[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP2326417A1 - Procédé intégré pour produire de la poudre de fer carbonyle et des hydrocarbures - Google Patents

Procédé intégré pour produire de la poudre de fer carbonyle et des hydrocarbures

Info

Publication number
EP2326417A1
EP2326417A1 EP09782512A EP09782512A EP2326417A1 EP 2326417 A1 EP2326417 A1 EP 2326417A1 EP 09782512 A EP09782512 A EP 09782512A EP 09782512 A EP09782512 A EP 09782512A EP 2326417 A1 EP2326417 A1 EP 2326417A1
Authority
EP
European Patent Office
Prior art keywords
appendix
cep
production
iron
epc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09782512A
Other languages
German (de)
English (en)
Inventor
Jochen Steiner
Ekkehard Schwab
Andreas Keller
Otto Watzenberger
Ulrich GRÄßLE
Manfred Julius
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Priority to EP09782512A priority Critical patent/EP2326417A1/fr
Publication of EP2326417A1 publication Critical patent/EP2326417A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/20Carbonyls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/086Decomposition of an organometallic compound, a metal complex or a metal salt of a carboxylic acid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0425Catalysts; their physical properties
    • C07C1/043Catalysts; their physical properties characterised by the composition
    • C07C1/0435Catalysts; their physical properties characterised by the composition containing a metal of group 8 or a compound thereof
    • C07C1/044Catalysts; their physical properties characterised by the composition containing a metal of group 8 or a compound thereof containing iron
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/33Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
    • C10G2/331Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals
    • C10G2/332Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals of the iron-group
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/745Iron
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/20C2-C4 olefins
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0916Biomass
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/093Coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/164Integration of gasification processes with another plant or parts within the plant with conversion of synthesis gas
    • C10J2300/1656Conversion of synthesis gas to chemicals
    • C10J2300/1659Conversion of synthesis gas to chemicals to liquid hydrocarbons
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/145Feedstock the feedstock being materials of biological origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to an integrated process for the preparation of pure carbonyl iron powder (CEP) by decomposition of pure iron pentacarbonyl (EPC) and of hydrocarbons from synthesis gas.
  • iron particles are converted under high pressure and high temperatures to iron pentacarbonyl (EPC, Fe (CO) s).
  • EPC iron pentacarbonyl
  • the impurities contained in iron are preferred at the stage of carbonyls z. T. removed by distillation and gives high-purity EPC.
  • This compound represents the precursor to the decomposition of the EPC to CEP occurring in the subsequent step.
  • the EPC e.g. B. in a case decomposer, decomposed under high temperatures to CEP.
  • this primary CEP can be processed into a catalyst for the Fischer-Tropsch synthesis.
  • the further processing and the suitability of the catalyst for the production of hydrocarbons, in particular of lower olefins, from synthesis gas (Fischer-Tropsch synthesis) is described in the patent applications EP 07112853.2 of 20.07.2007 and EP 08156965.9 of 27.05.2008 (both BASF AG and US Pat. SE).
  • the former method should, in particular, avoid the large amounts of waste product produced by conventional catalyst preparation.
  • salt loads and wash water are production factors which require elaborate aftertreatment and may have to be disposed of in a cost-intensive manner.
  • the second method should allow access to short-chain hydrocarbons from synthesis gas.
  • the process should preferably provide C2-C8 olefins (C2 to C8 olefins), especially C2-C4 olefins (C2 to C4 olefins), especially ethene, propene and 1-butene, at the same time the lowest possible amount of methane, carbon dioxide, alkanes (eg C2-C4-alkanes) and higher hydrocarbons, ie hydrocarbons with five or more carbon atoms (C5 + fraction).
  • the production of the EPC and the subsequent decomposition to the CEP can be considered as a cycle in which the CO is recycled.
  • the route via the carbonyl compound is particularly advantageous in that no waste materials (such as salts) and sewage incurred.
  • an integrated process in which energy and material cycles are coupled in the composite so that starting from iron or iron oxide as a raw material via the intermediate stage of the carbonyl iron powder (CEP) an iron-based catalyst for chemical reactions, especially for the Fischer -Tropsch - synthesis, is produced.
