CN116490477A - 具有改善的掉落性能的玻璃基制品的应力分布曲线 - Google Patents
具有改善的掉落性能的玻璃基制品的应力分布曲线 Download PDFInfo
- Publication number
- CN116490477A CN116490477A CN202180077447.7A CN202180077447A CN116490477A CN 116490477 A CN116490477 A CN 116490477A CN 202180077447 A CN202180077447 A CN 202180077447A CN 116490477 A CN116490477 A CN 116490477A
- Authority
- CN
- China
- Prior art keywords
- glass
- equal
- stress
- based article
- mol
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C10/00—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
- C03C10/0018—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and monovalent metal oxide as main constituents
- C03C10/0027—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and monovalent metal oxide as main constituents containing SiO2, Al2O3, Li2O as main constituents
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C21/00—Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
- C03C21/001—Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
- C03C21/002—Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C23/00—Other surface treatment of glass not in the form of fibres or filaments
- C03C23/007—Other surface treatment of glass not in the form of fibres or filaments by thermal treatment
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/089—Glass compositions containing silica with 40% to 90% silica, by weight containing boron
- C03C3/091—Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
- C03C3/093—Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/097—Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2201/00—Glass compositions
- C03C2201/06—Doped silica-based glasses
- C03C2201/30—Doped silica-based glasses containing metals
- C03C2201/50—Doped silica-based glasses containing metals containing alkali metals
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2204/00—Glasses, glazes or enamels with special properties
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Ceramic Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Glass Compositions (AREA)
- Surface Treatment Of Glass (AREA)
Abstract
玻璃基制品包含用于提供改善的掉落性能的应力分布曲线。一种玻璃基基板,包含:玻璃转化温度(Tg)、液体脆性指数(m)及假想温度(Tf),其中Tg小于或等于650℃,Tf减去Tg的值大于或等于‑30℃,而m大于或等于25。应力松弛率大于或等于10%、20%或更大。制品可以包含锂基铝硅酸盐组合物以及大于或等于0.75MPa*m0.5的断裂韧性。应力分布曲线包含:从第一表面延伸至拐点的尖峰区域;以及从拐点延伸至玻璃基制品的中心的尾部区域,尾部区域包含:负曲率区域,其中应力与深度的函数的二阶导数为负;大于或等于0.22t的压缩深度(DOC),以及源自DOC处并延伸至玻璃基制品的中心的拋物线区域。
Description
本申请依据35U.S.C.§119主张于2020年9月25日提交的美国临时申请第63/083,267号的优先权权益,本申请以其内容为依据,且其内容藉由引用整体并入本文。
背景
技术领域
本说明书总体上涉及适合作为电子装置的覆盖玻璃的玻璃基制品的应力分布曲线。更具体而言,本说明书涉及提供具有改善的掉落性能的含锂铝硅酸盐玻璃的改善的应力分布曲线及方法。
背景技术
便携设备(例如,智能电话、平板计算机、可携式媒体播放器、个人计算机及照相机)的移动特性让这些装置特别容易意外掉落于硬表面(例如,地面)上。这些装置通常包括覆盖玻璃,覆盖玻璃可能在碰撞硬表面之后损伤。在许多这些装置中,覆盖玻璃作为显示器盖板,并且可以结合触控功能,而在覆盖玻璃损伤时,装置的使用受到负面影响。
