[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0719349A1 - Verfahren zur erzeugung einer pulvermischung und deren verwendung - Google Patents

Verfahren zur erzeugung einer pulvermischung und deren verwendung

Info

Publication number
EP0719349A1
EP0719349A1 EP94926797A EP94926797A EP0719349A1 EP 0719349 A1 EP0719349 A1 EP 0719349A1 EP 94926797 A EP94926797 A EP 94926797A EP 94926797 A EP94926797 A EP 94926797A EP 0719349 A1 EP0719349 A1 EP 0719349A1
Authority
EP
European Patent Office
Prior art keywords
weight
content
sintered
powder
molybdenum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP94926797A
Other languages
English (en)
French (fr)
Other versions
EP0719349B1 (de
Inventor
Norbert Dautzenberg
Karl-Heinz Lindner
Klaus Vossen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
QMP Metal Powders GmbH
Original Assignee
Mannesmann AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE4331938A external-priority patent/DE4331938A1/de
Application filed by Mannesmann AG filed Critical Mannesmann AG
Publication of EP0719349A1 publication Critical patent/EP0719349A1/de
Application granted granted Critical
Publication of EP0719349B1 publication Critical patent/EP0719349B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0264Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements the maximum content of each alloying element not exceeding 5%
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/08Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of toothed articles, e.g. gear wheels; of cam discs
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/123Spraying molten metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/241Chemical after-treatment on the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0824Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid with a specific atomising fluid
    • B22F2009/0828Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid with a specific atomising fluid with water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S75/00Specialized metallurgical processes, compositions for use therein, consolidated metal powder compositions, and loose metal particulate mixtures
    • Y10S75/95Consolidated metal powder compositions of >95% theoretical density, e.g. wrought

Definitions

  • the invention relates to a method for producing a powder mixture according to the preamble of claim 1 and the use of such a powder mixture for the production of sintered parts with high toughness and density.
  • Forming e.g. turning, drilling, milling
  • Waste material can occur and is therefore faster and less expensive for series parts.
  • the parts will be
  • Green compacts are pressed and then in an oven at about 1120-1150 ° C
  • Impairment of the mechanical properties which leads to the fact that sintered parts have so far hardly been used with particularly high mechanical stress, especially since larger dimensions to compensate for this disadvantage cannot generally be accepted because of the associated increase in volume and weight.
  • the pores contained in the sintered part can act as internal notches, which leads to a drastic reduction, in particular of dynamic ones
  • Density increase can be used because higher phosphorus contents tend to cause embrittlement of the sintered part and thus the sensitivity to the notch effect is further increased.
  • An iron-based powder is known from WO 91/19562, which is said to ensure a comparatively high impact strength. It prescribes 0.3 - 0.7% by weight phosphorus and 0.3 - 3.5% by weight molybdenum as alloying elements. Any other alloying elements present are limited to a maximum of 2% by weight.
  • the molybdenum content is preferably 0.5-2.5% by weight and that of phosphorus
  • the molybdenum content rises steeply from 0 to 1.0% by weight, reaches a maximum in the range of 1 to 2% by weight and even drops below 3.5% by weight of molybdenum to below the initial values.
  • DE 29 43 601 C2 discloses a prealloyed steel powder for producing high-strength sintered parts which contains 0.35 to 1.50% Mn, 0.2 to 5.0% Cr, 0.1 to 7.0% Mo, 0 , 01 to 1.0 V, maximum 0.10% Si, maximum 0.01% AI, maximum 0.05% C, maximum 0.004% N, maximum 0.25% oxygen, balance iron and other manufacturing-related impurities.
  • the low C content is required to get a good one
  • this steel powder is lubricated with lubricants (e.g. 1% zinc stearate) in the usual way. added and additionally mixed with graphite powder in order to be able to set the desired C content in the sintered part.
  • lubricants e.g. 1% zinc stearate
  • graphite powder added and additionally mixed with graphite powder in order to be able to set the desired C content in the sintered part.
  • the amount of graphite powder added is regularly several tenths of a percent (eg 0.8%), since the sintered parts are hardened in oil after sintering
  • Metal powder mixture must therefore have a sufficiently high C content for tempering steel, taking into account the burn-off losses to be expected during sintering.
  • the sintering process inevitably creates a structure due to the C content, which depends on
  • the cooling rate consists of martensite or martensite and bainite or bainite and pearlite.
  • the object of the invention is therefore to provide a method of the generic type which produces a ready-to-press steel powder mixture from which sintered parts can be produced with high density, which with good
  • Powder mixture according to the invention for the production of such components can be specified.
  • Sintered parts are characterized by the features of claim 8 and can be further developed in an advantageous manner by the features of subclaims 9 to 14.
  • sintering temperatures can range from 1050 -
  • High-temperature sintering can further increase the achievable density compared to normal sintering.
  • the powder mixture according to the invention is characterized in that it is practically phosphorus-free, that is to say it contains phosphorus only as an impurity (P ⁇ 0.02% by weight).
  • the minimum required molybdenum content The molten steel that is to be used for the powder production depends on the intended sintering temperature during the later production of the sintered parts. In any case, a content of 4.0% by weight is already sufficient. For economic reasons, an upper limit of 5% by weight, preferably even only 4.5% by weight, should not be exceeded. At a sintering temperature of 1120 ° C 3.8% by weight of molybdenum and at 1280 ° C even 2.7% by weight are sufficient.
  • the minimum required molybdenum can be determined as a function of the sintering temperature T s as follows:
  • the molten steel to be atomized not only has to be practically phosphorus-free, but also must not have any appreciable carbon content (C ⁇ 0.01% by weight) so that the powder remains sufficiently soft and easy to press.
  • C ⁇ 0.01% by weight an appreciable carbon content
  • graphite can be added to the powder, which, however, may at most lead to a carbon content of 0.06% by weight in the powder mixture. Limiting the carbon content to max. 0.04% by weight and in particular to a max.
  • the powder can also contain the usual contaminants of a molten steel.
  • other metallic alloy additives are not required, but usually do not interfere if they do not assume too large values.
  • these additional alloy elements should not exceed a total of 1.0% by weight, preferably 0.5% by weight.
  • To increase the strength of the Alloy can be expedient in particular the addition of chromium (preferably without further additional alloy elements) within the limits mentioned.
  • forming gas ie a mixture of H 2 and N 2 .
  • H 2 contents tend to improve the density that can be achieved during sintering, which, due to the setting of the powder mixture according to the invention, takes place exclusively in the alpha phase and therefore strongly promotes density sintering (without the formation of a liquid phase).
  • the cooling after sintering does not require any special measures.
  • the sintered parts have a purely ferritic structure made of FeMo mixed crystals.
  • the sintered parts can then be subjected to a calibration, which leads to a deformation in the surface area
  • case hardening can be carried out in a known manner, which is particularly recommended for gears and similarly stressed parts, since it leads to a substantial increase in the surface hardness and to the introduction of
  • the sintered parts produced in this way have a close to theoretical maximum density, it being particularly noteworthy that the remaining pores are small, self-contained and round and therefore do not have any significant notch effect. This results in excellent dynamic strength values as well as high surface hardness after case hardening, which are of crucial importance for wear resistance and tooth flank load capacity, for example.
  • Figures 1 and 2 show, in different magnifications, micrographs of sintered parts made from the material according to the invention.
  • Metal powder presses were produced from this material using a pressure of 7 t / cm 2 test specimens according to ISO 2740, the

