[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP1537009A2 - Method and device for mounting several add-on parts on production part - Google Patents

Method and device for mounting several add-on parts on production part

Info

Publication number
EP1537009A2
EP1537009A2 EP03753391A EP03753391A EP1537009A2 EP 1537009 A2 EP1537009 A2 EP 1537009A2 EP 03753391 A EP03753391 A EP 03753391A EP 03753391 A EP03753391 A EP 03753391A EP 1537009 A2 EP1537009 A2 EP 1537009A2
Authority
EP
European Patent Office
Prior art keywords
assembly
door
add
sensors
measured values
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03753391A
Other languages
German (de)
French (fr)
Inventor
Helmut Kraus
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
VMT Vision Machine Technic Bildverarbeitungssysteme GmbH
Original Assignee
DaimlerChrysler AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=31983926&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1537009(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by DaimlerChrysler AG filed Critical DaimlerChrysler AG
Publication of EP1537009A2 publication Critical patent/EP1537009A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1679Programme controls characterised by the tasks executed
    • B25J9/1684Tracking a line or surface by means of sensors
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/36Nc in input of data, input key till input tape
    • G05B2219/36503Adapt program to real coordinates, software orientation
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37459Reference on workpiece, moving workpiece moves reference point
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39114Hand eye cooperation, active camera on first arm follows movement of second arm
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39397Map image error directly to robot movement, position with relation to world, base not needed, image based visual servoing
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/40Robotics, robotics mapping to robotics vision
    • G05B2219/40307Two, dual arm robot, arm used synchronously, or each separately, asynchronously
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49764Method of mechanical manufacture with testing or indicating
    • Y10T29/49771Quantitative measuring or gauging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49764Method of mechanical manufacture with testing or indicating
    • Y10T29/49778Method of mechanical manufacture with testing or indicating with aligning, guiding, or instruction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49764Method of mechanical manufacture with testing or indicating
    • Y10T29/49778Method of mechanical manufacture with testing or indicating with aligning, guiding, or instruction
    • Y10T29/4978Assisting assembly or disassembly
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining
    • Y10T29/49828Progressively advancing of work assembly station or assembled portion of work
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining
    • Y10T29/49895Associating parts by use of aligning means [e.g., use of a drift pin or a "fixture"]
    • Y10T29/49902Associating parts by use of aligning means [e.g., use of a drift pin or a "fixture"] by manipulating aligning means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/53Means to assemble or disassemble
    • Y10T29/53022Means to assemble or disassemble with means to test work or product

Definitions

  • the invention relates to a method for mounting a plurality of add-on parts on a workpiece, in particular on a vehicle body, the add-on parts being fastened to the workpiece in an aligned position with respect to one another.
  • the invention further relates to an assembly system for carrying out this method.
  • add-on parts e.g. doors, rear module, front module, .
  • add-on parts are attached to vehicle bodies as part of the assembly process.
  • the add-on part must be aligned precisely in relation to the body and in this state must be attached to the body using a joining process - for example by screwing it on.
  • Such a method for high-precision alignment of an add-on part with respect to a workpiece is described, for example, in (PCT application, our file P803949 / WO / 1).
  • the invention is therefore based on the object of proposing an automatable method with the aid of which a plurality of add-on parts - in particular two adjacent vehicle doors - can be attached to a workpiece - in particular on a vehicle body - in a precisely positioned manner relative to one another.
  • the invention is also based on the object of proposing a device which is suitable for carrying out the method.
  • the add-on parts that are to be assembled in a precise position relative to one another are attached to the workpiece in a joint assembly process.
  • the attachments are positioned and fastened with the aid of robot-guided assembly tools, with a separate robot-guided assembly tool being provided for each of the attachments involved.
  • the add-on parts that are to be installed together are first aligned with one another in a holding position and then - while maintaining this exact alignment - positioned on the workpiece and connected to it.
  • An iterative control process is used to align the add-on parts in the lead position the second attachment (and possibly the other attachments) is shifted and / or pivoted relative to the first attachment, which is held fixed in space, until the desired relative position of the attachments is reached.
  • the iterative control process uses measured values from a sensor system that is permanently connected to one of the assembly tools and delivers measured values of selected measured variables on the attachments that are of particular importance for assessing the relative position. If, for example, two add-on parts that are to be installed adjacent to one another in the workpiece are to be aligned with respect to one another with respect to their adjoining edges, the gap dimensions along these edges play a particularly large role as measured variables.
  • the iterative control process by means of which the add-on parts are aligned precisely with respect to one another, advantageously comprises the following process steps:
  • a displacement vector of the assembly tools is calculated from the difference between (actual) measured values and (target) measured values with the aid of a so-called “Jacobi matrix” (or “sensitivity matrix”) calculated during the set-up phase, and
  • Both the (target) measured values and the Jacobian matrix are determined in the course of a set-up phase - upstream of the actual positioning and assembly process - in which the assembly tools are taught in for the specific assembly task.
  • This set-up phase is carried out once in the course of setting a new combination of tools, sensor system, workpiece and type and installation position of the attachments to be used.
  • the process has the great advantage that it is independent of the exact spatial position of the workpiece and the attachments. in particular, the positioning process to be carried out in a controlled manner, within the scope of which the attachments held in the assembly tools are precisely aligned with one another, does not require any information regarding the absolute positions of the individual attachments in the working space of the robots involved;
  • the method according to the invention is based exclusively on relative measurements, in the context of which information (stored in the set-up phase) - corresponding to a set of (target) measurement values of the sensor system - is restored about the control process. This is associated with great procedural and equipment advantages:
  • the instrumental structure as well as the setup and operation of the overall system can therefore be implemented very inexpensively. Furthermore, the initial setup and maintenance of the assembly system is drastically simplified and can also be carried out by trained personnel.
  • the number of degrees of position freedom that can be compensated for with the relative positioning of the attachments using this method can be freely selected and depends only on the configuration of the sensor system.
  • the number of sensors used can also be freely selected.
  • the number of (scalar) sensor information provided need only be equal to or greater than the number of degrees of freedom to be controlled.
  • a larger number of sensors can be provided, and the redundant sensor information can be used, for example in order to be able to better detect shape errors in the reference areas under consideration on the attachments or to improve the accuracy of the positioning process.
  • sensor information from different non-contact and / or tactile sources can be used (eg a combination of CCD cameras, optical gap sensors and tactile distance sensors).
  • the measurement results of different quality-relevant sizes can be taken into account in the alignment process of the attachments to one another.
  • the method allows a quick compensation of residual uncertainties that can occur when positioning the attachments to each other; Such residual uncertainties can arise from positional deviations of the add-on parts to be aligned in the associated assembly tools and / or from shape errors of the add-on parts which are caused by component tolerances.
  • the add-on parts aligned in this way are transported to the workpiece and connected to it.
  • the two robots that carry the attachments are advantageously coupled to one another in the hold position; one of the two robots serves as a "master” robot, the movements of which the other, so-called “slave” robot follows.
  • the "master” robot therefore takes the “slave” robot along on its target path, so that the spatial relationship of the attachments to one another remains unchanged.
  • a control principle by means of which such a coupling can be achieved is known, for example, from EP 752 633 AI, the content of which is hereby incorporated into the present application.
  • a further sensor system is provided, which is firmly connected to one of the assembly tools and comprises sensors which - when the attached parts approach the workpiece - are directed at selected reference areas on the workpiece. The measured values supplied by these sensors are used in order to achieve an iterative alignment of the attachments with respect to the workpiece, analogous to the iterative alignment of the attachments to one another described above.
  • Fig. 1 is a schematic representation of selected positions of an assembly system in the precise orientation and assembly of two doors in a vehicle body
  • Fig. La retreat position
  • - Fig. 1b lead position
  • Fig. Lc mounting position
  • Fig. 2 is a schematic detailed view of a driver's door assembly tool
  • Fig. 3 is a schematic representation of the trajectories of the driver's door assembly tool and the rear door assembly tool carrying robot hands.
  • Figure 1 shows a section of a vehicle body 1 with a rear door cutout 2, in which - in the course of vehicle assembly - a rear door 3 is to be installed and one front door cutout 2 'in which a driver's door 3' is to be mounted.
  • This body 1 is an example of a workpiece with adjacent cutouts 2, 2 'into which adjacent attachments 2, 2' which are adapted to the shape of the cutouts 2, 2 'are to be inserted in the correct position: in the installed position of the doors 3, 3' borders in the area of the B-pillar 8 of the body 1, the rear door 3 with its front edge 10 in the direction of travel and the rear edge 10 'of the driver's door 3' in the direction of travel (see FIGS. 1b and 1c).
  • the assembly of the two doors 3, 3 'into the body 1 takes place with the aid of an automatic assembly system 4 (shown schematically in FIG. 1) with a work space 6.
  • the assembly system 4 comprises an assembly tool 5 guided by an industrial robot 7, which feeds the rear door 3 and positioned in the door cutout 2 of the body 1.
  • the assembly system 4 comprises an assembly system 5 'guided by an industrial robot 7', which feeds the driver's door 3 'and positions it in the door cutout 2' of the body 1.
  • a control system 20 is provided for position and movement control of the robots 7, 7 'and the tools 5, 5'.
  • the doors 3, 3 ' must be mounted in an exact position (in terms of position and angular position) relative to the areas 9 of the body 1 adjacent to the door cutouts 2, 2'; these surrounding areas 9 thus form a so-called reference area for aligning the doors 3, 3 'with respect to the body 1. Furthermore, it is important to align the two doors 3 and 3' with one another in a highly precise manner in such a way that in the area of their adjacent edges 10, 10 'assume a predetermined relative position, in particular special form an even gap 21 and are coordinated with respect to their position in the Z (vertical) and Y (transverse) direction of the body.
  • the areas 11, 11 'adjacent to the edges 10, 10' on the doors 3, 3 'thus form the so-called reference areas for the mutual alignment of the doors 3, 3'.
  • the robot-guided assembly tool 5 ' which is used to position the driver's door 3' in the door cutout 2 'and the subsequent assembly, is shown schematically in FIG.
  • This assembly tool 5 'fastened to the hand 12' of the industrial robot 7 ' comprises a frame 13' to which a fixing device 14 'is fastened, by means of which the driver's door 3' can be received in a well-defined position.
  • the door 3 ' is received by the fixing device 14' on the inside 15 'of the door 3' in the immediate vicinity of hinge receiving surfaces 16 ', to which fastening hinges (not shown in FIG. 2) are screwed in the course of the door assembly.
  • This choice of the points of application of the fixing device 14 'on the driver's door 3' ensures that there is a minimal lever arm between the articulation points of the driver's door 3 '(defined by the hinges) in the body 1 and the points of application of the fixing device 14', so that the force of gravity on the door 3 'held in the fixing device 14' has approximately the same effect as on the fully installed door 3 '. This ensures that the shape distortion that occurs when installing the door is minimal.
  • the fixing device 14 ' is designed such that the area of the hinge receiving surfaces 16' on the inside 15 'of the door is freely accessible, so that the hinges can be mounted while the door 3' is in the fixing device 14 '.
  • the fixing device 14 ' is rotatable and / or pivotable relative to the frame 13' of the assembly plant. Stuff 5 'arranged so that it can be removed after assembly through the window cutout 17' of the assembled and closed door 3 '.
  • the assembly tool 5 for the rear door 3 is designed analogously.
  • the assembly tool 5 ' is provided with a sensor system 18' with several (three in the schematic representation of FIG. 2) sensors 19 'which are rigid with the frame 13 of the assembly tool 5 'is connected; they thus form a structural unit with the assembly tool 5 '.
  • These sensors 19 ' are used to determine joint, gap and depth dimensions between the front edge 10 of the rear door 3 and the rear edge 10' of the driver's door 3 '.
  • this sensor system 18 '- as described further below - the driver door 3' held in the assembly tool 5 'is aligned in an iterative control process with respect to the rear door 3.
  • the door assembly in a new vehicle type - must first be run through a so-called setup phase in which the assembly tools 5,5 'are configured.
  • An appropriate fixing device 14 ', a suitably designed frame 13' and a sensor system 18 'with the corresponding sensors 19' are selected and configured together with the assembly tool 5 ', in accordance with the driver's door 3' to be assembled.
  • a mounting device 5 for the rear door 3 is configured from a fixing device 14 and a frame 13.
  • the sensor system 18 'of the assembly tool 5' is “taught in” by — as described below under I.
  • the rear door assembly tool 5 configured as described above is first attached to the robot hand 12 and equipped with a (“master”) rear door 103.
  • the assembly tool 5 is then inserted using the robot 7 moves a freely selectable so-called rear door holding position 23, which is located on the body 101 outside the actual assembly area 122; in this position, the assembly tool 5 is held stationary during the set-up phase.
  • a sensor system 18 'adapted to the assembly task is selected and configured together with the fixing device 14' to form the assembly tool 5 ', which in turn is attached to the robot hand 12'.
  • the fixing device 14 ' is equipped with a ("master" -) driver's door 103' and (manually or interactively) aligned in such a way with respect to the ("master" -) rear door 103 located in the rear door reserve position 23 that an "optimal.”"Alignment of the two doors 103, 103 'to one another is given (see FIG. 1b).
  • This” optimal “alignment is defined in the present case in that the gap 21 between the two doors 103, 103' It is as uniform as possible that there is no depth offset between the two edges 10, 10 'in the vehicle transverse direction (Y direction) and that the reference areas 11, 11' of the two doors 103, 103 'are aligned with one another in the Z direction.
  • the relative position of the assembly tool 5 'in relation to the assembly tool 5 assumed in the following is referred to as the driver's door retention position 23'.
  • the number and the position of the sensors 19 'on the frame 13' of the assembly tool 5 ' is selected such that the sensors 19' on suitable areas 24 'on the ("master") that are particularly important for the "optimal" alignment.
  • Driver door 103 'or areas 24 of the ("master") rear door 103 are directed.
  • three sensors 19' are used which are directed to areas 24, 24 'shown in FIG that the sensors 19 'carry out gap measurements in the upper, middle and lower region of the opposite edges 10, 10' of the two ("master") doors 103, 103 '.
  • the number of individual sensors 19 'and the surroundings 24, 24' to which they are directed are selected in such a way that they allow the best possible characterization of the quality features relevant to the respective application.
  • further sensors can be provided which, for example, measure a (depth) distance between the two ("master") doors 103, 103'.
  • the assembly tool 5 'with the sensor system 18' and with the ("master") driver's door 103 'held in the fixing device 14' is now moved with the help of the robot 7 'to the (set by manual or interactive alignment, in the illustration In FIG. 1b, the driver door reserve position 23 is "taught" with respect to the stationary ("master") rear door 103.
  • measured values of all sensors 19 ' are initially recorded in the driver door reserve position 23' and as "target measurement values" in one Evaluation unit 26 of the sensor system 18 'stored; this sensor evaluation unit 26 is expediently integrated into the control system 20 of the robot 7, 7 '.
  • the two assembly tools 5, 5 ' are moved with the help of the robots 7, 7' (manually or interactively) to a (“master”) body 101 located in the work space 6 of the assembly system 4 , 23 'maintain the corresponding relative position of the two ("master") doors 103, 103' (ie the desired relative orientation of the two doors 103, 103 'that was manually set in process step I.).
  • the relative position of the pair of doors 103, 103' assumed in relation to the ("master" -) body 101 is hereinafter referred to as "assembly position" 27 and corresponds to that relative orientation of the pair of doors 103, 103 'to the body 101, in which the two doors are to be fastened in the body 101.
  • a further sensor system 28 '(with sensors 29') is used to teach-in the mounting position 27, which is likewise firmly connected to the mounting system 5 '. Some (or all) of the sensors 18 'of the sensor system 19' can also be used as sensors 29 'of the sensor system 28'.
  • the sensors 29 ' are fastened to the assembly tool 5' in such a way that they point to the selected reference areas 9 on the (“master”) body 101 and / or selected reference areas 30 'of the ("master”) driver's door 103'.
  • the sensor system 28 ' comprises four sensors 29', two of which are directed to a body area 9 in the area of the A-pillar 8 ", another Sensor 19 ', which was already used for the relative alignment of the two doors 103, 103' in the course of phase I, is aimed at the upper areas of the B-pillar 8.
  • the sensors 29 ' are advantageously (optical) gap sensors which measure the width of the gap 31' between the driver's door 103 'and the body 101 in the respective field of view.
  • the Jacobi matrix (sensitivity matrix) of the coupled assembly tools 5,5 ' is calculated from the associated changes in the measured values of the sensors 29'. describes the relationship between the incremental movements of the coupled robots 7, 7 'and the changes in the measured values of the sensors 29' that occur. The incremental movements are selected in such a way that no collisions of the doors 103, 103 'or of the tools 5.5' with the ("master") body 101 can occur during this set-up process.
  • the Jacobi matrix generated is combined with the "target Measured values "stored in the evaluation unit 32 of the sensor system 28 'and forms the basis for the subsequent control process in the positioning phase C, C of the coupled tools 5,5' relative to the body 1 (see below under III.).
  • traversing paths 33, 33' of the robot 7, 7 ' are generated in this setup phase, which are shown schematically in FIG.
  • the starting point of the trajectories 33, 33 'of the two robots 7, 7' is formed by a so-called "retreat position" 34, 34 ', which is selected such that a new body 1 can be inserted into the working space 6 of the robots 7, 7' without collisions of the body 1 with the assembly tools 5, 5 '.
  • These retraction positions 34, 34' can, for example, correspond to different (not shown in the figures) assembly stations in which the assembly tools 5, 5 '(manually) with the the doors 3.3 '.
  • the withdrawal positions 34.34' can correspond to removal stations in which the assembly tools 5.5 '(automatically) remove the doors 3.3' to be fitted from workpiece carriers.
  • the rear door assembly tool 5 with the rear door 3 inserted is moved from the retracted position 34 to the rear door reserve position 23 on a track Al to be controlled.
  • the driver's door assembly tool 5' with the driver's door 3 'inserted is moved from a retracted position 34' to a so-called "alignment position" 35 'on a track Al' to be traversed, which is selected such that all individual sensors 19 'of the sensor system 18' can detect valid measured values of the respective areas 24, 24 'of the rear door 3' and / or the driver's door 3, while at the same time ensuring that there are no mutual collisions between the assembly tools 5,5 'or the doors 3,3 held therein ' may occur.
  • A-2 The driver's door assembly tool 5' with the driver's door 3 'inserted is moved on a track A-2' to be controlled in a controlled manner from the alignment position 35 'to the driver's door holding position 23' (as "described” as described above), in which the driver's door 3 'held in the assembly tool 5' is aligned precisely and angularly with respect to the rear door 3 held in the assembly tool 5. What happens in detail during this process step to be carried out in a controlled manner is described further below (in III. working phase).
  • the rear door robot 7 is coupled to the driver's door robot 7', and the two robots 7, 7 'are moved from the lead position 23, 23' to an approach position on a path B or B 'to be controlled 36,36 'moved relative to the body 1.
  • the approximate position is selected such that all individual sensors 29 'of the sensor system 28' deliver valid measured values of the reference areas 9, 30, 30 '(relevant for the door fitting) on the body 1 and the doors 3, 3', while ensuring at the same time that no collisions of the assembly tools 5,5 'or the doors 3,3' held therein with the body 1 can occur.
  • the trajectories 46, 46 'of the two assembly tools 5.5' (or the associated robot 7, 7 ') generated in the course of this set-up phase thus consist of the sections Al, A-1', B / B 'and D to be passed through in a controlled manner / D 'and the regulated sections A-2' and C / C.
  • bodies 1 are sequentially fed and clamped to the working space 6 of the assembly system 4, and for each body 1 the trajectories 33, 33 'generated in the set-up phase II.
  • the two assembly tools 5, 5 ' are in the retracted positions 34, 34' and are or are equipped with the rear door 3 to be assembled and the driver door 3 'to be assembled (see FIG. la).
  • the rear door assembly tool 5 with the rear door 3 inserted is brought into the rear door reserve position 23, while the driver door assembly tool 5' with the driver door 3 'inserted is transported into the alignment position 35'.
  • a positioning phase of the assembly tool 5' (path section A-2 'in FIG. 3) is run through, during which the driver's door 3' held in the assembly tool 5 'is moved into the (23) position (learned during the teach-in phase) relative to the brought stationary in the reserve position 23 held rear door 3 and is aligned precisely with respect to the rear door 3.
  • sensors 19 'of sensor system 18' record measured values in selected areas 11, 11 'of rear door 3 and driver's door 3'.
  • a movement increment (displacement vector) is calculated, which reduces the difference between the current (actual) sensor measured values and the (target) sensor measured values.
  • the driver door 3 'held in the assembly tool 5' is then moved and / or pivoted by this movement increment with the aid of the robot 7 ', and new (actual) sensor measured values are recorded during the ongoing movement.
  • This iterative measuring and shifting process is repeated in a control loop until the difference between the current (actual) and the desired (target) sensor measured values falls below a predetermined error level, or until this difference no longer exceeds one in advance set threshold changes.
  • the driver door 3 ' is now (within the scope of the error measure or threshold value specified accuracy) in the lead position 23 '(shown in FIG. 1b) with respect to the rear door 3.
  • Track sections B, B ' (approach of the assembly tools 5.5' to the body 1):
  • the relative orientation of the two robots 7, 7' achieved in this way is stored as a fixed reference variable in the control system 20. Then the two robots 7, 7 'are arithmetically coupled to one another and during the following one Process steps moved simultaneously to each other. To achieve this, the control system 20 of the robots 7, 7 'contains a controller with three subsystems:
  • the first subsystem contains all those commands that describe the functions of the driver's door robot 7 'with its mounting system 5' (including the control of the tracks A-l ', B', D 'and the gripping tasks of the fixing device 14 and the regulation of the Lanes A-2 ', C); it also contains all commands for the rear door robot 7 with its mounting system 5, which are independent of the functions of the driver's door robot 7 '(i.e. control of the tracks A-1, D and the gripping action for the fixing device 14').
  • the second subsystem contains those commands that describe the functions of the robots 7, 7 ', which are governed by the first subsystem and in which the driver's door robot 7' interacts with the rear door robot 7; this applies in particular to the web sections B / B 'and C / C to be passed through.
  • the third subsystem only contains commands to start the first and second subsystems and executes these commands asynchronously and simultaneously.
  • a command is issued by the third subsystem, which starts the second subsystem and thus couples the "slave” robot 7 to the "master” robot 7'. Then the driver's door robot 7 'is moved as a "master” controlled from the lead position 23' to the approach position 36 'in the vicinity of the driver's door cutout 2' of the body 1. The rear door robot 7 follows it as a "slave” in the approximate position 36, the high- exact relative alignment of the two doors 3, 3 'is retained.
  • the assembly tool 5' is now brought into the assembly position 27 '(learned during the teach-in phase) relative to the door cutout 2' of the body 1.
  • This positioning phase is analogous to the positioning phase of section A-2 ', in the course of which the assembly tool 5' was positioned in relation to the rear door 3:
  • the sensors 29 'of the sensor system 28' measured values on the reference surfaces 9 of the body 1 and / or the reference areas 30, 30 'of the doors 3, 3', and a movement increment is calculated from these measured values with the aid of the Jacobian matrix determined in the set-up phase II, by which the assembly tool 5 'is moved with the aid of the robot 7'.
  • the rear door robot 7 Since the rear door robot 7 is coupled to the driver's door robot 7, it follows these displacements of the assembly tool 5 '.
  • the measuring and shifting process is repeated until the difference between the current (actual) and the intended (target) sensor measured values falls below a predetermined error level, or until this difference is no longer determined in advance Threshold changes.
  • the two assembly tools 5, 5 ' are then in the assembly position 27, 27' (shown in FIG. 1c) relative to the body 1. In this position, the two doors 3, 3 'are attached to the door cutouts 2, 2'.
  • screwdrivers (not shown in FIG. 1c) can be used which are attached to additional robots or handling systems.
  • the fixing devices 14, 14' of the assembly tools 5, 5 ' are released, so that the doors 3, 3' hang freely on the body 1.
  • the sensors 29 can be used to carry out control measurements of the joint dimensions, gaps 31, 31 'and depth dimensions in the areas 9.30, 30'. If deviations from the nominal dimensions are found, the operator of the system can be sent specific information for rework.
  • the fixing devices 14, 14 'of the assembly tools 5.5' are pivoted out of the engagement positions in such a way that the assembly tools 5,5 'can be moved back from the assembly position 27, 27' to the retracted position 34, 34 'in a robot-controlled manner.
  • the body 1 is relaxed, lifted and conveyed, and at the same time the assembly tools 5.5 'are loaded with new doors 3.3'. pieces, while a new body 1 is fed to the working space 6 of the assembly system 4.
  • a TCP / IP interface is advantageously used in the present exemplary embodiment, which enables a high data rate.
  • a high data rate is necessary in order to control the entire system (sensor systems / robots) with the large number of individual sensors 19, 29 in the interpolation cycle of the robots 7, 7 '(typically during the positioning phases A-2' and C / C 'to be carried out in a controlled manner 12 milliseconds).
  • the control can also be implemented via a conventional serial interface.
  • any optical sensors can be used in addition to the gap sensors described so far.
  • area-measuring CCD cameras can be used as sensors 19 ', 29', with the aid of which (in combination with suitable image evaluation algorithms) the spatial positions and the mutual offset of edges as well as spatial distances etc. can be generated as measured variables.
  • any tactile and / or non-contact measuring system can be used, the selection of the suitable sensors being strongly dependent on the respective application.
  • the sensors 19 ', 29' of the sensor systems 18 ', 28' are mounted exclusively on the driver's door installation tool 5 '.
  • sensors 19, 29 can also be used for the measurement, which are located on the rear door.
  • Assembly tool 5 are attached or the sensors can be divided between the two assembly tools 5,5 '.
  • the sensor system 28 ' can also include sensors 29 which are firmly connected to the assembly tool 5: since the two assembly tools 5,5' are firmly coupled to one another in the alignment phase C / C, these sensors 29 (within those reached in the positioning phase) Accuracy) a known position relative to the assembly tool 5 '.
  • the method can be transferred to the assembly of any other (neighboring) add-on parts which have to be mounted on a workpiece in a highly precise relative orientation.
  • robot-guided “tools are to be understood in general terms as tools that are based on a multi-axis manipulator, in particular a six-axis industrial robot are mounted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)
  • Automobile Manufacture Line, Endless Track Vehicle, Trailer (AREA)
  • Automatic Assembly (AREA)