当相关联的便携设备掉落于硬表面上时,覆盖玻璃存在两种主要的破损模式。模式之一为挠曲破损,这是由于当装置受到与硬表面冲击的动态负载时的玻璃的折曲而造成。另一模式为尖锐接触破损,这是由于玻璃表面的损伤而造成。玻璃受粗糙硬表面(例如,沥青、花岗岩等)的冲击可能导致玻璃表面中的尖锐压痕。这些压痕成为玻璃表面中的破损位置,从这些位置可能产生及传播裂纹。
化学处理是一种用于赋予具有下列一种或多种参数的所期望及/或设计的应力分布曲线的强化方法:压缩应力(CS)、压缩深度(DOC)及最大中心张力(CT)。许多玻璃基制品(包括具有设计的应力分布曲线的那些玻璃基制品)在玻璃表面处的压缩应力为最高或峰值,并随着远离表面而从峰值减少,且在玻璃制品的应力变成拉伸之前,玻璃制品的一些内部位置处存在零应力。藉由含碱金属玻璃的离子交换(IOX)的化学强化是此领域中的有效方法。
藉由传统离子交换技术可以使玻璃基制品(特别是玻璃)更耐弯曲破损,离子交换技术可以涉及在玻璃表面中引起压缩应力。然而,离子交换玻璃可能仍然容易受到动态尖锐接触的影响,这是由于尖锐接触所引起的玻璃中的局部压痕造成的高应力集中。
玻璃制造商及手持装置制造商持续努力改善手持装置对于尖锐接触破损的抵抗力。解决方案的范围从覆盖玻璃到边框,以防止当装置掉落在坚硬表面上时,覆盖玻璃直接撞击到坚硬表面。然而,由于美学与功能要求的限制,很难完全防止覆盖玻璃撞击到坚硬表面。
需要改善的应力分布曲线以产生优异的掉落性能。
发明内容
本公开的各方面涉及玻璃基制品及其制造方法。
一方面,玻璃基制品包含:包含锂基铝硅酸盐以及大于或等于0.75MPa*m0.5的断裂韧性的组合物;限定厚度(t)的相对的第一表面和第二表面;以及应力分布曲线,所述应力分布曲线包含:从第一表面延伸至拐点的尖峰区域;以及从拐点延伸至玻璃基制品的中心的尾部区域,尾部区域包含:负曲率区域,其中应力与深度的函数的二阶导数为负;大于或等于0.22t的压缩深度(DOC),以及源自DOC处并延伸至玻璃基制品的中心的拋物线区域。
在实施方式中,玻璃基制品的中心处的组成包含大于8摩尔%的氧化锂(Li2O)含量。在实施方式中,玻璃基制品的中心处的组成包含小于1.0的氧化钠(Na2O)与氧化锂(Li2O)的摩尔比率。在实施方式中,氧化钠(Na2O)与氧化锂(Li2O)的摩尔比率小于或等于0.63。在实施方式中,锂基铝硅酸盐组合物以小于该组合物的2摩尔%的量包含氧化钾(K2O)和五氧化二磷(P2O5)。在实施方式中,负曲率区域所包含的平均压缩应力(CS)大于或等于50MPa至小于或等于120MPa。
在实施方式中,玻璃基制品的中心处的组成包含:50摩尔%至69摩尔%的SiO2;12.5摩尔%至25摩尔%的Al2O3;0摩尔%至8摩尔%的B2O3;大于0摩尔%至4摩尔%的CaO;大于0摩尔%至17.5摩尔%的MgO;0.5摩尔%至8摩尔%的Na2O;0摩尔%至2.5摩尔%的La2O3;以及大于8摩尔%至18摩尔%的Li2O。
在实施方式中,应力分布曲线进一步包含:大于或等于150MPa的最大压缩应力(CS最大)。
在实施方式中,应力分布曲线进一步包含:大于或等于80MPa且小于或等于160MPa的范围中的拋物线区域中的峰值中心张力(CT)*厚度(t)的值。
在实施方式中,t的范围大于或等于0.02毫米且小于或等于2毫米。
在实施方式中,玻璃基制品进一步包含从玻璃基制品的第一及/或第二表面延伸至玻璃基制品的深度的以非零变化浓度存在的碱金属。在实施方式中,碱金属选自下组:钾(K)、钠(Na)、锂(Li)、铷(Rb)、铯(Cs)、钫(Fr)及其组合。
在实施方式中,玻璃基制品进一步包含针对具有600.0μm的厚度的制品利用30粒度砂纸以470.0N的力冲击之后所测量的大于或等于170MPa的保留强度。
在实施方式中,玻璃基制品进一步包含针对具有600.0μm的厚度的制品利用80粒度砂纸以470.0N的力冲击之后所测量的大于或等于170MPa的保留强度。
一方面,玻璃基制品包括:限定厚度(t)的相对的第一表面和第二表面;以及针对具有600.0μm的厚度的制品利用30粒度砂纸以470.0N的力冲击之后所测量的大于或等于170MPa的第一保留强度,以及针对具有600.0μm的厚度的制品利用80粒度砂纸以470.0N的力冲击之后所测量的大于或等于170MPa的第二保留强度。
在实施方式中,第一保留强度与第二保留强度相差±5MPa。在实施方式中,玻璃基制品包含:包含锂基铝硅酸盐以及大于或等于0.75MPa*m0.5的断裂韧性的组合物。在实施方式中,玻璃基制品包含:应力分布曲线,所述应力分布曲线包含:从第一表面延伸至拐点的尖峰区域;以及从拐点延伸至玻璃基制品的中心的尾部区域,其中尾部区域包含:负曲率区域,其中应力与深度的函数的二阶导数为负;大于或等于0.22t的压缩深度(DOC),以及源自DOC处并延伸至玻璃基制品的中心的拋物线区域。
又一方面为一种消费性电子产品,其包含:具有前表面、后表面及侧表面的壳体;电子部件,所述电子部件至少部分设置于壳体内,电子部件至少包括控制器、内存及显示器,显示器设置于壳体的前表面处或与前表面相邻;以及盖板,其设置于显示器上方;其中壳体与盖板中至少一者的一部分包含本文所述的任何方面或实施方式的玻璃基制品。
另一方面为制造玻璃基制品的方法,包含以下步骤:对具有限定基板厚度(t)的相对的第一表面和第二表面以及锂基铝硅酸盐组成物的玻璃基基板进行离子交换处理,以形成玻璃基制品,离子交换处理包含:第一熔融盐浴与第二熔融盐浴;其中玻璃基制品包含:大于或等于0.75MPa*m0.5的断裂韧性;以及应力分布曲线,所述应力分布曲线包含:从第一表面延伸至拐点的尖峰区域;以及从拐点延伸至玻璃基制品的中心的尾部区域,尾部区域包含:负曲率区域,其中应力与深度的函数的二阶导数为负;大于或等于0.22t的压缩深度(DOC),以及源自DOC处并延伸至玻璃基制品的中心的拋物线区域。
在实施方式中,该方法进一步包含离子交换处理之后的退火步骤。
在实施方式中,锂基铝硅酸盐组合物包含大于8摩尔%的氧化锂(Li2O)含量。在实施方式中,玻璃基制品的中心处的组成包含小于1.0的氧化钠(Na2O)与氧化锂(Li2O)的摩尔比率。在实施方式中,氧化钠(Na2O)与氧化锂(Li2O)的摩尔比率小于或等于0.63。在实施方式中,锂基铝硅酸盐组合物所包含的氧化钾(K2O)与五氧化二磷(P2O5)的量小于组合物的2摩尔%。在实施方式中,负曲率区域所包含的平均压缩应力(CS)大于或等于50MPa且小于或等于120MPa。在实施方式中,组合物包含:50摩尔%至69摩尔%的SiO2;12.5摩尔%至25摩尔%的Al2O3;0摩尔%至8摩尔%的B2O3;大于0摩尔%至4摩尔%的CaO;大于0摩尔%至17.5摩尔%的MgO;0.5摩尔%至8摩尔%的Na2O;0摩尔%至2.5摩尔%的La2O3;以及大于8摩尔%至18摩尔%的Li2O。在实施方式中,应力分布曲线进一步包含:大于或等于150MPa的最大压缩应力(CS最大)。
