JP2008202112A - 微細構造体および製造方法 - Google Patents
微細構造体および製造方法 Download PDFInfo
- Publication number
- JP2008202112A JP2008202112A JP2007040811A JP2007040811A JP2008202112A JP 2008202112 A JP2008202112 A JP 2008202112A JP 2007040811 A JP2007040811 A JP 2007040811A JP 2007040811 A JP2007040811 A JP 2007040811A JP 2008202112 A JP2008202112 A JP 2008202112A
- Authority
- JP
- Japan
- Prior art keywords
- micropore
- treatment
- micropores
- aluminum
- microstructure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D11/00—Electrolytic coating by surface reaction, i.e. forming conversion layers
- C25D11/02—Anodisation
- C25D11/04—Anodisation of aluminium or alloys based thereon
- C25D11/18—After-treatment, e.g. pore-sealing
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25F—PROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
- C25F3/00—Electrolytic etching or polishing
- C25F3/16—Polishing
- C25F3/18—Polishing of light metals
- C25F3/20—Polishing of light metals of aluminium
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D11/00—Electrolytic coating by surface reaction, i.e. forming conversion layers
- C25D11/02—Anodisation
- C25D11/04—Anodisation of aluminium or alloys based thereon
- C25D11/18—After-treatment, e.g. pore-sealing
- C25D11/20—Electrolytic after-treatment
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- ing And Chemical Polishing (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
【解決手段】(A)アルミニウム基板表面に、少なくとも、陽極酸化処理によりマイクロポアを有する酸化皮膜を形成する処理、および(B)上記(A)で形成された酸化皮膜を50℃以上の温度で少なくとも10分間加熱する処理、をこの順に施すことにより、表面にマイクロポアを有する微細構造体を得る、微細構造体の製造方法。
【選択図】なし
Description
(i)(A)アルミニウム基板表面に、少なくとも、陽極酸化処理によりマイクロポアを有する酸化皮膜を形成する処理、および
(B)前記(A)で形成された酸化皮膜を50℃以上の温度で少なくとも10分間加熱する処理、
をこの順に施すことにより、表面にマイクロポアを有する微細構造体を得る、微細構造体の製造方法。
(ii)さらに、
(C)前記(A)で得られた酸化被膜から、アルミニウムを除去する処理、および
(D)前記(A)で得られた酸化被膜のマイクロポアを貫通させる処理、
をこの順で施した後、前記(B)を施すことにより、表面にマイクロポア貫通孔を有する微細構造体を得る、上記(i)に記載の微細構造体の製造方法。
(iii)上記(i)または(ii)に記載の微細構造体の製造方法により得られる微細構造体。
(iv)アルミニウム陽極酸化皮膜よりなり、マイクロポアを有する微細構造体であって、
前記陽極酸化皮膜における、S原子濃度が3.2wt%以下であり、C原子濃度が2.5wt%以下であり、およびP原子濃度が1.0wt%以下であることを特徴とする微細構造体。
(v)前記微細構造体がマイクロポア貫通孔を有する上記(iv)に記載の微細構造体。
(vi)前記マイクロポアのポア径の分散が平均径の3%以内である上記(iii)ないし(v)のいずれかに記載の微細構造体。
(vii)前記マイクロポアについて、下記式(1)により定義される規則化度が50%以上である、上記(iii)ないし(vi)のいずれかに記載の微細構造体。
規則化度(%)=B/A×100 (1)
上記式(1)中、Aは、測定範囲におけるマイクロポアの全数を表す。Bは、一のマイクロポアの重心を中心とし、他のマイクロポアの縁に内接する最も半径が短い円を描いた場合に、その円の内部に前記一のマイクロポア以外のマイクロポアの重心を6個含むことになる前記一のマイクロポアの測定範囲における数を表す。
(viii)上記(iii)ないし(vii)のいずれかに記載の微細構造体を用いたポーラスアルミナメンブランフィルタ。
本発明の微細構造体の製造方法は、
(A)アルミニウム基板表面に、少なくとも、陽極酸化処理によりマイクロポアを有する酸化皮膜を形成する処理、および
(B)前記(A)で形成された酸化皮膜を50℃以上の温度で少なくとも10分間加熱する処理、
をこの順に施すことにより、表面にマイクロポアを有する微細構造体を得る、微細構造体の製造方法である。