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Forging (AREA)

Description

Verfahren zur Erzeugung einer Pulvermischung und deren Verwendung
Die Erfindung betrifft ein Verfahren zur Erzeugung einer Pu l vermi schung gemäß dem Gattungsbegriff des Patentanspruchs 1 sowie die Verwendung einer solchen Pulvermischung zur Herstellung von Sinterteilen mit hoher Zähigkeit und Dichte.
Die Herstellung von mechanischen Bauteilen aus Eisenwerkstoffen im Wege der Sintertechnik hat gegenüber einer Herstellung durch spanende
Formgebung (z.B. Drehen, Bohren, Fräsen) den großen Vorteil, daß die eigentliche Formgebung in einem einzigen Arbeitsgang praktisch ohne die
Entstehung von Abfallmaterial erfolgen kann und daher bei Serienteilen schneller und kostengünstiger möglich ist. Die Teile werden
beispielsweise auf einer hydraulischen Metallpulverpresse in einem Formwerkzeug unter Anwendung eines Preßdrucks von z.B. 7 t/cm2 zu
Grünlingen gepreßt und anschließend in einem Ofen bei etwa 1120-1150°C
(Normalsintern) oder auch bei etwa 1250-1280°C (Hochtemperatursintern) gesintert, um eine ausreichende statische und dynami sche Festigkeit zu erlangen. Herstellungsbedingt weisen Sinterteile stets eine geringere
Dichte als die des entsprechenden vollmassiven Werkstoffs (theoretische Dichte) auf, da sie von Poren durchsetzt sind. Bei Eisenwerkstoffen liegt die tatsächliche Dichte der Sinterteile üblicherweise je nach angewendetem Preßdruck und Form des Teils bei etwa 60 - 92 % der theoretischen Dichte. Hierdurch ergibt sich zwangsläufig eine
Beeinträchtigung der mechanischen Eigenschaften, die dazu führt, daß Sinterteile bei besonders hoher mechanischer Beanspruchung bisher kaum angewendet werden, zumal eine größere Dimensionierung zur Kompensation dieses Nachteils im Regelfall wegen der damit verbundenen Volumen- und Gewichtserhöhung nicht akzeptiert werden kann. Hinzu kommt, daß die im Sinterteil enthaltenen Poren als innere Kerben wirken können, die zu einer drastischen Verminderung insbesondere der dynamischen
Festigkeitseigenschaften führen können.
Um das Porenvolumen von Sinterteilen zu vermindern, ist es bekannt, das Eisenbasispulver mit einem höheren Phosphorgehalt einzusetzen. Dies führt zu einem deutlichen Schrumpfen während des Sintervorgangs und damit zu einer Dichtesteigerung. Die Schrumpfung des Sinterteils wird bei der geometrischen Gestaltung der Preßform durch entsprechende Übermaße berücksichtigt und kann somit weitestgehend kompensiert werden. Die Zugabe von Phosphor, die entweder durch entsprechendes Zulegieren zu der bei der Pulverzerstäubung eingesetzten Schmelze oder durch Zumischen von Phosphorverbindungen zum Eisenbasispulver erfolgen kann, hat jedoch den Nachteil, daß sie nur bis zu einem gewissen Grad zur
Dichtesteigerung genutzt werden kann, weil höhere Phosphorgehalte tendenziell eine Versprödung des Sinterteils hervorrufen und somit die Empfindlichkeit gegenüber Kerbwirkung noch erhöht wird.
Ein anderer Weg, zu einer höheren Dichte, also zu einer Verminderung des Porenvolumens zu kommen, ist in der sogenannten Zweifachsintertechnik zu sehen, bei der der Preßkörper nach einem ersten Sintern bei
üblicherweise ca. 700 - 900°C einem erneuten Preßvorgang und einem abschließenden Fertigsintern unterzogen wird. Wegen des zweifachen Pressens und Sinterns handelt es sich hierbei um ein sehr
kostenintensives Verfahren.