在随后的具体实施方式中将阐述额外特征及优势,而本领域技术人员可根据该描述而部分理解额外特征及优势,或藉由实践本文中(包括随后的具体实施方式、权利要求书及附图)所描述的实施方式而了解额外特征及优势。
应了解,上述一般描述与以下详细描述二者均描述各种实施方式,并且意欲提供用于理解所请求保护的主题的本质及特性的概述或框架。包括附图以提供对各种实施方式的进一步理解,且附图并入本说明书中并构成本说明书的一部分。附图说明本文中所述的各种实施方式,且与描述一同用于解释所请求保护的主题的原理及操作。
附图简要说明
结合在本说明书中并构成其一部分的附图图示下面描述的几个实施方式。
图1示意性图示根据本文所述及所示的实施方式的在其表面上具有压缩应力层的玻璃的横截面;
图2为玻璃基制品的实施方式的应力(MPa)与距离表面的归一化位置(z/厚度)的广义示意性应力分布曲线图;
图3A为结合有本文所公开的任何玻璃制品的示例性电子装置的平面图;
图3B为图3A的示例性电子装置的透视图;
图4为针对玻璃基制品的实施方式与比较例的应力(MPa)与距离表面的深度(微米)的关系的图;
图5为针对实施方式的二氧化钠(Na2O)浓度与深度的关系的图;
图6为针对玻璃基制品的实施方式的施加的断裂应力(MPa)与粒度的关系的图;
图7为针对玻璃基制品的实施方式与比较例的应力(MPa)与距离表面的深度(微米)的关系的图;
图8为图6的应力分布曲线图的二阶导数的图;
图9为根据玻璃基制品的实施方式的应力分布曲线的节录;
图10为经由利用冲击物体的冲击而对玻璃制品造成损伤的设备的示意图;
图11至图14为根据玻璃基基板的实施方式的应力松弛率;以及
图15为Tg、最小脆性(minimum fragility)(m)及用于确保针对小于或等于500℃的TIOX具有足够的应力松弛的最低Tf-Tg的图。
具体实施方式
描述几个示例性实施方式之前,应理解,本公开并不限于以下公开所述的构造或处理步骤的细节。本文所提供的公开能够具有其他实施方式,并能够以各种方式实践或执行。
整个说明书所提及的“一个实施方式”、“某些实施方式”、“各种实施方式”、“一个或更多个实施方式”、或“实施方式”意味着结合实施方式描述的特定特征、结构、材料、或特性包括在本公开的至少一个实施方式中。因此,本说明书中各处所呈现的诸如“在一个或更多个实施方式中”、“在某些实施方式中”、“在各种实施方式中”、“在一个实施方式中”、或“在实施方式中”这样的表达不一定指相同实施方式或仅指一个实施方式。此外,可以在一个或更多个实施方式中以任何合适的方式组合特定特征、结构、材料、或特性。
定义及测量技术
术语“玻璃基制品”与“玻璃基基板”用于包括完全或部分由玻璃制成的任何物体(例如,玻璃或玻璃陶瓷材料)。层合玻璃基制品包括玻璃与非玻璃材料的层合物以及玻璃与结晶材料的层合物。
“基础组合物”为任一离子交换(IOX)处理之前的基板的化学组成。亦即,基础组合物并未受到来自IOX的任一离子掺杂。当IOX处理条件使得IOX所供应的离子并未扩散到基板的中心时,经过IOX处理的玻璃基制品的中心处的组成通常与基础组合物相同。在一个或更多个实施方式中,玻璃制品的中心处的中心组成包含基础组合物。
应注意,本文中可使用术语“基本上”及“约”以表示可能归因于任何定量比较、值、测量或其他表示的固有不确定程度。这些术语亦在本文中用于表示定量表示可与所述参考不同而不导致所讨论主题的基本功能的变化的程度。因此,举例而言,“基本上不含MgO”的玻璃基制品为未将MgO主动添加或配料到玻璃基制品中,但可能作为污染物而以非常少的量存在。如本文所使用的术语“约”指量、尺寸、配方、参数及其他数量和特性并非精确且不必精确,而是可以根据需要近似且/或更大或更小,以反映公差、转化因子、四舍五入、测量误差等,以及本领域技术人员已知的其他因子。当术语“约”用于描述范围的值或端点时,本公开应理解为包括所指称的特定值或端点。无论说明书中的范围的数值或端点是否记载“约”,范围的数值或端点意欲包括两种实施方式:一种由“约”修饰,而另一种未被“约”修饰。可以进一步了解范围的每一端点明显与另一端点有关,并独立于另一端点。
除非另有说明,否则本文所述的所有组成均以基于氧化物的摩尔百分比(摩尔%)表示。
“应力分布曲线”为应力与跨越玻璃基制品的厚度的函数。压缩应力区域从第一表面延伸至制品的压缩深度(DOC),并且是制品处于压缩应力下的区域。中心张力区域从DOC延伸,以包括制品处于拉伸应力下的区域。
如本文所使用,压缩深度(DOC)指玻璃基制品内的应力从压缩改变成拉伸应力的深度。在DOC处,应力从正(压缩)应力跨越到负(拉伸)应力,并因此呈现零应力值。根据机械领域中通常使用的惯例,压缩表示为负(<0)应力,而张力表示为正(>0)应力。然而,在本说明书中,应力的正值为压缩应力(CS),压缩应力(CS)表示为正的或绝对值(亦即,如本文所述,CS=|CS|)。此外,应力的负值为拉伸应力。但使用术语“拉伸”时,应力或中心张力(CT)可以表示为正值(亦即,CT=|CT|)。中心张力(CT)指玻璃基制品的中心区域或中心张力区域中的拉伸应力。最大中心张力(最大CT或CT最大)可能存在于中心张力区域(例如,标称为0.5·t处)(其中t为制品厚度),其允许从最大拉伸应力的位置的精确中心开始变化。峰值张力(PT)指所测量的最大张力,并且可以在或可以不在制品的中心。
应力分布曲线的“拐点”为制品的深度,其中应力分布曲线的斜率从陡峭到平缓。拐点可以指斜率发生改变的深度的跨度的过渡区域。拐点应力CSk定义为CS分布曲线的较深部分外推至尖峰深度(DOLk)处的压缩应力的值。所报告的DOLk藉由表面应力计通过已知方法来测量。图2提供包括拐点应力的应力分布曲线的示意图。
相对于金属氧化物从第一表面到层深度(DOL)变化或者沿着制品厚度(t)的至少大部分变化的非零金属氧化物浓度表明制品中作为离子交换的结果已经产生了应力。金属氧化物浓度的变化在本文中可称为金属氧化物浓度梯度。浓度并非为零且从第一表面到DOL或者沿着厚度的一部分变化的金属氧化物可以描述为在玻璃基制品中产生应力。藉由化学强化玻璃基基板来产生金属氧化物的浓度梯度或变化,其中玻璃基基板中的多个第一金属离子与多个第二金属离子交换。
