0.5mol/L、40℃のリン酸水溶液、0.05mol/L、30℃の水酸化ナトリウム水溶液または0.05mol/L、30℃の水酸化カリウム水溶液が好適に用いられる。
酸水溶液またはアルカリ水溶液への浸せき時間は、8〜120分であるのが好ましく、10〜90分であるのがより好ましく、15〜60分であるのが更に好ましい。
工程(3)では、工程(2)で陽極酸化皮膜が部分的に溶解されたアルミニウム基板に対して、再び陽極酸化処理を実施してマイクロポアを深さ方向に成長させる。
図2(C)に示されるように、工程(3)の陽極酸化処理により、図2(B)に示されるアルミニウム基板12aの酸化反応が進行し、アルミニウム基板12b上に、マイクロポア16bよりも深さ方向に成長したマイクロポア16cを有する陽極酸化皮膜14cが形成される。
また、直流電圧を一定としつつ、断続的に電流のオンおよびオフを繰り返す方法、直流電圧を断続的に変化させつつ、電流のオンおよびオフを繰り返す方法も好適に用いることができる。これらの方法によれば、陽極酸化皮膜に微細なマイクロポアが生成するため、特に電着処理により封孔処理する際に、均一性が向上する点で、好ましい。
上述した電圧を断続的に変化させる方法においては、電圧を順次低くしていくのが好ましい。これにより、陽極酸化皮膜の抵抗を下げることが可能になり、後に電着処理を行う場合に、均一化することができる。
工程(4)では、図2(C)に示されるマイクロポア16cの断面形状の変曲点30よりも上方の陽極酸化皮膜を除去する。自己規則化法により形成されるマイクロポアは、図2(C)に示されるように、マイクロポア16cの上部を除いて、断面形状が略直管形状になる。言い換えると、マイクロポア16cの上部には、該マイクロポア16cの残りの部分とは断面形状が異なる部分(異形部分)20が存在する。工程(4)では、このようなマイクロポア16c上部に存在する異形部分20を解消するため、マイクロポア16cの断面形状の変曲点30よりも上方の陽極酸化皮膜を除去する。
ここで、変曲点30とは、マイクロポア16cの断面形状がなす主たる形状(ここでは、略直管形状)に対して、著しく形状が変化する部分を指し、別の言い方をすると、マイクロポア16cの断面形状において、主たる形状(略直管形状)に対して、形状の連続性が失われる部分を指す。
マイクロポア16cの断面形状の変曲点30よりも上方の陽極酸化皮膜を除去することにより、図2(D)に示されるように、マイクロポア16d全体が略直管形状となる。
なお、後述するように、工程(3)および工程(4)を2回以上繰り返す場合、工程(4)実施後の陽極酸化皮膜14dでは、異形部分30が解消されて、マイクロポア16dの断面形状全体が略直管形状となるので、工程(4)に続いて実施する工程(3)(以下、本段落においては「工程(3′)」という。)で形成されるマイクロポア上部には新たに異形部分が生じる。したがって、工程(3′)に続いて実施する工程(4)(以下、本段落においては「工程(4′)」という。)では、工程(3′)で形成されたマイクロポア上部に新たに生じた異形部分を除去する必要がある。このため、工程(4′)では、工程(3′)で形成されるマイクロポアの変曲点よりも上方の陽極酸化被膜を除去する必要がある。
上記工程を2回以上繰り返して行う場合、各回の工程(3)および工程(4)の条件はそれぞれ同じであっても、異なっていてもよい。規則化度向上性の観点から、工程(3)は、各回ごとに電圧を変えて実施することが好ましい。この場合、徐々に高電圧の条件に変えていくのが、規則化度向上性の観点から、より好ましい。
加熱処理(B)は、上記陽極酸化処理(A)により形成された陽極酸化皮膜を50℃以上の温度で少なくとも10分間加熱する処理である。
この加熱処理(B)を行うには、陽極酸化皮膜が形成されたアルミニウム基板を上記の条件で加熱すればよい。
本発明者らは、鋭意検討した結果、陽極酸化処理で使用した電解液や、脱膜処理に使用したアルミナ溶解液、更には後述するアルミニウム基板の除去やマイクロポアの貫通化処理で使用する処理液由来の酸イオン(例えば、電解液として硫酸を使用した場合、SO4 2-)が、陽極酸化皮膜中に残留することが、陽極酸化皮膜の耐酸性および耐アルカリ性を悪化させていることを見出した。
