[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP2496346A1 - Catalyseur hétérogène contenant du fer et du cuivre et procédé de fabrication d'oléfines par réaction de monoxyde de carbone avec de l'hydrogène - Google Patents

Catalyseur hétérogène contenant du fer et du cuivre et procédé de fabrication d'oléfines par réaction de monoxyde de carbone avec de l'hydrogène

Info

Publication number
EP2496346A1
EP2496346A1 EP10771739A EP10771739A EP2496346A1 EP 2496346 A1 EP2496346 A1 EP 2496346A1 EP 10771739 A EP10771739 A EP 10771739A EP 10771739 A EP10771739 A EP 10771739A EP 2496346 A1 EP2496346 A1 EP 2496346A1
Authority
EP
European Patent Office
Prior art keywords
particles
iron
copper
range
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10771739A
Other languages
German (de)
English (en)
Inventor
Jochen Steiner
Kerem Bay
Vera Werner
Jürgen Amann
Stefan Bunzel
Claudia Mossbacher
Joachim Müller
Ekkehard Schwab
Markus Weber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Priority to EP10771739A priority Critical patent/EP2496346A1/fr
Publication of EP2496346A1 publication Critical patent/EP2496346A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/005Spinels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • B01J35/45Nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/086Decomposition of an organometallic compound, a metal complex or a metal salt of a carboxylic acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/12Oxidising
    • B01J37/14Oxidising with gases containing free oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0425Catalysts; their physical properties
    • C07C1/043Catalysts; their physical properties characterised by the composition
    • C07C1/0435Catalysts; their physical properties characterised by the composition containing a metal of group 8 or a compound thereof
    • C07C1/044Catalysts; their physical properties characterised by the composition containing a metal of group 8 or a compound thereof containing iron
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/33Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
    • C10G2/331Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals
    • C10G2/332Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals of the iron-group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the alkali- or alkaline earth metals or beryllium
    • C07C2523/04Alkali metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/72Copper
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/745Iron
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
    • C07C2523/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/85Chromium, molybdenum or tungsten
    • C07C2523/88Molybdenum
    • C07C2523/885Molybdenum and copper
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/20C2-C4 olefins