本文所使用的术语“交换深度”、“层深度”(DOL)、“层的化学深度”及“化学层深度”可以互换使用,一般描述藉由针对特定离子进行离子交换处理(IOX)来促进离子交换的深度。DOL指玻璃基制品内的深度(亦即,从玻璃基制品的表面到其内部区域的距离),其中金属氧化物或碱金属氧化物的离子(例如,金属离子或碱金属离子)扩散进入玻璃基制品中,其中离子浓度达到辉光放电分光仪(GD-OES)所测定的最小值。在一些实施方式中,藉由离子交换(IOX)处理引入的最慢扩散或最大离子的交换深度来给定DOL。就钾而言的DOL(DOLK)为玻璃制品的钾含量达到底下的基板的钾含量的深度。就钠而言的DOL(DOLNa)为玻璃制品的钠含量达到底下的基板的钠含量的深度。
除非另有说明,CT与CS在本文中以兆帕斯卡(MPa)表示,厚度以毫米表示,而DOC与DOL以微米(μm)表示。
压缩应力(包括表面/峰值CS、CS最大)与DOLsp藉由使用商业可取得的仪器(如由折原工业有限公司(Orihara Industrial Co.,Ltd)(日本)制造的FSM-6000)的表面应力计(FSM)测量。表面应力测量取决于与玻璃的双折射有关的应力光学系数(SOC)的精确测量。然后,根据标题为“Standard Test Method for Measurement of Glass Stress-OpticalCoefficient”(用于测量玻璃应力-光学系数的标准测试方法)的ASTM标准C770-16所述的程序C(玻璃碟方法)测量SOC,其内容藉由引用整体并入本文。
使用本领域已知的散射光偏光器(SCALP)技术来测量最大中心张力(CT)或峰值张力(PT)以及应力保持值。折射近场(RNF)方法或SCALP可以用于测量应力分布曲线与压缩深度(DOC)。当使用RNF方法来测量应力分布曲线时,在RNF方法中使用SCALP所提供的最大CT值。更具体而言,RNF所测量的应力分布曲线为力平衡的,并校准成SCALP测量所提供的最大CT值。RNF方法系描述于标题“Systems and methods for measuring a profilecharacteristic of a glass sample”(测量玻璃样品分布特性的系统和方法)的美国专利案8,854,623中,其藉由引用整体并入本文。更具体而言,RNF方法包括将玻璃制品放置成与参考方块相邻,产生在正交偏振之间以1Hz至50Hz的速率切换的偏振切换光束,测量偏振切换光束中的功率量,以及产生偏振切换参考信号,其中正交偏振中的每一者的测量功率量在彼此的50%之内。该方法进一步包括将偏振切换光束通过不同深度的玻璃样品与参考方块而发射进入玻璃样品,然后使用中继光学系统将所发射的偏振切换光束中继到信号光电侦测器,其中信号光电侦测器产生偏振切换侦测器信号。该方法还包括将侦测器信号除以参考信号,以形成归一化的侦测器信号,以及从归一化的侦测器信号来确定玻璃样品的分布曲线特征。
断裂韧性(K1C)表示玻璃组合物抵抗断裂的能力。在非强化玻璃制品上测量断裂韧性(例如,在玻璃制品的离子交换(IOX)处理之前测量K1C值),而藉此表示IOX之前的玻璃基板的特征。本文所述的断裂韧性测试方法并不适用于已经过IOX处理的玻璃。但是,如本文所述的在IOX处理之前针对相同玻璃(例如,玻璃基板)进行的断裂韧性测量与IOX处理之后的断裂韧性相关,而如此相应使用。用于测量K1C值的山形缺口短杆(CNSB)方法描述于J.Am.Ceram.Soc.,71[6],C-310-C-313(1988)中的Reddy,K.P.R.等所著的“FractureToughness Measurement of Glass and Ceramic Materials Using Chevron-NotchedSpecimens”(利用山形缺口样本测量玻璃和陶瓷材料的断裂韧性),不同之处在于使用NASATechnical Memorandum(NASA技术备忘录)83796,pp.1-30(1992年10月)中的Bubsey,R.T.等所著的“Closed-Form Expressions for Crack-Mouth Displacement and StressIntensity Factors for Chevron-Notched Short Bar and Short Rod Specimens Basedon Experimental Compliance Measurements”(山形缺口短棒和短杆样本的裂口位移和应力强度因子基于实验依从性测量的封闭式表达)来计算Y*m。用于测量K1C值的双扭方法与固定装置描述于Shyam,A.与Lara-Curzio,E.所著的J.Mater.Sci.,41,pp.4093-4104,(2006)的“The double-torsion testing technique for determination of fracturetoughness and slow crack growth of materials:A review”(测定材料断裂韧性和慢裂生长的双扭测试技术:综述)。双扭测量方法通常产生略高于山形缺口短杆方法的K1C值。除非另有说明,所有断裂韧性值都藉由山形缺口短杆(CNSB)方法进行测量。
在已经过IOX处理的玻璃中经测量的松弛应力(σr)与理论非松弛应力(σo)的应力松弛比(SR)指依据基于互补误差函数(erfc(x))的理想扩散条件的应力分布曲线所预测的IOX之后的最终测量松弛应力与理论非松弛应力的比率。SR具有小于1且大于0的值。基板或制品的应力松弛率为理论未松弛应力的减少的百分比。举例而言,针对100MPa的理论未松弛应力(σo)与90MPa的测量松弛应力(σr),应力松弛率为10%,或是1减去SR并乘以100。
理论非松弛应力(σo)依据透过经IOX处理的制品的厚度所测量的离子浓度来决定,并输入至下列线性弹性方程。
其中z为位置,T为透过制品的厚度,C为浓度,B为线性晶格膨胀系数,E为杨氏模量,而ν为泊松比。依据Li+(0.08nm)、Na+(0.102nm)及K+(0.0138nm)的离子半径,相较于1摩尔%的Na+→K+,1摩尔%的Li+→Na+IOX会造成约60%的增长,因此,B使用0.6ppk/摩尔%的Li+→Na+的值。针对讨论的玻璃,E的范围通常在大于或等于60且小于或等于90GPa;ν通常大于或等于0.2且小于或等于0.24。
测量的松弛应力(σr)根据藉由例如折射近场(RNF)方法进行的表面应力测量所确定,且不包括任何尖峰或陡峭的表面分布曲线。