アルミニウム基板は、特に限定されず、例えば、純アルミニウム板;アルミニウムを主成分とし微量の異元素を含む合金板;低純度のアルミニウム(例えば、リサイクル材料)に高純度アルミニウムを蒸着させた基板;シリコンウエハー、石英、ガラス等の表面に蒸着、スパッタ等の方法により高純度アルミニウムを被覆させた基板;アルミニウムをラミネートした樹脂基板が挙げられる。
熱処理を施す場合は、200〜350℃で30秒〜2分程度施すのが好ましい。これにより、後述する陽極酸化処理により生成するマイクロポアの配列の規則性が向上する。
熱処理後のアルミニウム基板は、急速に冷却するのが好ましい。冷却する方法としては、例えば、水等に直接投入する方法が挙げられる。
脱脂処理は、酸、アルカリ、有機溶剤等を用いて、アルミニウム表面に付着した、ほこり、脂、樹脂等の有機成分等を溶解させて除去し、有機成分を原因とする後述の各処理における欠陥の発生を防止することを目的として行われる。
脱脂処理には、従来公知の脱脂剤を用いることができる。具体的には、例えば、市販されている各種脱脂剤を所定の方法で用いることにより行うことができる。
アルコール(例えば、メタノール)、ケトン、ベンジン、揮発油等の有機溶剤を常温でアルミニウム表面に接触させる方法(有機溶剤法);石けん、中性洗剤等の界面活性剤を含有する液を常温から80℃までの温度でアルミニウム表面に接触させ、その後、水洗する方法(界面活性剤法);濃度10〜200g/Lの硫酸水溶液を常温から70℃までの温度でアルミニウム表面に30〜80秒間接触させ、その後、水洗する方法;濃度5〜20g/Lの水酸化ナトリウム水溶液を常温でアルミニウム表面に30秒間程度接触させつつ、アルミニウム表面を陰極にして電流密度1〜10A/dm2の直流電流を流して電解し、その後、濃度100〜500g/Lの硝酸水溶液を接触させて中和する方法;各種公知の陽極酸化処理用電解液を常温でアルミニウム表面に接触させつつ、アルミニウム表面を陰極にして電流密度1〜10A/dm2の直流電流を流して、または、交流電流を流して電解する方法;濃度10〜200g/Lのアルカリ水溶液を40〜50℃でアルミニウム表面に15〜60秒間接触させ、その後、濃度100〜500g/Lの硝酸水溶液を接触させて中和する方法;軽油、灯油等に界面活性剤、水等を混合させた乳化液を常温から50℃までの温度でアルミニウム表面に接触させ、その後、水洗する方法(乳化脱脂法);炭酸ナトリウム、リン酸塩類、界面活性剤等の混合液を常温から50℃までの温度でアルミニウム表面に30〜180秒間接触させ、その後、水洗する方法(リン酸塩法)。
鏡面仕上げ処理は、アルミニウム基板の表面の凹凸をなくして、電着法等による粒子形成処理の均一性や再現性を向上させるために行われる。アルミニウム基板の表面の凹凸としては、例えば、アルミニウム基板が圧延を経て製造されたものである場合における、圧延時に発生した圧延筋が挙げられる。
本発明において、鏡面仕上げ処理は、特に限定されず、従来公知の方法を用いることができる。例えば、機械研磨、化学研磨、電解研磨が挙げられる。
また、リン酸−硝酸法、Alupol I法、Alupol V法、Alcoa R5法、H3PO4−CH3COOH−Cu法、H3PO4−HNO3−CH3COOH法が好適に挙げられる。中でも、リン酸−硝酸法、H3PO4−CH3COOH−Cu法、H3PO4−HNO3−CH3COOH法が好ましい。
化学研磨により、光沢度を70%以上(圧延アルミニウムである場合、その圧延方向および幅方向ともに70%以上)とすることができる。
また、米国特許第2708655号明細書に記載されている方法が好適に挙げられる。
また、「実務表面技術」,vol.33,No.3,1986年,p.32−38に記載されている方法も好適に挙げられる。
電解研磨により、光沢度を70%以上(圧延アルミニウムである場合、その圧延方向および幅方向ともに70%以上)とすることができる。
なお、光沢度は、圧延方向に垂直な方向において、JIS Z8741−1997の「方法3 60度鏡面光沢」の規定に準じて求められる正反射率である。具体的には、変角光沢度計(例えば、VG−1D、日本電色工業社製)を用いて、正反射率70%以下の場合には入反射角度60度で、正反射率70%を超える場合には入反射角度20度で、測定する。
処理(A)では、アルミニウム基板に陽極酸化処理を施すことにより、該アルミニウム基板表面にマイクロポアを有する酸化皮膜を形成する。
陽極酸化処理としては、従来公知の方法を用いることができる。具体的には、後述する自己規則化法を用いるのが好ましい。
自己規則化法は、陽極酸化皮膜のマイクロポアが規則的に配列する性質を利用し、規則的な配列をかく乱する要因を取り除くことで、規則性を向上させる方法である。具体的には、高純度のアルミニウムを使用し、電解液の種類に応じた電圧で、長時間(例えば、数時間から十数時間)かけて、低速で陽極酸化皮膜を形成させる。
この方法においては、ポア径は電圧に依存するので、電圧を制御することにより、ある程度所望のポア径を得ることができる。
なお、自己規則化法によりマイクロポアを形成するには、後述する陽極酸化処理を実施すればよいが、好ましくは、後述する陽極酸化処理、脱膜処理および再陽極酸化処理をこの順に実施する。
陽極酸化処理をする際の平均流速は、0.5〜20.0m/minであるのが好ましく、1.0〜15.0m/minであるのがより好ましく、2.0〜10.0m/minであるのが更に好ましい。上記範囲の流速で陽極酸化処理を行うことにより、均一かつ高い規則性を有することができる。
また、電解液を上記条件で流動させる方法は、特に限定されないが、例えば、スターラーのような一般的なかくはん装置を使用する方法が用いられる。かくはん速度をデジタル表示でコントロールできるようなスターラーを用いると、平均流速が制御できるため、好ましい。そのようなかくはん装置としては、例えば、AS ONE社製のマグネティックスターラーHS−50Dが挙げられる。
マイクロポアのポア径は0.01〜0.5μmであるのが好ましい。
平均ポア密度は50〜1500個/μm2であるのが好ましい。
平均径:μx=(1/n)ΣXi
分散:σ2=(1/n)(ΣXi2)−μx 2
分散/平均径=σ/μx≦0.03
ここでXiは、1μm2の範囲で測定された1個のマイクロポアのポア径である。