Aus der WO 91/19562 ist ein Eisenbasispulver bekannt, das eine vergleichsweise hohe Schlagfestigkeit gewährleisten soll. Es schreibt als Legierungselemente zwingend 0,3 - 0,7 Gew-% Phosphor und 0,3 - 3,5 Gew-% Molybdän vor. Etwa vorhandene weitere Legierungselemente sind in der Summe auf maximal 2 Gew-% beschränkt. Bevorzugt liegen die Gehatte an Molybdän bei 0,5 - 2,5 Gew-% und von Phosphor bei
0,4 - 0,5 Gew-% (Zugabe insbesondere in Form von Fe3P). Für Kohlenstoff wird eine Obergrenze von 0,07 Gew-% empfohlen. Dieses Eisenbasispulver ist für normale Sintertemperaturen (unter 1450°C) geeignet. Die in dieser Schrift dargestellten Versuchsergebnisse zeigen, daß sowohl für Phosphor als auch für Molybdän optimale Mengenanteile existieren, bei denen die Schlagfestigkeit besonders hoch liegt. So steigt die
Schlagfestigkeit bei einem Pulver mit 0,5 Gew-% Phosphor bei
Molybdängehalten von 0 - 1,0 Gew-% steil an, erreicht im Bereich 1 - 2 Gew-% ein Maximum und fällt jenseits von 3,5 Gew-% Molybdän sogar bis unterhalb der Ausgangswerte ab.
Weiterhin ist aus der DE 29 43 601 C2 ein vorlegiertes Stahlpulver zur Herstellung hochfester Sinterteile bekannt, das 0,35 bis 1,50 % Mn, 0,2 bis 5,0 % Cr, 0,1 bis 7,0 % Mo, 0,01 bis 1,0 V, maximal 0,10 % Si, maximal 0,01 % AI, maximal 0,05 % C, maximal 0,004 % N, maximal 0,25 % Sauerstoff, Rest Eisen und andere herstellungsbedingte Verunreinigungen enthält. Der niedrige C-Geha l t ist erforderlich, um eine gute
Preßbarkeit des Stahlpulvers zu ermöglichen, das durch Wasserverdüsung einer entsprechenden Schmelze und anschließende Reduktionsglühung bei 1000 °C erzeugt wird. Vor dem Verpressen zu Grünlingen wird dieses Stahlpulver in üblicher Weise mit Schmiermitteln (z.B. 1 % Zinkstearat) versetzt und zusätzlich mit Graphitpulver gemischt, um den gewünschten C-Gehalt im Sinterteil einstellen zu können. Die zugesetzte Menge an Graphitpulver beträgt regelmäßig mehrere Zehntel Prozent (z.B. 0,8 %), da die Sinterteile nach dem Sintern in öl gehärtet werden, um
ausreichende Festigkeitswerte zu erhalten. Die preßfertige
Metallpulvermischung muß daher unter Berücksichtigung der beim Sintern zu erwartenden Abbrandverluste einen für einen Vergütungsstahl ausreichend hohen C-Gehalt aufweisen. Durch den Sintervorgang wird wegen des C-Gehaltes zwangsläufig ein Gefüge erzeugt, das je nach
Abkühlgeschwindigkeit aus Martensit oder aus Martensit und Bainit oder aus Bainit und Perlit besteht. Zur Erzielung einer Dichte, die in der Nähe der theoretischen Dichte von Stahl liegt, ist vorgesehen, die Sinterteile vor der Wärmebehandlung einem Schmiedevorgang zu
unterziehen.
Bei mechanisch stark beanspruchten Zahnrädern ist neben einer möglichst hohen Zahnfußbiegewechselfestigkeit insbesondere eine hohe
Zahnflankentragfähigkeit erforderlich. Daher werden solche Zahnräder üblicherweise gehärtet. Bei einem Werkstoff mit relativ hohem
Phosphorgehalt führt dies jedoch zu einer unzulässigen Versprödung des Bauteils.
Aufgabe der Erfindung ist es daher, ein Verfahren der gattungsgemäßen Art anzugeben, das eine preßfertige Stahlpulvermischung erzeugt, aus der Sinterteile mit hoher Dichte herstellbar sind, die bei guter
Oberf lächenhärtbarkeit insbesondere gute dynamische
Festigkeitseigenschaften aufweisen und dadurch ohne Anwendung der aufwendigen Zweifachsintertechnik oder eines Schmiedevorgangs für mechanisch besonders stark belastbare Bauteile einsetzbar sind, insbesondere als Zahnräder für Automobilgetriebe und ähnlich
beanspruchte Bauteile. Als Nebenaufgabe soll die Verwendung der erfindungsgemäßen Pulvermischung zur Herstellung derartiger Bauteile angegeben werden.