陽極酸化皮膜を加熱することにより、陽極酸化皮膜中に残留している酸イオンが除去され、陽極酸化皮膜の耐酸性および耐アルカリ性が向上する。なお、陽極酸化皮膜中に残留する酸イオンは、陽極酸化皮膜中に残存する水分に溶け込んだ状態となっており、陽極酸化皮膜を加熱すると、陽極酸化皮膜中に残存する水分の蒸発とともに酸イオンが除去されると考えられる。
加熱温度は150℃以上であることが好ましく、200℃以上であることがより好ましく、400℃以上であることが更に好ましい。
ただし、加熱温度が高すぎると、陽極酸化皮膜が形成されたアルミニウム基板が熱によって変形するおそれがあるので、加熱温度は800℃以下であることが好ましい。
加熱時間は15分間以上が好ましく、30分間以上がより好ましく、1時間以上が更に好ましい。
10時間以上加熱しても、陽極酸化皮膜中に残留している酸イオンを除去する作用にもはや寄与せず、歩留まりやエネルギー効率の観点から好ましくない。また、加熱温度にもよるが、15時間以上加熱すると、陽極酸化皮膜が形成されたアルミニウム基板が熱によって変形するおそれがある。
分離処理(C)は、上記陽極酸化処理(A)または上記加熱処理(B)を施した場合は加熱処理(B)後にアルミニウム基板を除去し、酸化皮膜をアルミニウム基板から分離する処理である。
アルミニウム基板の除去は、図3に示す状態からアルミニウム基板12を溶解して除去する。図4は、分離処理(C)後の状態を示した部分断面図であり、マイクロポア16を有する陽極酸化皮膜14からなる微細構造体が示されている。
したがって、アルミニウム除去処理には、アルミナは溶解せず、アルミニウムを溶解する処理液を用いる。
濃度としては、0.01〜10mol/Lが好ましく、0.05〜5mol/Lがより好ましい。
処理温度としては、−10℃〜80℃が好ましく、0℃〜60℃が好ましい。
貫通化処理(D)は、上記分離処理(C)により分離された酸化皮膜のマイクロポアを貫通させる処理である。
貫通化処理(D)では、図4に示すマイクロポア16を有する陽極酸化皮膜14を、酸水溶液またはアルカリ水溶液に浸せきさせることにより、陽極酸化皮膜14を部分的に溶解させる。これにより、マイクロポア16底部の陽極酸化皮膜14が除去され、マイクロポア16が貫通する(マイクロポア貫通孔18が形成される)。図5は、貫通化処理(C)後の状態を示した部分断面斜視図であり、マイクロポア貫通孔18を有する陽極酸化皮膜14からなる微細構造体が示されている。
図5では、陽極酸化皮膜14に存在する全てのマイクロポアがマイクロポア貫通孔18となっているが、貫通化処理(D)により、陽極酸化皮膜に存在する全てのマイクロポアが貫通しなくてもよい。ただし、貫通化処理(D)により、陽極酸化皮膜に存在するマイクロポアのうち70%が貫通することが好ましい。
貫通化処理(D)にアルカリ水溶液を用いる場合は、水酸化ナトリウム、水酸化カリウムおよび水酸化リチウムからなる群から選ばれる少なくとも一つのアルカリの水溶液を用いることが好ましい。アルカリ水溶液の濃度は0.1〜5質量%であるのが好ましい。アルカリ水溶液の温度は、20〜35℃であるのが好ましい。
具体的には、例えば、50g/L、40℃のリン酸水溶液、0.5g/L、30℃の水酸化ナトリウム水溶液または0.5g/L、30℃の水酸化カリウム水溶液が好適に用いられる。
酸水溶液またはアルカリ水溶液への浸せき時間は、8〜120分であるのが好ましく、10〜90分であるのがより好ましく、15〜60分であるのが更に好ましい。
保護処理(E)は、上記貫通化処理(D)の後に、酸化皮膜の表面に水和を妨げる保護膜を形成する処理である。
保護処理(E)では、図5に示すマイクロポア貫通孔18を有する陽極酸化皮膜14からなるポーラスアルミナメンブレンフィルターに対して、マイクロポア貫通孔18の内部を含めた陽極酸化皮膜14の表面全域にわたって、該陽極酸化皮膜の水和を妨げる保護膜を形成する。
Zr元素を有する保護膜の形成としては、特に限定されないが、例えば、ジルコニウム化合物が溶解している水溶液に直接浸せきして処理する方法が一般的であり、保護膜の強固性/安定性の観点からリン化合物をあわせて溶解させた水溶液を用いることが好ましい。
また処理温度としては、0〜120℃が好ましく、20〜100℃がより好ましい。