陽極酸化処理によりアルミニウム基板表面に陽極酸化皮膜を形成した後、直ちに後述する陽極酸化皮膜を加熱する処理を実施してもよいが、陽極酸化処理の実施後、脱膜処理および再陽極酸化処理をこの順で実施してから、陽極酸化皮膜を加熱する処理を実施することが好ましい。
脱膜処理では、陽極酸化処理によりアルミニウム基板表面に形成した陽極酸化皮膜を溶解させて除去する。
ジルコニウム系化合物としては、例えば、フッ化ジルコンアンモニウム、フッ化ジルコニウム、塩化ジルコニウムが挙げられる。
チタン化合物としては、例えば、酸化チタン、硫化チタンが挙げられる。
リチウム塩としては、例えば、フッ化リチウム、塩化リチウムが挙げられる。
セリウム塩としては、例えば、フッ化セリウム、塩化セリウムが挙げられる。
マグネシウム塩としては、例えば、硫化マグネシウムが挙げられる。
マンガン化合物としては、例えば、過マンガン酸ナトリウム、過マンガン酸カルシウムが挙げられる。
モリブデン化合物としては、例えば、モリブデン酸ナトリウムが挙げられる。
マグネシウム化合物としては、例えば、フッ化マグネシウム・五水和物が挙げられる。
バリウム化合物としては、例えば、酸化バリウム、酢酸バリウム、炭酸バリウム、塩素酸バリウム、塩化バリウム、フッ化バリウム、ヨウ化バリウム、乳酸バリウム、シュウ酸バリウム、過塩素酸バリウム、セレン酸バリウム、亜セレン酸バリウム、ステアリン酸バリウム、亜硫酸バリウム、チタン酸バリウム、水酸化バリウム、硝酸バリウム、あるいはこれらの水和物等が挙げられる。上記バリウム化合物の中でも、酸化バリウム、酢酸バリウム、炭酸バリウムが好ましく、酸化バリウムが特に好ましい。
ハロゲン単体としては、例えば、塩素、フッ素、臭素が挙げられる。
酸濃度としては、0.01mol/L以上であるのが好ましく、0.05mol/L以上であるのがより好ましく、0.1mol/L以上であるのが更に好ましい。上限は特にないが、一般的には10mol/L以下であるのが好ましく、5mol/L以下であるのがより好ましい。不要に高い濃度は経済的でないし、より高いとアルミニウム基板が溶解するおそれがある。
浸せき処理の時間は、10分以上であるのが好ましく、1時間以上であるのがより好ましく、3時間以上、5時間以上であるのが更に好ましい。
脱膜処理により陽極酸化皮膜を除去して、アルミニウム基板の表面に規則的な窪みを形成した後、再び陽極酸化処理を施すことで、マイクロポアの規則化度がより高い陽極酸化皮膜を形成することができる。
陽極酸化処理は、従来公知の方法を用いることができるが、上述した<陽極酸化処理>と同一の条件で行われるのが好ましい。
また、直流電圧を一定としつつ、断続的に電流のオンおよびオフを繰り返す方法、直流電圧を断続的に変化させつつ、電流のオンおよびオフを繰り返す方法も好適に用いることができる。これらの方法によれば、陽極酸化皮膜に微細なマイクロポアが生成するため、特に電着処理により封孔処理する際に、均一性が向上する点で、好ましい。
一方、陽極酸化処理を比較的高温で行うことにより、マイクロポアの配列を乱し、また、ポア径のばらつきを所定の範囲にすることができる。また、処理時間によっても、ポア径のばらつきを制御することができる。
マイクロポアのポア径は0.01〜0.5μmであるのが好ましい。
平均ポア密度は50〜1500個/μm2であるのが好ましい。
(1)アルミニウム基板表面を陽極酸化処理して、前記アルミニウム基板の表面にマイクロポアを有する陽極酸化皮膜を形成する工程
(2)酸またはアルカリを用いて、前記陽極酸化皮膜を部分的に溶解させる工程
(3)陽極酸化処理を実施して前記マイクロポアを深さ方向に成長させる工程
(4)前記マイクロポアの断面形状の変曲点よりも上方の陽極酸化皮膜を除去する工程
工程(1)では、アルミニウム基板の少なくとも一方の表面を陽極酸化処理して、該アルミニウム基板表面にマイクロポアを有する陽極酸化皮膜を形成する。
工程(1)は、段落[0027]〜[0038]に記載した陽極酸化処理と同様の手順で実施することができる。
図1(A)は、工程(1)により、アルミニウム基板12a表面に、マイクロポア16aを有する陽極酸化皮膜14aが形成された状態を示している。
工程(2)では、工程(1)で形成した陽極酸化皮膜を、酸またはアルカリを用いて、部分的に溶解させる。陽極酸化皮膜を部分的に溶解させるとは、工程(1)で形成した陽極酸化皮膜を完全に溶解させるのではなく、図1(B)に示されるように、アルミニウム基板12a上に、マイクロポア16bを有する陽極酸化皮膜14bが残存するように、図1(A)に示す陽極酸化皮膜14aの表面およびマイクロポア16aの内部を部分的に溶解させることを指す。
ここで、陽極酸化皮膜の溶解量は、陽極酸化皮膜全体の0.001〜50質量%であるのが好ましく、0.005〜30質量%であるのがより好ましく、0.01〜15質量%であるのが更に好ましい。上記範囲であると、陽極酸化皮膜の表面の配列が不規則な部分を溶解させて、マイクロポアの配列の規則性を高くすることができるとともに、マイクロポアの底部分に陽極酸化皮膜を残存させて、工程(3)で実施する陽極酸化処理の起点を残すことができる。
工程(2)にアルカリ水溶液を用いる場合は、水酸化ナトリウム、水酸化カリウムおよび水酸化リチウムからなる群から選ばれる少なくとも一つのアルカリの水溶液を用いることが好ましい。アルカリ水溶液の濃度は0.01〜1mol/Lであるのが好ましい。アルカリ水溶液の温度は、20〜35℃であるのが好ましい。
具体的には、例えば、0.5mol/L、40℃のリン酸水溶液、0.05mol/L、30℃の水酸化ナトリウム水溶液または0.05mol/L、30℃の水酸化カリウム水溶液が好適に用いられる。
酸水溶液またはアルカリ水溶液への浸せき時間は、8〜120分であるのが好ましく、10〜90分であるのがより好ましく、15〜60分であるのが更に好ましい。
工程(3)では、工程(2)で陽極酸化皮膜が部分的に溶解されたアルミニウム基板に対して、再び陽極酸化処理を実施してマイクロポアを深さ方向に成長させる。
図1(C)に示されるように、工程(3)の陽極酸化処理により、図1(B)に示されるアルミニウム基板12aの酸化反応が進行し、アルミニウム基板12b上に、マイクロポア16bよりも深さ方向に成長したマイクロポア16cを有する陽極酸化皮膜14cが形成される。