  • an integrated process which is characterized in that in a plant A pure carbonyl iron powder (CEP) is prepared by decomposition of pure iron pentacarbonyl (EPC), in the decomposition of the EPC released carbon monoxide (CO) for the production of further CEP from iron is used in Appendix A or is supplied to a connected plant B for the production of synthesis gas or a connected plant C for the production of hydrocarbons from synthesis gas is fed, and the CEP prepared in Appendix A as a catalyst or catalyst component in a connected plant C to Production of hydrocarbons from synthesis gas from Appendix B.
  • EPC pure carbonyl iron powder
  • CO carbon monoxide
  • the decomposition of EPC is preferably a thermal decomposition of gaseous EPC.
  • the CEP obtained after the decomposition of EPC is treated with hydrogen prior to its further use.
  • This treatment of the CEP with hydrogen is preferably carried out at a temperature in the range of 300 to 600 0 C. By this treatment, the residual content of carbon, nitrogen and oxygen in the CEP is lowered. (DE 528 463 C1, 1927).
  • the hydrogen used preferably originates from a connected plant B for the production of synthesis gas.
  • the iron used to prepare CEP is preferably previously treated with hydrogen.
  • This treatment of the iron with hydrogen is preferably carried out at a temperature in the range from 300 to 1000 ° C.
  • the oxygen content of the iron is lowered by this treatment.
  • the hydrogen used preferably originates from an attached plant B.
  • the EPC used to prepare pure CEP is preferably previously purified by distillation. This distillation removes impurities, such as transition metals, in particular Ni and Cr, in the form of their carbonyl compounds.
  • CO additionally required for the production of further EPC preferably originates from a connected plant B for the production of synthesis gas.
  • the pure carbonyl iron powder (CEP) prepared according to the process in Appendix A preferably has the following characteristics:
  • the CEP consists of spherical primary particles whose diameter is preferred in the
  • the primary particles may be agglomerated.
  • the required synthesis gas is preferably used in plant B according to generally known methods (for example as described in Weissermel et al., Industrial Organic Chemistry, Wiley-VCH, Weinheim, 2003, pages 15 to 24), for example by reaction of Coal or methane produced with water vapor, or by partial oxidation of methane.
  • a primary energy source for the production of synthesis gas biomass is suitable in addition to coal and natural gas.
  • the synthesis gas has a molar ratio of carbon monoxide to hydrogen in the range of 3: 1 to 1: 3.
  • Synthesis gas used which has a mixing molar ratio of carbon monoxide to hydrogen in the range of 2: 1 to 1: 2.
  • the synthesis gas contains carbon dioxide (CO 2).
  • the content of CO2 is preferably in the range of 1 to 50 wt .-%.
  • the synthesis gas is produced by coal gasification.
  • Such methods are for. Also described in Nexant Inc. / Chem Systems PERP 03/04-S4 - Developments in Syngas Technology, 2005, pages 10/11 and 58-63, respectively.
  • the synthesis gases which can be produced by coal gasification have a molar ratio of carbon monoxide to hydrogen in the range from 2.36 to 0.4, in particular in the range from 2 to 0.6, in particular in the range from 1.5 to 0.8.
  • spent catalyst is, preferably after a treatment with hydrogen as described above, preferably used as an additional source of iron for the preparation of carbonyl iron powder (CEP) in Appendix A.
  • CEP carbonyl iron powder
  • Particularly advantageous according to the invention is the preparation of CEP in Appendix A, used as a catalyst or catalyst component in a connected plant C for the production of hydrocarbons, connected to a CO recycling process involving a plant B for the production of synthesis gas, and coupling to an iron cycle through Recycling the spent catalyst from Appendix C to Appendix A.
  • FIG. 1 Schematically, preferred embodiments of the integrated method (composite) according to the invention are shown in FIG.
  • Iron oxide is mixed with iron (Fe) or iron oxide (the latter in each case derived from spent catalyst from Appendix C) and reduced.
  • the reducing hydrogen originates from the synthesis gas plant B. Unconsumed hydrogen can be fed back into the synthesis gas plant B or fed directly to the Fischer-Tropsch plant C for the production of hydrocarbons.
  • the CEP from Annex A is processed in subsequent steps to form the iron Fischer-Tropsch catalyst and used in the Fischer-Tropsch plant C for the synthesis of hydrocarbons.
  • the CEP can be marketed externally.
  • a carbonyl iron powder (CEP) with spherical primary particles is preferably used.
  • the proportion of spherical primary particles in the carbonyl iron powder is preferably> 90% by weight, in particular> 95% by weight, very particularly> 98% by weight.
  • the spherical primary particles preferably have a diameter in the range from 0.01 to 250 ⁇ m, in particular in the range from 0.1 to 200 ⁇ m, very particularly in the range from 0.5 to 150 ⁇ m, more particularly in the range from 0.7 to 100 ⁇ m, more particularly in the range from 1 to 70 ⁇ m, particularly preferably in the range from 1.5 to 50 ⁇ m.
  • the iron content of the spherical primary particles is preferably> 97% by weight, in particular> 99% by weight, in particular> 99.5% by weight, in each case calculated without any promoters present.
  • the spherical primary particles are free of pores.