アルカリ金属ケイ酸塩の水溶液は、ケイ酸塩の成分である酸化ケイ素SiO2とアルカリ金属酸化物M2Oの比率(一般に〔SiO2〕/〔M2O〕のモル比で表す)と濃度によって保護膜厚の調節が可能である。ここでMとしては、特にナトリウム、カリウムが好適に用いられる。
モル比としては、〔SiO2〕/〔M2O〕が0.1〜5.0が好ましく、0.5〜3.0がより好ましい。また、SiO2の含有量としては、0.1〜20質量%が好ましく、0.5〜10質量%がより好ましい。
有機保護膜としては、水不溶性ポリマーが溶解している有機溶剤に、直接浸せきしたのち、加熱処理により溶剤のみを揮発させる方法が好ましい。
また、有機溶剤としては、エチレンジクロライド、シクロヘキサノン、メチルエチルケトン、メタノール、エタノール、プロパノール、エチレングリコールモノメチルエーテル、1−メトキシ−2−プロパノール、2−メトキシエチルアセテート、1−メトキシ−2−プロピルアセテート、ジメトキシエタン、乳酸メチル、乳酸エチル、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、テトラメチルウレア、N−メチルピロリドン、ジメチルスルホキシド、スルホラン、γ−ブチロラクトン、トルエン、等が挙げられる。濃度としては、0.1〜50wt%が好ましく、1〜30wt%がより好ましい。
また、溶剤揮発時の加熱温度としては、30〜300℃が好ましく、50〜200℃がより好ましい。
本発明の精密フィルターユニットを構成する孔状素材は、平均孔径が500nm〜10mmであり、開孔率が上記ポーラスアルミナメンブレンフィルターの開孔率よりも高く、かつ、ヤング係数が660MPaよりも大きい孔状素材である。
そのため、上記孔状素材における「平均孔径」は、表面写真を光学顕微鏡により撮影し、7mm×7mmの視野に存在する孔について、下記式により求めた値である。
このような素材からなる孔状素材としては、具体的には、例えば、遠藤科学社製の「テフロン製メッシュ皿(孔径:5mm、皿外径:47mm、開口率:82%、ヤング係数:800MPa)」、ミリポア社製の「ステンレス製フィルターサポート(孔径:0.1mm、皿外径:47mm、開口率:78%、ヤング係数:26000MPa)」、セミテック社製の「ナイロンメッシュ(孔径:20μm、皿外径:47mm、開口率:75%、ヤング係数:7600MPa)」、セミテック社製の「ナイロンメッシュ(孔径:1μm、皿外径:47mm、開口率:68%、ヤング係数:7600MPa)」等を用いることができる。
上記孔状素材を上記ポーラスアルミナメンブレンフィルターの表面に接地するように設けることにより、得られる本発明の精密フィルターユニットの耐圧性が優れ、濾過流量も向上する。これは、上記ポーラスアルミナメンブレンフィルターを形成する陽極酸化皮膜の高規則化により濾過時の加圧が均一に分散され、かつ、上記孔状素材がクッションの役割を果たすことにより、曲げ強度が良好になったためであると考えられる。
1.ポーラスアルミナメンブレンフィルターの作製
(1)電解研磨処理
高純度アルミニウム基板(住友軽金属社製、純度99.99質量%、厚さ0.4mm)を径47mmΦの大きさで陽極酸化処理できるようカットした後、以下組成の電解研磨液を用いて、電圧25V、液温度65℃、液流速3.0m/minの条件で電解研磨処理を施した。
陰極はカーボン電極とし、電源は、GP0110−30R(高砂製作所社製)を用いた。また、電解液の流速は渦式フローモニターFLM22−10PCW(AS ONE製)を用いて計測した。
・85質量%リン酸(和光純薬社製試薬) 660mL
・純水 160mL
・硫酸 150mL
・エチレングリコール 30mL
上記で得られた電解研磨処理後のサンプルに、0.30mol/L硫酸の電解液で、電圧25V、液温度15℃、液流速3.0m/minの条件で1時間陽極酸化処理を施した。更に陽極酸化処理後のサンプルに、0.5mol/Lリン酸の混合水溶液を用いて40℃の条件で20分間浸漬して脱膜処理を施した。
これらの処理をこの順に4回繰り返した後、0.30mol/L硫酸の電解液で、電圧25V、液温度15℃、液流速3.0m/minの条件で5時間再陽極酸化処理を施し、更に、0.5mol/Lリン酸の混合水溶液を用いて40℃の条件で20分間浸漬させて脱膜処理を施すことにより、アルミニウム基板12表面に、マイクロポア16が直管状で且つハニカム状に配列された陽極酸化皮膜14を形成させた(図2(D)、図3参照。)。