熔融玻璃在不同温度下具有不同的结构。取决于玻璃所经历的热处理,此结构可以冷冻成固化(或固体)玻璃。本文所使用的固体玻璃的假想温度(Tf)为具有与固体玻璃的结构相同的结构的熔融玻璃的温度。举例而言,可以在Mauro等所著的J.Am.Ceram.Soc.,2009,92:75-86的“Fictive Temperature and the Glassy State”(假想温度与玻璃态)中找到针对假想温度的讨论,其内容藉由引用整体并入本文。根据本公开,与特定玻璃组合物的热历史与玻璃性质相关联的假想温度的计算可以遵循已建立的方法。Tf可以根据Journal of Non-Crystalline Solids.357(2011)3230-3236(Guo等)的“Unifiedapproach for determining enthalpic fictive temperature of glasses witharbitrary thermal history”(确定任意热历史的玻璃的焓假想温度的统一方法)的Guo方法,其内容藉由引用整体并入本文。Guo方法使用差分扫描量热法以10K/min的DSC上扫描速率产生热容量与温度曲线的第一及第二上扫描。三步骤程序包括:(a)首先,使用面积匹配计算第二上扫描的再生玻璃的假想温度Tf2;(b)其次,计算两个DSC上扫描曲线之间的面积,而给定所形成玻璃(H 1)与再生玻璃(H 2)的焓之间的差异;以及(c)最后,藉由使用方程(A)进行面积匹配,以确定所形成玻璃的假想温度Tf1。
除非另有说明,所有Tf值均由Guo方法决定。
本文所使用的材料的玻璃转化温度(Tg)为具有1012Pa-s的平衡黏度度的温度。除非另有说明,否则所有Tg值均由根据ASTM C1350M-96(2019)(“Standard Test Method forMeasurement ofViscosity of Glass Between Softening Point and Annealing Range(Approximately 108Pa·s to Approximately1013Pa·s)by Beam Bending”)(通过弯曲梁测量软化点与退火范围之间(约108Pa·s至约1013Pa·s)的玻璃黏度的标准测试方法)所产生的黏度与温度的曲线来确定。
本文所使用的材料的液体脆性指数(m)为玻璃转化温度(Tg)下的黏度改变的速率与温度的函数。组合物(x)的液体脆性指数(m)定义为:
使用一个或更多个黏度计来产生黏度与温度的曲线。液体脆性指数(m)的值为log(黏度)与1/T的曲线在T=Tg处的的斜率。除非另有说明,所有m值均由根据下列测试方法组合所产生的黏度与温度的曲线来确定:ASTMC-965-96(2017)(“Standard Practice forMeasuring Viscosity of Glass Above the Softening Point”)(测量软化点以上玻璃黏度的标准实务);STM C1351M-96(2017)(“Standard Test Method for Measurement ofViscosity of Glass Between 104Pa·s and 108Pa·s by Viscous Compression of aSolid Right Cylinder”)(通过实心正圆柱的黏性压缩测量玻璃在104Pa·s与108Pa·s之间的黏度的标准测试方法);以及ASTM C1350M-96(2019)(“Standard Test Method forMeasurement of Viscosity of Glass Between Softening Point and Annealing Range(Approximately 108Pa·s to Approximately 1013Pa·s)by Beam Bending”)(通过弯曲梁测量软化点与退火范围之间(约108Pa·s至约1013Pa·s)的玻璃黏度的标准测试方法)。
组合物x的玻璃转化温度(Tg)与组合物的脆性都可以表示成采用经验决定的拟合系数的扩展。此类扩展在共同待决且共同转让的2010年10月1日所提交的标题为“METHODSAND APPARATUS FOR PREDICTING GLASS PROPERTIES”(用于预测玻璃性质的方法和装置)的美国专利申请12/896,355中详细讨论,其内容藉由引用整体并入本文。
玻璃基制品的性质的概述
本文所述的玻璃基制品设计成具有针对高抗损伤玻璃的改善的掉落性能。本文所述的玻璃基制品设计成具有利用应力松弛的组成及特性。这导致应力分布曲线在压缩深度(DOC)之前为S形,而在DOC之后为拋物线形。
玻璃基基板在本文中设计成在合理的离子交换(IOX)处理时间以及低于所选择的IOX处理温度下实现所期望的S形分布曲线。在一个或更多个实施方式中,玻璃应力基基板实现大于或等于10%、20%、30%、40%、50%、60%、70%、80%或更大的应力松弛率。用于合适的玻璃基基板的组合物相应地被设计成包含下列的期望组合:玻璃转化温度(Tg)、液体脆性指数(m)及假想温度(Tf)。在一个或更多个实施方式中,针对小于或等于500℃的IOX处理温度,Tg小于或等于650℃,Tf减去Tg的值(例如,Tf与Tg之间的差异)大于或等于-30℃,而m大于或等于25。
在一个或更多个实施方式中,本文的制品包含锂基铝硅酸盐组合物以及大于或等于0.75MPa*m0.5的断裂韧性。应力分布曲线包含:从第一表面延伸至拐点的尖峰区域;以及从拐点延伸至玻璃基制品的中心的尾部区域,尾部区域包含:负曲率区域,其中应力与深度的函数的二阶导数为负;大于或等于0.22t的DOC,以及源自DOC处并延伸至玻璃基制品的中心的拋物线区域。
在理想条件下,离子交换玻璃中的应力分布曲线的形状及值预期为遵循经典的扩散方程。此方程的解表示,在离子无限制扩散的单一边界的情况下,应力分布曲线应该是互补的误差函数(erfc(x))。本文所使用的术语“误差函数”及“erf”指0与x/σ√2之间的归一化高斯函数的积分的两倍的函数。术语“互补误差函数”与“erfc”等于1减去误差函数;亦即,erfc(x)=1-erf(x)。针对边界情况(例如,离子从相对的表面扩散至玻璃的中心),强化阳离子的扩散遵循互补误差函数,直到离子在玻璃的中心相遇,在此之后整个扩散分布曲线可能会更好由离子分布的拋物线形状分布曲线来进行近似。应力分布曲线与玻璃内侧的离子分布直接相关。因此,应力分布曲线应类似于离子分布,无论离子分布是根据互补误差函数还是拋物线函数。