Abstract

The invention relates to a method for the automated mounting of several add-on parts (3, 3') on a production part (1), particularly on a vehicle body, during which the add-on parts (3, 3') should be fastened to the workpiece (1) whereby being aligned in a positionally precise manner with regard to one another. Each add-on part (3, 3') is held in a mounting tool (5, 5') that is guided by a robot (7, 7'). A sensor system (18, 18'), which is connected in a fixed manner to the mounting tool (5, 5') and which is provided with at least one sensor (19, 19'), is fastened to at least one of the mounting tools (5, 5'). An iterative control process (A-2') is used for displacing the mounting tools (5, 5') with the aid of measured values of the sensors (19, 19') into an anticipation position (23,23') in which the add-on parts (3, 3') that are held inside the mounting tools (5, 5') are aligned in a positionally precise manner with regard to one another. Afterwards, the mounting tools (5, 5'), together with the add-on parts (3, 3'), which are held therein and which are aligned in a positionally precise manner with regard to one another, are guided relative to the production part (1) from the anticipation position (23,23') and into a mounting position (27, 27') in which they are joined to the production part (1).

Description

Verfahren und Vorrichtung zur Montage mehrerer Anbauteile an ein Werkstück Method and device for mounting several attachments on a workpiece
Die Erfindung betrifft ein Verfahren zur Montage mehrerer Anbauteile an einem Werkstück, insbesondere an einer Fahrzeugkarosserie, wobei die Anbauteile lagegenau zueinander ausgerichtet an dem Werkstück befestigt werden. Weiterhin betrifft die Erfindung ein Montagesystem zur Durchführung dieses Verfahrens .The invention relates to a method for mounting a plurality of add-on parts on a workpiece, in particular on a vehicle body, the add-on parts being fastened to the workpiece in an aligned position with respect to one another. The invention further relates to an assembly system for carrying out this method.
An Fahrzeugkarosserien werden im Zuge der Montage an unterschiedlichen Stellen im Außen- und im Innenbereich Anbauteile (z.B. Türen, Heckmodul, Frontmodul, ...) an- bzw. eingebaut. Im Interesse einer qualitativ hochwertigen Anmutung des Fahrzeugs ist es notwendig, diese Anbauteile hochgenau gegenüber benachbarten Bereichen auf der Karosserie bzw. gegenüber anderen (benachbarten) An- und Einbauteilen auszurichten und so zu positionieren, dass ein vorgegebener Übergang zwischen dem Anbauteil und den angrenzenden Karosseriebereichen gewährleistet ist. Hierzu muss das Anbauteil lagegenau gegenüber der Karosserie ausgerichtet und in diesem Zustand mit Hilfe eines Fügeverfahrens - beispielsweise durch Anschrauben - an der Karosserie befestigt werden. Ein solches Verfahren zur hochgenauen Ausrichtung eines Anbauteils gegenüber einem Werkstück ist beispielsweise in der (PCT -Anmeldung, unsere Akte P803949/WO/1 ) beschrieben.In the course of assembly, add-on parts (e.g. doors, rear module, front module, ...) are attached to vehicle bodies as part of the assembly process. In the interest of a high-quality appearance of the vehicle, it is necessary to align these attachments with high precision with respect to adjacent areas on the body or with other (neighboring) attachments and fittings and to position them in such a way that a predetermined transition between the attachments and the adjacent body areas is guaranteed is. For this purpose, the add-on part must be aligned precisely in relation to the body and in this state must be attached to the body using a joining process - for example by screwing it on. Such a method for high-precision alignment of an add-on part with respect to a workpiece is described, for example, in (PCT application, our file P803949 / WO / 1).
In manchen Anwendungsfällen werden im Rahmen der Montage mehrere (unterschiedliche und zumeist benachbarte) Anbauteile an einem Werkstück befestigt, die nicht nur gegenüber den benachbarten Karosseriebereichen, sondern auch relativ zueinander möglichst genau ausgerichtet sein sollen. Ein Beispiel hierfür ist die Montage von Seitentüren an Fahrzeugkarosse- rien: Die Fahrertür grenzt im Bereich der B-Säule unmittelbar an die Fondtür an. Um ein hochwertiges Erscheinungsbild des fertigen Fahrzeugs zu erreichen, muss die Lage diese beiden Türen hochgenau zueinander abgestimmt sein. Insbesondere muss ein zwischen Fahrertür und Fondtür gebildeter Spalt möglichst gleichförmig sein; weiterhin müssen die Tiefenmaße der beiden Türen in diesem Bereich möglichst genau übereinstimmen. Daher besteht ein großes Interesse an einem großserientauglichen, automatisierbaren Verfahren, mit Hilfe dessen diese beiden Türen in einer solchen Weise in die zugehörigen Türausschnitte eingesetzt und befestigt werden können, dass prozesssicher eine hochgenaue Relativausrichtung der beiden Türen gegeben ist .In some applications, several (different and mostly adjacent) attachments are attached to a workpiece during assembly, which should not only be aligned as precisely as possible with respect to the adjacent body areas, but also relative to one another. An example of this is the assembly of side doors on vehicle bodies. rien: The driver's door is adjacent to the rear door in the area of the B-pillar. In order to achieve a high-quality appearance of the finished vehicle, the position of these two doors must be coordinated with one another with great precision. In particular, a gap formed between the driver's door and the rear door must be as uniform as possible; Furthermore, the depth dimensions of the two doors in this area must match as closely as possible. Therefore, there is great interest in a process that is suitable for large-scale production and can be automated, with the aid of which these two doors can be inserted and fastened in the associated door cut-outs in such a way that a highly accurate relative alignment of the two doors is given in a process-reliable manner.
Der Erfindung liegt somit die Aufgabe zugrunde, ein automatisierbares Verfahren vorzuschlagen, mit Hilfe dessen mehrere Anbauteile - insbesondere zwei benachbarte Fahrzeugtüren - lagegenau zueinander an einem Werkstück - insbesondere an einer Fahrzeugkarosserie - befestigt werden können. Der Erfindung liegt weiterhin die Aufgabe zugrunde, eine zur Durchführung des Verfahrens geeignete Vorrichtung vorzuschlagen.The invention is therefore based on the object of proposing an automatable method with the aid of which a plurality of add-on parts - in particular two adjacent vehicle doors - can be attached to a workpiece - in particular on a vehicle body - in a precisely positioned manner relative to one another. The invention is also based on the object of proposing a device which is suitable for carrying out the method.
Die Aufgabe wird erfindungsgemäß durch die Merkmale der Ansprüche 1 und 6 gelöst .The object is achieved by the features of claims 1 and 6.
Danach werden die lagegenau zueinander zu montierenden Anbauteile in einem gemeinsamen Montageprozess am Werkstück befestigt. Die Positionierung und Befestigung der Anbauteile erfolgt mit Hilfe von robotergeführten Montagewerkzeugen, wobei für jedes der beteiligten Anbauteile ein eigenes robotergeführtes Montagewerkzeug vorgesehen ist . Mit Hilfe dieser Montagewerkzeuge werden die gemeinsam zu verbauenden Anbauteile zunächst in einer Vorhalteposition lagegenau zueinander ausgerichtet und dann - unter Beibehaltung dieser lagegenauen Ausrichtung - am Werkstück positioniert und mit diesem verbunden. Zur Ausrichtung der Anbauteile in der Vorhalteposition kommt ein iterativer Regelvorgang zum Einsatz, durch den das zweite Anbauteil (und evtl. die weiteren Anbauteile) gegenüber dem raumfest gehaltenen ersten Anbauteil so lange verschoben und/oder geschwenkt wird, bis die gewünschte Relativlage der Anbauteile erreicht ist. Der iterative Regelvorgang verwendet Messwerte eines Sensorsystems, das fest mit einem der Montagewerkzeuge verbunden ist und Messwerte ausgewählter Messgrößen auf den Anbauteilen liefert, die für die Beurteilung der Relativlage von besonderer Bedeutung sind. Sollen beispielsweise zwei Anbauteile, die benachbart zueinander in das Werkstück eingebaut werden sollen, bezüglich ihrer aneinandergrenzenden Ränder zueinander ausgerichtet werden, so spielen die Spaltmaße entlang dieser Ränder als Mess- größen eine besonders große Rolle.Then the add-on parts that are to be assembled in a precise position relative to one another are attached to the workpiece in a joint assembly process. The attachments are positioned and fastened with the aid of robot-guided assembly tools, with a separate robot-guided assembly tool being provided for each of the attachments involved. With the help of these assembly tools, the add-on parts that are to be installed together are first aligned with one another in a holding position and then - while maintaining this exact alignment - positioned on the workpiece and connected to it. An iterative control process is used to align the add-on parts in the lead position the second attachment (and possibly the other attachments) is shifted and / or pivoted relative to the first attachment, which is held fixed in space, until the desired relative position of the attachments is reached. The iterative control process uses measured values from a sensor system that is permanently connected to one of the assembly tools and delivers measured values of selected measured variables on the attachments that are of particular importance for assessing the relative position. If, for example, two add-on parts that are to be installed adjacent to one another in the workpiece are to be aligned with respect to one another with respect to their adjoining edges, the gap dimensions along these edges play a particularly large role as measured variables.
Der iterative Regelvorgang, durch den die Anbauteile lagegenau zueinander ausgerichtet werden, umfasst vorteilhafterweise die folgenden Prozessschritte:The iterative control process, by means of which the add-on parts are aligned precisely with respect to one another, advantageously comprises the following process steps:
- es werden (Ist-) Messwerte der Messgrößen erzeugt,- (actual) measured values of the measured variables are generated,
- diese (Ist-) Messwerte werden mit (Soll-) Messwerten verglichen, welche im Rahmen einer (der eigentlichen Arbeitsphase vorausgehenden) sogenannten „Einrichtphase" erzeugt wurden,these (actual) measured values are compared with (target) measured values which were generated in the context of a so-called “set-up phase” (preceding the actual work phase),
- aus der Differenz zwischen (Ist-) Messwerten und (Soll-) Messwerten wird unter Zuhilfenahme einer im Rahmen der Einrichtphase berechneten sogenannten „Jacobimatrix" (oder „Sensitivitätsmatrix") ein Verschiebungsvektor der Montagewerkzeuge berechnet , unda displacement vector of the assembly tools is calculated from the difference between (actual) measured values and (target) measured values with the aid of a so-called “Jacobi matrix” (or “sensitivity matrix”) calculated during the set-up phase, and
- die Montagewerkzeuge werden um diesen Verschiebungsvektor relativ zueinander verschoben.- The assembly tools are displaced relative to each other by this displacement vector.
Diese Regelschleife wird so lange durchlaufen, bisThis control loop is continued until
- entweder die Abweichung zwischen (Soll-) Messwerten und (Ist-) Messwerten unterhalb vorgegebener Schwellwerte liegt, oder- either the deviation between (target) measured values and (actual) measured values lies below predetermined threshold values, or
- die bei aufeinanderfolgenden Iterationsschritten zu erreichende Reduktion dieser Abweichungen unterhalb eines vorgegebenen Schwelle liegt. Sowohl die (Soll-) Messwerte als auch die Jacobimatrix werden im Rahmen einer - dem eigentlichen Positionier- und Montagevorgang vorgeschalteten - Einrichtphase ermittelt, im Rahmen derer die Montagewerkzeuge auf die konkrete Montageaufgabe eingelernt werden. Diese Einrichtphase wird im Zuge der Einstellung einer neuen Kombination aus Werkzeugen, Sensorsystem, Werkstück und Art und Einbauposition der einzusetzenden Anbauteile einmalig durchlaufen.- The reduction of these deviations to be achieved in successive iteration steps is below a predetermined threshold. Both the (target) measured values and the Jacobian matrix are determined in the course of a set-up phase - upstream of the actual positioning and assembly process - in which the assembly tools are taught in for the specific assembly task. This set-up phase is carried out once in the course of setting a new combination of tools, sensor system, workpiece and type and installation position of the attachments to be used.
Das Verfahren hat .den großen Vorteil, dass er unabhängig ist von der genauen Raumlage des Werkstücks und der Anbauteile. insbesondere benötigt der geregelt zu durchlaufende Positioniervorgang, im Rahmen dessen die in den Montagewerkzeugen gehaltenen Anbauteile lagegenau zueinander ausgerichtet werden, keinerlei Informationen bezüglich der Absolutpositionen der einzelnen Anbauteile im Arbeitsraum der beteiligten Roboter; das erfindungsgemäße Verfahren beruht ausschließlich auf Relativmessungen, im Rahmen derer eine (in der Einrichtphase hinterlegte) Information - entsprechend einem Satz von (Soll- ) Messwerten des Sensorsystems - über den Regelvorgang wiederhergestellt wird. Dies ist mit großen prozessualen und apparativen Vorteilen verbunden:The process has the great advantage that it is independent of the exact spatial position of the workpiece and the attachments. in particular, the positioning process to be carried out in a controlled manner, within the scope of which the attachments held in the assembly tools are precisely aligned with one another, does not require any information regarding the absolute positions of the individual attachments in the working space of the robots involved; The method according to the invention is based exclusively on relative measurements, in the context of which information (stored in the set-up phase) - corresponding to a set of (target) measurement values of the sensor system - is restored about the control process. This is associated with great procedural and equipment advantages:
- Zum einen ist keine interne metrische Kalibrierung der Sensoren notwendig, da die zum Einsatz kommenden Sensoren nicht mehr „messen", sondern lediglich auf eine monotone Inkrementalbewegung des Roboters mit einer monotonen Änderung ihres Sensorsignals reagieren. Dies bedeutet beispielsweise, dass bei Verwendung einer Fernseh- bzw. CCD- Kamera als Sensor die kamerainternen Linsenverzeichnungen nicht kompensiert werden müssen bzw. dass bei Verwendung eines Triangulationssensors die exakte metrische Berechnung von Abstandswerten entfällt.- On the one hand, no internal metric calibration of the sensors is necessary, since the sensors used no longer "measure", but only react to a monotonous incremental movement of the robot with a monotonous change in their sensor signal. This means, for example, that when using a television or CCD camera as sensor, the camera-internal lens distortions do not have to be compensated for or that the exact metric calculation of distance values is omitted when using a triangulation sensor.
- Weiterhin ist keine externe metrische Kalibrierung der Sensoren notwendig. Das bedeutet, dass die Lage der Sensoren nicht metrisch in bezug auf den Arbeitsraum des das Sensorsystem tragenden Roboters bzw. die Koordinatensystem der zugehörigen Roboterhand ermittelt zu werden braucht, um ge- eignete Korrekturbewegungen berechnen zu können. Die Sensoren müssen lediglich in einer solchen Weise am Montagewerkzeug befestigt werden, dass sie in ihrem Fangbereich überhaupt geeignete Messdaten der Referenzbereiche auf den am Ausrichtprozess beteiligten Anbauteilen erfassen können.- Furthermore, no external metric calibration of the sensors is necessary. This means that the position of the sensors does not have to be determined metrically in relation to the working space of the robot carrying the sensor system or the coordinate system of the associated robot hand in order to to be able to calculate suitable correction movements. The sensors only have to be attached to the assembly tool in such a way that they can record suitable measurement data of the reference areas on the attachments involved in the alignment process in their capture area.
Auf eine Kalibriervorrichtung zur Bestimmung der internen und der externen Kalibration der Sensoren und kann somit vollständig verzichtet werden. Es können also metrisch unkalib- rierte Sensoren zum Einsatz kommen, die wesentlich einfacher und somit auch billiger sind als kalibrierte Sensoren. Sowohl der instrumentelle Aufbau als auch die Einrichtung und der Betrieb des Gesamtsystems ist daher sehr kostengünstig realisierbar. Weiterhin wird die Ersteinrichtung und Wartung des Montagesystems drastisch vereinfacht und kann auch von angelerntem Personal vorgenommen werden.A calibration device for determining the internal and external calibration of the sensors and can therefore be completely dispensed with. So metrically uncalibrated sensors can be used, which are much simpler and therefore cheaper than calibrated sensors. The instrumental structure as well as the setup and operation of the overall system can therefore be implemented very inexpensively. Furthermore, the initial setup and maintenance of the assembly system is drastically simplified and can also be carried out by trained personnel.
Das Ergebnis der Relativpositionierung der Anbauteile zueinander ist weiterhin unabhängig von der absoluten Positioniergenauigkeit der verwendeten Roboters, da eventuelle Roboter- ungenauigkeiten bei dem iterativen Regelprozess, der zum Anfahren der Vorhalteposition durchlaufen wird, ausgeregelt werden. Aufgrund der daraus resultierenden kurzen Fehlerketten ist bei Bedarf eine sehr hohe Wiederholgenauigkeit im Positionierergebnis erzielbar.The result of the relative positioning of the add-on parts to one another is still independent of the absolute positioning accuracy of the robot used, since any robot inaccuracies are corrected in the iterative control process which is run through to move to the lead position. Due to the resulting short error chains, a very high repeatability in the positioning result can be achieved if required.