Gelöst wird diese Aufgabe hinsichtlich des Verfahrens durch die Merkmale des Patentanspruchs 1. Vorteilhafte Ausführungsformen dieses Verfahrens sind in den Unteransprüchen 2 bis 7 angegeben. Die Verwendung der erfindungsgemäß erzeugten Pulvermischung zur Herstellung von
Sinterteilen ist durch die Merkmale des Patentanspruchs 8 gekennzeichnet und durch die Merkmale der Unteransprüche 9 bis 14 in vorteilhafter Weise weiter ausgestaltbar.
Es war völlig überraschend, daß gefunden werden konnte, daß ein z.B. durch Gasverdüsung, Gas/Flüssigkeits-Verdüsung oder vorzugsweise durch
Wasserverdüsung einer molybdänhaltigen Stahlschmelze und anschließende
Reduktions- und Weichglühen bei 850 - 950 °C hergestelltes Stahlpulver sich nach Mischung mit üblichen Schmiermitteln der Pulvermetallurgie
(z.B. Zinkstearat) zu Bauteilen verarbeiten läßt, die nur noch ein äußerst kleines Porenvolumen, d.h. eine nahe an der theoretisch höchstmöglichen Dichte des Werkstoffs Liegende Dichte (z.B. 95 bis 98 %) aufweisen. Dabei ist lediglich ein einfaches Pressen unter Anwendung üblicher Drücke im Bereich 6,0 - 8,0 t/cm2, vorzugsweise 6,5 - 7,5 t/cm2 erforderlich. Die Sintertemperaturen können im Bereich 1050 -
1350 C liegen, wobei höhere Temperaturen bevorzugt werden. Das bedeutet bei Einsatz von Bandöfen etwa bis zu 1150 °C und bei Hubbalkenöfen etwa
1250 - 1300 °C (Hochtemperatursintern). Durch Hochtemperatursintern läßt sich die erzietbare Dichte gegenüber dem Normalsintern weiter steigern.
Die erfindungsgemäße Pulvermischung zeichnet sich dadurch aus, daß sie praktisch phosphorfrei ist, Phosphor also lediglich als Verunreinigung enthält (P < 0,02 Gew-%). Der mindestens erforderliche Molybdängehalt der Stahlschmelze, die für die Pulverherstellung eingesetzt werden soll, hängt von der vorgesehenen Sintertemperatur bei der späteren Herstellung der Sinterteile ab. Ein Gehalt von 4,0 Gew-% ist in jedem Fall bereits als ausreichend anzusehen. Aus wirtschaftlichen Gründen sollte eine Obergrenze von 5 Gew-%, vorzugsweise sogar von nur 4,5 Gew-% nicht überschritten werden. Bei einer Sintertemperatur von 1120°C reichen 3,8 Gew-% Molybdän und bei 1280°C sogar 2,7 Gew-% aus. Wegen der zu berücksichtigenden Schmelztoleranzen empfiehlt sich zur Sicherheit jedoch eine Erhöhung dieser unteren Grenzwerte um z.B. 0,5 Gew-% auf 4,3 Gew-% bzw. 3,2 Gew-%. Der mindestens erforderliche Molybdängehatt läßt sich in Abhängigkeit von der Sintertemperatur Ts wie folgt bestimmen:
Die zu verdüsende Stahlschmelze muß nicht nur praktisch phosphorfrei sein, sondern darf auch keinen nennenswerten Kohlenstoffgehalt aufweisen (C < 0,01 % Gew-%), damit das Pulver ausreichend weich und gut preßbar bleibt. Zur Erhöhung der Festigkeit kann im Einzelfall, wenngleich dies möglichst sogar vermieden werden sollte, dem Pulver Graphit zugemischt werden, der jedoch höchstens zu einem Kohlenstoffgehalt von 0,06 Gew-% in der Pulvermischung führen darf. Bevorzugt wird eine Begrenzung des Kohlenstoffgehalts auf max. 0,04 Gew-% und insbesondere auf max.
0,02 Gew-%. Das Pulver kann im übrigen die üblichen Verunreinigungen einer Stahlschmelze enthalten. Außer Molybdän sind weitere metalLische Legierungszusätze nicht erforderlich, stören aber in der Regel nicht, wenn sie nicht zu große Werte annehmen. Insgesamt sollten diese zusätzlichen Legierungselemente eine Summe von 1,0 Gew-%, vorzugsweise von 0,5 Gew-% nicht überschreiten. Zur Steigerung der Festigkeit der Legierung kann insbesondere die Zugabe von Chrom (vorzugsweise ohne weitere zusätzliche Legierungsetemente) in den genannten Grenzen zweckmäßig sein.