Definitions

  • the present invention relates to a ferrous and copper-containing heterogeneous catalyst, a process for its preparation and a process for the preparation of olefins by reacting carbon monoxide with hydrogen in the presence of the iron and copper-containing heterogeneous catalyst.
  • This reaction is also called Fischer-Tropsch synthesis.
  • this area of product distribution can be characterized by the so-called Anderson-Schulz-Flory distribution.
  • M. Janardanarao Ind. Eng. Chem. Res. 1990, 29, pages 1735-53.
  • composition of the hydrocarbons formed in the Fischer-Tropsch process can be greatly influenced by the choice of catalysts used, the reactor types and the reaction conditions.
  • the main problem here is the formation of large amounts of undesirable methane (CH 4 ).
  • the required iron oxides as starting material for the catalyst are difficult to reduce.
  • WO 07/060186 A1 (BASF AG) teaches processes for the preparation of olefins from synthesis gas using Fischer-Tropsch catalysts in a reaction column.
  • WO 09/013174 A2 (BASF SE) relates to a process for the preparation of short-chain, gaseous olefins by reacting carbon monoxide with hydrogen in the presence of an iron-containing heterogeneous catalyst, wherein the catalyst used is carbonyl iron powder with spherical primary particles. Promoters in iron catalysts for Fischer-Tropsch syntheses are, for. As described in the aforementioned WO 09/013174 A2 and in M. Janardanarao, Ind. Eng. Chem. Res. 1990, 29, pages 1735 to 1753, and CD. Frohning et al. in "Chemierohstoffe from coal", 1977, pages 219-299.
  • the catalyst may, for. B. one or more of the elements potassium, vanadium, copper, nickel, cobalt, manganese, chromium, zinc, silver, gold, calcium, sodium, lithium, cesium, platinum, palladium, ruthenium, sulfur, each in e- lementarer form or in ionic form, contained.
  • 08164085.6 (BASF SE) of 10.09.08 describes an integrated process, wherein in a plant A pure carbonyl iron powder (CEP) is prepared by decomposition of pure iron pentacarbonyl (EPC), in the decomposition of the EPC released carbon monoxide (CO ) is used for the production of further CEP from iron in Appendix A or a connected plant B is supplied to the production of synthesis gas or a connected plant C for the production of hydrocarbons from synthesis gas is fed, and the CEP prepared in Appendix A as a catalyst or catalyst component in a connected plant C for the production of hydrocarbons from synthesis gas from Appendix B.
  • EPC pure carbonyl iron powder
  • CO carbon monoxide
  • the process should in particular provide as selectively as possible lower olefins (for example C 2 -C 6 -olefins, especially C 2 -C 4 -olefins), in particular ethene, propene and 1-butene, with at the same time the lowest possible attack of methane, carbon dioxide, alkanes (eg B. C2-C6 - alkanes, especially C2-C4 - alkanes) and higher hydrocarbons, ie hydrocarbons with z. B. seven or more carbon atoms (C7 + fraction), especially five or more carbon atoms (C5 + fraction).
  • Components of the catalyst should not be volatile under the reaction conditions.
  • the catalyst should be characterized by a shortened activation phase.
  • the run-in time known from the Fischer-Tropsch synthesis until the desired product spectrum is achieved should be shortened.
  • the catalyst should have improved durability and increased mechanical stability.
  • the increased stability is particularly advantageous when using the catalyst in a fluidized bed or in slurry reactors or in bubble columns. According to the following aspects have been recognized, among others:
  • the metallic secondary particles formed in step II under at least partial agglomeration, especially in a fluidizable fraction with particle diameters in the range of 10-250 ⁇ m (see below), are ideal catalyst precursors for the synthesis of lower olefins from CO 2 due to their chemical composition. rich synthesis gases. Additionally advantageous is the low surface area of the particles, which is preferably below 2 m 2 / g (see below).
  • step II Treatment of carbonyl iron powder obtained in step I with hydrogen, the metallic spherical primary particles at least partially agglomerating,
  • step III Contacting the particles of step III with an aqueous solution of a copper compound,
  • the proportion of spherical primary particles obtained in step I in the carbonyl iron powder is preferably> 90% by weight, in particular> 95% by weight, very particularly> 98% by weight.