Die Anzahl der Positionsfreiheitsgrade, die mit Hilfe dieses Verfahrens bei der Relativpositionierung der Anbauteile kompensiert werden können, ist frei wählbar und hängt nur von der Konfiguration des Sensorsystems ab. Ebenso ist die Anzahl der verwendeten Sensoren frei wählbar. Die Anzahl der bereitgestellten (skalaren) Sensorinformationen muss lediglich gleich oder größer der Anzahl der zu regelnden Freiheitsgrade sein. Insbesondere kann eine größere Zahl von Sensoren vorgesehen werden, und die redundante Sensorinformation kann verwendet werden, z.B. um Formfehler der betrachteten Referenz- bereiche auf den Anbauteilen besser erfassen zu können oder den Positioniervorgang in seiner Genauigkeit zu verbessern. Schließlich kann Sensorinformation aus unterschiedlichen berührungsfreien und/oder taktilen Quellen verwendet werden (z.B. eine Kombination von CCD-Kameras, optischen SpaltSensoren und taktilen Abstandssensoren) . Somit können durch Verwendung geeigneter Sensoren die Messergebnisse unterschiedlicher qualitätsrelevanter Größen (Spaltmaße, Übergangsmaße, Tiefenmaße) beim Ausrichtprozess der Anbauteile zueinander berücksichtigt werden.The number of degrees of position freedom that can be compensated for with the relative positioning of the attachments using this method can be freely selected and depends only on the configuration of the sensor system. The number of sensors used can also be freely selected. The number of (scalar) sensor information provided need only be equal to or greater than the number of degrees of freedom to be controlled. In particular, a larger number of sensors can be provided, and the redundant sensor information can be used, for example in order to be able to better detect shape errors in the reference areas under consideration on the attachments or to improve the accuracy of the positioning process. Finally, sensor information from different non-contact and / or tactile sources can be used (eg a combination of CCD cameras, optical gap sensors and tactile distance sensors). Thus, by using suitable sensors, the measurement results of different quality-relevant sizes (gap dimensions, transition dimensions, depth dimensions) can be taken into account in the alignment process of the attachments to one another.
Das Verfahren gestattet einen schnellen Ausgleich von Restunsicherheiten, die bei der Positionierung der Anbauteile zueinander auftreten können; solche Restunsicherheiten können zustande kommen durch Lageabweichungen der zueinander auszurichtenden Anbauteile in den zugehörigen Montagewerkzeugen und/oder durch Formfehler der Anbauteile, welche durch Bauteiltoleranzen bedingt sind.The method allows a quick compensation of residual uncertainties that can occur when positioning the attachments to each other; Such residual uncertainties can arise from positional deviations of the add-on parts to be aligned in the associated assembly tools and / or from shape errors of the add-on parts which are caused by component tolerances.
Ist der Positionierprozess, im Rahmen dessen die Anbauteile in eine gewünschte Relativposition zueinander gebracht werden, abgeschlossen, so werden die auf diese Weise gegenseitig ausgerichteten Anbauteile zu dem Werkstück transportiert und mit diesem verbunden. Um dabei die (in der Vorhalteposition erreichte) hochgenaue Relativ-Ausrichtung der beiden Anbauteile nicht zu verlieren, werden vorteilhafterweise die beiden Roboter, die die Anbauteile tragen, in der Vorhalteposition aneinander angekoppelt; einer der beiden Roboter dient dabei als „Master" -Roboter, dessen Bewegungen der andere, sogenannte „Slave" -Roboter folgt. Bei der Annäherung der Anbauteile an das Werkstück nimmt der „Master"-Roboter daher den „Slave" -Roboter auf seiner Sollbahn mit, so dass der räumliche Bezug der Anbauteile zueinander unverändert bleibt. Ein Steuerungsprinzip, mit Hilfe derer eine solche Kopplung erreicht werden kann, ist beispielsweise bekannt aus der EP 752 633 AI, deren Inhalt hiermit in die vorliegende Anmeldung ü- bernommen wird. Um - neben der hochgenauen Ausrichtung der Anbauteile relativ zueinander - auch eine hohe Genauigkeit bei der Positionierung und Montage der Anbauteile in das Werkstück zu erreichen, ist es vorteilhaft, auch die Einpassung der (über die Montageroboter aneinander gekoppelten) Anbauteile an das Werkstück im Rahmen eines iterativen Regelvorgangs durchzuführen. In diesem Fall ist ein weiteres Sensorsystem vorgesehen, das fest mit einem der Montagewerkzeuge verbunden ist und Sensoren umfasst, die - bei Annäherung der gekoppelten Anbauteile an das Werkstück - auf ausgewählte Referenzbereiche auf dem Werkstück gerichtet sind. Die seitens dieser Sensoren gelieferten Messwerte werden verwendet, um - analog zu der oben beschriebenen iterativen Ausrichtung der Anbauteile zueinander - eine iterative Ausrichtung der Anbauteile gegenüber dem Werkstück zu erreichen.When the positioning process, in which the add-on parts are brought into a desired relative position to one another, is completed, the add-on parts aligned in this way are transported to the workpiece and connected to it. In order not to lose the high-precision relative alignment of the two attachments (achieved in the hold position), the two robots that carry the attachments are advantageously coupled to one another in the hold position; one of the two robots serves as a "master" robot, the movements of which the other, so-called "slave" robot follows. When the attachments approach the workpiece, the "master" robot therefore takes the "slave" robot along on its target path, so that the spatial relationship of the attachments to one another remains unchanged. A control principle by means of which such a coupling can be achieved is known, for example, from EP 752 633 AI, the content of which is hereby incorporated into the present application. In order to achieve - besides the highly precise alignment of the attachments relative to each other - a high level of accuracy in the positioning and assembly of the attachments in the workpiece, it is also advantageous to fit the attachments (coupled to one another via the assembly robots) onto the workpiece within the framework of a perform iterative control process. In this case, a further sensor system is provided, which is firmly connected to one of the assembly tools and comprises sensors which - when the attached parts approach the workpiece - are directed at selected reference areas on the workpiece. The measured values supplied by these sensors are used in order to achieve an iterative alignment of the attachments with respect to the workpiece, analogous to the iterative alignment of the attachments to one another described above.
Weitere vorteilhafte Ausgestaltungen der Erfindung sind den Unteransprüchen zu entnehmen. Im folgenden wird die Erfindung anhand eines in den Zeichnungen dargestellten Ausführungsbei- spiels näher erläutert; dabei zeigen:Further advantageous embodiments of the invention can be found in the subclaims. The invention is explained in more detail below on the basis of an exemplary embodiment illustrated in the drawings; show:
Fig. 1 eine schematische Darstellung ausgewählter Stellungen eines Montagesystems bei der lagegenauen Ausrichtung und Montage zweier Türen in eine FahrzeugkarosserieFig. 1 is a schematic representation of selected positions of an assembly system in the precise orientation and assembly of two doors in a vehicle body
Fig. la: Rückzugsposition,- Fig. 1b: Vorhalteposition; Fig. lc: Montageposition.Fig. La: retreat position, - Fig. 1b: lead position; Fig. Lc: mounting position.
Fig. 2 eine schematische Detailansicht eines Fahrertür- Montagewerkzeugs;Fig. 2 is a schematic detailed view of a driver's door assembly tool;
Fig. 3 eine schematische Darstellung der Verfahrbahnen der das Fahrertür-Montagewerkzeug und das Fondtür- Montagewerkzeug tragenden Roboterhände .Fig. 3 is a schematic representation of the trajectories of the driver's door assembly tool and the rear door assembly tool carrying robot hands.
Figur 1 zeigt einen Ausschnitt einer Fahrzeugkarosserie 1 mit einem hinteren Türausschnitt 2, in den - im Zuge der Fahrzeugmontage - eine Fondtür 3 montiert werden soll und einem vorderen Türausschnitt 2', in den eine Fahrertür 3' montiert werden soll. Diese Karosserie 1 ist ein Beispiel für ein Werkstück mit benachbarten Ausschnitten 2,2', in die benachbarte, den Ausschnitten 2,2' bezüglich ihrer Form angepasste Anbauteile 2,2' lagegenau eingesetzt werden sollen: In Einbaulage der Türen 3,3' grenzt im Bereich der B-Säule 8 der Karosserie 1 die Fondtür 3 mit ihrer in Fahrtrichtung vorderen Kante 10 unmittelbar and die in Fahrtrichtung hintere Kante 10' der Fahrertür 3' an (siehe Figuren 1b und lc) .Figure 1 shows a section of a vehicle body 1 with a rear door cutout 2, in which - in the course of vehicle assembly - a rear door 3 is to be installed and one front door cutout 2 'in which a driver's door 3' is to be mounted. This body 1 is an example of a workpiece with adjacent cutouts 2, 2 'into which adjacent attachments 2, 2' which are adapted to the shape of the cutouts 2, 2 'are to be inserted in the correct position: in the installed position of the doors 3, 3' borders in the area of the B-pillar 8 of the body 1, the rear door 3 with its front edge 10 in the direction of travel and the rear edge 10 'of the driver's door 3' in the direction of travel (see FIGS. 1b and 1c).
Die Montage der beiden Türe 3,3' in die Karosserie 1 erfolgt mit Hilfe eines (in Figur 1 schematisch dargestellten) automatischen MontageSystems 4 mit einem Arbeitsraum 6. Das Montagesystem 4 umfasst ein von einem Industrieroboter 7 geführtes Montagewerkzeug 5 , das die Fondtür 3 zuführt und im Türausschnitt 2 der Karosserie 1 positioniert. Weiterhin umfasst das Montagesystem 4 ein von einem Industrieroboter 7' geführtes Montagesystem 5', das die Fahrertür 3' zuführt und im Türausschnitt 2' der Karosserie 1 positioniert. Zur Lage- und Bewegungssteuerung der Roboter 7,7' und der Werkzeuge 5,5' ist ein Steuersystem 20 vorgesehen. - Analog zum Montagesystem 4 der Figur 1 für die Montage der linken Fondtür 3 und Fahrertür 3' ist (auf der gegenüberliegenden Seite der Karosserie 1) ein weiteres Montagesystem für die rechte Fondtür vorgesehen, dessen Aufbau und Funktionsweise dem des Montagesystems 4 (spiegelbildlich) entspricht.The assembly of the two doors 3, 3 'into the body 1 takes place with the aid of an automatic assembly system 4 (shown schematically in FIG. 1) with a work space 6. The assembly system 4 comprises an assembly tool 5 guided by an industrial robot 7, which feeds the rear door 3 and positioned in the door cutout 2 of the body 1. Furthermore, the assembly system 4 comprises an assembly system 5 'guided by an industrial robot 7', which feeds the driver's door 3 'and positions it in the door cutout 2' of the body 1. A control system 20 is provided for position and movement control of the robots 7, 7 'and the tools 5, 5'. - Analogous to the assembly system 4 of Figure 1 for the assembly of the left rear door 3 and driver's door 3 '(on the opposite side of the body 1), another assembly system is provided for the right rear door, the structure and operation of which corresponds to that of the assembly system 4 (mirror image) ,
Um einen qualitativ hochwertigen optischen Eindruck der Karosserie 1 sicherzustellen, müssen die Türen 3,3' lagegenau (in bezug auf Position und Winkellage) gegenüber den den Türausschnitten 2,2' benachbarten Bereichen 9 der Karosserie 1 montiert werden; diese Umgebungsbereiche 9 bilden somit einen sogenannten Referenzbereich zur Ausrichtung der Türen 3,3' gegenüber der Karosserie 1. Weiterhin ist es wichtig, die beiden Türen 3 und 3' hochgenau in einer solchen Weise zueinander auszurichten, dass sie im Bereich ihrer benachbarten Kanten 10,10' eine vorgegebene Relativlage einnehmen, insbe- sondere einen ebenmäßigen Spalt 21 bilden und in bezug auf ihre Lage in Z- (Vertikal-) und Y- (Quer-) Richtung der Karosserie aufeinander abgestimmt sind. Die den Kanten 10,10' benachbarten Bereiche 11,11' auf den Türen 3,3' bilden somit die sogenannten Referenzbereiche zur gegenseitigen Ausrichtung der Türen 3,3'.In order to ensure a high-quality visual impression of the body 1, the doors 3, 3 'must be mounted in an exact position (in terms of position and angular position) relative to the areas 9 of the body 1 adjacent to the door cutouts 2, 2'; these surrounding areas 9 thus form a so-called reference area for aligning the doors 3, 3 'with respect to the body 1. Furthermore, it is important to align the two doors 3 and 3' with one another in a highly precise manner in such a way that in the area of their adjacent edges 10, 10 'assume a predetermined relative position, in particular special form an even gap 21 and are coordinated with respect to their position in the Z (vertical) and Y (transverse) direction of the body. The areas 11, 11 'adjacent to the edges 10, 10' on the doors 3, 3 'thus form the so-called reference areas for the mutual alignment of the doors 3, 3'.
Das robotergeführte Montagewerkzeug 5', das zur Positionierung der Fahrertür 3' im Türausschnitt 2' und der anschließenden Montage zum Einsatz kommt, ist schematisch in Figur 2 gezeigt. Dieses an der Hand 12' des Industrieroboters 7' befestigte Montagewerkzeug 5' umfasst einen Rahmen 13', an dem eine Fixiervorrichtung 14' befestigt ist, mit Hilfe derer die Fahrertür 3' in einer wohldefinierten Lage aufgenommen werden kann. Die Aufnahme der Tür 3' durch die Fixiervorrichtung 14' erfolgt an der Innenseite 15' der Tür 3' in unmittelbarer Nachbarschaft von Scharnieraufnahmeflächen 16', an denen im Zuge der Türmontage (in Figur 2 nicht dargestellte) Befestigungsscharniere angeschraubt werden. Durch diese Wahl der Angriffspunkte der Fixiervorrichtung 14' an der Fahrertür 3' wird sichergestellt, dass zwischen den (durch die Scharniere definierten) Anlenkpunkten der Fahrertür 3' in der Karosserie 1 und den Angriffspunkten der Fixiervorrichtung 14' ein minimaler Hebelarm vorliegt, so dass sich die Schwerkraft auf die in der Fixiervorrichtung 14' gehaltene Tür 3' annähernd identisch auswirkt wie auf die fertig eingebaute Tür 3'. Damit wird gewährleistet, dass der beim Türeinbau auftretende Formverzug minimal ist. Die Fixiervorrichtung 14' ist so gestaltet, dass der Bereich der Scharnieraufnahmeflächen 16' auf der Türinnenseite 15' frei zugänglich ist, so dass die Scharniere montiert werden können, während sich die Tür 3' in der Fixiervorrichtung 14' befindet. Durch die in Figur 2 gezeigte Gestaltung der Fixiervorrichtung 14' ist weiterhin sichergestellt, das die Tür 3' durch das Montagewerkzeug 5' in Einbaulage (d.h. im geschlossenen Zustand) an der Karosserie 1' positioniert werden kann. Die Fixiervorrichtung 14' ist dreh- und/oder schwenkbar gegenüber dem Rahmen 13' des Montagewerk- zeugs 5' angeordnet, so dass sie nach der Montage durch den Fensterausschnitt 17' der montierten und geschlossenen Tür 3' entfernt werden kann. - Das Montagewerkzeug 5 für die Fondtür 3 ist analog gestaltet.The robot-guided assembly tool 5 ', which is used to position the driver's door 3' in the door cutout 2 'and the subsequent assembly, is shown schematically in FIG. This assembly tool 5 'fastened to the hand 12' of the industrial robot 7 'comprises a frame 13' to which a fixing device 14 'is fastened, by means of which the driver's door 3' can be received in a well-defined position. The door 3 'is received by the fixing device 14' on the inside 15 'of the door 3' in the immediate vicinity of hinge receiving surfaces 16 ', to which fastening hinges (not shown in FIG. 2) are screwed in the course of the door assembly. This choice of the points of application of the fixing device 14 'on the driver's door 3' ensures that there is a minimal lever arm between the articulation points of the driver's door 3 '(defined by the hinges) in the body 1 and the points of application of the fixing device 14', so that the force of gravity on the door 3 'held in the fixing device 14' has approximately the same effect as on the fully installed door 3 '. This ensures that the shape distortion that occurs when installing the door is minimal. The fixing device 14 'is designed such that the area of the hinge receiving surfaces 16' on the inside 15 'of the door is freely accessible, so that the hinges can be mounted while the door 3' is in the fixing device 14 '. The design of the fixing device 14 'shown in FIG. 2 further ensures that the door 3' can be positioned on the body 1 'by the assembly tool 5' in the installed position (ie in the closed state). The fixing device 14 'is rotatable and / or pivotable relative to the frame 13' of the assembly plant. Stuff 5 'arranged so that it can be removed after assembly through the window cutout 17' of the assembled and closed door 3 '. - The assembly tool 5 for the rear door 3 is designed analogously.
Zur lagegenauen Ausrichtung der im Montagewerkzeug 5' fixierten Fahrertür 3' gegenüber der im Montagewerkzeug 5 gehaltenen Fondtür 3 ist das Montagewerkzeug 5' mit einem Sensorsystem 18' mit mehreren (in der schematischen Darstellung der Figur 2 drei) Sensoren 19' versehen, die starr mit dem Rahmen 13 des Montagewerkzeugs 5' verbunden sind; sie bilden somit mit dem Montagewerkzeug 5' eine bauliche Einheit. Diese Sensoren 19' dienen zur Ermittlung von Fugen-, Spalt- und Tiefenmaßen zwischen der Vorderkante 10 der Fondtür 3 und der Hinterkante 10' der Fahrertür 3'. Mit Hilfe dieses Sensorsystems 18' wird - wie weiter unten beschrieben - die in dem Montagewerkzeug 5' gehaltene Fahrertür 3' in einem iterativen Regelvorgang gegenüber der Fondtür 3 ausgerichtet .For precise alignment of the driver door 3 'fixed in the assembly tool 5' with respect to the rear door 3 held in the assembly tool 5, the assembly tool 5 'is provided with a sensor system 18' with several (three in the schematic representation of FIG. 2) sensors 19 'which are rigid with the frame 13 of the assembly tool 5 'is connected; they thus form a structural unit with the assembly tool 5 '. These sensors 19 'are used to determine joint, gap and depth dimensions between the front edge 10 of the rear door 3 and the rear edge 10' of the driver's door 3 '. With the help of this sensor system 18 '- as described further below - the driver door 3' held in the assembly tool 5 'is aligned in an iterative control process with respect to the rear door 3.