  • the preferred carbonyl iron powder is distinguished in particular by the fact that, in addition to the spherical primary particles, it contains no filamentary primary particles, in particular not the iron whiskers disclosed in DE 29 19 921 A1 and .Fachberichte für heatntechnik, July / August 1970, pages 145 to 150.
  • Figures 2 to 4 show SEM images of preferably used carbonyl iron powder with spherical primary particles.
  • carbonyl iron powder with spherical primary particles is z. B. under the name "carbonyl iron powder CN” from BASF AG or now BASF SE, D-67056 Ludwigshafen, available.
  • the carbonyl iron powder in particular with spherical primary particles, is obtained by thermal decomposition of gaseous iron pentacarbonyl (EPC, Fe [COJs], which has been previously purified, in particular by distillation.
  • EPC gaseous iron pentacarbonyl
  • the spherical primary particles can partially, z. B. to 25 to 95 wt .-%, be agglomerated.
  • the product thus obtained is aftertreated by reduction with hydrogen.
  • the carbonyl iron powder shows an advantageous catalytic effect.
  • the carbonyl iron powder may be doped with one or more promoters to enhance catalytic activity.
  • the catalysts may, for example, one or more of the elements vanadium, copper, nickel, cobalt, manganese, chromium, zinc, silver, gold, potassium, calcium , Sodium, lithium, cesium, platinum, palladium, ruthenium, sulfur, chlorine, each in elemental form or in ionic form.
  • the doping of the carbonyl iron powder is in total (ie in total, if several promoters) preferably in the range of 0.01 to 30 wt .-%, particularly preferably 0.01 to 20 wt .-%, most preferably 0.1 to 15 wt .-%, z. B. 0.2 to 10 wt .-%, particularly 0.3 to 8 wt .-%, each based on iron.
  • the carbonyl iron powder is doped with potassium ions and / or sodium ions as a promoter.
  • the carbonyl iron powder is particularly preferably doped in the range from 0.01 to 10% by weight, preferably 0.1 to 5% by weight, of potassium ions and / or sodium ions (in each case based on iron).
  • the application of said promoters may, for. Example, by impregnation of carbonylironpulvers with aqueous salt solutions of said metals, preferably carbonates, chlorides, nitrates or oxides, take place.
  • the acting as a promoter elements by thermal decomposition of the corresponding gaseous carbonyl compounds eg. As copper, cobalt or nickel carbonyls are applied during the preparation of carbonyl iron powder.
  • the carbonyl iron powder may be applied to carrier materials in a further embodiment of the catalyst.
  • Preferred support materials are TiO 2 , SiO 2 , Al 2 O 3 , zeolites, carbon (C).
  • the optionally doped and optionally supported carbonyl iron powder can be used in the form of pellets.
  • the pellets are obtained by methods known to those skilled in the art. Preferred forms of the pellets are tablets and rings.
  • the pellets can also be comminuted again before use in the process, z. B. by grinding.
  • the catalysts can temperatures above 300 0 C, are transferred to a synthesis more active state prior to use in the process by treatment with hydrogen and / or carbon monoxide at elevated temperature, especially at temperature. However, this additional activation is not essential.
  • hydrocarbons especially olefins, preferably up to 400 0 C, carried out at a temperature in the range of 200 to 500 0 C, particularly 300th
  • the absolute pressure is preferably in the range of 1 to 100 bar, especially 5 to 50 bar.
  • the GHSV Gas Hourly Space Velocity
  • the GHSV is preferably in the range of 100 to 10,000, more preferably 300 to 5000, parts by volume of feed stream per part by volume of catalyst and hour (l / l »h).
  • Preferred reactors for carrying out the process according to the invention are: fluidized bed reactor, fixed bed reactor, slurry reactor.
  • the catalyst is preferably used in powder form.
  • the powder may be the primary particles of the carbonyl iron powder, but also agglomerations thereof.
  • the powder can also be obtained by grinding previously prepared pellets.
  • the catalyst is used as a shaped body, preferably in the form of pellets.
  • C 2 -C 8 -olefins in particular C 2 -C 4 -olefins, especially ethene, propene and 1-butene, are preferably prepared in plant C as hydrocarbons.
  • the process for producing in particular olefins provides a product mixture containing olefins having an olefin-carbon selectivity, in particular an ⁇ -olefin-carbon selectivity, for the C2-C4 range of preferably at least 30%, for. In the range of 30 to 45%.
  • formed carbon dioxide is not taken into account (i.e., excluding CO2).
  • a product mixture comprising olefins having an olefin-carbon selectivity for the C2-C4 range of at least 30% is obtained, of which at least 30% in turn account for at least 90% for ethene, propene, 1-butene.
  • formed carbon dioxide is not taken into account (i.e., excluding CO2).
  • formed carbon dioxide is not taken into account (i.e., excluding CO2).
  • olefins are z. B. used in processes for the preparation of polyolefins, epoxies, oxo products, acrylonitriles, acrolein, styrene. See also: Weisermel et al., Industrial Organic Chemistry, Wiley-VCH, Weinheim, 2003, pp. 145-192 and 267-312. Illustration 1 :