また、直流電圧を一定としつつ、断続的に電流のオンおよびオフを繰り返す方法、直流電圧を断続的に変化させつつ、電流のオンおよびオフを繰り返す方法も好適に用いることができる。これらの方法によれば、陽極酸化皮膜に微細なマイクロポアが生成するため、特に電着処理により封孔処理する際に、均一性が向上する点で、好ましい。
上述した電圧を断続的に変化させる方法においては、電圧を順次低くしていくのが好ましい。これにより、陽極酸化皮膜の抵抗を下げることが可能になり、後に電着処理を行う場合に、均一化することができる。
工程(4)では、図1(C)に示されるマイクロポア16cの断面形状の変曲点30よりも上方の陽極酸化皮膜を除去する。自己規則化法により形成されるマイクロポアは、図1(C)に示されるように、マイクロポア16cの上部を除いて、断面形状が略直管形状になる。言い換えると、マイクロポア16cの上部には、該マイクロポア16cの残りの部分とは断面形状が異なる部分(異形部分)20が存在する。工程(4)では、このようなマイクロポア16c上部に存在する異形部分20を解消するため、マイクロポア16cの断面形状の変曲点30よりも上方の陽極酸化皮膜を除去する。ここで、変曲点30とは、マイクロポア16cの断面形状がなす主たる形状(ここでは、略直管形状)に対して、著しく形状が変化する部分を指し、別の言い方をすると、マイクロポア16cの断面形状において、主たる形状(略直管形状)に対して、形状の連続性が失われる部分を指す。
マイクロポア16cの断面形状の変曲点30よりも上方の陽極酸化皮膜を除去することにより、図1(D)に示されるように、マイクロポア16d全体が略直管形状となる。
なお、後述するように、工程(3)および工程(4)を2回以上繰り返す場合、工程(4)実施後の陽極酸化皮膜14dでは、異形部分30が解消されて、マイクロポア16dの断面形状全体が略直管形状となるので、工程(4)に続いて実施する工程(3)(工程(3’))で形成されるマイクロポア上部には新たに異形部分が生じる。したがって、工程(3’)に続いて実施する工程(4)(工程(4)’)では、工程(3’)で形成されたマイクロポア上部に新たに生じた異形部分を除去する必要がある。このため、工程(4’)では、工程(3’)で形成されるマイクロポアの変曲点よりも上方の陽極酸化被膜を除去する必要がある。
上記工程を2回以上繰り返して行う場合、各回の工程(3)および工程(4)の条件はそれぞれ同じであっても、異なっていてもよい。規則化度向上性の観点から、工程(3)は、各回ごとに電圧を変えて実施することが好ましい。この場合、徐々に高電圧の条件に変えていくのが、規則化度向上性の観点から、より好ましい。
上記手順で形成された陽極酸化皮膜を50℃以上の温度で少なくとも10分間加熱処理する。この加熱処理を行うには、陽極酸化皮膜が形成されたアルミニウム基板を上記の条件で加熱すればよい。
本発明者らは、鋭意検討した結果、陽極酸化処理で使用した電解液や、脱膜処理に使用したアルミナ溶解液、さらには後述するアルミニウム除去処理やマイクロポア貫通処理で使用する処理液由来の酸イオン、例えば、電解液として、硫酸を使用した場合、SO4 2-、が、陽極酸化皮膜中に残留することが、陽極酸化皮膜の耐酸性および耐アルカリ性を悪化させていることを見出した。
上記手順で形成された陽極酸化皮膜を加熱することにより、陽極酸化皮膜中に残留している酸イオンが除去される。この結果、陽極酸化皮膜の耐酸性および耐アルカリ性が向上する。なお、陽極酸化皮膜中に残留する酸イオンは、陽極酸化皮膜中に残存する水分に溶け込んだ状態となっており、陽極酸化皮膜を加熱すると、陽極酸化皮膜中に残存する水分の蒸発とともに酸イオンが除去されると考えられる。
加熱温度は150℃以上であることが好ましく、200℃以上であることがより好ましく、400℃以上であることがさらに好ましい。
但し、加熱温度が高すぎると、陽極酸化皮膜が形成されたアルミニウム基板が熱によって変形するおそれがあるので、加熱温度は800℃以下であることが好ましい。
加熱時間は15分間以上が好ましく、30分間以上がより好ましく、1時間以上がさらに好ましい。
10時間以上加熱しても、陽極酸化皮膜中に残留している酸イオンを除去する作用にもはや寄与せず、歩留まりやエネルギー効率の観点から好ましくない。また、加熱温度にもよるが、15時間以上加熱すると、陽極酸化皮膜が形成されたアルミニウム基板が熱によって変形するおそれがある。
マイクロポア貫通孔を有する微細構造体を得る場合、本発明の微細構造体の製造方法では、さらに、
(C)上記処理(A)で得られた酸化被膜から、アルミニウムを除去する処理
、および
(D)上記処理(A)で得られた酸化被膜のマイクロポアを貫通させる処理、
をこの順で施した後、上記処理(B)を施すことが好ましい。
図2は、処理(A)後の状態を示した部分断面図である。図2に示すように、アルミニウム基板12表面には、マイクロポア16を有する陽極酸化皮膜14が形成されている。
アルミニウム除去処理では、図2に示す状態からアルミニウム基板12を溶解して除去する。図3は、本処理後の状態を示した部分断面図であり、マイクロポア16を有する陽極酸化皮膜14からなる微細構造体が示されている。
したがって、アルミニウム除去処理には、アルミナは溶解せず、アルミニウムを溶解する処理液を用いる。
濃度としては、0.01〜10mol/Lが好ましく、0.05〜5mol/Lがより好ましい。
処理温度としては、−10℃〜80℃が好ましく、0℃〜60℃が好ましい。
マイクロポア貫通処理では、図3に示すマイクロポア16を有する陽極酸化皮膜14を、酸水溶液またはアルカリ水溶液に浸せきさせることにより、陽極酸化皮膜14を部分的に溶解させる。これにより、マイクロポア16底部の陽極酸化皮膜14が除去され、マイクロポア16が貫通する(マイクロポア貫通孔18が形成される)。図4は、マイクロポア貫通処理後の状態を示した部分断面斜視図であり、マイクロポア貫通孔18を有する陽極酸化皮膜14からなる微細構造体が示されている。