Soll das Montagesystem 4 auf eine neue Bearbeitungsaufgabe - beispielsweise auf. die Türenmontage in einem neuen Fahrzeugtyp - eingestellt werden, so muss zunächst eine sogenannte Einrichtphase durchlaufen werden, in der die Montagewerkzeuge 5,5' konfiguriert werden. Dabei wird - entsprechend der zu montierenden Fahrertür 3' - eine angepasste Fixiervorrichtung 14', ein geeignet gestalteter Rahmen 13' und ein Sensorsystem 18' mit den entsprechenden Sensoren 19' ausgewählt und gemeinsam zu dem Montagewerkzeug 5' konfiguriert. Weiterhin wird aus einer Fixiervorrichtung 14 und einem Rahmen 13 eine Montagevorrichtung 5 für die Fondtür 3 konfiguriert . Im An- schluss daran wird das Sensorsystem 18' des Montagewerkzeugs 5' „eingelernt", indem - wie im folgenden unter I. beschrieben - (Soll-) Messwerte des Sensorsystems 18' auf einer „Master" -Fondtür 103 und einer „Master" -Fahrertür 103' aufgenommen werden. Weiterhin werden in einer zweiten Einlernphase - wie im folgenden unter II. beschrieben - die beiden zueinander ausgerichteten „Master" -Türen 103,103' auf eine „Master"- Karosserie 101 eingelernt und die gesteuert zu durchlaufenden Bahnabschnitte der Verfahrbahnen der Roboter 7,7' einprogrammiert. Nach Beendigung dieser Einrichtphasen 1,11 steht das so konfigurierte und eingemessene Montagesystem 4 zum Serieneinsatz bereit, bei dem für jede dem Arbeitsraum 6 der Roboter 7,7' zugeführte Karosserie 1 eine sogenannte Arbeitsphase durchlaufen wird, bei der - wie im folgenden unter III. beschrieben - zwei zugehörige Türen 3,3' zunächst lagegenau zueinander ausgerichtet werden und anschließend gemeinsam in den Türausschnitt 2 transportiert, dort positioniert und befestigt werden.If the assembly system 4 is to a new machining task - for example . the door assembly in a new vehicle type - must first be run through a so-called setup phase in which the assembly tools 5,5 'are configured. An appropriate fixing device 14 ', a suitably designed frame 13' and a sensor system 18 'with the corresponding sensors 19' are selected and configured together with the assembly tool 5 ', in accordance with the driver's door 3' to be assembled. Furthermore, a mounting device 5 for the rear door 3 is configured from a fixing device 14 and a frame 13. Subsequently, the sensor system 18 'of the assembly tool 5' is “taught in” by — as described below under I. — (target) measurement values of the sensor system 18 ′ on a “master” rear door 103 and a “master” Driver door 103 '. Furthermore, in a second learning phase - as described below under II. - the two mutually aligned "master" doors 103, 103' are placed on a "master" - Body 101 taught and programmed the controlled path sections of the trajectories of the robots 7,7 '. After completion of these setup phases 1, 11, the assembly system 4 configured and measured in this way is ready for series use, in which a so-called work phase is carried out for each body 1 supplied to the work space 6 of the robots 7, 7 ', in which - as in the following under III. described - two associated doors 3, 3 'are initially aligned in relation to one another and then transported together into the door cutout 2, positioned and fastened there.
I. Einrichtphase des Montagewerkzeugs 5' gegenüber dem benachbarten Anbauteil (d.h. gegenüber der Fondtür 103) :I. Set-up phase of the assembly tool 5 'with respect to the adjacent attachment (i.e. with respect to the rear door 103):
Zur Lösung einer neu gestellten Montageaufgabe wird in einem ersten Schritt zunächst das wie oben beschrieben konfigurierte Fondtür-Montagewerkzeug 5 an der Roboterhand 12 befestigt und mit einer („Master" -) Fondtür 103 bestückt. Das Montagewerkzeug 5 wird dann mit Hilfe des Roboters 7 ein eine frei wählbare, außerhalb des eigentlichen Montagebereichs 122 auf der Karosserie 101 befindliche, sogenannte Fondtür- Vorhalteposition 23 bewegt; in dieser Stellung wird das Montagewerkzeug 5 während der Einrichtphase stationär gehalten.To solve a new assembly task, in a first step the rear door assembly tool 5 configured as described above is first attached to the robot hand 12 and equipped with a (“master”) rear door 103. The assembly tool 5 is then inserted using the robot 7 moves a freely selectable so-called rear door holding position 23, which is located on the body 101 outside the actual assembly area 122; in this position, the assembly tool 5 is held stationary during the set-up phase.
Weiterhin wird ein der Montageaufgabe angepasste Sensorsystem 18' ausgewählt und gemeinsam mit der Fixiervorrichtung 14' zum Montagewerkzeug 5' konfiguriert, das seinerseits an der Roboterhand 12' befestigt wird. Die Fixiervorrichtung 14' wird mit einer („Master" -) Fahrertür 103' bestückt und (manuell bzw. interaktiv) in einer solchen Weise gegenüber der in Fondtür-Vorhalteposition 23 befindlichen („Master" -) Fondtür 103 ausgerichtet, dass eine „optimale" Ausrichtung der beiden Türen 103,103' zueinander gegeben ist (siehe Figur lb) . Diese „optimale" Ausrichtung ist im vorliegenden Fall dadurch definiert, dass der Spalt 21 zwischen den beiden Türen 103,103' möglichst gleichförmig ist, dass zwischen den beiden Kanten 10,10' in Fahrzeugquerrichtung (Y-Richtung) kein Tiefenversatz vorliegt und dass die Referenzbereiche 11,11' der beiden Türen 103,103' in Z-Richtung miteinander fluchten. Die dabei eingenommene Relativposition des Montagewerkzeugs 5' gegenüber dem Montagewerkzeug 5 wird im folgenden als Fahrertür- Vorhalteposition 23' bezeichnet.Furthermore, a sensor system 18 'adapted to the assembly task is selected and configured together with the fixing device 14' to form the assembly tool 5 ', which in turn is attached to the robot hand 12'. The fixing device 14 'is equipped with a ("master" -) driver's door 103' and (manually or interactively) aligned in such a way with respect to the ("master" -) rear door 103 located in the rear door reserve position 23 that an "optimal.""Alignment of the two doors 103, 103 'to one another is given (see FIG. 1b). This" optimal "alignment is defined in the present case in that the gap 21 between the two doors 103, 103' It is as uniform as possible that there is no depth offset between the two edges 10, 10 'in the vehicle transverse direction (Y direction) and that the reference areas 11, 11' of the two doors 103, 103 'are aligned with one another in the Z direction. The relative position of the assembly tool 5 'in relation to the assembly tool 5 assumed in the following is referred to as the driver's door retention position 23'.
Die Zahl und die Lage der Sensoren 19' auf dem Rahmen 13' des Montagewerkzeugs 5' ist so gewählt, dass die Sensoren 19' auf geeignete, für die „optimale" Ausrichtung besonders wichtige, Bereiche 24' auf der („Master"-) Fahrertür 103' bzw. Bereiche 24 der („Master" -) Fondtür 103 gerichtet sind. Im Ausführungsbeispiel der Figuren 2, lb werden drei Sensoren 19' verwendet werden, die auf die in Figur 1 gezeigten Bereiche 24,24' gerichtet sind, so dass die Sensoren 19' Spaltmessungen im oberen, mittleren und unteren Bereich der gegenüberliegenden Kanten 10,10' der beiden („Master"-) Türen 103,103' durchführen. Die Zahl der EinzelSensoren 19' sowie die Umgebungen 24,24', auf die sie ausgerichtet sind, werden in einer solchen Weise ausgewählt, dass sie eine bestmögliche Charakterisierung der für den jeweiligen Anwendungsfall relevanten Qua- litätsmerkmale gestatten. Neben den Spaltmessungssensoren 19' können weitere Sensoren vorgesehen sein, die beispielsweise einen (Tiefen-) Abstand zwischen den beiden („Master" -) Türen 103,103' messen.The number and the position of the sensors 19 'on the frame 13' of the assembly tool 5 'is selected such that the sensors 19' on suitable areas 24 'on the ("master") that are particularly important for the "optimal" alignment. Driver door 103 'or areas 24 of the ("master") rear door 103 are directed. In the exemplary embodiment in FIGS. 2, 1b, three sensors 19' are used which are directed to areas 24, 24 'shown in FIG that the sensors 19 'carry out gap measurements in the upper, middle and lower region of the opposite edges 10, 10' of the two ("master") doors 103, 103 '. The number of individual sensors 19 'and the surroundings 24, 24' to which they are directed are selected in such a way that they allow the best possible characterization of the quality features relevant to the respective application. In addition to the gap measurement sensors 19 ', further sensors can be provided which, for example, measure a (depth) distance between the two ("master") doors 103, 103'.
Das Montagewerkzeug 5' mit dem Sensorsystem 18' und mit der in der Fixiervorrichtung 14' gehaltenen („Master" -) Fahrertür 103' wird nun mit Hilfe des Roboters 7' auf die (durch das manuell bzw. interaktiv Ausrichten eingestellte, in der Darstellung der Figur lb eingenommene) Fahrertür-Vorhalteposition 23 gegenüber der stationär gehaltenen („Master"-) Fondtür 103 „eingelernt". Hierbei werden zunächst Messwerte aller Sensoren 19' in der Fahrertür-Vorhalteposition 23' aufgenommen und als „Soll-Messwerte" in einer Auswerteeinheit 26 des Sensorsystems 18' abgelegt; diese Sensor-Auswerteeinheit 26 ist zweckmäßigerweise in das Steuersystem 20 der Roboter 7,7' integriert. Anschließend wird - ausgehend von der Fahrertür-Vorhalteposition 23' - mit Hilfe des Roboters 7' die Lage des Montagewerkzeugs 5' und der darin gehaltenen („Master" -) Fahrertür 103' gegenüber der („Master"-) Fondtür 103 entlang bekannter Verfahrbahnen - wie in Figur lb durch Pfeile 25 angedeutet - systematisch verändert; in der Regel sind dies Inkrementalbewegungen des Roboters 7' in seinen Freiheitsgraden. Die dabei auftretenden Veränderungen der Messwerte der Sensoren 19' werden (vollständig oder in Teilen) aufgezeichnet. Aus diesen Sensorinformationen wird - in bekannter Weise - eine sogenannte Jacobimatrix (Sensitivitäts- matrix) errechnet, die den Zusammenhang zwischen den Inkrementalbewegungen des Roboters 7' und den dabei auftretenden Änderungen der Sensormesswerte beschreibt . Das Verfahren zur Ermittlung der Jacobimatrix ist beispielsweise beschrieben in „A tutorial on visual servo control" von S. Hutchinson, G. Hager und P. Corke, IEEE Transactions on Robotics and Automation 12(5), Oktober 1996, Seiten 651—670. In diesem Artikel sind auch die Anforderungen an die Verfahrwege bzw. die Mess- umgebungen beschrieben (Stetigkeit, Monotonie, ...), die erfüllt sein müssen, um eine gültige Jacobimatrix zu erhalten. - Die Inkrementalbewegungen sind in einer solchen Weise ausgewählt, dass während dieses Einrichtvorgangs keine Kollisionen des Montagewerkzeugs 5' bzw. der („Master" -) Fahrertür 103' mit der stationär gehaltenen („Master"-) Fondtür 103 auftreten können.The assembly tool 5 'with the sensor system 18' and with the ("master") driver's door 103 'held in the fixing device 14' is now moved with the help of the robot 7 'to the (set by manual or interactive alignment, in the illustration In FIG. 1b, the driver door reserve position 23 is "taught" with respect to the stationary ("master") rear door 103. In this case, measured values of all sensors 19 'are initially recorded in the driver door reserve position 23' and as "target measurement values" in one Evaluation unit 26 of the sensor system 18 'stored; this sensor evaluation unit 26 is expediently integrated into the control system 20 of the robot 7, 7 '. Subsequently - starting from the driver door holding position 23 '- with the help of the robot 7', the position of the assembly tool 5 'and the ("master" -) driver door 103' held in it relative to the ("master" -) rear door 103 along known travel paths - As indicated in Figure lb by arrows 25 - systematically changed; as a rule, these are incremental movements of the robot 7 'in its degrees of freedom. The changes occurring in the measured values of the sensors 19 'are recorded (completely or in parts). From this sensor information, a so-called Jacobi matrix (sensitivity matrix) is calculated in a known manner, which describes the relationship between the incremental movements of the robot 7 ′ and the changes in the sensor measurement values that occur. The method for determining the Jacobian matrix is described, for example, in "A tutorial on visual servo control" by S. Hutchinson, G. Hager and P. Corke, IEEE Transactions on Robotics and Automation 12 (5), October 1996, pages 651-670. This article also describes the requirements for the traversing paths or the measuring environments (continuity, monotony, ...) that must be met in order to obtain a valid Jacobi matrix - The incremental movements are selected in such a way that no collisions of the assembly tool 5 'or the ("master" -) driver door 103' with the stationary ("master" -) rear door 103 can occur during this setup process.
Die in der Einrichtphase erzeugte Jacobimatrix wird zusammen mit den „Soll-Messwerten" in der Auswerteeinheit 26 des Sensorsystems 18' abgelegt und bilden die Grundlage für den späteren Positionier-Regelvorgang A-2' in der Arbeitsphase (siehe unten unter III.) . II. Einrichtphase des Montagewerkzeugs 5' gegenüber dem Werkstück (d.h. gegenüber der Karosserie 1) :The Jacobian matrix generated in the set-up phase is stored together with the “target measured values” in the evaluation unit 26 of the sensor system 18 ′ and form the basis for the later positioning control process A-2 ′ in the working phase (see below under III.). II. Set-up phase of the assembly tool 5 'with respect to the workpiece (ie with respect to the body 1):
In einem nächsten Schritt werden die beiden Montagewerkzeuge 5,5' unter Zuhilfenahme der Roboter 7,7' (manuell oder interaktiv) zu einer im Arbeitsraum 6 des MontageSystems 4 befindlichen („Master"-) Karosserie 101 hinbewegt. Dabei wird die der Vorhalteposition 23,23' entsprechende Relativlage der beiden („Master" -) Türen 103,103' (d.h. die im Prozessschritt I . manuell eingestellten, gewünschten Relativausrichtung der beiden Türen 103,103') beibehalten.In a next step, the two assembly tools 5, 5 'are moved with the help of the robots 7, 7' (manually or interactively) to a (“master”) body 101 located in the work space 6 of the assembly system 4 , 23 'maintain the corresponding relative position of the two ("master") doors 103, 103' (ie the desired relative orientation of the two doors 103, 103 'that was manually set in process step I.).
Analog zum oben beschriebenen Einlernen der Vorhalteposition 23' des Montagewerkzeugs 5' gegenüber dem (stationär in der Vorhalteposition 23 gehaltenen) Montagewerkzeug 5 wird nun das gekoppelte System der beiden Montagewerkzeuge 5,5' gegenüber der („Master" -) Karosserie 101 eingelernt. Hierzu werden die beiden Türen 103,103', die in den (zueinander ausgerichteten) Montagewerkzeugen 5,5' gehalten sind, mit Hilfe der Roboter 7,7' (manuell oder interaktiv) in der gewünschten („optimalen") Lage und Ausrichtung in den Türausschnitt 102,102' der („Master"-) Karosserie 101 positioniert. Die dabei eingenommene Relativposition des Türenpaares 103,103' gegenüber der („Master"-) Karosserie 101 wird im folgenden „Montageposition" 27 genannt und entspricht derjenigen Relativausrichtung des Türenpaares 103,103' zur Karosserie 101, in der die beiden Türen in der Karosserie 101 befestigt werden sollen.Analogous to the teaching of the holding position 23 'of the assembly tool 5' as described above with respect to the assembly tool 5 (held stationary in the holding position 23), the coupled system of the two assembly tools 5, 5 'with respect to the ("master") body 101 is now taught the two doors 103, 103 ', which are held in the (aligned) assembly tools 5.5', with the help of the robots 7, 7 '(manual or interactive) in the desired ("optimal") position and orientation in the door cutout 102, 102 'the ("master" -) body 101 positioned. The relative position of the pair of doors 103, 103' assumed in relation to the ("master" -) body 101 is hereinafter referred to as "assembly position" 27 and corresponds to that relative orientation of the pair of doors 103, 103 'to the body 101, in which the two doors are to be fastened in the body 101.
Zum Einlernen der Montageposition 27 wird ein weiteres Sensorsystem 28' (mit Sensoren 29') verwendet, das ebenfalls fest mit dem Montagesystem 5' verbunden ist. Hierbei können einige (oder alle) der Sensoren 18' des Sensorsystems 19' auch als Sensoren 29' des Sensorsystems 28' zum Einsatz kommen. Die Sensoren 29' sind in einer solchen Weise am Montagewerkzeug 5' befestigt, dass sie auf die ausgewählten Referenzbereiche 9 auf der („Master" -) Karosserie 101 und/oder auf ausgewählte Referenzbereiche 30' der („Master" -) Fahrertür 103' gerichtet sind. Im vorliegenden Ausführungsbeispiel umfasst das Sensorsystem 28' vier Sensoren 29', von denen zwei auf einen Karosseriebereich 9 im Bereich der A-Säule 8" gerichtet sind, ein weiterer Sensor 19' , der bereits zur Relativausrichtung der beiden Türen 103,103' im Zuge der Phase I zum Einsatz kam, auf den oberen Bereiche der B-Säule 8 gerichtet ist. Die Sensoren 29' sind vorteilhafterweise (optische) Spaltsensoren, die die Breite des Spaltes 31' zwischen der Fahrertür 103' und der Karosserie 101 im jeweiligen Sichtbereich messen.A further sensor system 28 '(with sensors 29') is used to teach-in the mounting position 27, which is likewise firmly connected to the mounting system 5 '. Some (or all) of the sensors 18 'of the sensor system 19' can also be used as sensors 29 'of the sensor system 28'. The sensors 29 'are fastened to the assembly tool 5' in such a way that they point to the selected reference areas 9 on the (“master”) body 101 and / or selected reference areas 30 'of the ("master") driver's door 103'. In the present exemplary embodiment, the sensor system 28 'comprises four sensors 29', two of which are directed to a body area 9 in the area of the A-pillar 8 ", another Sensor 19 ', which was already used for the relative alignment of the two doors 103, 103' in the course of phase I, is aimed at the upper areas of the B-pillar 8. The sensors 29 'are advantageously (optical) gap sensors which measure the width of the gap 31' between the driver's door 103 'and the body 101 in the respective field of view.