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Compounds Of Iron (AREA)

Abstract

L'invention concerne un procédé intégré selon lequel on produit de la poudre de fer carbonyle pure dans une installation A par décomposition de fer pentacarbonyle pur et on utilise le monoxyde de carbone (CO) libéré lors de la décomposition du fer pentacarbonyle pour continuer à produire de la poudre de fer carbonyle à partir de fer dans l'installation A ou on l'amène à une installation B associée pour produire du gaz de synthèse ou on l'amène à une installation C associée pour produire des hydrocarbures à partir de gaz de synthèse. On utilise la poudre de fer carbonyle produite dans l'installation A comme catalyseur ou composante catalytique dans une installation C associée pour produire des hydrocarbures à partir de gaz de synthèse provenant de l'installation B.
EP09782512A 2008-09-10 2009-09-02 Procédé intégré pour produire de la poudre de fer carbonyle et des hydrocarbures Withdrawn EP2326417A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP09782512A EP2326417A1 (fr) 2008-09-10 2009-09-02 Procédé intégré pour produire de la poudre de fer carbonyle et des hydrocarbures

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP08164085 2008-09-10
EP09782512A EP2326417A1 (fr) 2008-09-10 2009-09-02 Procédé intégré pour produire de la poudre de fer carbonyle et des hydrocarbures
PCT/EP2009/061343 WO2010028995A1 (fr) 2008-09-10 2009-09-02 Procédé intégré pour produire de la poudre de fer carbonyle et des hydrocarbures

Publications (1)