  • the spherical primary particles obtained in step I preferably have a diameter in the range from 0.01 to 50 ⁇ m, in particular in the range from 0.1 to 20 ⁇ m, very particularly in the range from 0.5 to 15 ⁇ m, more particularly in the range from 0 , 7 to 10 ⁇ , more particularly in the range of 1 to 10 ⁇ , on.
  • the iron content of the spherical primary particles is preferably> 97% by weight, in particular> 99% by weight, in particular> 99.5% by weight.
  • the iron is preferably present in its thermodynamically most stable modification (alpha-iron).
  • the spherical primary particles are free of pores.
  • the carbonyl iron powder is distinguished in particular by the fact that, apart from the spherical primary particles, there are no filamentary primary particles, in particular those described in DE-A1 -29 19 921 and .Fachberichte für heatntechnik, July / August 1970, pages 145 to 150, (see above). disclosed iron whisker containing.
  • Figures 1 to 3 show SEM images of preferably used carbonyl iron powder with spherical primary particles before the hydrogen treatment according to step II.
  • the carbonyl iron powder with spherical primary particles is obtained by thermal decomposition of gaseous iron pentacarbonyl (Fe [CO] s), which has been previously purified, in particular by distillation.
  • the product obtained in step I is treated with hydrogen in step II.
  • This treatment of the primary particles with hydrogen is preferably carried out at a temperature in the range of 300 to 600 ° C.
  • the residual content of carbon, nitrogen and also oxygen in the CEP is lowered.
  • the spherical primary particles are at least partially, z. B. to 25 to 95 wt .-%, agglomerated.
  • the secondary metal particles formed in step II under at least partial agglomeration preferably have particle diameters in the range from 10 to 250 ⁇ m, particularly preferably between 50 and 150 ⁇ m. Such vortexable particle fractions can be obtained by appropriate sieving.
  • step II the formation of metallic secondary particles with BET surfaces (DIN ISO 9277) of preferably less than 2 m 2 / g, in particular from 0.2 to 1, 9 m 2 / g.
  • BET surfaces DIN ISO 9277
  • Figures 4 and 5 show, by way of example, agglomerates obtained after hydrotreating.
  • iron oxide is formed on the surface of the particles.
  • the oxidation, also called passivation, is preferably carried out by means of oxygen.
  • the oxygen can be used in the form of oxygen-containing (02-containing) water.
  • the oxidation is preferably carried out at temperatures below 150 ° C, especially at a temperature below 50 ° C, in particular at a temperature in the range of 20 to 45 ° C, z. B. in inert gas diluted with inert gas, oxygen-containing inert gas or by contacting the particles with oxygen-containing water, in this case preferably with stirring.
  • Suitable inert gases are nitrogen or noble gases, such as He, Ne, in particular argon.
  • the superficially oxidized (passivated) particles are preferably contacted with an aqueous copper salt solution, especially an aqueous solution of copper nitrate, copper carbonate or an organic copper salt, also called impregnation or impregnation.
  • compounds may be added to the aqueous copper salt solutions which reduce the surface tension of the impregnation solution, such as. B. surfactants.
  • Particularly preferred copper salt is copper nitrate.
  • organic copper salts are copper acetate, copper oxalate and copper acetylacetonate.
  • step V the drying takes place in the presence of oxygen, preferably under air, in particular at a temperature in the range of 50 to 150 ° C, preferably between 55 and 120 ° C.
  • calcination is carried out in the absence of oxygen (O 2), preferably under inert gas (i.e., in an inert gas atmosphere), especially at a temperature in the range of 500 to 800 ° C, especially 600 to 750 ° C.
  • inert gases i.e., in an inert gas atmosphere
  • Suitable inert gases do not react with the iron and the dopants under the conditions.
  • the formula Cu x Fe3 x 04 formed by reaction of the oxygen-containing copper compounds with iron oxide mixed oxides, in particular spinels, the formula Cu x Fe3 x 04, wherein the value x in the range> 0 to ⁇ 1, in particular in the range> 0.25 to ⁇ 1, is located.
  • the doping of the catalyst obtained in step V with Cu is preferably in the
  • the particles are additionally calculated with a total of in the range of 0.01 to 1 wt .-%, particularly 0.05 to 0.5 wt .-%, (in each case based on iron and in each case as an element in the oxidation state 0 ) are doped with alkali metal ions and / or alkaline earth metal ions, in particular potassium ions and / or sodium ions.