上記で得られた陽極酸化処理後のサンプルを、20質量%塩酸、および、0.1mol/L塩化第二銅の混合水溶液を用いて、25℃、20分間浸漬させることにより、アルミニウム基板12を溶解して除去し、マイクロポア16を有する陽極酸化皮膜14からなる微細構造体を作製した(図4参照。)。
上記で得られた微細構造体を、0.10mol/L塩化カリウム水溶液に25℃下で2分間浸漬させた後、マイクロポアを貫通化する面に、0.10mol/L水酸化カリウムを20℃下で10分間接触させることにより、マイクロポア貫通孔16を有する陽極酸化皮膜12からなる微細構造体を作製した(図5参照。)。
表面写真(倍率20000倍)をFE−SEMにより撮影し、1μm×1μmの視野に存在するマイクロポアについて、平均孔径および孔径の標準偏差を下記式により算出し、単位面積あたりの開口率を求めた。その結果、平均孔径は38nm、標準偏差は2.4nm、開口率は45%であった。
規則化度(%)=B/A×100 (1)
上記式(1)中、Aは、測定範囲におけるマイクロポアの全数を表す。Bは、一のマイクロポアの重心を中心とし、他のマイクロポアの縁に内接する最も半径が短い円を描いた場合に、その円の内部に前記一のマイクロポア以外のマイクロポアの重心を6個含むことになる前記一のマイクロポアの測定範囲における数を表す。
上記で得られたポーラスアルミナメンブレンフィルターの片側の表面に、遠藤科学製「テフロン製メッシュ皿(孔径:5mm/皿外径:47mm/開口率:82%/ヤング係数:800MPa)」を接地し、実施例1の精密フィルターユニットを得た。
孔状素材をポーラスアルミナメンブレンフィルターの両側の表面に接地した以外は、実施例1と同様の方法で、実施例2の精密フィルターユニットを得た。
孔状素材をミリポア製「ステンレス製フィルターサポート(孔径:0.1mm/皿外径:47mm/開口率:78%/ヤング係数:26000MPa)」に代えて用いた以外は、実施例1と同様の方法で、実施例3の精密フィルターユニットを得た。
孔状素材をセミテック社製「ナイロンメッシュ(孔径:20μm/皿外径:47mm/開口率:75%/ヤング係数:7600MPa)」に代えて用いた以外は、実施例1と同様の方法で、実施例4の精密フィルターユニットを得た。
孔状素材をセミテック製「ナイロンメッシュ(孔径:1μm/皿外径:47mm/開口率:68%/ヤング係数:7600MPa)」に代えて用いた以外は、実施例1と同様の方法で、実施例5の精密フィルターユニットを得た。
陽極酸化処理で使用する電解液を、0.50mol/Lシュウ酸の電解液とし、電圧を40Vとした以外は、実施例1と同様の方法で、実施例6の精密フィルターユニットを得た。
なお、実施例1と同様、マイクロポアの平均孔径、孔径の標準偏差、開口率および規則化度を評価したところ、平均孔径:69nm、標準偏差:2.9nm、開口率:53%、規則化度90%であった。
孔状素材を用いず、実施例1で作製したポーラスアルミナメンブレンフィルターを用いた。
陽極酸化処理で使用する電解液を、0.50mol/Lリン酸の電解液とした以外は、実施例1と同様の方法で、比較例2の精密フィルターユニットを得た。
なお、実施例1同様、マイクロポアの平均孔径、孔径の標準偏差、開口率および規則化度を評価したところ、平均孔径:41nm、標準偏差:11.8nm、開口率:46%、規則化度13%であった。
上記で得られた精密フィルターユニット(比較例1についてはポーラスアルミナメンブレンフィルター)の耐圧性を評価するため、ミリポア製の「ステンレス製フィルターカートリッジ」を用いて、超純水を0.2MPa〜10.0MPaまで0.2MPa毎に加圧量を上げた条件で1分間流す処理を行った。
処理後のポーラスアルミナメンブレンフィルターに破損がないかを観察し、破損が起こらない上限の加圧量を記載した。値が大きいほど耐圧性に優れることを示す。その結果を第1表に示す。
3、6、9 円
12、12a、12b、 アルミニウム基板
14、14a、14b、14c、14d 陽極酸化皮膜
16、16a、16b、16c、16d マイクロポア
18:マイクロポア貫通孔
20 異形部分
30 変曲点
Claims (5)