Publication Number Publication Date
EP2326417A1 true EP2326417A1 (fr) 2011-06-01

Family

ID=41508709

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09782512A Withdrawn EP2326417A1 (fr) 2008-09-10 2009-09-02 Procédé intégré pour produire de la poudre de fer carbonyle et des hydrocarbures

Country Status (8)

Country Link
US (1) US8608824B2 (fr)
EP (1) EP2326417A1 (fr)
JP (1) JP5595401B2 (fr)
KR (1) KR20110057218A (fr)
CN (1) CN102149463B (fr)
MY (1) MY153783A (fr)
RU (1) RU2495716C2 (fr)
WO (1) WO2010028995A1 (fr)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110057218A (ko) 2008-09-10 2011-05-31 바스프 에스이 카르보닐 철 분말 및 탄화수소의 제조를 위한 통합 방법
CN102711991B (zh) 2009-11-06 2015-01-21 巴斯夫欧洲公司 含铁和锰的非均相催化剂和通过一氧化碳与氢气反应而制备烯烃的方法
CN102665899B (zh) 2009-11-06 2015-08-12 巴斯夫欧洲公司 含铁和铜的多相催化剂和通过用氢气转化一氧化碳制备烯烃的方法
EP2496347B1 (fr) 2009-11-06 2014-12-10 Basf Se Catalyseur hétérogène contenant du fer et procédé de fabrication d'oléfines par réaction de monoxyde de carbone avec de l'hydrogène
EP2501781B1 (fr) 2009-11-19 2014-03-19 Basf Se Procédé pour la production sélective d'oléfines légères
US8940075B2 (en) 2012-04-04 2015-01-27 Taiwan Powder Technologies Co., Ltd. Method for fabricating fine reduced iron powders
CN102718269A (zh) * 2012-06-05 2012-10-10 金川集团股份有限公司 一种制备羰基铁的方法
CN103128311B (zh) * 2013-03-15 2015-08-12 金川集团股份有限公司 一种生产超细羰基铁粉的方法
CN104551013A (zh) * 2014-12-07 2015-04-29 金川集团股份有限公司 一种在分解过程中控制羰基铁粉中粒度的方法
CN110844942B (zh) * 2019-11-29 2022-02-18 山西金池科技开发有限公司 高压循环法合成羰基铁络合物的工艺
CN115228470A (zh) * 2022-07-01 2022-10-25 重庆工商大学 一种超疏水超亲油羰基铁负载纳米二氧化钛光催化剂的制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE528463C (de) * 1927-09-11 1931-06-27 I G Farbenindustrie Akt Ges Verfahren zur Gewinnung eines Eisenpulvers von grosser Reinheit