Die robotertechnisch aneinandergekoppelten Montagewerkzeuge 5,5' mit dem Sensorsystem 28' werden nun mit Hilfe der gekoppelt bewegten Roboter 7,7' auf die (manuell bzw. interaktiv eingestellte) Montageposition 27,27' des („Master" - ) Türenpaares 103,103' gegenüber der („Master" -) Karosserie 101 „eingelernt" . Dieses iterative Einlernen erfolgt analog zu dem unter I . beschriebenen Einlernvorgang des Montagewerkzeugs 5', bei dem das Montagewerkzeug 5' mit der („Master"- ) Fahrertür 103' auf die (Fahrertür-) Vorhalteposition 23' gegenüber der stationär gehaltenen („Master"-) Fondtür 103 eingelernt wurde : Es werden zunächst - während die beiden Montagewerkzeuge 5,5' in der Montageposition 27,27' befindet - mit Hilfe des Sensorsystems 28 Messwerte der Referenzbereiche 9,30' auf der („Master" -) Karosserie 101 und/oder der („Master" -) Fahrertür 103' aufgenommen und als „Soll-Messwerte" in einer zum Sensorsystem 28 gehörigen Auswerteeinheit 32 abgelegt, die in das Steuersystem 20 der Roboter 7,7' integriert ist. Anschließend wird - ausgehend von dieser Montageposition 27,27' - mit Hilfe der gekoppelten Roboter 7,7' synchron zueinander die Lage der zueinander ausgerichteten („Master" - ) Türen 103,103' gegenüber der („Master"-) Karosserie 101 entlang bekannter Verfahrbahnen systematisch verändert (Pfeile 25") . Aus den damit verbundenen Veränderungen der Messwerte der Sensoren 29' wird die Jacobimatrix (Sensitivitätsmatrix) der gekoppelten Montagewerkzeuge 5,5' errechnet, die den Zu- sammenhang zwischen den Inkrementalbewegungen der gekoppelten Roboter 7,7' und den dabei auftretenden Änderungen der Messwerte der Sensoren 29' beschreibt. Die Inkrementalbewegungen sind in einer solchen Weise ausgewählt, dass während dieses Einrichtvorgangs keine Kollisionen der Türen 103,103' bzw. der Werkzeuge 5,5' mit der („Master"-) Karosserie 101 auftreten können. Die erzeugte Jacobimatrix wird zusammen mit den „Soll-Messwerten" in der Auswerteeinheit 32 des Sensorsystems 28' abgelegt und bildet die Grundlage für den späteren Regelvorgang in der Positionierphase C,C der gekoppelten Werkzeuge 5,5' gegenüber der Karosserie 1 (siehe unten unter III.) .The assembly tools 5.5 'coupled to one another in terms of robot technology with the sensor system 28' are now compared with the help of the coupled moved robots 7.7 'to the (manually or interactively set) assembly position 27.27' of the ("master") pair of doors 103, 103 ' the ("master" -) body 101 is "taught". This iterative teaching takes place analogously to the teaching-in process of the assembly tool 5 'described under I., in which the assembly tool 5' with the ("master" -) driver's door 103 'on the ( Driver door) lead position 23 'with respect to the stationary ("master") rear door 103 was learned: first, while the two assembly tools 5,5' are in the assembly position 27,27 ', 28 measured values of the reference ranges are measured using the sensor system 9.30 'on the ("master" -) body 101 and / or the ("master" -) driver's door 103' and recorded as "target measured values" in an evaluation unit 32 belonging to the sensor system 28, which is shown in FIG the control system 20 of the robots 7, 7 'is integrated. Then - starting from this assembly position 27, 27 '- with the aid of the coupled robots 7, 7', the position of the mutually aligned ("master") doors 103, 103 'relative to the ("master") body 101 along known travel paths is synchronized systematically changed (arrows 25 "). The Jacobi matrix (sensitivity matrix) of the coupled assembly tools 5,5 'is calculated from the associated changes in the measured values of the sensors 29'. describes the relationship between the incremental movements of the coupled robots 7, 7 'and the changes in the measured values of the sensors 29' that occur. The incremental movements are selected in such a way that no collisions of the doors 103, 103 'or of the tools 5.5' with the ("master") body 101 can occur during this set-up process. The Jacobi matrix generated is combined with the "target Measured values "stored in the evaluation unit 32 of the sensor system 28 'and forms the basis for the subsequent control process in the positioning phase C, C of the coupled tools 5,5' relative to the body 1 (see below under III.).
Zusätzlich zum Einlernen der Montageposition 27,27' werden in dieser Einrichtphase Verfahrbahnen 33,33' der Roboter 7,7' erzeugt, die schematisch in Figur 3 dargestellt sind. Den Ausgangspunkt der Verfahrbahnen 33,33' der beiden Roboter 7,7' bildet jeweils eine sogenannte „Rückzugsposition" 34,34', die so gewählt ist, dass eine neue Karosserie 1 in den Arbeitsraum 6 der Roboter 7,7' eingeführt werden kann, ohne dass Kollisionen der Karosserie 1 mit den Montagewerkzeugen 5,5' auftreten können. Diese Rückzugspositionen 34,34' können beispielsweise unterschiedlichen (in den Figuren nicht dargestellten) Bestückungsstationen entsprechen, in der die Montagewerkzeuge 5,5' (manuell) mit den zu verbauenden Türen 3,3' bestückt werden. Alternativ können die Rückzugspositionen 34,34' Entnahmestationen entsprechen, in denen die Montagewerkzeuge 5,5' die zu verbauenden Türen 3,3' (automatisch) aus Werkstückträgern entnehmen.In addition to teaching in the assembly position 27, 27 ', traversing paths 33, 33' of the robot 7, 7 'are generated in this setup phase, which are shown schematically in FIG. The starting point of the trajectories 33, 33 'of the two robots 7, 7' is formed by a so-called "retreat position" 34, 34 ', which is selected such that a new body 1 can be inserted into the working space 6 of the robots 7, 7' without collisions of the body 1 with the assembly tools 5, 5 '. These retraction positions 34, 34' can, for example, correspond to different (not shown in the figures) assembly stations in which the assembly tools 5, 5 '(manually) with the the doors 3.3 '. Alternatively, the withdrawal positions 34.34' can correspond to removal stations in which the assembly tools 5.5 '(automatically) remove the doors 3.3' to be fitted from workpiece carriers.
Ausgehend von dieser Rückzugsposition 34,34' umfassen die Verfahrbahnen 33,33' der beiden Montagewerkzeuge 5,5' folgende separate Abschnitte:Starting from this retraction position 34, 34 ', the travels 33, 33' of the two assembly tools 5.5 'comprise the following separate sections:
A-l Das Fondtür-Montagewerkzeug 5 mit eingelegter Fondtür 3 wird auf einer gesteuert zu durchlaufenden Bahn A-l von der Rückzugsposition 34 in die Fondtür-Vorhalteposition 23 gebracht. A-l' Gleichzeitig bzw. danach wird das Fahrertür- Montagewerkzeug 5' mit eingelegter Fahrertür 3' auf einer gesteuert zu durchlaufenden Bahn A-l' von der Rückzugsposition 34' in eine sogenannte „Ausrichtposition" 35' gebracht, die so gewählt ist, dass alle Einzelsensoren 19' des Sensorsystems 18' gültige Messwerte der jeweiligen Bereiche 24,24' der Fondtür 3' und/oder der Fahrertür 3 erfassen können, während gleichzeitig gewährleistet ist, dass keine gegenseitigen Kollisionen der Montagewerkzeuge 5,5' oder der darin gehaltenen Türen 3,3' auftreten können.Al The rear door assembly tool 5 with the rear door 3 inserted is moved from the retracted position 34 to the rear door reserve position 23 on a track Al to be controlled. Al 'At the same time or thereafter, the driver's door assembly tool 5' with the driver's door 3 'inserted is moved from a retracted position 34' to a so-called "alignment position" 35 'on a track Al' to be traversed, which is selected such that all individual sensors 19 'of the sensor system 18' can detect valid measured values of the respective areas 24, 24 'of the rear door 3' and / or the driver's door 3, while at the same time ensuring that there are no mutual collisions between the assembly tools 5,5 'or the doors 3,3 held therein ' may occur.
A-2' Das Fahrertür-Montagewerkzeug 5' mit eingelegter Fahrertür 3' wird auf einer geregelt zu durchlaufenden Bahn A-2' von der Ausrichtposition 35' in die (wie oben beschrieben „eingelernte") Fahrertür-Vorhalteposition 23' gebracht, in der die im Montagewerkzeug 5' gehaltene Fahrertür 3' läge- und winkelgenau gegenüber der im Montagewerkzeug 5 gehaltenen Fondtür 3 ausgerichtet ist. Was während dieses geregelt zu durchlaufenden Prozessschritts im einzelnen geschieht, wird weiter unten (in III. Arbeitsphase) beschrieben.A-2 'The driver's door assembly tool 5' with the driver's door 3 'inserted is moved on a track A-2' to be controlled in a controlled manner from the alignment position 35 'to the driver's door holding position 23' (as "described" as described above), in which the driver's door 3 'held in the assembly tool 5' is aligned precisely and angularly with respect to the rear door 3 held in the assembly tool 5. What happens in detail during this process step to be carried out in a controlled manner is described further below (in III. working phase).
B,B' Anschließend wird der Fondtür-Roboter 7 an den Fahrertür-Roboter 7' angekoppelt, und die beiden Roboter 7,7' werden auf einer gesteuert zu durchlaufenden Bahn B bzw. B' von der Vorhalteposition 23,23' in eine Näherungposition 36,36' gegenüber der Karosserie 1 bewegt. Die Näherungsposition ist so gewählt, dass alle Einzel- Sensoren 29' des Sensorsystems 28' gültige Messwerte der (für die Türeinpassung relevanten) Referenzbereiche 9,30,30' auf der Karosserie 1 und den Türen 3,3' liefern, während gleichzeitig sichergestellt ist, dass keine Kollisionen der Montagewerkzeuge 5,5' oder der darin gehaltenen Türen 3,3' mit der Karosserie 1 auftreten können.B, B 'Subsequently, the rear door robot 7 is coupled to the driver's door robot 7', and the two robots 7, 7 'are moved from the lead position 23, 23' to an approach position on a path B or B 'to be controlled 36,36 'moved relative to the body 1. The approximate position is selected such that all individual sensors 29 'of the sensor system 28' deliver valid measured values of the reference areas 9, 30, 30 '(relevant for the door fitting) on the body 1 and the doors 3, 3', while ensuring at the same time that no collisions of the assembly tools 5,5 'or the doors 3,3' held therein with the body 1 can occur.
C,C Die Montagewerkzeuge 5,5' werden von den gekoppelten Robotern 7,7' auf einer geregelt zu durchlaufenden Bahn C bzw. C von der Näherungsposition 36,36' in die (wie oben beschrieben „eingelernte") Montageposition 27,27' gebracht, in der die beiden Türen 3,3' (ohne Verlust der in Prozessschritt A-2' erzielten hochgenauen Rela- tivausriehtung der Türen 3,3') winkel- und abstandsge- nau gegenüber dem Türausschnitten 2,2' der Karosserie 1 ausgerichtet sind. Nun werden die beiden Türen 3,3' in ihrer Montageposition 27,27' an die Türausschnitte 2,2' der Karosserie 1 montiert. D,D' Die Fixiervorrichtungen 14,14' der Montagewerkzeuge 5,5' werden gelöst, wodurch die Türen 3,3' freigegeben werden. Anschließend wird die Kopplung der beiden Roboter 7,7' aufgehoben, und beide Montagewerkzeuge 5,5' werden (unabhängig voneinander) robotergesteuert in ihre jeweiligen Rückzugspositionen 34,34' zurückbewegt.C, C The assembly tools 5,5 'are moved by the coupled robots 7,7' on a path C or C to be traversed in a controlled manner from the approximate position 36.36 'to (as “taught-in” assembly position 27,27 'described above, in which the two doors 3,3' (without loss of the highly accurate relative orientation of the doors 3,3 'achieved in process step A-2') are accurate in terms of angle and distance are aligned with respect to the door cutouts 2, 2 'of the body 1. The two doors 3, 3' are now mounted in their assembly position 27, 27 'on the door cutouts 2, 2' of the body 1. D, D 'The fixing devices 14, 14 "of the assembly tools 5.5" are released, whereby the doors 3.3 "are released. The coupling of the two robots 7.7" is then released, and both assembly tools 5.5 "are (independently of one another) robot-controlled in their respective retreat positions 34,34 'moved back.
Die im Rahmen dieser Einrichtphase erzeugten Verfahrbahnen 46,46' der beiden Montagewerkzeuge 5,5' (bzw. der zugehörigen Roboter 7,7') besteht somit aus den gesteuert zu durchlaufenden Abschnitten A-l, A-l', B/B' und D/D' sowie den geregelt zu durchlaufenden Abschnitten A-2' und C/C .The trajectories 46, 46 'of the two assembly tools 5.5' (or the associated robot 7, 7 ') generated in the course of this set-up phase thus consist of the sections Al, A-1', B / B 'and D to be passed through in a controlled manner / D 'and the regulated sections A-2' and C / C.
III. ArbeitsphaseIII. working phase
In der Arbeitsphase werden dem Arbeitsraum 6 des Montagesystems 4 sequentiell Karosserien 1 zugeführt und eingespannt, und für jede Karosserie 1 werden die in der Einrichtphase II. generierten Verfahrbahnen 33,33' der Roboter 7,7' bzw. der Montagewerkzeuge 5,5' durchlaufen.In the working phase, bodies 1 are sequentially fed and clamped to the working space 6 of the assembly system 4, and for each body 1 the trajectories 33, 33 'generated in the set-up phase II. Robots 7.7' and the assembly tools 5.5 'are run through ,
Verfahrbahn-Abschnitte A-l und A-l' :Track sections A-l and A-l ':
Während des Zuführens der neuen Karosserie 1 befinden sich die beiden Montagewerkzeuge 5,5' in den Rückzugspositionen 34,34' und sind bzw. werden mit der zu montierenden Fondtür 3 und der zu montierenden Fahrertür 3' bestückt (siehe Fig. la) . Ausgehend von der Rückzugsposition 34,34' wird das Fondtür-Montagewerkzeug 5 mit eingelegter Fondtür 3 in die Fondtür-Vorhalteposition 23 gebracht, während das Fahrertür- Montagewerkzeug 5' mit eingelegter Fahrertür 3' in die Ausrichtposition 35' transportiert wird.While the new body 1 is being fed in, the two assembly tools 5, 5 'are in the retracted positions 34, 34' and are or are equipped with the rear door 3 to be assembled and the driver door 3 'to be assembled (see FIG. la). Starting from the retracted position 34, 34 ', the rear door assembly tool 5 with the rear door 3 inserted is brought into the rear door reserve position 23, while the driver door assembly tool 5' with the driver door 3 'inserted is transported into the alignment position 35'.
Verfahrbahn-Abschnitt A-2' (Ausrichtphase des Fahrertür-Montagewerkzeugs 5'):Track section A-2 '(alignment phase of driver's door installation tool 5'):
Ausgehend von der Ausrichtposition 35' wird eine Positionierphase des Montagewerkzeugs 5' (Bahnabschnitt A-2' in Figur 3) durchlaufen, im Rahmen derer die im Montagewerkzeug 5' gehaltene Fahrertür 3' in die (während der Einlernphase eingelernte) Vorhalteposition 23' gegenüber der stationär in der Vorhalteposition 23 gehaltenen Fondtür 3 gebracht und dabei lagegenau gegenüber der Fondtür 3 ausgerichtet wird. Hierzu werden durch die Sensoren 19' des Sensorsystems 18' Messwerte in ausgewählten Bereichen 11,11' der Fondtür 3 und der Fahrertür 3' aufgenommen. Mit Hilfe dieser Messwerte und der in der Einrichtphase bestimmten Jacobimatrix wird ein Bewegungs- inkrement (Verschiebungsvektor) berechnet, das die Differenz zwischen den aktuellen (Ist-) Sensormesswerten und den (Soll- ) Sensormesswerten verkleinert. Die im Montagewerkzeug 5' gehaltene Fahrertür 3' wird dann mit Hilfe des Roboters 7' um dieses Bewegungsinkrement verschoben und/oder geschwenkt, und während der laufenden Bewegung werden neue (Ist-) Sensormesswerte aufgenommen.Starting from the alignment position 35 ', a positioning phase of the assembly tool 5' (path section A-2 'in FIG. 3) is run through, during which the driver's door 3' held in the assembly tool 5 'is moved into the (23) position (learned during the teach-in phase) relative to the brought stationary in the reserve position 23 held rear door 3 and is aligned precisely with respect to the rear door 3. To this end, sensors 19 'of sensor system 18' record measured values in selected areas 11, 11 'of rear door 3 and driver's door 3'. With the help of these measured values and the Jacobian matrix determined in the setup phase, a movement increment (displacement vector) is calculated, which reduces the difference between the current (actual) sensor measured values and the (target) sensor measured values. The driver door 3 'held in the assembly tool 5' is then moved and / or pivoted by this movement increment with the aid of the robot 7 ', and new (actual) sensor measured values are recorded during the ongoing movement.
Dieser iterative Mess- und Verschiebe-Vorgang wird in einer Regelschleife so lange wiederholt, bis die Differenz zwischen den aktuellen (Ist-) und den angestrebten (Soll-) Sensormesswerten ein vorgegebenes Fehlermaß unterschreitet, oder bis sich diese Differenz nicht mehr über einen im Vorfeld festgesetzten Schwellenwert hinaus ändert. Die Fahrertür 3' befindet sich nun (im Rahmen der durch Fehlermaß bzw. Schwellen- wert vorgegebenen Genauigkeit) in der (in Figur lb dargestellten) Vorhalteposition 23' gegenüber der Fondtür 3.This iterative measuring and shifting process is repeated in a control loop until the difference between the current (actual) and the desired (target) sensor measured values falls below a predetermined error level, or until this difference no longer exceeds one in advance set threshold changes. The driver door 3 'is now (within the scope of the error measure or threshold value specified accuracy) in the lead position 23 '(shown in FIG. 1b) with respect to the rear door 3.
Durch die in dieser Positionierphase A-2' durchlaufene iterative Minimierung werden sowohl Ungenauigkeiten der beiden Türen 3,3' bezüglich ihrer Lage und Ausrichtung in den Fixiervorrichtungen 14,14' der Montagewerkzeuge 5,5' als auch eventuell vorhandene Formfehler dieser Türen 3,3' (d.h. Abweichungen von den („Master" -) Türen 103,103') kompensiert. Die Fahrertür 3' wird also im Zuge dieses iterativen Regelprozesses -• unabhängig von Form- und Lageungenauigkeiten - in der „optimalen" gegenüber der Fondtür 3 ausgerichtet. Zur separaten Erkennung und Bewertung von Formfehlern auf Fondtür 3 und Fahrertür 3' können auf dem Montagewerkzeug 5' zusätzliche Sensoren vorgesehen werden, deren Messwerte ausschließlich o- der teilweise zur Erfassung der Formfehler verwendet werden. Weiterhin können die Messwerte der Einzelsensoren 19' mit unterschiedlichen Gewichtungsfaktoren versehen werden, um eine gewichtete Lageoptimierung der Fahrertür 3' gegenüber der Fondtür 3 herbeizuführen.Due to the iterative minimization carried out in this positioning phase A-2 ', both inaccuracies of the two doors 3, 3' with regard to their position and orientation in the fixing devices 14, 14 'of the assembly tools 5.5' as well as any existing shape errors of these doors 3, 3 are eliminated '(ie deviations from the ("master") doors 103, 103'). The driver's door 3 'is thus aligned in the "optimal" with respect to the rear door 3 in the course of this iterative control process - regardless of shape and positional inaccuracies. Additional sensors can be provided on the assembly tool 5 'for the separate detection and evaluation of shape defects on the rear door 3 and driver's door 3', the measured values of which are used exclusively or partially to detect the shape defects. Furthermore, the measured values of the individual sensors 19 'can be provided with different weighting factors in order to bring about a weighted position optimization of the driver door 3' in relation to the rear door 3.