Bei der Verarbeitung der erfindungsgemäßen Pulvermischung ist es vorteilhaft, den Sintervorgang in einer reduzierenden Atmosphäre, insbesondere in einer mindestens 10 Vol-%, vorzugsweise 20 - 40 Vol-% Wasserstoff enthaltenden Atmosphäre auszuführen. Damit wird
beispielsweise erreicht, daß die Ausscheidung von Nitriden vermieden oder auf ein Minimum reduziert wird. Zweckmäßig ist beispielsweise der Einsatz von Formiergas, d.h. eine Mischung aus H2 und N2. Höhere
H2-Gehalte verbessern tendenziell die erzielbare Dichte beim Sintern, das aufgrund der Einstellung der erfindungsgemäßen Pulvermischung ausschließlich in der Alpha-Phase erfolgt und daher ein Dichtsintern (ohne Bildung einer flüssigen Phase) stark begünstigt. Die Abkühlung nach dem Sintern erfordert keine besonderen Maßnahmen. Die Sinterteile weisen ein rein ferritisches Gefüge aus FeMo-Mischkristallen auf.
Die gesinterten Teile können anschließend noch einer Kalibrierung unterzogen werden, die zu einer Verformung im Oberflächenbereich
(Einebnung der Rauhigkeit) und somit zu einer besseren
Oberflächenqualität und Maßhaltigkeit führt. Danach kann in bekannter Weise eine Einsatzhärtung durchgeführt werden, die sich insbesondere für Zahnräder und ähnlich beanspruchte Teile empfiehlt, da sie zu einer wesentlichen Erhöhung der Oberflächenhärte und zum Einbringen von
Druckeigenspannungen führt. Bei Zahnrädern ist es zweckmäßig, vor der Einsatzhärtung den Verzahnungsbereich einem Weichschaben zu unterziehen. Nach dem Einsatzhärten der Zahnräder kann das übliche Schleifen von Bohrungen und Planflächen erfolgen.
Die in dieser Weise hergestellten Sinterteile haben eine nahe am theoretischen Höchstwert liegende Dichte, wobei besonders bemerkenswert ist, daß die verbleibenden Poren klein, in sich abgeschlossen und rund sind und daher keine nennenswerte Kerbwirkung entfalten. Daher ergeben sich ausgezeichnete dynamische Festigkeitswerte sowie nach einer Einsatzhärtung gleichzeitig auch hohe Oberflächenhärten, die für die Verschleißfestigkeit und z.B. die Zahnflankentragfähigkeit von entscheidender Bedeutung sind.
Anhand des nachfolgenden Ausführungsbeispiels wird die Erfindung näher erläutert. Die Figuren 1 und 2 zeigen in unterschiedlicher Vergrößerung Schliffbilder von Sinterteilen aus dem erfindungsgemäßen Werkstoff.
Aus einer Stahlschmelze mit (Gew-%)
< 0,01 % C
< 0,02 % P
3,2 % Mo
Rest Eisen und übliche Verunreinigungen (< 0,5 %) wurde durch Wasserverdüsung ein feines, spratziges Stahlpulver hergestellt. Nach einer Reduktionsglühung über ca. 70 min bei ca.
900 °C wurde das Pulver, das einen Restsauerstof fgehalt von weniger als
0,15 Gew-% und nach dem Sieben eine Korngröße unter 0,2 mm aufwies, mit
0,8 Gew-% Mikrowachs als Gleitmittel vermischt. Auf einer hydraulischen
Metallpulverpresse wurden aus diesem Material unter Anwendung eines Preßdrucks von 7 t/cm2 Probekorper nach ISO 2740 erzeugt, die
anschließend bei einer Temperatur von 1280°C über ca. 30 min in einem
Ofen unter Formiergas (80 % N2, 20 % H2) gesintert wurden. An einer
Teilmenge der Probekörper wurde anschließend noch eine Einsatzhärtung bei 920 - 950 °C in einem Ofen mit einem C-Potential von 0,8 % durchgeführt, die zu einer Einhärtetiefe von ca. 0,4 mm führte. Die
Untersuchung der Probekörper ergab folgende Werte: Sinterdichte 7,60 + 0,04 g/cm3
(96 - 97 % der theoretischen Dichte)
Biegewechselfestigkeit bei 2 × 106 Lastwechseln
nach Einsatzhärtung ca. 450 MPa
ohne Einsatzhartung ca. 180 MPa
Bruchdehnung gesintert A5 > 25 %
Die äußerst geringe Porosität ergibt sich aus den Schliffbildern der Figuren 1 und 2, wobei aus Fig. 2 die vorteilhafte runde Ausbildung der Poren klar entnehmbar ist.