- アルミニウムの陽極酸化皮膜からなり、下記式(1)により定義される規則化度が50%以上であり、かつ、孔径の標準偏差が平均孔径の10%以内であるマイクロポアを有するポーラスアルミナメンブレンフィルターと、
前記ポーラスアルミナメンブレンフィルターの少なくとも片側の表面に接する孔状素材であって、平均孔径が500nm〜10mmであり、単位面積あたりの開孔面積が前記ポーラスアルミナメンブレンフィルターの単位面積あたりの開孔面積よりも広く、かつ、ヤング係数が660MPaよりも大きい孔状素材と、
を少なくとも具備する精密フィルターユニット。
規則化度(%)=B/A×100 (1)
前記式(1)中、Aは、測定範囲におけるマイクロポアの全数を表す。Bは、一のマイクロポアの重心を中心とし、他のマイクロポアの縁に内接する最も半径が短い円を描いた場合に、その円の内部に前記一のマイクロポア以外のマイクロポアの重心を6個含むことになる前記一のマイクロポアの測定範囲における数を表す。 - 前記孔状素材が、前記ポーラスアルミナメンブレンフィルターの両側の表面に接する請求項1に記載の精密フィルターユニット。
- 前記ポーラスアルミナメンブレンフィルターが、少なくとも、
アルミニウム基板を陽極酸化してマイクロポアを有する酸化皮膜を形成する陽極酸化処理と、
前記陽極酸化処理後にアルミニウム基板を除去し、前記酸化皮膜をアルミニウム基板から分離する分離処理と、
前記分離処理により分離された酸化皮膜のマイクロポアを貫通させる貫通化処理と、
をこの順に施すことにより形成される請求項1または2に記載の精密フィルターユニット。 - 前記分離処理の前に、前記陽極酸化処理により形成した酸化皮膜を50℃以上の温度で少なくとも10分間加熱する加熱処理を施す請求項3に記載の精密フィルターユニット。
- 前記貫通化処理の後に、酸化皮膜の表面に水和を妨げる保護膜を形成する保護処理を施す請求項3または4に記載の精密フィルターユニット。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007081831A JP2008238048A (ja) | 2007-03-27 | 2007-03-27 | 精密フィルターユニット |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007081831A JP2008238048A (ja) | 2007-03-27 | 2007-03-27 | 精密フィルターユニット |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012016418A Division JP5106691B2 (ja) | 2012-01-30 | 2012-01-30 | 精密フィルターユニットの製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008238048A true JP2008238048A (ja) | 2008-10-09 |
Family
ID=39910023
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007081831A Abandoned JP2008238048A (ja) | 2007-03-27 | 2007-03-27 | 精密フィルターユニット |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008238048A (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010126739A (ja) * | 2008-11-25 | 2010-06-10 | Mitsubishi Alum Co Ltd | 真空機器用表面処理アルミニウム材 |
JP2012176405A (ja) * | 2012-05-07 | 2012-09-13 | Fujifilm Corp | クロスフロー型濾過方法およびクロスフロー型濾過器 |
JP2015065942A (ja) * | 2013-09-30 | 2015-04-13 | 富士フイルム株式会社 | 細胞培養担体および細胞培養容器 |