図4では、陽極酸化皮膜14に存在する全てのマイクロポアがマイクロポア貫通孔18となっているが、処理(D)により、陽極酸化皮膜に存在する全てのマイクロポアが貫通しなくてもよい。但し、本発明の微細構造体をポーラスアルミナメンブレンフィルタとして使用する場合、陽極酸化皮膜に存在するマイクロポアのうち70%が、処理(D)により貫通することが好ましい。
マイクロポア貫通処理にアルカリ水溶液を用いる場合は、水酸化ナトリウム、水酸化カリウムおよび水酸化リチウムからなる群から選ばれる少なくとも一つのアルカリの水溶液を用いることが好ましい。アルカリ水溶液の濃度は0.1〜5質量%であるのが好ましい。アルカリ水溶液の温度は、20〜35℃であるのが好ましい。
具体的には、例えば、50g/L、40℃のリン酸水溶液、0.5g/L、30℃の水酸化ナトリウム水溶液または0.5g/L、30℃の水酸化カリウム水溶液が好適に用いられる。
酸水溶液またはアルカリ水溶液への浸せき時間は、8〜120分であるのが好ましく、10〜90分であるのがより好ましく、15〜60分であるのが更に好ましい。
陽極酸化皮膜中に残留する酸イオンは、陽極酸化処理等の各種処理で使用する酸の種類によっても異なるが、陽極酸化処理では、硫酸、リン酸またはシュウ酸が特に好ましく用いられる。そのため、陽極酸化皮膜中に残留する酸イオンは、SO4 2-、PO3 2-、C2H5COO-が主である。本発明の微細構造体では、陽極酸化皮膜における、これらの酸イオン由来の元素の濃度が著しく低減されている。
具体的には、本発明の微細構造体は、陽極酸化皮膜における、S原子濃度、C原子濃度およびP原子濃度がそれぞれ以下である。
S原子濃度:3.2wt%以下
C原子濃度:2.5wt%以下
P原子濃度:1.0wt%以下
陽極酸化皮膜におけるこれら原子濃度は、例えば、電子プローブ微量分析(EPMA)やX線光電子分光分析(ESCA)により測定することができる。
平均径:μx=(1/n)ΣXi
分散:σ2=(1/n)(ΣXi2)−μx 2
分散/平均径=σ/μx≦0.03
ここでXiは、1μm2の範囲で測定された1個のマイクロポアのポア径である。
規則化度(%)=B/A×100 (1)
上記式(1)中、Aは、測定範囲におけるマイクロポアの全数を表す。Bは、一のマイクロポアの重心を中心とし、他のマイクロポアの縁に内接する最も半径が短い円を描いた場合に、その円の内部に前記一のマイクロポア以外のマイクロポアの重心を6個含むことになる前記一のマイクロポアの測定範囲における数を表す。
図5(A)に示されるマイクロポア1は、マイクロポア1の重心を中心とし、他のマイクロポアの縁に内接する最も半径が短い円3(マイクロポア2に内接している。)を描いた場合に、円3の内部にマイクロポア1以外のマイクロポアの重心を6個含んでいる。したがって、マイクロポア1は、Bに算入される。
図5(B)に示されるマイクロポア4は、マイクロポア4の重心を中心とし、他のマイクロポアの縁に内接する最も半径が短い円6(マイクロポア5に内接している。)を描いた場合に、円6の内部にマイクロポア4以外のマイクロポアの重心を5個含んでいる。したがって、マイクロポア4は、Bに算入されない。また、図5(B)に示されるマイクロポア7は、マイクロポア7の重心を中心とし、他のマイクロポアの縁に内接する最も半径が短い円9(マイクロポア8に内接している。)を描いた場合に、円9の内部にマイクロポア7以外のマイクロポアの重心を7個含んでいる。したがって、マイクロポア7は、Bに算入されない。
また、本発明の微細構造体は、用途に応じて、陽極酸化皮膜のマイクロポアに、有機化合物や無機化合物、金属微粒子等を担持することもできる。
1.電解研磨処理
高純度アルミニウム基板(住友軽金属社製、純度99.99質量%、厚さ0.4mm)を、10cm四方の面積で陽極酸化処理できるようカットし、以下組成の電解研磨液を用いて、電圧25V、液温度65℃、液流速3.0m/minの条件で電解研磨処理を行った。陰極はカーボン電極とし、電源は、GP0110−30R(高砂製作所社製)を用いた。また電解液の流速は渦式フローモニターFLM22−10PCW(AS ONE製)を用いて計測した。
・85質量%リン酸(和光純薬社製試薬) 660mL
・純水 160mL
・硫酸 150mL
・エチレングリコール 30mL
処理(A)として、上記(1)〜(4)の工程をこの順に施すことにより、アルミニウム基板表面にマイクロポアを有する酸化皮膜を形成した。
上記で得られた研磨処理後のサンプルを、0.30mol/L硫酸の電解液で、電圧25V、液温度15℃、液流速3.0m/minの条件で1時間陽極酸化処理した。さらに得られたサンプルを、0.5mol/Lリン酸の混合水溶液を用いて40℃の条件で20分間浸漬した。
この処理を4回繰り返した後、0.30mol/L硫酸の電解液で、電圧25V、液温度15℃、液流速3.0m/minの条件で5時間再陽極酸化処理し、0.5mol/Lリン酸の混合水溶液を用いて40℃の条件で20分間浸漬して、図2に示す、アルミニウム基板12表面に、マイクロポア16が直管状で且つハニカム状に配列された陽極酸化皮膜14を形成した。
なお、陽極酸化処理、再陽極酸化処理共に、陰極はステンレス電極とし、電源は、GP0110−30R(高砂製作所社製)を用いた。また、冷却装置としては、NeoCool BD36(ヤマト科学社製)、かくはん加温装置としてペアスターラー PS−100(EYELA社製)を用いた。電解液の流速は渦式フローモニターFLM22−10PCW(AS ONE製)を用いて計測した。
上記で得られたサンプルを、濃度2mol/Lの塩化水銀水溶液を用いて、20℃、3時間浸漬させ、アルミニウム基板12を溶解して除去し、図3に示すマイクロポア16を有する陽極酸化皮膜14からなる微細構造体を作成した。
上記で得られたサンプルを、5質量%リン酸を用いて、30℃、30分間浸漬処理し、マイクロポアを貫通させて、図4に示す、マイクロポア貫通孔18を有する陽極酸化皮膜14からなる微細構造体を作成した。
上記で得られた図4に示す微細構造体を、温度400℃の条件下で1時間加熱処理を施し、実施例1のサンプルを得た。
上記5.(B)加熱処理の温度を200℃とした以外は、実施例1と同様の方法にて、実施例2のサンプルを得た。