Claims

Patentansprüche
1. verfahren zur Erzeugung einer preßfertigen Pulvermischung aus
Stahlpulver, das durch Verdüsung, insbesondere Wasserverdüsung, einer kohlenstoff- und phosphorfreien Molybdänstahlschmelze mit üblichen Verunreinigungen und anschließende Reduktions- und
Weichglühung erzeugt wird, und das danach mit üblichen Gleitmitteln versetzt und gegebenenfalls zur Einstellung eines
Kohlenstoffgehaltes mit geringen Mengen Graphitpulver gemischt wird, zur Herstellung von Sinterteilen mit hoher Zähigkeit und Dichte,
dadurch gekennzeichnet,
daß für die Verdüsung eine Schmelze eingesetzt wird, deren
Motybdängehalt in Abhängigkeit von der vorgesehenen im Bereich von etwa 1050 - 1350°C liegenden Sintertemperatur Ts festgelegt ist und mindestens
beträgt, daß der Kohlenstoffgehalt der Pulvermischung auf maximaL 0,06 Gew-% begrenzt wird und daß die Reduktionsglühung im
Temperaturbereich 850 - 950 °C stattfindet.
Verfahren nach Anspruch 1,
dadurch gekennzeichnet,
daß der Gehalt an sonstigen metallischen LegierungseLementen in der
Stahlschmelze auf eine Summe von maximaL 1,0 Gew-%, vorzugsweise
0,5 Gew-%, beschränkt wird.
3. Verfahren nach Anspruch 2,
dadurch gekennzeichnet,
daß der Schmelze Chrom, insbesondere Chrom ohne weitere sonstige Legierungselemente, zugesetzt wird.
4. Verfahren nach einem der Ansprüche 1 bis 3,
dadurch gekennzeichnet,
daß der Molybdängehalt für eine Sintertemperatur von 1280°C mindestens 3,2 Gew-% beträgt.
5. Verfahren nach einem der Ansprüche 1 bis 3,
dadurch gekennzeichnet,
daß der Molybdängehalt für eine Sintertemperatur von 1120°C mindestens 4,3 Gew-% beträgt.
6. Verfahren nach einem der Ansprüche 1 bis 5,
dadurch gekennzeichnet,
daß der Molybdängehalt auf maximal 5,0 Gew-%, vorzugsweise auf maximal 4,5 Gew-% begrenzt wird.
7. Verfahren nach einem der Ansprüche 1 bis 6,
dadurch gekennzeichnet,
daß der Kohlenstoffgehalt (Graphitpulver) auf max. 0,04 Gew-%, insbesondere auf 0,02 Gew-% begrenzt wird.
8. Verwendung einer nach einem der Ansprüche 1 bis 7 erzeugten
Pulvermischung zur Herstellung von Sinterteilen mit hoher Zähigkeit und Dichte mit der Maßgabe, daß die Teile durch Einfachpreßtechnik mit einem Preßdruck von 6,0 - 8,0 t/cm2 als Grünlinge gepreßt werden und anschließend bei einer Temperatur im Bereich von 1050 - 1350°C unter einer mindestens 10 Vol-% Wasserstoff enthaltenden Atmosphäre, insbesondere einer N2 H2-Atmosphäre gesintert werden und ein ferritisches Gefüge aufweisen.
9. Verwendung nach Anspruch 8,
dadurch gekennzeichnet,
daß der H2-Anteil 20 - 40 Vol-% beträgt,
10. Verwendung nach Anspruch 9,
dadurch gekennzeichnet,
daß der Preßdruck 6,5 - 7,5 t/cm2 beträgt,
11. Verwendung nach einem der Ansprüche 8 bis 9,
dadurch gekennzeichnet,
daß die Sintertemperatur 1250 - 1300°C beträgt.
12. Verwendung nach einem der Ansprüche 8 bis 11,
dadurch gekennzeichnet,
daß die gesinterten Teile anschließend einer Kalibrierung unterzogen werden.
13. Verwendung nach einem der Ansprüche 6 - 12,
dadurch gekennzeichnet,
daß die gesinterten und gegebenenfalls kalibrierten, insbesondere als Zahnräder hergestellten Teile einer Einsatzhärtung unterzogen werden.
14. Verwendung nach Anspruch 13,
dadurch gekennzeichnet,
daß die gesinterten und kalibrierten Zahnräder vor der
Einsatzhartung im Verzahnungsbereich geschabt werden.
EP94926797A 1993-09-16 1994-09-09 Verfahren zur herstellung von sinterteilen Expired - Lifetime EP0719349B1 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE4331938 1993-09-16
DE4331938A DE4331938A1 (de) 1993-09-16 1993-09-16 Molybdänhaltiges Eisenbasispulver
DE9409832U 1994-06-09
DE9409832U DE9409832U1 (de) 1993-09-16 1994-06-09 Metallpulvermischung
PCT/DE1994/001087 WO1995008006A1 (de) 1993-09-16 1994-09-09 Verfahren zur erzeugung einer pulvermischung und deren verwendung