  • This additional doping takes place in particular after step V by contacting, further in particular in step V between the drying and the calcination by contacting, preferably in step IV by, preferably simultaneous, bringing into contact bring the particles ( Secondary particles and possibly still existing primary particles) with an aqueous solution of an alkali metal and / or alkaline earth metal compound.
  • steps IIa and IIb are additionally carried out between steps II and III.
  • the agglomerates are preferably brought into contact with liquid or gaseous iron pentane carbonyl. Particular preference is given to liquid iron pentacarbonyl.
  • the metallic secondary particles z. B. filled in a container inertized with argon and at elevated temperature, such as. B. 70 to 150 ° C, in particular z. B. at a container internal temperature of 105 ° C, dried.
  • iron pentacarbonyl is added in portions (eg 5 vol.% Based on the amount of carbonyl iron powder) z.
  • the alternative contacting with gaseous iron pentacarbonyl may, for. B. in a fluidized bed, especially at a temperature in the range of 120 to 175 ° C. It is preferably carried out at an EPC partial pressure (absolute) in the range of 0.7 to 1 bar.
  • step IIb the thermal decomposition of iron pentacarbonyl is preferably carried out at a temperature in the range of 150 to 350 ° C, especially in the range of 150 to 200 ° C.
  • the vessel in which the material from step III is heated to an internal temperature in the range of preferably 150 to 180 ° C and the decomposition reaction of the applied EPC preferably followed with an IR spectrometer. If the CO content of the exhaust gas has exceeded its maximum, the vessel is returned to z. B. 105 ° C cooled. Depending on the desired filling degree of the pores, the procedure of the two steps IIa and IIb is repeated.
  • step IIb predominantly pore- and void-free secondary particles are obtained.
  • the secondary particles obtained in step II have gapped pores between the spherical primary particles (pore diameter in particular ⁇ 4000 nm).
  • the gusseted pores, in particular the gusseted pores with diameters ⁇ 4000 nm thus represent intraparticulate pores ( Figures 5 and 7), while the measured pores with diameters in particular> 4000 nm can be interpreted as interparticle pores (resulting from the grafting volume of the secondary particles).
  • the secondary particles By treating the secondary particles with iron pentacarbonyl, it is possible to fill the interstitial pores between the spherical primary particles, in particular with diameters in the range ⁇ 4000 nm.
  • predominantly pore-free and void-free secondary particles are obtained, which are characterized in particular by the fact that the differential pore volume with pore diameters in the range ⁇ 4000 nm contributes to ⁇ 10%, in particular embodiment ⁇ 5%, to the measured integral pore volume of the secondary particles.
  • the amount of iron pentacarbonyl, which is necessary for filling the pores with a diameter in particular of ⁇ 4000 nm, is preferably determined by means of pore volume measurement by means of mercury porosimetry (DIN 66133).
  • Particles obtained in step IIb are shown by way of example in FIG.
  • the iron- and copper-containing catalyst according to the invention is particularly preferably not applied to a carrier material.
  • the optionally doped, iron- and copper-containing heterogeneous catalyst can be used in the form of pellets.
  • the pellets are obtained by methods known to those skilled in the art. Preferred forms of the pellets are tablets and rings.
  • the pellets can also be comminuted again before use in the process according to the invention, for. B. by grinding.
  • the catalyst can be converted into a synthesis-active state by treatment with hydrogen and / or carbon monoxide at elevated temperature, in particular at temperatures above 300 ° C., before it is used in the process according to the invention.
  • this additional activation is not essential.
  • the reactants carbon monoxide and hydrogen are preferably used in the form of synthesis gas.
  • the synthesis gas may be prepared by well-known methods (such as described in Weissermel et al., Industrial Organic Chemistry, Wiley-VCH, Weinheim, 2003, pages 15 to 24), such as by reacting coal or methane with water vapor , or produced by partial oxidation of methane.
  • the synthesis gas has a molar ratio of carbon monoxide to hydrogen in the range of 3: 1 to 1: 3.
  • a synthesis gas is used which has a mixing molar ratio of carbon monoxide to hydrogen in the range from 2: 1 to 1: 2.
  • the synthesis gas contains carbon dioxide (CO2).
  • CO2 carbon dioxide