Eine wichtige Eigenschaft dieser Positionierphase A-2' ist ihre Unabhängigkeit von- den Genauigkeiten der Roboter 7,7': Da der Positioniervorgang auf einem iterativen Vergleich der (Ist-) Messwerte mit (Soll-) Messwerten beruht, wird jede Po- sitionsungenauigkeit der Roboter 7,7' sofort durch den iterativen Regelprozess kompensiert .An important property of this positioning phase A-2 'is its independence from the accuracies of the robots 7,7': Since the positioning process is based on an iterative comparison of the (actual) measurement values with (target) measurement values, any position inaccuracy becomes Robot 7,7 'immediately compensated by the iterative control process.
Verfahrbahn-Abschnitte B,B' (Annäherung der Montagewerkzeuge 5,5' an die Karosserie 1) :Track sections B, B '(approach of the assembly tools 5.5' to the body 1):
Ist die Fahrertür 3' gegenüber der Fondtür 3 ausgerichtet, so wird die dabei erreichte Relativausrichtung der beiden Roboter 7,7' als eine feste Bezugsgröße im Steuersystem 20 abgespeichert. Anschließend werden die beiden Roboter 7,7' rechnerisch aneinander angekoppelt und während der nun folgenden Verfahrensschritte simultan zueinander bewegt. Um dies zu erreichen, enthält das Steuersystem 20 der Roboter 7,7' einen Controller mit drei Untersystemen:If the driver door 3 'is aligned with respect to the rear door 3, the relative orientation of the two robots 7, 7' achieved in this way is stored as a fixed reference variable in the control system 20. Then the two robots 7, 7 'are arithmetically coupled to one another and during the following one Process steps moved simultaneously to each other. To achieve this, the control system 20 of the robots 7, 7 'contains a controller with three subsystems:
- Das erste Untersystem enthält alle diejenigen Befehle, die die Funktionen des Fahrertür-Roboters 7' mit seinem Montagesystem 5' beschreiben (u.a. die Steuerung der Bahnen A- l',B',D' und der Greifaufgaben der Fixiervorrichtung 14 sowie die Regelung der Bahnen A-2',C); es enthält weiterhin alle Befehle für den Fondtürroboter 7 mit seinem Montagesystem 5, die von den Funktionen des Fahrertürroboters 7' unabhängig sind (also u.a. die Steuerung der Bahnen A-1,D und der Greifauf aben für die Fixiervorrichtung 14 ' ) .- The first subsystem contains all those commands that describe the functions of the driver's door robot 7 'with its mounting system 5' (including the control of the tracks A-l ', B', D 'and the gripping tasks of the fixing device 14 and the regulation of the Lanes A-2 ', C); it also contains all commands for the rear door robot 7 with its mounting system 5, which are independent of the functions of the driver's door robot 7 '(i.e. control of the tracks A-1, D and the gripping action for the fixing device 14').
- Das zweite Untersystem enthält diejenigen Befehle, die Funktionen der Roboter 7,7' beschreiben, die vom ersten Untersystem regiert werden und bei denen der Fahrertür- Roboter 7' mit dem Fondtür-Roboter 7 zusammenwirkt; dies betrifft insbesondere die gekoppelt zu durchlaufenden Bahnabschnitte B/B' und C/C .- The second subsystem contains those commands that describe the functions of the robots 7, 7 ', which are governed by the first subsystem and in which the driver's door robot 7' interacts with the rear door robot 7; this applies in particular to the web sections B / B 'and C / C to be passed through.
- Das dritte Untersystem enthält nur Befehle zum Starten des ersten und des zweiten Untersystems und führt diese Befehle asynchron und simultan aus.The third subsystem only contains commands to start the first and second subsystems and executes these commands asynchronously and simultaneously.
Bezüglich Details des Zusammenwirkens dieser Untersysteme wird auf die EP 752 633 AI verwiesen. Bezüglich der Bahnabschnitte B/B' und C/C , in denen der Roboter 7 an den Roboter 7' angekoppelt ist, wird der Roboter 7' als der „Master" und der Roboter 7 als der „Slave" bezeichnet.With regard to details of the interaction of these subsystems, reference is made to EP 752 633 AI. With regard to the path sections B / B 'and C / C, in which the robot 7 is coupled to the robot 7', the robot 7 'is referred to as the "master" and the robot 7 as the "slave".
Zu Beginn des Verfahrbahn-AbSchnitts B/B' wird seitens des dritten Untersystems ein Befehl abgesetzt, der das zweite Untersystem startet und somit den „Slave" -Roboter 7 an den „Master" -Roboter 7' ankoppelt. Anschließend wird der Fahrertür-Roboter 7' als „Master" gesteuert von der Vorhalteposition 23' in die Näherungsposition 36' in der Nachbarschaft des Fahrer-Türausschnitts 2' der Karosserie 1 bewegt. Der Fondtür-Roboter 7 folgt ihm dabei als „Slave" in die Näherungsposition 36, wobei die in Bahnabschnitt A-2' erreichte hochge- naue Relativausrichtung der beiden Türen 3,3' erhalten bleibt.At the beginning of the trajectory section B / B ', a command is issued by the third subsystem, which starts the second subsystem and thus couples the "slave" robot 7 to the "master" robot 7'. Then the driver's door robot 7 'is moved as a "master" controlled from the lead position 23' to the approach position 36 'in the vicinity of the driver's door cutout 2' of the body 1. The rear door robot 7 follows it as a "slave" in the approximate position 36, the high- exact relative alignment of the two doors 3, 3 'is retained.
Verfahrbahn-Abschnitte C,C' (Ausrichtung der Montagewerkzeuge 5,5' am Türausschnitt 2,2' der Karosserie 1) :Track sections C, C '(alignment of the assembly tools 5.5' on the door cutout 2.2 'of the body 1):
Ausgehend von der Näherungsposition 36' wird das Montagewerkzeug 5' nun in die (während der Einlernphase eingelernte) Montageposition 27' gegenüber dem Türausschnitt 2' der Karosserie 1 gebracht . Diese Positionierphase verläuft analog zu der Positionierphase des Abschnitts A-2', im Zuge derer das Montagewerkzeug 5' gegenüber der Fondtür 3 positioniert wurde: Mit Hilfe der Sensoren 29' des Sensorsystems 28' werden Messwerte auf den Referenzflächen 9 der Karosserie 1 und/oder den Referenzbereichen 30,30' der Türen 3,3' aufgenommen, und aus diesen Messwerten wird mit Hilfe der in der Einrichtphase II. bestimmten Jacobimatrix ein Bewegungsinkrement berechnet, um das das Montagewerkzeuge 5' mit Hilfe des Roboters 7' verschoben wird. Da der Fondtür-Roboter 7 an den Fahrertür- Roboter 7 angekoppelt ist, folgt er diesen Verschiebungen des Montagewerkzeugs 5'. Der Mess- und Verschiebe-Vorgang wird i- terativ so lange wiederholt, bis die Differenz zwischen den aktuellen (Ist-) und den angestrebten (Soll-) Sensormesswerten ein vorgegebenes Fehlermaß unterschreitet, oder bis sich diese Differenz nicht mehr über einen im Vorfeld festgesetzten Schwellenwert hinaus ändert . Die beiden Montagewerkzeuge 5,5' befinden sich dann in der (in Figur 1c dargestellten) Montageposition 27,27' gegenüber der Karosserie 1. In dieser Position werden die beiden Türen 3,3' an den Türausschnitten 2,2' befestigt. Hierfür können beispielsweise (in Figur lc nicht gezeigte) Schrauber zum Einsatz kommen die an zusätzlichen Robotern oder HandlingsSystemen befestigt sind.Starting from the approach position 36 ', the assembly tool 5' is now brought into the assembly position 27 '(learned during the teach-in phase) relative to the door cutout 2' of the body 1. This positioning phase is analogous to the positioning phase of section A-2 ', in the course of which the assembly tool 5' was positioned in relation to the rear door 3: With the help of the sensors 29 'of the sensor system 28', measured values on the reference surfaces 9 of the body 1 and / or the reference areas 30, 30 'of the doors 3, 3', and a movement increment is calculated from these measured values with the aid of the Jacobian matrix determined in the set-up phase II, by which the assembly tool 5 'is moved with the aid of the robot 7'. Since the rear door robot 7 is coupled to the driver's door robot 7, it follows these displacements of the assembly tool 5 '. The measuring and shifting process is repeated until the difference between the current (actual) and the intended (target) sensor measured values falls below a predetermined error level, or until this difference is no longer determined in advance Threshold changes. The two assembly tools 5, 5 'are then in the assembly position 27, 27' (shown in FIG. 1c) relative to the body 1. In this position, the two doors 3, 3 'are attached to the door cutouts 2, 2'. For this purpose, for example screwdrivers (not shown in FIG. 1c) can be used which are attached to additional robots or handling systems.
Um die Montage der Türen 3,3' zu erleichtern, kann es zweckmäßig sein, die Türen 3,3' zwischenzeitlich aus dem Montagebereich 22 hinauszubewegen, um dort Platz zu schaffen für (in den Figuren nicht gezeigte) Scharnierroboter, die Türscharniere in den Türausschnitten 2,2' befestigen. Hierzu wird die Fahrertür 3' mit Hilfe des Roboters 7' in eine Ausweichposition bewegt, in der der Montagebereich freigegeben wird. Nach erfolgter Scharniermontage wird die Fahrertür 3 ' zurück in die Montageposition 27' bewegt. Der angekoppelte Fondtür- Roboter 7 folgt dieser Bewegung, so dass die hochgenaue Ausrichtung der beiden Türen 3,3' bei diesen Auslagerungsbewegungen erhalten bleibt . - Bei der Scharniermontage kann die im Zuge des Positioniervorgangs aufgefundene, lagegenau zur Karosserie angeordnete Montageposition 27,27' als Referenzlage für alle an der Montage beteiligten weiteren Werkzeuge und Arbeitsschritte verwendet werden.In order to facilitate the assembly of the doors 3, 3 ', it can be expedient to move the doors 3, 3' out of the assembly area 22 in the meantime in order to make space for (in hinge robots, not shown in the figures, which fasten door hinges in the door cutouts 2, 2 '. For this purpose, the driver's door 3 'is moved with the help of the robot 7' into an evasive position in which the assembly area is released. After the hinge has been installed, the driver's door 3 'is moved back into the assembly position 27'. The coupled rear door robot 7 follows this movement, so that the highly precise alignment of the two doors 3, 3 'is maintained during these outsourcing movements. - In the case of hinge assembly, the assembly position 27, 27 'found in the course of the positioning process and arranged precisely in relation to the body can be used as a reference position for all further tools and work steps involved in the assembly.
Nach dem Montieren der Türen 3,3' werden die Fixiervorrichtungen 14,14' der Montagewerkzeuge 5,5' gelöst, so dass die Türen 3,3' frei an der Karosserie 1 hängen. In dieser Lage können mit Hilfe der Sensoren 29 Kontrollmessungen der Fugenmaße, Spalte 31,31' und Tiefenmaße in den Bereichen 9,30,30' durchgeführt werden. Sollten dabei Abweichungen von den Soll- maßen festgestellt werden, so kann dem Bediener der Anlage eine definierte Information zur Nacharbeit zugesandt werden.After the doors 3, 3 'have been installed, the fixing devices 14, 14' of the assembly tools 5, 5 'are released, so that the doors 3, 3' hang freely on the body 1. In this position, the sensors 29 can be used to carry out control measurements of the joint dimensions, gaps 31, 31 'and depth dimensions in the areas 9.30, 30'. If deviations from the nominal dimensions are found, the operator of the system can be sent specific information for rework.
Verfahrbahn-Abschnitte D/D' (Rückzug der Montagewerkzeuge 5,5') :Track sections D / D '(withdrawal of assembly tools 5.5'):
Sind die Türen 3,3' in der richtigen Lage in den Türausschnitten 2,2' befestigt, so wird die „Master" -„Slave" - Kopplung der beiden Roboter 7,7' aufgehoben. Weiterhin werden die Fixiervorrichtungen 14,14' der Montagewerkzeuge 5,5' in einer solchen Weise aus den Eingriffspositionen herausgeschwenkt, dass die Montagewerkzeuge 5,5' kollisionsfrei robotergesteuert von der Montageposition 27,27' in die Rückzugsposition 34,34' zurückbewegt werden können. Die Karosserie 1 wird entspannt, ausgehoben und gefördert, und parallel dazu werden die Montagewerkzeuge 5,5' mit neuen Türen 3,3' be- stückt, während eine neue Karosserie 1 dem Arbeitsraum 6 des Montagesystems 4 zugeführt wird.If the doors 3, 3 'are fastened in the correct position in the door cutouts 2, 2, the "master" - "slave" coupling of the two robots 7, 7' is released. Furthermore, the fixing devices 14, 14 'of the assembly tools 5.5' are pivoted out of the engagement positions in such a way that the assembly tools 5,5 'can be moved back from the assembly position 27, 27' to the retracted position 34, 34 'in a robot-controlled manner. The body 1 is relaxed, lifted and conveyed, and at the same time the assembly tools 5.5 'are loaded with new doors 3.3'. pieces, while a new body 1 is fed to the working space 6 of the assembly system 4.
Zur Datenkommunikation zwischen den unterschiedlichen Systemkomponenten (Auswerteeinheiten 26,32 der Sensorsysteme 18', 28' und den Steuerungen der Roboter 7,7' im Steuersystem 20) wird im vorliegenden Ausführungsbeispiel vorteilhafterweise eine TCP/IP-Schnittstelle eingesetzt, die eine hohe Datenrate ermöglicht. Eine solche hohe Datenrate ist notwendig, um während der geregelt zu durchlaufenden Positionierphasen A-2' und C/C' eine Regelung des Gesamtsystems (Sensorsysteme/Roboter) mit der Vielzahl der Einzelsensoren 19,29 im Interpolationstakt der Roboter 7,7' (typischerweise 12 Millisekunden) bewältigen zu können. Für Regelungsprobleme geringerer Komplexität - d.h. bei niedrigeren Anforderungen an die Genauigkeit und längeren RegelZeiten - kann die Regelung auch über eine konventionelle serielle Schnittstelle realisiert werden.For data communication between the different system components (evaluation units 26, 32 of sensor systems 18 ', 28' and the controls of robots 7, 7 'in control system 20), a TCP / IP interface is advantageously used in the present exemplary embodiment, which enables a high data rate. Such a high data rate is necessary in order to control the entire system (sensor systems / robots) with the large number of individual sensors 19, 29 in the interpolation cycle of the robots 7, 7 '(typically during the positioning phases A-2' and C / C 'to be carried out in a controlled manner 12 milliseconds). For control problems of less complexity - i.e. with lower demands on accuracy and longer control times - the control can also be implemented via a conventional serial interface.
Als Sensoren 19', 29' zur Erfassung der Ist-Lage der Türen 3,3' relativ zueinander und gegenüber dem Referenzbereich 9 auf der Karosserie 1 können neben den bisher beschriebenen Spaltsensoren beliebige optische Sensoren zum Einsatz kommen. Beispielsweise können flächenhaft messende CCD-Kameras als Sensoren 19', 29' eingesetzt werden, mit Hilfe derer (in Kombination mit geeigneten Bildauswertungsalgorithmen) die Raumlagen und der gegenseitige Versatz von Kanten sowie räumliche Abstände etc. als Messgrößen generiert werden kann. Weiterhin können beliebige taktile und/oder berührungsfreie Messsysteme verwendet werden, wobei die Auswahl der geeigneten Sensoren stark vom jeweiligen Einsatzfall abhängt.As sensors 19 ', 29' for detecting the actual position of the doors 3, 3 'relative to one another and with respect to the reference area 9 on the body 1, any optical sensors can be used in addition to the gap sensors described so far. For example, area-measuring CCD cameras can be used as sensors 19 ', 29', with the aid of which (in combination with suitable image evaluation algorithms) the spatial positions and the mutual offset of edges as well as spatial distances etc. can be generated as measured variables. Furthermore, any tactile and / or non-contact measuring system can be used, the selection of the suitable sensors being strongly dependent on the respective application.
Im Ausführungsbeispiel der Figuren 1 bis 3 sind die Sensoren 19', 29' der Sensorsysteme 18', 28' ausschließlich auf dem Fahrertür-Montagewerkzeug 5' montiert. Stattdessen bzw. zusätzlich können (wie in Fig. la - lc angedeutet) zur Messung auch Sensoren 19,29 verwendet werden, die auf dem Fondtür- Montagewerkzeug 5 befestigt sind bzw. die Sensoren können zwischen den beiden Montagewerkzeugen 5,5' aufgeteilt sein. Insbesondere kann das Sensorsystem 28' auch Sensoren 29 umfassen, die fest mit dem Montagewerkzeug 5 verbunden sind: Da die beiden Montagewerkzeuge 5,5' in der Ausrichtphase C/C fest miteinander gekoppelt sind, nehmen diese Sensoren 29 (innerhalb der in der Positionierphase erreichten Genauigkeit) eine bekannte Position gegenüber dem Montagewerkzeug 5' ein.In the exemplary embodiment in FIGS. 1 to 3, the sensors 19 ', 29' of the sensor systems 18 ', 28' are mounted exclusively on the driver's door installation tool 5 '. Instead or in addition (as indicated in FIGS. 1 a - 1 c) sensors 19, 29 can also be used for the measurement, which are located on the rear door. Assembly tool 5 are attached or the sensors can be divided between the two assembly tools 5,5 '. In particular, the sensor system 28 'can also include sensors 29 which are firmly connected to the assembly tool 5: since the two assembly tools 5,5' are firmly coupled to one another in the alignment phase C / C, these sensors 29 (within those reached in the positioning phase) Accuracy) a known position relative to the assembly tool 5 '.
Das Verfahren "ist neben der Türmontage- auf die Montage beliebiger anderer (benachbarter) Anbauteile übertragbar, welche in hochgenauer Relativausrichtung an einem Werkstück montiert werden müssen. Unter „robotergeführten" Werkzeugen sind im Zusammenhang der vorliegenden Anmeldung ganz allgemein Werkzeuge zu verstehen, die auf einem mehrachsigen Manipulator, insbesondere einem sechsachsigen Industrieroboter montiert sind.In addition to the door assembly, the method "can be transferred to the assembly of any other (neighboring) add-on parts which have to be mounted on a workpiece in a highly precise relative orientation. In the context of the present application," robot-guided "tools are to be understood in general terms as tools that are based on a multi-axis manipulator, in particular a six-axis industrial robot are mounted.
.oOo. .oOo.