Publications (2)

Publication Number Publication Date
EP0719349A1 true EP0719349A1 (de) 1996-07-03
EP0719349B1 EP0719349B1 (de) 1998-04-29

Family

ID=25929696

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94926797A Expired - Lifetime EP0719349B1 (de) 1993-09-16 1994-09-09 Verfahren zur herstellung von sinterteilen

Country Status (7)

Country Link
US (1) US5628046A (de)
EP (1) EP0719349B1 (de)
JP (1) JP3572078B2 (de)
AT (1) ATE165628T1 (de)
CA (1) CA2165087C (de)
ES (1) ES2115257T3 (de)
WO (1) WO1995008006A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10306353A (ja) 1997-04-30 1998-11-17 Nippon Piston Ring Co Ltd シンクロナイザリング
SE9702299D0 (sv) * 1997-06-17 1997-06-17 Hoeganaes Ab Stainless steel powder
US6042949A (en) * 1998-01-21 2000-03-28 Materials Innovation, Inc. High strength steel powder, method for the production thereof and method for producing parts therefrom
SE9803171D0 (sv) * 1998-09-18 1998-09-18 Hoeganaes Ab Warm compaction of steel powders
US6514307B2 (en) * 2000-08-31 2003-02-04 Kawasaki Steel Corporation Iron-based sintered powder metal body, manufacturing method thereof and manufacturing method of iron-based sintered component with high strength and high density
JP2004324712A (ja) * 2003-04-23 2004-11-18 Mitsubishi Materials Corp モータ式燃料ポンプの耐摩耗性軸受

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3901661A (en) * 1972-04-06 1975-08-26 Toyo Kohan Co Ltd Prealloyed steel powder for formation of structural parts by powder forging and powder forged article for structural parts
US4382818A (en) * 1975-12-08 1983-05-10 Ford Motor Company Method of making sintered powder alloy compacts
SE7612279L (sv) * 1976-11-05 1978-05-05 British Steel Corp Finfordelat glodgat stalpulver, samt sett att framstella detta.
JPS5810962B2 (ja) * 1978-10-30 1983-02-28 川崎製鉄株式会社 圧縮性、成形性および熱処理特性に優れる合金鋼粉
US4350529A (en) * 1979-02-09 1982-09-21 Scm Corporation Corrosion-resistant powder-metallurgy stainless steel powders and compacts therefrom
US4331478A (en) * 1979-02-09 1982-05-25 Scm Corporation Corrosion-resistant stainless steel powder and compacts made therefrom
SE451549B (sv) * 1983-05-09 1987-10-19 Kloster Speedsteel Ab Pulvermetallurgisk metod att framstella metallkroppar av magnetiserbart sferiskt pulver
SE453733B (sv) * 1985-03-07 1988-02-29 Hoeganaes Ab Jernbaserat pulver for hoghallfasta sintrade kroppar
US4880461A (en) * 1985-08-18 1989-11-14 Hitachi Metals, Ltd. Super hard high-speed tool steel
KR910002918B1 (ko) * 1987-03-13 1991-05-10 미쯔비시마테리알 가부시기가이샤 Fe계 소결합금제 변속기용 동기링
JPH0747794B2 (ja) * 1988-06-27 1995-05-24 川崎製鉄株式会社 耐食性に優れた焼結合金鋼およびその製造方法
CA2004625A1 (en) * 1988-12-06 1990-06-06 Patrick J. Mcgeehan Iron-based powder for the manufacture of sintered components
SE468466B (sv) * 1990-05-14 1993-01-25 Hoeganaes Ab Jaernbaserat pulver och noetningsresistent varmhaallfast komponent framstaelld av detta samt saett att framstaella komponenten
US5080712B1 (en) * 1990-05-16 1996-10-29 Hoeganaes Corp Optimized double press-double sinter powder metallurgy method
US5009842A (en) * 1990-06-08 1991-04-23 Board Of Control Of Michigan Technological University Method of making high strength articles from forged powder steel alloys
US5217683A (en) * 1991-05-03 1993-06-08 Hoeganaes Corporation Steel powder composition
US5238482A (en) * 1991-05-22 1993-08-24 Crucible Materials Corporation Prealloyed high-vanadium, cold work tool steel particles and methods for producing the same
EP0600421B1 (de) * 1992-11-30 1997-10-08 Sumitomo Electric Industries, Limited Niedrig legierter Sinterstahl und Verfahren zu dessen Herstellung
US5522914A (en) * 1993-09-27 1996-06-04 Crucible Materials Corporation Sulfur-containing powder-metallurgy tool steel article
US5552109A (en) * 1995-06-29 1996-09-03 Shivanath; Rohith Hi-density sintered alloy and spheroidization method for pre-alloyed powders