JP2015065946A (ja) * | 2013-09-30 | 2015-04-13 | 富士フイルム株式会社 | 細胞培養担体および細胞培養容器 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63160805A (ja) * | 1986-11-11 | 1988-07-04 | アルカン・インターナショナル・リミテッド | 陽極酸化アルミニウムシートの成形方法 |
JPH02149698A (ja) * | 1988-10-05 | 1990-06-08 | Alcan Internatl Ltd | 陽極酸化アルミニウム膜の耐薬品性向上方法 |
JPH10168598A (ja) * | 1996-12-09 | 1998-06-23 | Mitsubishi Alum Co Ltd | 抗菌性に優れたアルマイト材およびその製造方法 |
JP2000299095A (ja) * | 1999-04-14 | 2000-10-24 | Kanagawa Prefecture | フィルタ製造方法、及びそのフィルタを用いたリチウム二次電池 |
JP2004285422A (ja) * | 2003-03-24 | 2004-10-14 | Kanagawa Acad Of Sci & Technol | 金属モールド及びその製造方法並びに陽極酸化ポーラスアルミナとその製造方法 |
JP2006083451A (ja) * | 2004-09-17 | 2006-03-30 | Fuji Photo Film Co Ltd | 微細構造体およびその製造方法 |
-
2007
- 2007-03-27 JP JP2007081831A patent/JP2008238048A/ja not_active Abandoned
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63160805A (ja) * | 1986-11-11 | 1988-07-04 | アルカン・インターナショナル・リミテッド | 陽極酸化アルミニウムシートの成形方法 |
JPH02149698A (ja) * | 1988-10-05 | 1990-06-08 | Alcan Internatl Ltd | 陽極酸化アルミニウム膜の耐薬品性向上方法 |
JPH10168598A (ja) * | 1996-12-09 | 1998-06-23 | Mitsubishi Alum Co Ltd | 抗菌性に優れたアルマイト材およびその製造方法 |
JP2000299095A (ja) * | 1999-04-14 | 2000-10-24 | Kanagawa Prefecture | フィルタ製造方法、及びそのフィルタを用いたリチウム二次電池 |
JP2004285422A (ja) * | 2003-03-24 | 2004-10-14 | Kanagawa Acad Of Sci & Technol | 金属モールド及びその製造方法並びに陽極酸化ポーラスアルミナとその製造方法 |
JP2006083451A (ja) * | 2004-09-17 | 2006-03-30 | Fuji Photo Film Co Ltd | 微細構造体およびその製造方法 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010126739A (ja) * | 2008-11-25 | 2010-06-10 | Mitsubishi Alum Co Ltd | 真空機器用表面処理アルミニウム材 |
JP2012176405A (ja) * | 2012-05-07 | 2012-09-13 | Fujifilm Corp | クロスフロー型濾過方法およびクロスフロー型濾過器 |
JP2015065942A (ja) * | 2013-09-30 | 2015-04-13 | 富士フイルム株式会社 | 細胞培養担体および細胞培養容器 |
JP2015065946A (ja) * | 2013-09-30 | 2015-04-13 | 富士フイルム株式会社 | 細胞培養担体および細胞培養容器 |
US9677037B2 (en) | 2013-09-30 | 2017-06-13 | Fujifilm Corporation | Cell culture carrier and cell culture vessel |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4870544B2 (ja) | 微細構造体の製造方法および微細構造体 | |