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US390979A (en) * 1888-10-09 Rail for street-railways
FR2391978A1 (fr) * 1977-05-26 1978-12-22 Inst Francais Du Petrole Nouveau procede catalytique de synthese d'hydrocarbures olefiniques legers par reaction de l'hydrogene avec le monoxyde de carbone
DE2919921A1 (de) 1979-05-17 1980-11-20 Vielstich Wolf Verfahren zur herstellung von gasfoermigen olefinen aus kohlenmonoxid und katalysatoren dafuer
FR2515983A1 (fr) * 1981-11-06 1983-05-13 Ammonia Casale Sa Catalyseurs de syntheses heterogenes, procede de leur preparation et leur utilisation pour la production de melanges d'alcools
JPS59102441A (ja) * 1982-12-03 1984-06-13 Agency Of Ind Science & Technol 合成ガスからの不飽和低級炭化水素合成用触媒の調製方法
US4468474A (en) * 1983-05-16 1984-08-28 Allied Corporation Iron/silicon-based catalyst exhibiting high selectivity to C2 -C62 Fischer-Tropsch reactions
DE3335544A1 (de) * 1983-09-28 1985-04-04 Herwig 1000 Berlin Michel-Kim Reaktorvorrichtung zur erzeugung von generatorgas aus brennbaren abfallprodukten
US4532229A (en) * 1983-12-14 1985-07-30 Exxon Research And Engineering Co. Process for preparing a Fe-Co catalyst slurry system for alpha olefin production
US4544674A (en) * 1983-12-14 1985-10-01 Exxon Research And Engineering Co. Cobalt-promoted fischer-tropsch catalysts
US4604375A (en) * 1983-12-20 1986-08-05 Exxon Research And Engineering Co. Manganese-spinel catalysts in CO/H2 olefin synthesis
US5118715A (en) * 1983-12-20 1992-06-02 Exxon Research And Engineering Company Selective fixed-bed fischer-tropsch synthesis with high surface area Cu and K promoted, iron/manganese spinels
JPS61111143A (ja) * 1984-11-06 1986-05-29 Nippon Oil Co Ltd 低級炭化水素製造触媒
US4788222A (en) * 1985-05-20 1988-11-29 Exxon Research And Engineering Company Method for the production of hydrocarbons using iron-carbon-based catalysts
US4624967A (en) * 1985-12-06 1986-11-25 Exxon Research & Engineering Company Fe-Co catalyst slurry system for use in alpha olefin production
JPH03164435A (ja) * 1989-11-20 1991-07-16 Res Dev Corp Of Japan クラスター固定物質
JPH03245847A (ja) * 1990-02-23 1991-11-01 Res Dev Corp Of Japan 金属カルボニルクラスター固定物質
DE19716882A1 (de) * 1997-04-22 1998-10-29 Basf Ag Siliziumhaltige Eisenpulver
ZA982737B (en) * 1998-04-01 1999-11-24 Sasol Tech Pty Ltd Heat treated fischer-tropsch catalyst particles.
RU2314869C2 (ru) * 2003-03-31 2008-01-20 Каунсил Оф Сайентифик Энд Индастриал Рисерч Катализатор синтеза углеводородов из синтез-газа, способ получения катализатора
DE102004019649A1 (de) * 2004-04-22 2005-11-10 Basf Ag Verfahren zur Herstellung von Olefinen und Synthesegas
RU2007148436A (ru) 2005-05-25 2009-06-27 Зюд-Кеми Инк. (Us) Железный материал с большой площадью поверхности, полученный из предшественника железа с небольшой площадью поверхности
GB2442646A (en) * 2005-06-14 2008-04-09 Sasol Tech Pty Ltd Process for the preparation and conversion of synthesis gas
CN101270294A (zh) * 2006-12-30 2008-09-24 亚申科技研发中心(上海)有限公司 整合型煤液化方法
US8356485B2 (en) 2007-02-27 2013-01-22 Siemens Energy, Inc. System and method for oxygen separation in an integrated gasification combined cycle system
CN100556990C (zh) * 2007-03-10 2009-11-04 江苏天一超细金属粉末有限公司 基于五羰基铁作催化剂的煤液化方法
WO2009071463A2 (fr) 2007-12-03 2009-06-11 Basf Se Couplage oxydatif du méthane au moyen d'un réacteur à membrane
KR20110057218A (ko) 2008-09-10 2011-05-31 바스프 에스이 카르보닐 철 분말 및 탄화수소의 제조를 위한 통합 방법
CN102711991B (zh) * 2009-11-06 2015-01-21 巴斯夫欧洲公司 含铁和锰的非均相催化剂和通过一氧化碳与氢气反应而制备烯烃的方法
EP2496347B1 (fr) * 2009-11-06 2014-12-10 Basf Se Catalyseur hétérogène contenant du fer et procédé de fabrication d'oléfines par réaction de monoxyde de carbone avec de l'hydrogène
CN102665899B (zh) * 2009-11-06 2015-08-12 巴斯夫欧洲公司 含铁和铜的多相催化剂和通过用氢气转化一氧化碳制备烯烃的方法
EP2501781B1 (fr) * 2009-11-19 2014-03-19 Basf Se Procédé pour la production sélective d'oléfines légères

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE528463C (de) * 1927-09-11 1931-06-27 I G Farbenindustrie Akt Ges Verfahren zur Gewinnung eines Eisenpulvers von grosser Reinheit