Claims

Patentansprücheclaims
Verfahren zur Montage mehrerer Anbauteile (3,3') an ein Werkstück (1) , insbesondere an eine Fahrzeugkarosserie, wobei die Anbauteile (3,3') lagegenau zueinander ausgerichtet an dem Werkstück (1) befestigt werden,Method for mounting a number of add-on parts (3, 3 ') on a workpiece (1), in particular on a vehicle body, the add-on parts (3, 3') being fastened to the workpiece (1) in an aligned position with respect to one another,
— bei welchem Verfahren zur Zuführung und Positionierung jedes Anbauteils (3,3') ein mittels eines Roboters (7,7') geführtes Montagewerkzeug (5,5' ) verwendet wird, welches eine Fixiervorrichtung (14,14') zur Aufnahme des Anbauteils (3,3') umfasst,- Which method for feeding and positioning each add-on part (3,3 ') uses a mounting tool (5,5') guided by a robot (7,7 '), which has a fixing device (14,14') for receiving the add-on part (3,3 '),
- und wobei mindestens eines der Montagewerkzeuge (5,5') ein fest mit dem Montagewerkzeug (5,5') verbundenes Sensorsystem (18,18') mit mindestens einem Sensor (19,19') umfasst, m i t d e n f o l g e n d e n V e r f a h r e n s s c h r i t t e n :- And wherein at least one of the assembly tools (5,5 ') comprises a sensor system (18,18') firmly connected to the assembly tool (5,5 ') with at least one sensor (19,19'), m i t d e n f o l g e n d e n V e r f a r r e n s s c h r i t t e n:
- die Montagewerkzeuge (5,5') werden durch einen iterativen Regelvorgang (A-2') unter Zuhilfenahme von Messwerten der Sensoren (19,19') in eine Vorhalteposition- The assembly tools (5,5 ') are moved into a reserve position by an iterative control process (A-2') with the aid of measured values from the sensors (19, 19 ')
(23,23') bewegt, in welcher die in den Montagewerkzeugen (5,5') gehaltenen Anbauteile (3,3') lagegenau zueinander ausgerichtet sind,(23, 23 ') moves, in which the add-on parts (3, 3') held in the assembly tools (5.5 ') are aligned with each other,
— die Montagewerkzeuge (5,5') mit den darin gehaltenen, lagegenau zueinander ausgerichteten Anbauteilen (3,3'), werden von der Vorhalteposition (23,23') in eine Montageposition (27,27') gegenüber dem Werkstück- The assembly tools (5, 5 ') with the attachments (3, 3'), which are held in position in relation to one another, are moved from the reserve position (23, 23 ') to an assembly position (27, 27') with respect to the workpiece
(1) geführt, in der sie mit dem Werkstück (1) verbunden werden.(1) in which they are connected to the workpiece (1).
Verfahren nach Anspruch 1 d a d u r c h g e k e n n z e i c h n e t , dass im Rahmen des iterativen Regelvorgangs (A-2'), durch den die Anbauteile (3,3') lagegenau zueinander ausgerichtet werden, in einer Regelschleife die folgenden Prozessschritte durchlaufen werden:A method according to claim 1, characterized in that in the context of the iterative control process (A-2 ') Since the add-on parts (3,3 ') are precisely aligned with each other, the following process steps are carried out in a control loop:
- es werden (Ist-) Messwerte der Sensoren (19,19') erzeugt,- (actual) measured values of the sensors (19, 19 ') are generated,
— diese (Ist-) Messwerte werden mit im Rahmen einer Einrichtphase erzeugten (Soll-) Messwerten verglichen,- these (actual) measured values are compared with (target) measured values generated in the course of a set-up phase,
- aus der Differenz zwischen (Ist-) Messwerten und- from the difference between (actual) measured values and
(Soll-) Messwerten wird unter Verwendung einer im Rahmen der Einrichtphase berechneten Jacobi-Matrix ein Verschiebungsvektor der Montagewerkzeuge (5,5') berechnet,(Target) measured values are calculated using a Jacobi matrix calculated in the setup phase, a displacement vector of the assembly tools (5,5 '),
— die Montagewerkzeuge (5,5') werden um diesen Verschiebungsvektor verschoben.- The assembly tools (5,5 ') are shifted by this shift vector.
3. Verfahren nach Anspruch 1 oder 2 d a d u r c h g e k e n n z e i c h n e t , dass zum Anfahren der Montageposition (27,27') ein zweiter iterativer Regelprozess (C,C) durchlaufen wird, im Rahmen dessen die lagegenau zueinander ausgerichteten Anbauteile (3,3') unter Zuhilfenahme von Messwerten von Sensoren (29,29') lagegenau zu einem Referenzbereich (9) auf dem Werkstück (1) ausgerichtet werden.3. The method according to claim 1 or 2, characterized in that a second iterative control process (C, C) is run through to move to the mounting position (27, 27 '), in the context of which the precisely aligned mounting parts (3, 3') with the aid of Measured values from sensors (29, 29 ') are aligned precisely with a reference area (9) on the workpiece (1).
4. Verfahren nach einem der Ansprüche 1 bis 3 d a d u r c h g e k e n n z e i c h n e t , dass nach Erreichen der Vorhalteposition (23,23') die Bewegungen der Roboter (7,7') in einer solchen Weise gekoppelt werden, dass beim Anfahren der Montageposition (27,27') die lagegenaue Ausrichtung der Anbauteile (3,3') zueinander erhalten bleibt.4. The method according to any one of claims 1 to 3, characterized in that after reaching the holding position (23, 23 '), the movements of the robots (7, 7') are coupled in such a way that when the assembly position (27, 27 ') is approached. ) the exact position of the attachments (3,3 ') to each other is maintained.
5. Verfahren nach einem der Ansprüche 1 bis 4 d a d u r c h g e k e n n z e i c h n e t , dass die Anbauteile (3,3') Fahrertür (3') und Fondtür (3) einer Fahrzeugkarosserie (1) sind, die lagegenau zueinander ausgerichtet und an Türausschnitten (2,2') der Karosserie (1) festgeschraubt werden. 5. The method according to any one of claims 1 to 4, characterized in that the add-on parts (3, 3 ') driver's door (3') and rear door (3) of a vehicle body (1), which are precisely aligned with each other and on door cutouts (2,2 ' ) of the body (1).
6. Montagesystem (4) zur simultanen Montage mehrerer Anbauteile (3,3') an ein Werkstück (1), insbesondere zur Montage zweier benachbarter Fahrzeugtüren (3,3') an eine Fahrzeugkarosserie (1) ,6. assembly system (4) for the simultaneous assembly of several add-on parts (3, 3 ') on a workpiece (1), in particular for the assembly of two adjacent vehicle doors (3, 3') on a vehicle body (1),
- mit mehreren Robotern (7,7'), welche jeweils ein Montagewerkzeug (5,5') zur Aufnahme eines Anbauteils (3,3') tragen,- With several robots (7,7 '), each of which carries an assembly tool (5,5') for receiving an add-on part (3,3 '),
- mit einem Steuersystem (20), das für jeden Roboter- With a control system (20) for each robot
(7,7') ein Bearbeitungsprogramm zur Bahnsteuerung des Roboters (7,7') und zur Bewegungssteuerung des Montagewerkzeugs (5,5') aufweist,(7,7 ') has a machining program for path control of the robot (7,7') and for movement control of the assembly tool (5,5 '),
- mit einem Sensorsystem (18,18'), welches fest mit einem der Montagewerkzeuge (5,5') verbunden ist und einen oder mehrere Sensoren (19,19') umfasst,with a sensor system (18, 18 ') which is fixedly connected to one of the assembly tools (5.5') and comprises one or more sensors (19, 19 '),
- wobei mindestens einer der Sensoren (19,19') auf einen Referenzbereich (11,11') des im anderen im Montagewerkzeug (5,5') gehaltenen Anbauteils (3,3') gerichtet ist,- wherein at least one of the sensors (19, 19 ') is directed towards a reference area (11, 11') of the attachment (3.3 ') held in the other in the assembly tool (5.5'),
- und mit einer Auswerteeinheit (26) zur Auswertung der Messwerte des Sensorsystems (18,18').- And with an evaluation unit (26) for evaluating the measured values of the sensor system (18, 18 ').
7. Montage System nach Anspruch 6, d a d u r c h g e k e n n z e i c h n e t , dass mindestens einer der Sensoren (19,19') ein metrisch unkalibrierter Sensor ist.7. Mounting system according to claim 6, so that at least one of the sensors (19, 19 ') is a metrically uncalibrated sensor.
8. Montagesystem nach Anspruch 6 oder 7, d a d u r c h g e k e n n z e i c h n e t , dass zur Kommunikation zwischen dem Steuersystem (20) des Roboters (7,7') und der Auswerteeinheit (26) des Sensorsystems (18,18') eine TCP/IP-Schnittstelle verwendet wird. 8. Mounting system according to claim 6 or 7, characterized in that a TCP / IP interface is used for communication between the control system (20) of the robot (7,7 ') and the evaluation unit (26) of the sensor system (18,18') ,
EP03753391A 2002-09-13 2003-09-06 Method and device for mounting several add-on parts on production part Withdrawn EP1537009A2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10242710 2002-09-13
DE10242710A DE10242710A1 (en) 2002-09-13 2002-09-13 Method for producing a connection area on a workpiece
PCT/EP2003/009915 WO2004026670A2 (en) 2002-09-13 2003-09-06 Method and device for mounting several add-on parts on production part

Publications (1)

Publication Number Publication Date
EP1537009A2 true EP1537009A2 (en) 2005-06-08

Family

ID=31983926

Family Applications (5)

Application Number Title Priority Date Filing Date
EP03753391A Withdrawn EP1537009A2 (en) 2002-09-13 2003-09-06 Method and device for mounting several add-on parts on production part
EP03797275A Withdrawn EP1537011A2 (en) 2002-09-13 2003-09-06 Method and device for processing a moving production part, particularly a vehicle body
EP03773621A Withdrawn EP1537010A2 (en) 2002-09-13 2003-09-06 Method and device for the positionally precise mounting of a hinged flap on a part
EP03750493.3A Revoked EP1537008B1 (en) 2002-09-13 2003-09-06 Method and device for producing a connecting area on a production part
EP03797278.3A Revoked EP1539562B1 (en) 2002-09-13 2003-09-06 Method and device for the positionally precise mounting of an add-on part on a vehicle body

Family Applications After (4)

Application Number Title Priority Date Filing Date
EP03797275A Withdrawn EP1537011A2 (en) 2002-09-13 2003-09-06 Method and device for processing a moving production part, particularly a vehicle body
EP03773621A Withdrawn EP1537010A2 (en) 2002-09-13 2003-09-06 Method and device for the positionally precise mounting of a hinged flap on a part
EP03750493.3A Revoked EP1537008B1 (en) 2002-09-13 2003-09-06 Method and device for producing a connecting area on a production part
EP03797278.3A Revoked EP1539562B1 (en) 2002-09-13 2003-09-06 Method and device for the positionally precise mounting of an add-on part on a vehicle body

Country Status (5)

Country Link
US (5) US20060137164A1 (en)
EP (5) EP1537009A2 (en)
JP (5) JP2005537988A (en)
DE (1) DE10242710A1 (en)
WO (6) WO2004026670A2 (en)