某些玻璃可能出现预期及观察到的应力分布曲线之间的差异。这可能是由于玻璃中存在的应力松弛以及附加退火效应。在存在应力松弛的情况下,实现具有负曲率区域的S形分布曲线,其中应力与深度的函数的二阶导数为负。在负曲率区域中,表面与压缩深度(DOC)之间的压缩层中的应力分布曲线的斜率包括斜率值改变符号的至少一个区域,而指示应力分布曲线的斜率(S)不是单调递增或递减的函数。相反地,斜率(S)从减少模式变为增加模式,反之亦然,而因此定义应力分布曲线的S形区域。
本文的应力分布曲线在DOC之前具有S形,而在DOC之后具有拋物线形。在离子交换(IOX)处理期间,应力松弛与离子扩散同时发生。当扩散很快时,IOX温度下的时间量将应力松弛限制在非常低的等级,并且预期从样品的表面到深度的几乎线性衰减分布曲线。有利的玻璃组合物将具有合理缓慢的扩散率,以增强应力松弛来实现本文的分布曲线。然而,较慢的扩散需要较长的IOX时间以及较高的IOX温度。当IOX温度增加时,可以减少IOX的时间。但是,增加IOX温度会导致更高的处理成本以及可能释放的不期望的氧化物气体。在一些玻璃组合物中,相较于其他玻璃,更容易实现IOX温度与扩散率之间的优化。
通常,本文的应力分布不是脆弱的,因此期望适合高脆性极限的玻璃组合物。因此,本文使用的合适的玻璃组合物具有大于或等于0.75MPa*m0.5的断裂韧性;较佳为大于或等于0.8MPa*m0.5;较佳为大于或等于0.85MPa*m0.5。具体而言,藉由山形缺口短杆方法测量,本文使用的合适的玻璃组合物具有大于或等于0.75MPa*m0.5的断裂韧性;较佳为大于或等于0.8MPa*m0.5;较佳为大于或等于0.85MPa*m0.5。从玻璃组合物的角度来看,K2O与P2O5的存在降低脆性极限。在一个或更多个实施方式中,玻璃组合物中的氧化钾(K2O)与五氧化二磷(P2O5)的总量小于2摩尔%(例如,K2O+P2O5<2摩尔%)。相对于仅含有Na2O的玻璃,含有Li2O的玻璃组合物具有更高的断裂韧性。在一个或更多个实施方式中,Li2O含量大于Na2O。换言之,在一个或更多个实施方式中,玻璃基制品的中心处的氧化钠(Na2O)与氧化锂(Li2O)的摩尔比率小于1.0。高断裂韧性也可能与改善的抗损伤性(相同力的较低损伤深度)相关。
本文的玻璃基制品的优点在于被设计成具有优异的抗深度损伤性能,并且藉由在需要处利用应力,其应力分布不是脆弱的。本文的分布曲线适用于许多玻璃样式(包括2.5D设计),其中玻璃厚度逐渐变窄成在边缘具有低得多的厚度。不受理论的束缚,应理解,藉由将张力从边缘移开,经过更长的扩散持续时间,可以改善玻璃的性能。本文所述的方法的优势在于对于使用现存设备进行大规模制造是可行的,并且可以在合理的时间范围内完成。本文的较长的扩散持续时间的使用预期将在2.5D配置中提供良好的性能。
现在将根据各种实施方式详细描述锂铝硅酸盐玻璃。碱金属铝硅酸盐玻璃具有良好的离子交换性,并且已经使用化学强化方法在碱金属铝硅酸盐玻璃中取得高强度及高韧性。铝硅酸钠玻璃为具有高度玻璃成形性及质量的可高度离子交换的玻璃。铝硅酸锂玻璃为具有高度玻璃质量的可高度离子交换的玻璃。将Al2O3置换到硅酸盐玻璃网络中增加了离子交换期间的一价阳离子的相互扩散性。藉由在熔融盐浴(例如,KNO3或NaNO3)中的化学强化,可以实现具有高强度、高韧性及高抗压痕裂纹性的玻璃。通过化学强化所实现的应力分布曲线可以具有各种形状,增加玻璃制品的掉落性能、强度、韧性、其他属性及改善的耐刮擦性。
因此,具有良好物理性质、化学耐久性及可离子交换性的锂铝硅酸盐玻璃已作为覆盖玻璃而引起注意。通过不同的离子交换处理,可以实现更大的中心张力(CT)、压缩深度(DOC)及压缩应力(CS)。本文所述的应力分布曲线针对含锂玻璃制品提供增加的掉落性能。
本文所述的玻璃组合物的实施例中,组成成分(例如,SiO2、Al2O3、Li2O等)的浓度除非以其他方式指明,否则是在氧化物的基础上以摩尔百分比(摩尔%)给定。应理解,一种成分的各种所述范围中的任一者可以与任一其他成分的各种所述范围中的任一者单独组合。
本文公开了用于锂铝硅酸盐玻璃组合物的离子交换方法及应力分布曲线。应力分布呈现耐刮擦性。参照图1,玻璃具有厚度t、从表面延伸到玻璃的压缩深度(DOC)的处于压缩应力的第一区域(例如,图1的第一与第二压缩应力层120、122)及从DOC延伸到玻璃的中心或内部区域的处于拉伸应力或中心张力(CT)的第二区域(例如,图1的中心区域130)。
压缩应力(CS)具有通常发生于玻璃的表面处的最大值或峰值(但不一定是这种情况,因为峰值可能发生于距离玻璃的表面一深度处),而CS根据函数随着与表面的距离d而变化。再次参照图1,第一压缩应力层120从第一表面110延伸到深度d 1,而第二压缩应力层122从第二表面112延伸到深度d 2。这些区段一起限定玻璃100的压缩或CS。
两个压缩应力层(图1的120、122)的压缩应力藉由玻璃的中心区域(130)所储存的张力而平衡。
图2显示广义应力分布曲线的示意图,广义应力分布曲线包含接近表面而延伸至拐点的尖峰区域以及从拐点延伸至朝向中心的玻璃的更深处的尾部区域。此广义图中的应力值并非绝对,这藉由非零y轴值中包含“y”来标示。应力分布曲线包含:表面处的压缩应力CS、尖峰区域的层深度(DOLsp)(与接近尖峰的离子的扩散深度相关)、拐点的应力CSk(尖峰与深分布曲线区域的渐近外推处的应力)、压缩深度(DOC)(应力在玻璃内侧第一次为零且符号从压缩改变成张力的位置)及中心张力(CT)(玻璃的中心处的应力)。在尖峰区域中,存在负曲率区域,其中应力与深度的函数的二阶导数为负。在图2中,出于说明的目的,习惯上指压缩应力为正,而张力为负。
在一个或更多个实施方式中,比中心张力(CT)区域(其中应力处于张力状态)中的DOC更深的应力分布曲线的形状可以藉由方程来进行近似。在一些实施方式中,沿着CT区域的应力分布可以藉由方程(B)加以近似:
应力(x)=最大CT–(((最大CT·(n+1))/0.5n)·|(x/t)-0.5|n)(B)