上記5.(B)加熱処理の温度を150℃とした以外は、実施例1と同様の方法にて、実施例2のサンプルを得た。
上記2.(A)陽極酸化によるマイクロポア形成処理で使用する電解液を、0.50mol/Lシュウ酸の電解液とし、電圧を40Vとした以外は、実施例1と同様の方法にて、実施例4のサンプルを得た。
上記2.(A)陽極酸化によるマイクロポア形成処理で使用する電解液を、0.30mol/Lリン酸の電解液とし、電圧を195Vとし、脱膜処理で使用するリン酸混合水溶液の濃度を1.0mol/Lとした以外は、実施例1と同様の方法にて、実施例5のサンプルを得た。
上記5.(B)加熱処理の処理時間を30分とした以外は、実施例3と同様の方法にて、実施例6のサンプルを得た。
上記5.(B)加熱処理の処理時間を10時間とした以外は、実施例3と同様の方法にて、実施例6のサンプルを得た。
上記5.(B)加熱処理を省略した以外は、実施例1と同様の方法にて、比較例1のサンプルを得た。
上記5.(B)加熱処理を省略した以外は、実施例4と同様の方法にて、比較例2のサンプルを得た。
上記5.(B)加熱処理を省略した以外は、実施例5と同様の方法にて、比較例3のサンプルを得た。
上記5.(B)加熱処理の温度を150℃、加熱時間を5分とした以外は、実施例1と同様の方法にて、比較例4のサンプルを得た。
平均径:μx=(1/n)ΣXi
分散:σ2=(1/n)(ΣXi2)−μx 2
分散/平均径=σ/μx
ここでXiは、1μm2の範囲で測定された1個のマイクロポアのポア径である。
規則化度(%)=B/A×100 (1)
上記式(1)中、Aは、測定範囲におけるマイクロポアの全数を表す。Bは、一のマイクロポアの重心を中心とし、他のマイクロポアの縁に内接する最も半径が短い円を描いた場合に、その円の内部に前記一のマイクロポア以外のマイクロポアの重心を6個含むことになる前記一のマイクロポアの測定範囲における数を表す。
3、6、9 円
12、12a、12b、 アルミニウム基板
14、14a、14b、14c、14d 陽極酸化皮膜
16、16a、16b、16c、16d マイクロポア
18:マイクロポア貫通孔
20 異形部分
30 変曲点
Claims (8)
- (A)アルミニウム基板表面に、少なくとも、陽極酸化処理によりマイクロポアを有する酸化皮膜を形成する処理、および
(B)前記(A)で形成された酸化皮膜を50℃以上の温度で少なくとも10分間加熱する処理、
をこの順に施すことにより、表面にマイクロポアを有する微細構造体を得る、微細構造体の製造方法。 - さらに、
(C)前記(A)で得られた酸化被膜から、アルミニウムを除去する処理、および
(D)前記(A)で得られた酸化被膜のマイクロポアを貫通させる処理、
をこの順で施した後、前記(B)を施すことにより、表面にマイクロポア貫通孔を有する微細構造体を得る、請求項1に記載の微細構造体の製造方法。 - 請求項1または2に記載の微細構造体の製造方法により得られる微細構造体。
- アルミニウム陽極酸化皮膜よりなり、マイクロポアを有する微細構造体であって、
前記陽極酸化皮膜における、S原子濃度が3.2wt%以下であり、C原子濃度が2.5wt%以下であり、およびP原子濃度が1.0wt%以下であることを特徴とする微細構造体。 - 前記微細構造体がマイクロポア貫通孔を有する請求項4に記載の微細構造体。
- 前記マイクロポアのポア径の分散が平均径の3%以内である請求項3ないし5のいずれかに記載の微細構造体。
- 前記マイクロポアについて、下記式(1)により定義される規則化度が50%以上である、請求項3ないし6のいずれかに記載の微細構造体。
規則化度(%)=B/A×100 (1)
上記式(1)中、Aは、測定範囲におけるマイクロポアの全数を表す。Bは、一のマイクロポアの重心を中心とし、他のマイクロポアの縁に内接する最も半径が短い円を描いた場合に、その円の内部に前記一のマイクロポア以外のマイクロポアの重心を6個含むことになる前記一のマイクロポアの測定範囲における数を表す。 - 請求項3ないし7のいずれかに記載の微細構造体を用いたポーラスアルミナメンブレンフィルタ。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007040811A JP2008202112A (ja) | 2007-02-21 | 2007-02-21 | 微細構造体および製造方法 |
EP20070023950 EP1967616B8 (en) | 2007-02-21 | 2007-12-11 | Microstructure and method of manufacturing the same |
CN 200710160897 CN101275264A (zh) | 2007-02-21 | 2007-12-27 | 微结构体及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007040811A JP2008202112A (ja) | 2007-02-21 | 2007-02-21 | 微細構造体および製造方法 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012015549A Division JP2012140708A (ja) | 2012-01-27 | 2012-01-27 | 微細構造体および製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008202112A true JP2008202112A (ja) | 2008-09-04 |
Family
ID=39446458
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007040811A Abandoned JP2008202112A (ja) | 2007-02-21 | 2007-02-21 | 微細構造体および製造方法 |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP1967616B8 (ja) |
JP (1) | JP2008202112A (ja) |