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9508006A1 *

Also Published As

Publication number Publication date
WO1995008006A1 (de) 1995-03-23
ATE165628T1 (de) 1998-05-15
CA2165087A1 (en) 1995-03-23
ES2115257T3 (es) 1998-06-16
JPH09502766A (ja) 1997-03-18
EP0719349B1 (de) 1998-04-29
CA2165087C (en) 2004-07-06
JP3572078B2 (ja) 2004-09-29
US5628046A (en) 1997-05-06

Similar Documents

Publication Publication Date Title
DE69314438T2 (de) Niedrig legierter Sinterstahl und Verfahren zu dessen Herstellung
DE102012018964B4 (de) Auf Eisen-Basis gesinterter Gleitkörper und Verfahren zu seiner Herstellung
DE69231339T2 (de) Verfahren zur herstellung von lagern
DE69225312T2 (de) Werkzeugstahl mit hoher beständigkeit gegen thermische ermüdung
DE19705527B4 (de) Gesinterte Legierung auf Eisenbasis mit Hartpartikeldispersion und Verfahren zu deren Herstellung
DE3048035C2 (de) Verwendung einer Legierung als Werkstoff zur Herstellung von Sinterkörpern und Verfahren zur Herstellung eines verschleißfesten Sinterkörpers
US4954171A (en) Composite alloy steel powder and sintered alloy steel
DE10308274B4 (de) Herstellungsverfahren für ein eisenhaltiges Schmiedeteil mit hoher Dichte
DE3808460A1 (de) Verschleissfeste sinterlegierung auf eisen-basis und aus dieser legierung bestehender synchronring fuer einen geschwindigkeitsregler
DE3224419A1 (de) Verfahren zur herstellung einer nocke-nockenwelle-baueinheit
DE3881979T2 (de) Legiertes Stahlpulver für Pulvermetallurgische Verfahren.
DE1298293B (de) Hochverschleissfeste, bearbeitbare und haertbare Sinterstahllegierung und Verfahren zu deren Herstellung
DE3744550C2 (de)
DE102014004450B4 (de) Eisenbasierte Sinterlegierung für ein Gleitelement und Herstellungsverfahren hierfür
DE69705289T2 (de) Abriebfester Ventilsitz bestehend aus einer gesinterten Eisenlegierung für eine Brennkraftmaschine
EP3323902B1 (de) Pulvermetallurgisch hergestellter, hartstoffpartikel enthaltender stahlwerkstoff, verfahren zur herstellung eines bauteils aus einem solchen stahlwerkstoff und aus dem stahlwerkstoff hergestelltes bauteil
DE69503591T2 (de) Wärmebeständige, gesinterte Eisen-Legierung für einen Ventilsitz
DE69404305T2 (de) Ventilsitzeinsatz
DE60300728T2 (de) Sinterlegierung auf Eisenbasis zur Verwendung als Ventilsitz
DE2705052A1 (de) Nach dem pulvermetallurgieverfahren hergestellter, stickstoff enthaltender schnelldrehstahl
DE69717541T2 (de) Niedriglegierte Stahlpulver zur Härtersinterung
DE69521516T2 (de) Eisen-basispulver mit chrom, molybden und mangan
EP0719349B1 (de) Verfahren zur herstellung von sinterteilen
AT505698B1 (de) Verfahren zur herstellung eines sinterhärtbaren sinterformteils
DE19708197B4 (de) Gesintertes Gleitelement und Verfahren zu dessen Herstellung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19951019

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE ES FR GB IT LI SE

17Q First examination report despatched

Effective date: 19970212

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE ES FR GB IT LI SE

REF Corresponds to:

Ref document number: 165628

Country of ref document: AT

Date of ref document: 19980515

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

ET Fr: translation filed
ITF It: translation for a ep patent filed
REF Corresponds to:

Ref document number: 59405861

Country of ref document: DE

Date of ref document: 19980604

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2115257

Country of ref document: ES

Kind code of ref document: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19980522

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: QMP METAL POWDERS GMBH

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: MANNESMANN AKTIENGESELLSCHAFT TRANSFER- QMP METAL

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20050823

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20050830

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20050912

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20050914

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20050915

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20050919

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20050920

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060910

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060930

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060930

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070403

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20060909

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20070531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060909

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20060911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070909