  • the content of CO2 is preferably in the range of 1 to 50 wt .-%.
  • the inventive method is preferably carried out at a temperature in the range of 200 to 500 ° C, especially 300 to 400 ° C.
  • the absolute pressure is preferably in the range of 1 to 100 bar, especially 5 to 50 bar.
  • the WHSV Weight Hourly Space Velocity
  • the WHSV is preferably in the range of 100 to
  • Preferred reactors for carrying out the process according to the invention are: fluidized bed reactor, fixed bed reactor, slurry reactor, microreactor.
  • the catalyst is preferably used in powder form.
  • the powder can also be obtained by grinding previously prepared pellets.
  • the catalyst is used as a shaped body, preferably in the form of pellets.
  • the use of such reactors for the Fischer-Tropsch synthesis is z. B. described in CD. Frohning et al. in "Chemierharstoffe aus Kohle", 1977, pages 219 to 299, or B.H. Davis, Topics in Catalysis, 2005, 32 (3-4), pages 143 to 168.
  • the process according to the invention provides a product mixture comprising olefins having an olefin-carbon selectivity, in particular an ⁇ -olefin-carbon
  • Selectivity for the C2-C4 range of preferably at least 30%, e.g. B. in the area from 30 to 50%.
  • carbon dioxide formed is not taken into account (ie excluding CO2).
  • a product mixture containing olefins having an olefin-carbon selectivity for the C2-C4 range of at least 30%, for. B. in the range of 30 to 50%, of which at least 30% in turn account for at least 90% ethene, propene, 1-butene.
  • formed carbon dioxide is not taken into account (i.e., excluding CO2).
  • formed carbon dioxide is not taken into account (i.e., excluding CO2).
  • olefins are z. B. used in processes for the preparation of polyolefins, epoxies, oxo products, acrylonitriles, acrolein, styrene. See also: Weisermel et al., Industrial Organic Chemistry, Wiley-VCH, Weinheim, 2003, pp. 145-192 and 267-312.
  • the aqueous potassium / copper nitrate solution was prepared by dissolving 3.87 g of copper nitrate (x 2.5 H2O, 99%, Riedel de Haen) and 0.66 g of potassium nitrate (99%, Riedel de Haen) in 1 liter of demineralized water , The impregnated catalyst was dried at 120 ° C for 4 h. The resulting catalyst contained 0.23 wt% K and 0.86 wt% Cu.
  • ambient conditions room temperature, normal pressure
  • the aqueous potassium / copper nitrate solution was prepared by dissolving 5.56 g of copper nitrate (x 2.5 H2O, 99%, Riedel de Haen) and 0.79 g of potassium nitrate (99%, Riedel de Haen) in 16.5 ml of demineralized water produced.
  • the impregnated catalyst was dried for 4 h at 120 ° C in a rotary ball furnace under an air flow of 100 Nl / h. Subsequently, the catalyst is calcined under an argon flow of 100 Nl / h at 650 ° C for 10 h.
  • the catalyst obtained contained 0.17 wt% K and 0.99 wt% Cu.
  • the amount of iron pentacarbonyl which is necessary for filling the pores with a diameter of in particular ⁇ 4000 nm was determined by means of mercury porosimetry (DIN 66133).
  • 200 ml carbonyl iron material with a particle size distribution of the secondary particles such that 90 wt .-% have a diameter in the range of 50 to 100 ⁇ , see Figure 4, was starting from carbonyl iron powder type CN, BASF AG or now BASF SE, by treatment with hydrogen produced at at least 300 ° C.
  • the carbonyl iron material was dried in a stirred vessel under argon atmosphere at 105 ° C for 5 h. Thereafter, 10 ml of iron pentacarbonyl were added. Subsequently, the vessel was heated to about 165 ° C internal temperature. The decomposition was carried out at 165 ° C with stirring of the particles.
  • the reaction was complete when no iron pentacarbonyl or free carbon monoxide was detected in the exhaust gas stream. These steps were repeated 13 times. After completion of the synthesis, the product was purged with argon at 100 ° C for at least 12 h until the CO or Fe (CO) s content in the exhaust gas was ⁇ 0.1 ppm by volume.
  • WHSV weight hourly space velocity
  • formed carbon dioxide is not considered (i.e., without CO2). It can be seen that according to the invention the methane formation is lowered and at the same time the yield of C 2 -C 4 -olefins is increased.
  • the product streams were sampled via heated stream selectors and lines after condensing the long-chain hydrocarbons in a hot separator (about 160 ° C, 25 bar) and fed to an online gas chromatograph (GC).
  • a hot separator about 160 ° C, 25 bar
  • GC gas chromatograph
  • WLD Injector 200 ° C, split ratio 10: 1, carrier gas argon, column Carboxen 1010 (length 30 m, ID 0.53 mm), detector 210 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