CN (1) | CN101275264A (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012241224A (ja) * | 2011-05-18 | 2012-12-10 | Kogakuin Univ | 多孔質材料及びその製造方法 |
JP2013251333A (ja) * | 2012-05-30 | 2013-12-12 | Fujifilm Corp | 熱電変換素子の製造方法 |
CN113748232A (zh) * | 2019-02-27 | 2021-12-03 | 株式会社万都 | 阳极氧化设备 |
CN117558560A (zh) * | 2024-01-12 | 2024-02-13 | 中国科学院合肥物质科学研究院 | 高能束流辅助制备有序多孔钽箔的方法及其产品和应用 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5986308B2 (ja) * | 2012-06-22 | 2016-09-06 | アップル インコーポレイテッド | 白色様陽極酸化膜及びその形成方法 |
US9839974B2 (en) | 2013-11-13 | 2017-12-12 | Apple Inc. | Forming white metal oxide films by oxide structure modification or subsurface cracking |
JP6585759B1 (ja) * | 2018-03-28 | 2019-10-02 | 株式会社Uacj | アルミニウム部材及びその製造方法 |
US11312107B2 (en) | 2018-09-27 | 2022-04-26 | Apple Inc. | Plugging anodic oxides for increased corrosion resistance |
US11447887B2 (en) | 2020-12-10 | 2022-09-20 | Saudi Arabian Oil Company | Surface smoothing of copper by electropolishing |
US11512400B2 (en) * | 2020-12-10 | 2022-11-29 | Saudi Arabian Oil Company | Electrochemical reduction of carbon dioxide |
US11617981B1 (en) | 2022-01-03 | 2023-04-04 | Saudi Arabian Oil Company | Method for capturing CO2 with assisted vapor compression |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS605897A (ja) * | 1983-06-22 | 1985-01-12 | Fujitsu Ltd | 高耐蝕アルマイト基板の製造法 |
JPS61101946A (ja) * | 1984-10-23 | 1986-05-20 | Kao Corp | メツシユの製造方法 |
JPH10121292A (ja) * | 1996-08-26 | 1998-05-12 | Nippon Telegr & Teleph Corp <Ntt> | 多孔性陽極酸化アルミナ膜の作製方法 |
JP2005152707A (ja) * | 2003-11-21 | 2005-06-16 | Shiseido Co Ltd | フィルター材料 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2708655A (en) | 1955-05-17 | Electrolytic polishing of aluminum | ||
US3488262A (en) * | 1966-07-13 | 1970-01-06 | Clarence W Forestek | Method of heat treating hard anodized surfaces |
JPS60231921A (ja) * | 1984-05-01 | 1985-11-18 | Kobe Steel Ltd | 磁気デイスク用基盤の表面処理方法 |
JPS62149029A (ja) * | 1985-09-04 | 1987-07-03 | Furukawa Alum Co Ltd | アルマイト磁気デイスク基板とその製造方法 |
GB8823417D0 (en) * | 1988-10-05 | 1988-11-09 | Alcan Int Ltd | Treating porous anodic aluminium oxide membrane |
TWI285225B (en) * | 2004-09-07 | 2007-08-11 | Univ Nat Chiao Tung | Method of manufacturing aluminum oxide film with arrayed nanometric pores |
EP1715085B1 (en) * | 2005-04-18 | 2013-04-03 | FUJIFILM Corporation | Method for producing anodized structure |
-
2007
- 2007-02-21 JP JP2007040811A patent/JP2008202112A/ja not_active Abandoned
- 2007-12-11 EP EP20070023950 patent/EP1967616B8/en not_active Not-in-force
- 2007-12-27 CN CN 200710160897 patent/CN101275264A/zh active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS605897A (ja) * | 1983-06-22 | 1985-01-12 | Fujitsu Ltd | 高耐蝕アルマイト基板の製造法 |