Families Citing this family (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10242710A1 (en) * 2002-09-13 2004-04-08 Daimlerchrysler Ag Method for producing a connection area on a workpiece
DE10348500B4 (en) * 2003-10-18 2009-07-30 Inos Automationssoftware Gmbh Method and device for detecting a gap dimension and / or an offset between a flap of a vehicle and the rest of the vehicle body
US7194326B2 (en) * 2004-02-06 2007-03-20 The Boeing Company Methods and systems for large-scale airframe assembly
DE102004021388A1 (en) * 2004-04-30 2005-12-01 Daimlerchrysler Ag Positioning and processing system and suitable method for positioning and processing at least one component
DE102004033485A1 (en) * 2004-07-10 2006-01-26 Daimlerchrysler Ag Robot system for industrial applications has a measuring device with projecting beams of light for measuring precise positions of an industrial robot
DE102005051533B4 (en) * 2005-02-11 2015-10-22 Vmt Vision Machine Technic Bildverarbeitungssysteme Gmbh Method for improving the positioning accuracy of a manipulator with respect to a serial workpiece
DE102005014354B4 (en) * 2005-03-24 2008-04-03 Thyssenkrupp Drauz Nothelfer Gmbh Method for influencing the component position in the production of automotive body components to be joined / partially reshaped
JP2006293445A (en) * 2005-04-06 2006-10-26 Honda Motor Co Ltd Production management system
FR2888522A1 (en) * 2005-07-12 2007-01-19 Renault Sas Clamping device for handling sheet metal contains a device for checking for the presence of a nut after a nut-setting operation, especially e.g. for setting nuts in doors or hoods in the motor industry
DE102005048278B4 (en) * 2005-10-08 2013-11-21 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Automatic screw device for a chassis of a motor vehicle
DE102006006246A1 (en) * 2006-02-10 2007-08-16 Battenberg, Günther Method and device for fully automatic final inspection of components and / or their functional units
DE102006011341B4 (en) * 2006-03-09 2011-08-18 Deutsches Zentrum für Luft- und Raumfahrt e.V., 51147 Arrangement for mounting an attachment to a moving base member
DE102006019917B4 (en) * 2006-04-28 2013-10-10 Airbus Operations Gmbh Method and device for ensuring the dimensional accuracy of multi-segment structural structures during assembly
DE102006041886A1 (en) * 2006-09-06 2008-03-27 Abb Patent Gmbh Workpiece positioning method, involves repeating determination and correction of actual-position of tool by three-dimensional-measuring machine and robots until actual-position corresponds to predetermined reference value
DE102006049956A1 (en) * 2006-10-19 2008-04-24 Abb Ag System and method for the automated machining and / or machining of workpieces
SE530573C2 (en) * 2006-11-16 2008-07-08 Hexagon Metrology Ab Method and apparatus for compensating geometric errors in processing machines
EP1967333A1 (en) * 2007-03-09 2008-09-10 Abb Research Ltd. Detection of condition changes in an industrial robot system
DE202007004183U1 (en) * 2007-03-16 2008-08-07 Kuka Systems Gmbh Framer
WO2008154237A1 (en) * 2007-06-07 2008-12-18 Utica Enterprises, Inc. Vehicle door mounting
DE102007028581A1 (en) * 2007-06-19 2008-12-24 Bayerische Motoren Werke Aktiengesellschaft Device and method for joining components by means of gluing
WO2009043369A1 (en) * 2007-10-01 2009-04-09 Abb Technology Ab A method for controlling a plurality of axes in an industrial robot system and an industrial robot system
DE102007057065B4 (en) 2007-11-27 2020-07-23 Reiner Götz Method for switching a cockpit module in a motor vehicle
DE102008005282A1 (en) 2007-12-18 2009-06-25 Daimler Ag Fixing arrangement for motor vehicle i.e. passenger car, has adhesive fixing edge of roof module to flange of roof frame, where edge is positioned approximately at height with bordering area of roof frame and bordering on bordering area
JP2009173091A (en) * 2008-01-22 2009-08-06 Kanto Auto Works Ltd Best value calculation method for cover-article fitting, and the best value calculation apparatus of the cover-article fitting
DE102008007382A1 (en) * 2008-02-01 2009-08-13 Kuka Innotec Gmbh Method and device for positioning a tool on a workpiece of a disk in a motor vehicle
US8157155B2 (en) * 2008-04-03 2012-04-17 Caterpillar Inc. Automated assembly and welding of structures
US9576217B2 (en) 2008-04-11 2017-02-21 Recognition Robotics System and method for visual recognition
US8150165B2 (en) * 2008-04-11 2012-04-03 Recognition Robotics, Inc. System and method for visual recognition
DE102008021624A1 (en) * 2008-04-30 2008-12-18 Daimler Ag Alignment of a robot sensor in relation to a measurement point, on setting up a robot in automotive production, uses a start point and varied positions for testing the sensor validity
JP5155754B2 (en) * 2008-07-09 2013-03-06 トヨタ自動車株式会社 Window glass mounting apparatus and mounting method
US8923602B2 (en) * 2008-07-22 2014-12-30 Comau, Inc. Automated guidance and recognition system and method of the same
US8239063B2 (en) * 2008-07-29 2012-08-07 Fanuc Robotics America, Inc. Servo motor monitoring and hood/deck exchange to enhance the interior coating process
DE102008036501B4 (en) * 2008-08-05 2015-01-15 Dürr Somac GmbH Method for operating a robot gripper and robot gripper
US20110160905A1 (en) 2008-09-03 2011-06-30 Honda Motor Co., Ltd. Workpiece mounting system, workpiece mounting method, sunroof unit holding device, and sunroof unit holding method
JP2010173018A (en) * 2009-01-29 2010-08-12 Honda Motor Co Ltd Parts mounting robot and parts mounting device
US8144193B2 (en) * 2009-02-09 2012-03-27 Recognition Robotics, Inc. Work piece tracking system and method
JP4815505B2 (en) * 2009-04-08 2011-11-16 関東自動車工業株式会社 Automotive roof assembly equipment
DE102009017972B3 (en) * 2009-04-21 2010-11-04 Benteler Maschinenbau Gmbh Device for punching components
DE102009020312A1 (en) * 2009-05-05 2010-11-11 Dürr Somac GmbH Method and device for filling assemblies with consumables on production lines of the automotive industry
JP5549129B2 (en) 2009-07-06 2014-07-16 セイコーエプソン株式会社 Position control method, robot
DE102009035177A1 (en) 2009-07-29 2010-02-18 Daimler Ag Rear light mounting method for bodyshell of motor vehicle, involves compensating deviations between actual and target positions of connection points, and mounting rear light at connection points using connecting element
DE102009040734A1 (en) 2009-09-09 2010-04-22 Daimler Ag Connecting device for connecting rear lamp to connecting region of body shell of motor vehicle, has bolt accommodated in opening, where positive locking between side of lamp and connecting region produces pattern between lamp and shell
US8909372B2 (en) * 2010-02-03 2014-12-09 Panasonic Corporation Robot system control method
DE102010016215A1 (en) * 2010-03-30 2011-10-06 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Method for measuring geometry and structure of e.g. support frame in motor car, involves supporting component in stress-free manner by support unit of receiving device and evaluating measurement multiple times with different bases
US8842191B2 (en) 2010-06-03 2014-09-23 Recognition Robotics, Inc. System and method for visual recognition
DE102010024190A1 (en) 2010-06-17 2011-02-10 Daimler Ag Method for mounting door at body of passenger car, involves manually moving mounting tool relative to body of motor vehicle by assembling device with attachment part in pre-assembled position of attachment part
DE102010032084A1 (en) 2010-07-23 2011-03-17 Daimler Ag Method for mounting door in correct position to motor vehicle body, involves positioning door in its shell condition in pre-assembly position relative to motor vehicle body
DE202010014359U1 (en) * 2010-10-15 2012-01-17 Hermann Eiblmeier scanning
EP2463182B1 (en) * 2010-12-13 2012-11-28 C.R.F. Società Consortile per Azioni Self-adaptive method for mounting side doors on motor-vehicle bodies
DE102010055957A1 (en) 2010-12-23 2012-06-28 Daimler Ag Method for producing motor vehicles and motor vehicles
DE102011011776A1 (en) 2011-02-18 2012-01-26 Daimler Ag Method for mounting fixture e.g. door, on body of passenger car, involves holding two connectors i.e. plug portions, at body, and connecting one connector to other connector for forming plug connection for transferring electric current
DE102011014911A1 (en) 2011-03-24 2012-01-05 Daimler Ag Method for automatic assembling of attachment member for e.g. roof luggage support, of motor car, involves arranging position of attachment member such that threaded portions are arranged at appropriate through-holes of car body region
US8534630B2 (en) 2011-12-07 2013-09-17 Toyota Motor Engineering & Manufacturing North America, Inc. Vehicle hood opening and closing devices and methods for opening vehicle hoods
DE102012012630A1 (en) 2012-06-26 2014-01-02 Daimler Ag Method for assembling e.g. mounting element at body making part of motor vehicle, has fastening bolt positioned at mounting element or body making part based on determined position of fastening recess
DE102012012638A1 (en) 2012-06-26 2014-01-02 Daimler Ag Method for connecting body shell elements of motor vehicle device for assembling motor vehicle body, involves determining relative position of body shell elements, and attaching fastening element in position adapted to relative position
JP5832388B2 (en) * 2012-07-09 2015-12-16 本田技研工業株式会社 Working method and working device
CN103158036A (en) * 2012-11-20 2013-06-19 苏州工业园区高登威科技有限公司 Anti-neglected-assembly device
DE102012023415A1 (en) 2012-11-29 2013-08-01 Daimler Ag Method for connecting mounting element with structural element of passenger car, involves arranging mounting element on structural element together with fastening element arranged in fastening recess and connecting with structural element
DE102012023416A1 (en) 2012-11-29 2013-08-01 Daimler Ag Method for connecting mounting element with chassis of motor vehicle e.g. passenger car, involves connecting mounting element with chassis by bonding attachment element arranged in fixing recess with chassis
DE102012112025B4 (en) * 2012-12-10 2016-05-12 Carl Zeiss Ag Method and devices for determining the position of a kinematics
DE102013200682A1 (en) * 2013-01-17 2014-07-17 Adolf Würth GmbH & Co. KG Integral Spengler Screw Dowel and associated Hand Hole Punch with punch pitch adjustment function
KR101427970B1 (en) * 2013-03-26 2014-08-07 현대자동차 주식회사 Door locating system for measuring gap and step height of vehicle and control method of the same
DE102013005538A1 (en) 2013-03-30 2014-03-27 Daimler Ag Method for mounting flap on workpiece e.g. car, involves determining mounting desired position for flap in final assembly, and moving flap to mounting-set position
KR101490921B1 (en) 2013-07-11 2015-02-06 현대자동차 주식회사 Quality inspecting device of automotive parts
KR101427975B1 (en) 2013-07-11 2014-08-07 현대자동차주식회사 Device for separating door of multi vehicle model
JP6049579B2 (en) * 2013-09-25 2016-12-21 本田技研工業株式会社 Joining apparatus and joining method using the same
DE102014004441A1 (en) 2014-03-27 2014-09-18 Daimler Ag Method for mounting a first component to a second component of a motor vehicle
DE102014007883A1 (en) 2014-05-24 2015-11-26 Daimler Ag Method and auxiliary device for aligning a wing element relative to a body of a passenger car
KR101610524B1 (en) 2014-10-20 2016-04-07 현대자동차주식회사 Combination jig for assembly inspection of door-assembly and operation methods thereof
SI3012695T1 (en) 2014-10-23 2018-01-31 Comau S.P.A. System for monitoring and controlling an industrial plant
DE102014221877A1 (en) * 2014-10-28 2016-04-28 Bayerische Motoren Werke Aktiengesellschaft System and method for the precise placement of an object to be processed on a manufacturing device
KR101655586B1 (en) 2014-11-28 2016-09-07 현대자동차주식회사 A Test Gripper and a Test Method thereby
GB2550294B (en) * 2014-12-26 2021-01-06 Honda Motor Co Ltd Method and device for assembling automobile body
DE102015204599B3 (en) * 2015-03-13 2016-08-11 Kuka Roboter Gmbh Method for controlling a manipulator for executing a work process
DE102015005511B4 (en) 2015-04-30 2020-09-24 Audi Ag Assembly plant
US10272851B2 (en) * 2015-10-08 2019-04-30 Toyota Motor Engineering & Manufacturing North America, Inc. Vehicle emblem alignment and installation tools and methods of use
US10275565B2 (en) * 2015-11-06 2019-04-30 The Boeing Company Advanced automated process for the wing-to-body join of an aircraft with predictive surface scanning
KR101734241B1 (en) * 2015-12-10 2017-05-11 현대자동차 주식회사 Trunk lid hinge intellectual loader unit
US20170210489A1 (en) * 2016-01-22 2017-07-27 The Boeing Company Methods and systems for wing-to-body joining
JP6430986B2 (en) 2016-03-25 2018-11-28 ファナック株式会社 Positioning device using robot
JP6434943B2 (en) * 2016-09-20 2018-12-05 本田技研工業株式会社 Assembly equipment
DE102017004199B4 (en) 2017-04-29 2018-11-15 Audi Ag robot system
TWI642385B (en) * 2017-08-31 2018-12-01 川湖科技股份有限公司 Slide rail assembly and slide rail mechanism thereof
JP7077742B2 (en) * 2018-04-17 2022-05-31 トヨタ自動車株式会社 Transport method
IT201800005091A1 (en) 2018-05-04 2019-11-04 "Procedure for monitoring the operating status of a processing station, its monitoring system and IT product"
WO2020056353A1 (en) 2018-09-13 2020-03-19 The Charles Stark Draper Laboratory, Inc. Food-safe, washable, thermally-conductive robot cover
CN109186457B (en) * 2018-09-14 2021-02-12 天津玛特检测设备有限公司 Binocular part identification method and device and production line using device
US10712730B2 (en) 2018-10-04 2020-07-14 The Boeing Company Methods of synchronizing manufacturing of a shimless assembly
US11449021B2 (en) * 2018-12-17 2022-09-20 Divergent Technologies, Inc. Systems and methods for high accuracy fixtureless assembly
US11911914B2 (en) 2019-01-28 2024-02-27 Cognex Corporation System and method for automatic hand-eye calibration of vision system for robot motion
JP7176438B2 (en) * 2019-02-22 2022-11-22 マツダ株式会社 DOOR MOUNTING METHOD AND DOOR MOVING DEVICE AND JIG USED FOR THE SAME
DE102019127867A1 (en) 2019-10-16 2021-04-22 HELLA GmbH & Co. KGaA Method for equipping a joining device for joining a lens to a housing of a motor vehicle lighting device
KR102705360B1 (en) * 2020-07-08 2024-09-09 현대모비스 주식회사 Surround monitoring system and method
EP3944932B1 (en) * 2020-07-27 2024-09-11 ABB Schweiz AG A method and an assembly unit for performing assembling operations
CN112191734B (en) * 2020-08-26 2022-09-13 上海工众机械技术有限公司 High-flexibility X-shaped robot punching gun
KR102435467B1 (en) * 2020-10-05 2022-08-24 주식회사 오토메스텔스타 Assembly hole processing method of vehicle body using vision sensor
US11738943B2 (en) * 2021-09-07 2023-08-29 Lasso Loop Recycling LLC. Processed used-material collection and transfer system and method
KR20230089089A (en) * 2021-12-13 2023-06-20 현대자동차주식회사 Automatic mount system of front end module for vehicle
US20240091947A1 (en) 2022-09-21 2024-03-21 GM Global Technology Operations LLC Collaborative dual-robot hinge installation system including a single multi-purpose vision system
DE102022128155A1 (en) 2022-10-25 2024-04-25 Bayerische Motoren Werke Aktiengesellschaft Processing station for processing a vehicle component and method for operating such a processing station

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19930087A1 (en) 1999-06-30 2001-01-11 Charalambos Tassakos Control of the positioning of a robot type handling device with optical sensors is improved by storage of future movement points in memory to enable the robot to follow a path more quickly with no loss of positioning accuracy

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3283918A (en) * 1963-12-02 1966-11-08 George C Devol Coordinated conveyor and programmed apparatus
US6317953B1 (en) * 1981-05-11 2001-11-20 Lmi-Diffracto Vision target based assembly
US4666303A (en) * 1983-07-11 1987-05-19 Diffracto Ltd. Electro-optical gap and flushness sensors
US4559184A (en) * 1983-11-14 1985-12-17 Stauffer Chemical Company Phosphate ester synthesis without phosphorylation catalyst
JPS60252077A (en) * 1984-05-26 1985-12-12 Mazda Motor Corp Vehicle body assembly system
GB2168934B (en) * 1984-12-19 1988-07-27 Honda Motor Co Ltd Method and apparatus for mounting parts to both sides of a main body
JPS6212483A (en) * 1985-05-30 1987-01-21 Nachi Fujikoshi Corp Automatic mounting device for windowpane of automobile
JPS62106503A (en) * 1985-11-05 1987-05-18 Nissan Motor Co Ltd Method for correcting assembling operation of robot
US4670974A (en) * 1985-11-06 1987-06-09 Westinghouse Electric Corp. Windshield insertion system for a vehicle on a moving conveyor apparatus
US4667805A (en) * 1985-11-06 1987-05-26 Westinghouse Electric Corp. Robotic part presentation system
US4852237A (en) * 1985-11-09 1989-08-01 Kuka Method and apparatus for mounting windshields on vehicles
JPH0818579B2 (en) * 1986-12-04 1996-02-28 マツダ株式会社 Wind glass mounting method
US4909869A (en) * 1986-12-04 1990-03-20 Mazda Motor Corporation Method of mounting a window glass on a vehicle body
US4876656A (en) * 1987-08-28 1989-10-24 Motorola Inc. Circuit location sensor for component placement apparatus
US5579444A (en) * 1987-08-28 1996-11-26 Axiom Bildverarbeitungssysteme Gmbh Adaptive vision-based controller
JP2512766B2 (en) * 1987-09-30 1996-07-03 マツダ株式会社 Car door opener
US4945493A (en) * 1988-09-26 1990-07-31 Ford Motor Company Method and system for correcting a robot path
JPH02110489U (en) * 1989-02-17 1990-09-04
US5228177A (en) * 1990-03-03 1993-07-20 Herzog Maschinenfabrik Gmbh & Co. Sample preparation system for iron and steel samples
IT1240540B (en) * 1990-08-08 1993-12-17 Comau Spa PROCEDURE FOR ASSEMBLING GOALKEEPERS ON VEHICLE BODIES AND EQUIPMENT FOR THE IMPLEMENTATION OF SUCH PROCEDURE.
JPH0490125U (en) * 1990-12-18 1992-08-06
JPH05147457A (en) * 1991-11-29 1993-06-15 Nissan Motor Co Ltd Installation of instrument panel
CA2089017C (en) * 1992-02-13 1999-01-19 Yasurou Yamanaka Method of mounting wheel to vehicle
US5430643A (en) * 1992-03-11 1995-07-04 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Configuration control of seven degree of freedom arms
US5737500A (en) * 1992-03-11 1998-04-07 California Institute Of Technology Mobile dexterous siren degree of freedom robot arm with real-time control system
JP2858186B2 (en) * 1992-04-23 1999-02-17 本田技研工業株式会社 Auto body assembly equipment
DE4214863A1 (en) * 1992-05-05 1993-11-11 Kuka Schweissanlagen & Roboter Method and device for assembling doors in vehicle bodies
JP3308095B2 (en) * 1993-04-15 2002-07-29 マツダ株式会社 Method of mounting vehicle sheet on vehicle and robot hand for gripping vehicle sheet
JPH07314359A (en) * 1994-05-30 1995-12-05 Nippon Telegr & Teleph Corp <Ntt> Follow-up device for manipulator, and control thereof
JP3396342B2 (en) * 1995-07-17 2003-04-14 三菱電機株式会社 Numerical controller with spline interpolation function
GB2312876B (en) * 1996-04-24 2000-12-06 Rover Group A method of assembling a motor vehicle
DE19902635A1 (en) * 1999-01-23 2000-07-27 Bayerische Motoren Werke Ag Method for mounting of a door to a motor vehicle body uses mounting frame for mechanical alignment of door relative to body without computer or industrial robots
US6278906B1 (en) * 1999-01-29 2001-08-21 Georgia Tech Research Corporation Uncalibrated dynamic mechanical system controller
DE29918486U1 (en) * 1999-04-27 1999-12-16 DaimlerChrysler AG, 70567 Stuttgart Device for positioning and producing screw connection points on pressed metal parts of a vehicle body
ES2193087T3 (en) * 1999-06-26 2003-11-01 Kuka Schweissanlagen Gmbh PROCEDURE AND DEVICE FOR CALIBRATING MEASURING STATIONS WITH ROBOTS, HANDLERS AND OPTICAL ASSOCIATED MEASUREMENT DEVICES.
JP2001088074A (en) * 1999-09-24 2001-04-03 Yaskawa Electric Corp Control device of robot
DE10007837A1 (en) * 2000-02-21 2001-08-23 Nelson Bolzenschweis Technik G Welding stud positioning method and stud welding head
JP4265088B2 (en) * 2000-07-10 2009-05-20 株式会社豊田中央研究所 Robot apparatus and control method thereof
US6876697B2 (en) * 2000-12-12 2005-04-05 Sierra Wireless, Inc. Apparatus and method for power ramp up of wireless modem transmitter
DE10143379A1 (en) * 2001-09-05 2003-04-03 Daimler Chrysler Ag Mounting system for installing a roof module in a vehicle body
JP3577028B2 (en) * 2001-11-07 2004-10-13 川崎重工業株式会社 Robot cooperative control system
EP1345099B1 (en) 2002-03-04 2011-11-02 VMT Vision Machine Technic Bildverarbeitungssysteme GmbH Method for determining the spatial position of an object and a workpiece for automatically mounting the workpiece on the object
US6876897B2 (en) * 2002-08-27 2005-04-05 Pilkington North America, Inc. Positioning device and method for operation
DE10242710A1 (en) * 2002-09-13 2004-04-08 Daimlerchrysler Ag Method for producing a connection area on a workpiece

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19930087A1 (en) 1999-06-30 2001-01-11 Charalambos Tassakos Control of the positioning of a robot type handling device with optical sensors is improved by storage of future movement points in memory to enable the robot to follow a path more quickly with no loss of positioning accuracy

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2004026670A3

Also Published As

Publication number Publication date
US20070017081A1 (en) 2007-01-25
JP2005537989A (en) 2005-12-15
WO2004026669A2 (en) 2004-04-01
JP2005537988A (en) 2005-12-15
WO2004026670A2 (en) 2004-04-01
JP2005537990A (en) 2005-12-15
WO2004026671A2 (en) 2004-04-01
WO2004026671A3 (en) 2004-08-26
WO2004026537A2 (en) 2004-04-01
EP1537008A2 (en) 2005-06-08
WO2004026673A2 (en) 2004-04-01
EP1537008B1 (en) 2015-05-06
WO2004026537A3 (en) 2004-06-03
DE10242710A1 (en) 2004-04-08
US20060107507A1 (en) 2006-05-25
US20060015211A1 (en) 2006-01-19
US20060137164A1 (en) 2006-06-29
EP1539562A2 (en) 2005-06-15
WO2004026672A2 (en) 2004-04-01
WO2004026673A3 (en) 2004-07-22
EP1539562B1 (en) 2015-06-03
WO2004026669A3 (en) 2004-12-16
JP2005537939A (en) 2005-12-15
EP1537011A2 (en) 2005-06-08
WO2004026672A3 (en) 2004-09-23
US20060107508A1 (en) 2006-05-25
EP1537010A2 (en) 2005-06-08
WO2004026670A3 (en) 2004-08-26
JP2006514588A (en) 2006-05-11

Similar Documents

Publication Publication Date Title
EP1537009A2 (en) Method and device for mounting several add-on parts on production part
EP1602456B1 (en) Method and device for controlling manipulators
EP1681111B1 (en) Method for operating a manufacturing device
DE102005030944B4 (en) Method and device for joining joining structures, in particular in the assembly of vehicle components
DE102019114070B4 (en) Method for controlling a robot system for assembling components
EP2418555B1 (en) Offline programming method of a NC-powered manipulator
DE102017117837A1 (en) Laser processing robot system and laser processing method
EP2297621B1 (en) Method and system for applying a coating material using a programmable robot
EP1675709A2 (en) Method for effecting the movement of a handling device and image processing device
WO2009095267A1 (en) Method and device for positioning of a tool at a work piece of a disk in a motorized vehicle
DE102009058817A1 (en) System for dimensionally stable roll-hemming of component i.e. sheet component, of industrial robot, has sensor device including non-contact measuring sensor to detect path of folding edge
DE102013000743A1 (en) Device for guiding application of paste-like mass along application path on object e.g. motor vehicle chassis, has evaluating device that evaluates detected data of paste-like mass applied along application path from sensors
EP2553536B1 (en) Method for operating a processing enclosure comprising at least one robot
DE102010024190A1 (en) Method for mounting door at body of passenger car, involves manually moving mounting tool relative to body of motor vehicle by assembling device with attachment part in pre-assembled position of attachment part
DE20220528U1 (en) Method for applying connecting fittings to workpiece using non calibrated sensors fitted to the operating tools and with the measured positions compared with reference positions
DE10242769C1 (en) Position measuring method for robot-guided workpiece using optical sensors in known positions relative to fixed tool
DE68919812T2 (en) CORRECTION PROCEDURE FOR GEOMETRIC JOBS IN INDUSTRIAL ROBOTS.
EP4112239A1 (en) Automated manufacturing machine calibration
EP4110557A1 (en) Arrangement for fitting and wiring electronic components in switchgear engineering, and corresponding method
DE10229555A1 (en) Operation of a robotic handling system provides precise position control based upon a 2D camera and a distance sensor to give 3D control

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050310

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 20060324

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DAIMLERCHRYSLER AG

17Q First examination report despatched

Effective date: 20060324

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DAIMLER AG

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: VMT VISION MACHINE TECHNIC BILDVERARBEITUNGSSYSTEM

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20150401