在方程(B)中,应力(x)为位置x处的应力值。这里的应力为正的(张力)。最大CT为以MPa表示的正值的最大中心张力。值x为以微米表示的沿着厚度(t)的位置,其中范围从0到t;x=0为一个表面(例如,图1中的110),x=0.5t为玻璃基制品的中心,其中应力(x)=最大CT,而x=t为相对的表面(例如,图1中的112)。用于方程(B)的最大CT的范围可为约50MPa至约350MPa(例如,60MPa至约300MPa,或约70MPa至约270MPa),而n为1.5至5(例如,2至4、2至3、或1.8至2.2)的拟合参数,其中n=2可以提供拋物线应力分布曲线,偏离n=2的指数提供具有接近拋物线应力分布曲线的应力分布曲线。本文所提及的“拋物线形状”分布曲线包括拟合拋物线方程和近拋物线方程的分布曲线。
在玻璃基制品中,存在具有非零浓度的碱金属氧化物,金属氧化物的非零浓度在第一表面和第二表面中之一或二者与层深度(DOL)之间变化。由于从第一表面开始变化的金属氧化物的非零浓度,而产生应力分布曲线。非零浓度可以沿着制品厚度的一部分而变化。在一些实施方式中,碱金属氧化物的浓度并非为零,且沿着约0·t至约0.3·t的厚度范围而变化。在一些实施方式中,碱金属氧化物的浓度并非为零,且沿着约0·t至约0.35·t、约0·t至约0.4·t、约0·t至约0.45·t、约0·t至约0.48·t、或约0·t至约0.50·t的厚度范围而变化。浓度的变化可以沿着上述厚度范围连续。浓度的变化可以包括沿着约100微米的厚度区段,金属氧化物浓度发生约0.2摩尔%或更多的改变。沿着约100微米的厚度区段的金属氧化物浓度的改变可以为约0.3摩尔%或更多、约0.4摩尔%或更多、或约0.5摩尔%或更多。此改变可以藉由该领域已知的方法测量(包括微探针)。
在一些实施方式中,浓度的变化可以沿着约10微米至约30微米的范围内的厚度区段连续。在一些实施方式中,在第一表面与第二表面之间,碱金属氧化物的浓度从第一表面减少到一个值,然后到第二表面该值增加。
碱金属氧化物的浓度可以包括一种以上的金属氧化物(例如,Na2O与K2O的组合)。在一些实施方式中,在使用两种金属氧化物且离子的半径彼此不同的情况下,在较浅深度处,具有较大半径的离子的浓度大于具有较小半径的离子的浓度,而在较深深度处,具有较小半径的离子的浓度大于具有较大半径的离子的浓度。
在一个或更多个实施方式中,碱金属氧化物浓度梯度延伸通过制品的厚度t的大部分。在一些实施方式中,沿着第一及/或第二区段的整个厚度的金属氧化物的浓度可为约0.5摩尔%或更高(例如,约1摩尔%或更高),并且在第一表面及/或第二表面0·t处最大,而基本恒定地减少到第一表面和第二表面之间的值。在该值处,沿着整个厚度t的金属氧化物的浓度为最小;然而,在该点处的浓度亦并非为零。换言之,该特定金属氧化物的非零浓度沿着厚度t的大部分(如本文所述)或整个厚度t延伸。玻璃基制品中的特定金属氧化物的总浓度可以在约1摩尔%至约20摩尔%的范围内。
可以藉由经交换以形成玻璃基制品的玻璃基基板离子中的金属氧化物的基线量来决定碱金属氧化物的浓度。
在一个或更多个实施方式中,玻璃基制品包含:锂基铝硅酸盐组合物。在一个或更多个实施方式中,锂基铝硅酸盐组合物所包含的氧化钾(K2O)和五氧化二磷(P2O5)的量小于组合物的2摩尔%、小于1.9摩尔%、小于组合物的1.8摩尔%、小于1.7摩尔%、小于组合物的1.6摩尔%、或小于1.5摩尔%、小于组合物的1.4摩尔%、小于组合物的1.3摩尔%、小于组合物的1.2摩尔%、小于1.1摩尔%、小于组合物的1.0摩尔%、小于0.9摩尔%、小于组合物的0.8摩尔%、小于0.7摩尔%、小于组合物的0.6摩尔%、或小于组合物的0.5摩尔%,及/或大于或等于0.01摩尔%,以及包括其间的所有值及子范围。在一个或更多个实施方式中,锂基铝硅酸盐组合物所包含的氧化钾(K2O)和五氧化二磷(P2O5)的总量为:大于或等于0摩尔%且小于2摩尔%、大于或等于0.01摩尔%且小于1.5摩尔%、或大于或等于0.5摩尔%且小于1摩尔%,以及包括其间的所有值及子范围。
在一个或更多个实施方式中,锂基铝硅酸盐组合物所包含的氧化锂(Li2O)含量大于8摩尔%、大于8.5摩尔%、大于9摩尔%、大于9.5摩尔%、大于10摩尔%、大于或等于10.5摩尔%、大于或等于11摩尔%、大于或等于11.5摩尔%、大于或等于12摩尔%、大于或等于12.5摩尔%、大于或等于13摩尔%、大于或等于13.5摩尔%、大于或等于14摩尔%、或大于或等于15摩尔%,及/或小于或等于18摩尔%。在一个或更多个实施方式中,锂基铝硅酸盐组合物所包含的氧化锂(Li2O)含量为:大于或等于8摩尔%且小于或等于18摩尔%、大于或等于9摩尔%且小于或等于16摩尔%、或大于或等于10摩尔%且小于或等于14摩尔%,以及包括其间的所有值及子范围。
在一个或更多个实施方式中,玻璃基制品的中心处的组成包含:50摩尔%至69摩尔%的SiO2;12.5摩尔%至25摩尔%的Al2O3;0摩尔%至8摩尔%的B2O3;大于0摩尔%至4摩尔%的CaO;大于0摩尔%至17.5摩尔%的MgO;0.5摩尔%至8摩尔%的Na2O;0摩尔%至2.5摩尔%的La2O3;以及大于8摩尔%至18摩尔%的Li2O。玻璃组合物的特征在于:(Li2O+Na2O+MgO)/Al2O3的摩尔比率为0.9至小于1.3;以及Al2O3+MgO+Li2O+ZrO2+La2O3+Y2O3大于23摩尔%且小于50摩尔%。
本文所示的玻璃基制品包含呈现高断裂韧性(K1C)的锂铝硅酸盐玻璃组合物。在一些实施方式中,锂铝硅酸盐玻璃组合物的特征在于藉由山形缺口短杆(CNSB)方法所测量的至少0.75MPa*m0.5的K1C断裂韧性值。
在一些实施方式中,玻璃组合物所呈现的藉由CNSB方法所测量的K1C值为至少0.75(例如,至少0.76、至少0.77、至少0.78、至少0.79、至少0.80、至少0.81、至少0.82、至少0.83、至少0.84、至少0.85、至少0.86、至少0.87、至少0.88、至少0.89、至少0.90、至少0.91、至少0.92、至少0.93、至少0.94、至少0.95、或至少0.96)。在实施方式中,玻璃组合物所呈现的藉由CNSB方法所测量的K1C值大于或等于0.75且小于或等于1.00(例如,大于或等于0.76且小于或等于0.99、大于或等于0.77且小于或等于0.98、大于或等于0.78且小于或等于0.97、大于或等于0.79且小于或等于0.96、大于或等于0.80且小于或等于0.95、大于或等于0.81且小于或等于0.94、大于或等于0.82且小于或等于0.93、大于或等于0.83且小于或等于0.92、大于或等于0.84且小于或等于0.91、大于或等于0.85且小于或等于0.90、大于或等于0.86且小于或等于0.89、或大于或等于0.87且小于或等于0.88,以及前述值之间的所有范围及子范围)。