Also Published As

Publication number Publication date
CN102149463B (zh) 2013-05-22
JP5595401B2 (ja) 2014-09-24
WO2010028995A1 (fr) 2010-03-18
RU2495716C2 (ru) 2013-10-20
RU2011113634A (ru) 2012-10-20
JP2012501840A (ja) 2012-01-26
US20110162484A1 (en) 2011-07-07
US8608824B2 (en) 2013-12-17
KR20110057218A (ko) 2011-05-31
CN102149463A (zh) 2011-08-10
MY153783A (en) 2015-03-13

Similar Documents

Publication Publication Date Title
EP2326417A1 (fr) Procédé intégré pour produire de la poudre de fer carbonyle et des hydrocarbures
EP2501781B1 (fr) Procédé pour la production sélective d'oléfines légères
DE3405217C2 (fr)
EP0011150B1 (fr) Procédé de préparation de méthanol par hydrogénation d'oxydes de carbone et procédé de préparation d'un catalyseur pour cette hydrogénation
DE69721944T2 (de) Katalysator für Dimethylether, Verfahren zur Katalysatorherstellung und Verfahren zur Herstellung von Dimethylether
DE4422227C2 (de) Katalysator zur Reduktion von Kohlendioxid
EP2496348B1 (fr) Catalyseur hétérogène contenant du fer et du manganèse et procédé de fabrication d'oléfines par réaction de monoxyde de carbone avec de l'hydrogène
DE3005551A1 (de) Katalysator zur synthese von methanol und hoehere alkohole enthaltenden alkoholgemischen
DE10393935T5 (de) Fischer-Tropsch-Katalysatoren auf Eisen-Basis und Herstellungs- und Anwendungsverfahren
DE2164074A1 (de) Verfahren zur katalytischen umwandlung von chlorkohlenwasserstoffen
EP2496346A1 (fr) Catalyseur hétérogène contenant du fer et du cuivre et procédé de fabrication d'oléfines par réaction de monoxyde de carbone avec de l'hydrogène
EP2496347B1 (fr) Catalyseur hétérogène contenant du fer et procédé de fabrication d'oléfines par réaction de monoxyde de carbone avec de l'hydrogène
DE69325919T2 (de) Fischer-Tropsch Reaktion unter Verwendung von Katalysatoren, welche eine Zinkoxydzusammensetzung enthalten
DE3148745A1 (de) "verfahren zur herstellung sauerstoffhaltiger organischer verbindungen sowie paraffinischer kohlenwasserstoffe"
WO2018166566A1 (fr) Procédé de transformation chimique de sucres ou d'alcools de sucre en glycols
DE3121752A1 (de) "verfahren zur herstellung von kohlenwasserstoffgemischen"
DE69101459T2 (de) Tantal enthaltender Katalysator zur Herstellung von Alkoholen aus Synthesegas.
WO2009013174A2 (fr) Procédé de production d'oléfines par réaction de monoxyde de carbone avec l'hydrogène
CH624311A5 (fr)
DE69717290T2 (de) Fischer-tropsch katalysator und verfahren zur herstellung von kohlenwasserstoffen
DE69117479T2 (de) Verfahren zur umsetzung von methan zu höheren kohlenwasserstoffen
DE2154074A1 (de) Verfahren zur Herstellung von Methanol, Verfahren zur Herstellung eines dafür ver wendbaren Katalysators und entsprechende Katalysatorz usammensetzungen
DE3636900A1 (de) Katalysator fuer die kohlenwasserstoff-synthese, verfahren zu dessen herstellung sowie synthese-verfahren von kohlenwasserstoffen
DE3883759T2 (de) Verfahren zur katalytischen Synthese von Kohlenwasserstoffen aus CO und H2 in Gegenwart von metallischem Kobalt.
WO2018091342A1 (fr) Procédé de fabrication de catalyseurs mécaniquement stables pour l'hydrogénation de composés carbonyle, ces mêmes catalyseurs et procédé d'hydrogénation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110411

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20120511

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150902

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20160113