L'invention concerne un catalyseur hétérogène contenant du fer et du cuivre et un procédé de fabrication de ce catalyseur, ce procédé comprenant les étapes suivantes : I. décomposition thermique de pentacarbonyle de fer gazeux avec obtention de poudre de fer-carbonyle à particules primaires sphériques, II. traitement de la poudre de fer-carbonyle obtenue à l'étape I avec de l'hydrogène, entraînant une agglomération au moins partielle des particules primaires sphériques métalliques, III. oxydation superficielle des particules de fer issues de l'étape Il (agglomérats = particules secondaires, et éventuellement particules primaires encore présentes) avec formation d'oxyde de fer, IV. mise en contact des particules issues de l'étape III avec une solution aqueuse d'un composé de cuivre, V. séchage en présence d'oxygène et calcination consécutive en l'absence d'oxygène, entraînant la formation de composés de cuivre oxygénés sur les particules, ces composés réagissant ensuite avec l'oxyde de fer pour former un oxyde mixte de formule CuxFe3-xO4, dans laquelle 0 < x ≤ 1. L'invention concerne également un procédé de fabrication d'oléfines par réaction de monoxyde de carbone avec de l'hydrogène en présence d'un catalyseur, le catalyseur utilisé étant le catalyseur hétérogène contenant du fer et du cuivre susmentionné.
EP10771739A 2009-11-06 2010-10-28 Catalyseur hétérogène contenant du fer et du cuivre et procédé de fabrication d'oléfines par réaction de monoxyde de carbone avec de l'hydrogène Withdrawn EP2496346A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP10771739A EP2496346A1 (fr) 2009-11-06 2010-10-28 Catalyseur hétérogène contenant du fer et du cuivre et procédé de fabrication d'oléfines par réaction de monoxyde de carbone avec de l'hydrogène