US8231789B2 (en) | Cross-flow filtration method and cross-flow filtration device | |
JP2008202112A (ja) | 微細構造体および製造方法 | |
JP4813925B2 (ja) | 微細構造体の製造方法および微細構造体 | |
US7838105B2 (en) | Microstructure and method of manufacturing the same | |
JP2009074133A (ja) | 微細構造体 | |
JP4800860B2 (ja) | 微細構造体の製造方法および微細構造体 | |
JP4768478B2 (ja) | 微細構造体の製造方法および微細構造体 | |
JP4800799B2 (ja) | 微細構造体の製造方法および微細構造体 | |
JP2007204802A (ja) | 構造体の製造方法 | |
JP2008238048A (ja) | 精密フィルターユニット | |
JP5498032B2 (ja) | 微細構造体の製造方法および微細構造体 | |
JP4990737B2 (ja) | 微細構造体の製造方法 | |
JP4884202B2 (ja) | 微細構造体の製造方法および微細構造体 | |
JP2009068076A (ja) | 微細構造体および製造方法 | |
JP2008093652A (ja) | 微細構造体および製造方法 | |
JP2009030079A (ja) | 微細構造体の製造方法および微細構造体 | |
JP5106691B2 (ja) | 精密フィルターユニットの製造方法 | |
JP4800865B2 (ja) | 触媒体の製造方法 | |
JP5274097B2 (ja) | 微細構造体およびその製造方法 | |
JP2012176405A (ja) | クロスフロー型濾過方法およびクロスフロー型濾過器 | |
JP2008012426A (ja) | 触媒体 | |
JP2008057018A (ja) | 微細構造体の製造方法および微細構造体 | |
JP2011084810A (ja) | 微細構造体およびその製造方法 | |
JP4990656B2 (ja) | 微細構造体を用いたポリマー精製方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20080723 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090904 |
|
A977 | Report on retrieval |
Effective date: 20110225 Free format text: JAPANESE INTERMEDIATE CODE: A971007 |
|
A131 | Notification of reasons for refusal |
Effective date: 20110322 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A521 | Written amendment |
Effective date: 20110523 Free format text: JAPANESE INTERMEDIATE CODE: A523 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111129 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120127 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20120626 |
|
A762 | Written abandonment of application |
Effective date: 20120718 Free format text: JAPANESE INTERMEDIATE CODE: A762 |