JPS61101946A (ja) * | 1984-10-23 | 1986-05-20 | Kao Corp | メツシユの製造方法 |
JPH10121292A (ja) * | 1996-08-26 | 1998-05-12 | Nippon Telegr & Teleph Corp <Ntt> | 多孔性陽極酸化アルミナ膜の作製方法 |
JP2005152707A (ja) * | 2003-11-21 | 2005-06-16 | Shiseido Co Ltd | フィルター材料 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012241224A (ja) * | 2011-05-18 | 2012-12-10 | Kogakuin Univ | 多孔質材料及びその製造方法 |
JP2013251333A (ja) * | 2012-05-30 | 2013-12-12 | Fujifilm Corp | 熱電変換素子の製造方法 |
CN113748232A (zh) * | 2019-02-27 | 2021-12-03 | 株式会社万都 | 阳极氧化设备 |
CN117558560A (zh) * | 2024-01-12 | 2024-02-13 | 中国科学院合肥物质科学研究院 | 高能束流辅助制备有序多孔钽箔的方法及其产品和应用 |
Also Published As
Publication number | Publication date |
---|---|
EP1967616B8 (en) | 2013-10-02 |
EP1967616B1 (en) | 2013-08-28 |
EP1967616A1 (en) | 2008-09-10 |
CN101275264A (zh) | 2008-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2008202112A (ja) | 微細構造体および製造方法 | |
JP4870544B2 (ja) | 微細構造体の製造方法および微細構造体 | |
JP4813925B2 (ja) | 微細構造体の製造方法および微細構造体 | |
US7838105B2 (en) | Microstructure and method of manufacturing the same | |
US8231789B2 (en) | Cross-flow filtration method and cross-flow filtration device | |
JP4768478B2 (ja) | 微細構造体の製造方法および微細構造体 | |
JP4800799B2 (ja) | 微細構造体の製造方法および微細構造体 | |
JP2009074133A (ja) | 微細構造体 | |
JP2007332437A (ja) | 微細構造体の製造方法および微細構造体 | |
JP4990737B2 (ja) | 微細構造体の製造方法 | |
JP5498032B2 (ja) | 微細構造体の製造方法および微細構造体 | |
JP4884202B2 (ja) | 微細構造体の製造方法および微細構造体 | |
JP2008238048A (ja) | 精密フィルターユニット | |
JP2008093652A (ja) | 微細構造体および製造方法 | |
JP2009068076A (ja) | 微細構造体および製造方法 | |
JP4800865B2 (ja) | 触媒体の製造方法 | |
JP5274097B2 (ja) | 微細構造体およびその製造方法 | |
JP2009030079A (ja) | 微細構造体の製造方法および微細構造体 | |
JP2012140708A (ja) | 微細構造体および製造方法 | |
JP5106691B2 (ja) | 精密フィルターユニットの製造方法 | |
JP2008012426A (ja) | 触媒体 | |
WO2011034008A1 (ja) | 微細構造体およびその製造方法 | |
JP2008057018A (ja) | 微細構造体の製造方法および微細構造体 | |
JP2012176405A (ja) | クロスフロー型濾過方法およびクロスフロー型濾過器 | |
JP4990656B2 (ja) | 微細構造体を用いたポリマー精製方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20080723 |
|
A621 | Written request for application examination |
Effective date: 20090903 Free format text: JAPANESE INTERMEDIATE CODE: A621 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110825 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110830 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111031 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111129 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120127 |
|
A02 | Decision of refusal |
Effective date: 20120228 Free format text: JAPANESE INTERMEDIATE CODE: A02 |
|
A762 | Written abandonment of application |
Free format text: JAPANESE INTERMEDIATE CODE: A762 Effective date: 20120404 |