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP09175224 2009-11-06
EP10771739A EP2496346A1 (fr) 2009-11-06 2010-10-28 Catalyseur hétérogène contenant du fer et du cuivre et procédé de fabrication d'oléfines par réaction de monoxyde de carbone avec de l'hydrogène
PCT/EP2010/066382 WO2011054735A1 (fr) 2009-11-06 2010-10-28 Catalyseur hétérogène contenant du fer et du cuivre et procédé de fabrication d'oléfines par réaction de monoxyde de carbone avec de l'hydrogène

Publications (1)

Publication Number Publication Date
EP2496346A1 true EP2496346A1 (fr) 2012-09-12

Family

ID=43425814

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10771739A Withdrawn EP2496346A1 (fr) 2009-11-06 2010-10-28 Catalyseur hétérogène contenant du fer et du cuivre et procédé de fabrication d'oléfines par réaction de monoxyde de carbone avec de l'hydrogène

Country Status (4)

Country Link
US (1) US8614164B2 (fr)
EP (1) EP2496346A1 (fr)
CN (1) CN102665899B (fr)
WO (1) WO2011054735A1 (fr)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110057218A (ko) 2008-09-10 2011-05-31 바스프 에스이 카르보닐 철 분말 및 탄화수소의 제조를 위한 통합 방법
EP2496346A1 (fr) 2009-11-06 2012-09-12 Basf Se Catalyseur hétérogène contenant du fer et du cuivre et procédé de fabrication d'oléfines par réaction de monoxyde de carbone avec de l'hydrogène
WO2011054738A1 (fr) 2009-11-06 2011-05-12 Basf Se Catalyseur hétérogène contenant du fer et procédé de fabrication d'oléfines par réaction de monoxyde de carbone avec de l'hydrogène
CN102711991B (zh) 2009-11-06 2015-01-21 巴斯夫欧洲公司 含铁和锰的非均相催化剂和通过一氧化碳与氢气反应而制备烯烃的方法
CN102666446B (zh) 2009-12-22 2015-05-27 巴斯夫欧洲公司 线性α-烯烃的异构化
GB201018338D0 (en) 2010-10-29 2010-12-15 Asa Energy Conversions Ltd Conversion of natural gas
GB201220691D0 (en) * 2012-11-16 2013-01-02 Univ Bath A catalyst
AU2016267408B2 (en) 2015-05-27 2021-12-16 Newsouth Innovations Pty Limited Method for assisting thermally-induced changes
US10596519B1 (en) * 2019-05-08 2020-03-24 Toyota Motor Engineering & Manufacturing North America, Inc. Modified ferrite catalysts for direct no decomposition and a method of making and using a catalyst
CN111871414A (zh) * 2020-07-17 2020-11-03 广东工业大学 一种纳米含铜磁铁矿以及高效降解唑类杀菌剂的方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE528463C (de) 1927-09-11 1931-06-27 I G Farbenindustrie Akt Ges Verfahren zur Gewinnung eines Eisenpulvers von grosser Reinheit
US2417164A (en) 1944-11-23 1947-03-11 Standard Oil Co Hydrocarbon synthesis
US3397057A (en) * 1966-09-26 1968-08-13 Int Nickel Co Method for producing flowable metal powders
US3994734A (en) * 1974-04-22 1976-11-30 Scm Corporation High density infiltrating paste
DE2507647C2 (de) 1975-02-19 1982-02-25 Schering Ag, 1000 Berlin Und 4619 Bergkamen Verfahren zur Herstellung von Kohlenwasserstoffen mit hohen Anteilen an C&darr;2&darr;- bis C&darr;4&darr;-Olefinen und sauerstoffhaltigen Verbindungen
FR2391978A1 (fr) 1977-05-26 1978-12-22 Inst Francais Du Petrole Nouveau procede catalytique de synthese d'hydrocarbures olefiniques legers par reaction de l'hydrogene avec le monoxyde de carbone
DE2919921A1 (de) 1979-05-17 1980-11-20 Vielstich Wolf Verfahren zur herstellung von gasfoermigen olefinen aus kohlenmonoxid und katalysatoren dafuer
FR2515983A1 (fr) * 1981-11-06 1983-05-13 Ammonia Casale Sa Catalyseurs de syntheses heterogenes, procede de leur preparation et leur utilisation pour la production de melanges d'alcools
US4544674A (en) 1983-12-14 1985-10-01 Exxon Research And Engineering Co. Cobalt-promoted fischer-tropsch catalysts
US4604375A (en) * 1983-12-20 1986-08-05 Exxon Research And Engineering Co. Manganese-spinel catalysts in CO/H2 olefin synthesis
US4618597A (en) * 1983-12-20 1986-10-21 Exxon Research And Engineering Company High surface area dual promoted iron/managanese spinel compositions
US5118715A (en) 1983-12-20 1992-06-02 Exxon Research And Engineering Company Selective fixed-bed fischer-tropsch synthesis with high surface area Cu and K promoted, iron/manganese spinels
US4833040A (en) * 1987-04-20 1989-05-23 Trw Inc. Oxidation resistant fine metal powder
US5100856A (en) 1990-10-01 1992-03-31 Exxon Research And Engineering Company Iron-zinc based catalysts for the conversion of synthesis gas to alpha-olefins
DE4100741A1 (de) * 1991-01-12 1992-07-16 Basf Ag Verfahren zur abtrennung von edleren metallionen als eisen aus prozess- und abwaessern
US5248701A (en) 1991-08-05 1993-09-28 Exxon Research And Engineering Company Substituted cobalt catalysts for Fischer-Tropsch synthesis
TW550307B (en) * 2000-04-19 2003-09-01 Getters Spa A process for the purification of organometallic compounds or heteroatomic organic compounds with hydrogenated getter alloys
US6787576B2 (en) 2002-12-27 2004-09-07 Exxonmobil Research And Engineering Company Linear alpha olefins from natural gas-derived synthesis gas over a nonshifting cobalt catalyst
DE102005056784A1 (de) * 2005-11-28 2007-05-31 Basf Ag Verfahren zur Herstellung von Olefinen aus Synthesegas in einer Reaktionskolonne
WO2009013174A2 (fr) 2007-07-20 2009-01-29 Basf Se Procédé de production d'oléfines par réaction de monoxyde de carbone avec l'hydrogène
WO2009071463A2 (fr) 2007-12-03 2009-06-11 Basf Se Couplage oxydatif du méthane au moyen d'un réacteur à membrane
KR20110057218A (ko) 2008-09-10 2011-05-31 바스프 에스이 카르보닐 철 분말 및 탄화수소의 제조를 위한 통합 방법
WO2011054738A1 (fr) 2009-11-06 2011-05-12 Basf Se Catalyseur hétérogène contenant du fer et procédé de fabrication d'oléfines par réaction de monoxyde de carbone avec de l'hydrogène
CN102711991B (zh) 2009-11-06 2015-01-21 巴斯夫欧洲公司 含铁和锰的非均相催化剂和通过一氧化碳与氢气反应而制备烯烃的方法
EP2496346A1 (fr) 2009-11-06 2012-09-12 Basf Se Catalyseur hétérogène contenant du fer et du cuivre et procédé de fabrication d'oléfines par réaction de monoxyde de carbone avec de l'hydrogène

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2011054735A1 *

Also Published As

Publication number Publication date
US20110112203A1 (en) 2011-05-12
CN102665899B (zh) 2015-08-12
WO2011054735A1 (fr) 2011-05-12
US8614164B2 (en) 2013-12-24
CN102665899A (zh) 2012-09-12

Similar Documents

Publication Publication Date Title
EP2496348B1 (fr) Catalyseur hétérogène contenant du fer et du manganèse et procédé de fabrication d&#39;oléfines par réaction de monoxyde de carbone avec de l&#39;hydrogène
WO2011054735A1 (fr) Catalyseur hétérogène contenant du fer et du cuivre et procédé de fabrication d&#39;oléfines par réaction de monoxyde de carbone avec de l&#39;hydrogène
EP2496347B1 (fr) Catalyseur hétérogène contenant du fer et procédé de fabrication d&#39;oléfines par réaction de monoxyde de carbone avec de l&#39;hydrogène
DE60123753T2 (de) Verfahren zur herstellung von siliziumdioxid geträgerten kobaltkatalysatoren und deren verwendung
DE60120692T2 (de) Katalysatoren mit hoher kobaltoberfläche
DE69208559T2 (de) Katalysator für das Fischer-Tropsch-Verfahren
DE69920379T2 (de) Palladium-Ceroxid-Trägerkatalysator und Verfahren zur Herstellung von Methanol
DE4422227C2 (de) Katalysator zur Reduktion von Kohlendioxid
DE10393935T5 (de) Fischer-Tropsch-Katalysatoren auf Eisen-Basis und Herstellungs- und Anwendungsverfahren
EP3130399B1 (fr) Procede d&#39;hydroformylation d&#39;olefines et/ou d&#39;alcynes en phase gazeuse a l&#39;aide d&#39;un melange d&#39;hydrogene et de monoxyde de carbone en presence de catalyseur heterogene
EP2326417A1 (fr) Procédé intégré pour produire de la poudre de fer carbonyle et des hydrocarbures
DE112013000754T5 (de) Behandlung eines Katalysatorträgers
EP3209416A1 (fr) Synthèse haute température d&#39;aluminates par pyrolyse par projection à la flamme
DE3042686C2 (de) Verfahren zur Herstellung eines Kupferoxid, Zinkoxid und Aluminiumoxid sowie gegebenenfalls Boroxid enthaltenden Katalysators
WO2009013174A2 (fr) Procédé de production d&#39;oléfines par réaction de monoxyde de carbone avec l&#39;hydrogène
DE60123791T2 (de) Verfahren für die herstellung eines kobalt-trägerkatalysators und dessen vorläufer und die verwendung des trägerkatalysators
WO2000009259A2 (fr) MATERIAUX CATALYSEURS AU Au/Fe2O3, LEUR PROCEDE DE PREPARATION ET LEUR UTILISATION
DE1470580C3 (de) Verfahren zum Reformieren von Kohlenwasserstoffen mit Wasserdampf
DE102012012510B4 (de) Graphithaltiger Katalysatorformkörper, dessen Herstellverfahren sowie Verwendung
AT410939B (de) Verfahren zur herstellung von wolframcarbid
DE69900457T2 (de) Verfahren zur Fischer-Tropsch-Synthese in Gegenwart eines Katalysators mit vorbestimmter Grösse der Metall- partikel
DE3636900A1 (de) Katalysator fuer die kohlenwasserstoff-synthese, verfahren zu dessen herstellung sowie synthese-verfahren von kohlenwasserstoffen
DE3103207C2 (fr)
EP3541511A1 (fr) Procédé de fabrication de catalyseurs mécaniquement stables pour l&#39;hydrogénation de composés carbonyle, ces mêmes catalyseurs et procédé d&#39;hydrogénation
DE69319625T2 (de) Verfahren zur entschweflung eines gases

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120606

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20130919

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20170503