在一个或更多个实施方式中,玻璃基制品的中心的组成包含:小于1.0且/或大于或等于0.1的二氧化钠(Na2O)与二氧化锂(Li2O)的摩尔比率,包括小于或等于0.99、小于或等于0.9、小于或等于0.85、小于或等于0.8、小于或等于0.75、小于或等于0.7、小于或等于0.65、小于或等于0.63、小于或等于0.6、小于或等于0.55、小于或等于0.5、小于或等于0.45、小于或等于0.4、小于或等于0.35、小于或等于0.3、小于或等于0.25、小于或等于0.2、小于或等于0.15,以及其间的所有值及子范围。在一个或更多个实施方式中,玻璃基制品的中心处的组成所包含的二氧化钠(Na2O)与二氧化锂(Li2O)的摩尔比率为:大于或等于0.1且小于1.0、大于或等于0.15且小于或等于0.9、或大于或等于0.2且小于或等于0.85,以及其间的所有值及子范围。
在一个或更多个实施方式中,玻璃基制品所包含的压缩深度(DOC)大于或等于0.22t、大于或等于0.225t、大于或等于0.23t、大于或等于0.235t、大于或等于0.24t、大于或等于0.245t、或大于或等于0.25t,及/或小于或等于0.30t、小于或等于0.29t、小于或等于0.28t、小于或等于0.27t、或小于或等于0.26t,以及包括其间的所有值及子范围。在一个或更多个实施方式中,玻璃基制品所包含的压缩深度(DOC)大于或等于0.22t且小于或等于0.30t、大于或等于0.225t且小于或等于0.29t、或大于或等于0.23t并小于或等于0.8t,以及包括其间的所有值及子范围。
在一个或更多个实施方式中,玻璃基制品所包含的压缩深度(DOC)大于或等于150微米、大于或等于155微米、大于或等于160微米、大于或等于165微米、大于或等于170微米,以及包括其间的所有值及子范围。
在一个或更多个实施方式中,玻璃基制品所包含的t大于或等于0.02mm及/或小于或等于2mm,包括:t小于或等于1mm、小于或等于0.8mm、小于或等于0.75mm、小于或等于0.73mm、小于或等于0.70mm、小于或等于0.65mm、小于或等于0.6mm、小于或等于0.55mm,及/或大于或等于0.1mm、或大于或等于0.5mm,以及包括其间的所有值及子范围。在一个或更多个实施方式中,玻璃基制品包含:t大于或等于0.02mm且小于或等于2mm、大于或等于0.55mm且小于或等于1mm、大于或等于0.7mm且小于或等于0.8mm,以及包括其间的所有值及子范围。
最大压缩应力(CS最大)的期望值与玻璃基制品的应用有关。IOX的条件为影响CS最大的因素。在一些实施方式中,引入尖峰以增加CS最大。在一些实施方式中,不引入尖峰。在一个或更多个实施方式中,无论IOX条件如何,玻璃基制品所包含的最大压缩应力(CS最大)大于或等于150MPa、大于或等于300MPa、大于或等于350MPa、大于或等于400MPa、大于或等于450MPa、大于或等于500MPa、大于或等于550MPa、大于或等于600MPa、大于或等于650MPa、大于或等于700MPa、大于或等于750MPa、大于或等于800MPa、大于或等于850MPa、大于或等于900MPa、大于或等于950MPa、大于或等于1000MPa、大于或等于1050MPa、大于或等于1100MPa、大于或等于1150MPa、或大于或等于1200MPa,以及包括其间的所有值及子范围。在一个或更多个实施方式中,玻璃基制品所包含的最大压缩应力(CS最大)大于或等于150MPa且小于或等于1200MPa、大于或等于250MPa且小于或等于1100MPa、大于或等于350MPa且小于或等于1000MPa,以及包括其间的所有值及子范围。
在一个或更多个实施方式中,负曲率区域所包含的平均压缩应力(CS)大于或等于50MPa且小于或等于120MPa、大于或等于55MPa且小于或等于115MPa、或大于或等于60MPa且小于或等于110MPa,以及包括其间的所有值及子范围。
在一个或更多个实施方式中,拋物线区域中的峰值中心张力(CT)的范围为大于或等于100MPa且小于或等于200MPa、或大于或等于125MPa且小于或等于175MPa,以及包括其间的所有值及子范围。
在一个或更多个实施方式中,拋物线区域中的峰值中心张力(CT)*厚度(t)的值的范围为大于或等于80MPa且小于或等于160MPa、或大于或等于90MPa且小于或等于155MPa,以及包括其间的所有值及子范围。
在一个或更多个实施方式中,玻璃基制品包含针对具有600.0μm的厚度的制品利用30粒度砂纸以470.0N的力冲击之后所测量的大于或等于170MPa的保留强度。在一个或更多个实施方式中,玻璃基制品包含针对具有600.0μm的厚度的制品利用80粒度砂纸以470.0N的力冲击之后所测量的大于或等于170MPa的保留强度。在一个或更多个实施方式中,玻璃基制品包含针对具有600.0μm的厚度的制品利用30粒度砂纸以470.0N的力冲击之后所测量的大于或等于170MPa的第一保留强度,以及针对具有600.0μm的厚度的制品利用80粒度砂纸以470.0N的力冲击之后所测量的大于或等于170MPa的第二保留强度。在一个或更多个实施方式中,第一保留强度与第二保留强度相差±5MPa。
在一个或更多个实施方式中,玻璃基制品所包含的针对具有600.0μm的厚度的制品利用30粒度砂纸以470.0N的力冲击之后所测量的保留强度大于或等于170MPa且小于或等于200MPa、大于或等于175MPa且小于或等于195MPa、或大于或等于180MPa且小于或等于190MPa,以及包括其间的所有值及子范围。
在一个或更多个实施方式中,玻璃基制品所包含的针对具有600.0μm的厚度的制品利用80粒度砂纸以470.0N的力冲击之后所测量的保留强度大于或等于170MPa且小于或等于200MPa、大于或等于175MPa且小于或等于195MPa、或大于或等于180MPa且小于或等于190MPa,以及包括其间的所有值及子范围。
在一个或更多个实施方式中,玻璃基制品所包含的针对具有600.0μm的厚度的制品利用30粒度砂纸以470.0N的力冲击之后所测量以及利用80粒度砂纸以470.0N的力冲击之后所独立测量的保留强度大于或等于170MPa且小于或等于200MPa、大于或等于175MPa且小于或等于195MPa、或大于或等于180MPa且小于或等于190MPa,以及包括其间的所有值及子范围。
玻璃基基板的设计
在一个或更多个实施方式中,玻璃应力基基板实现应力松弛率,应力松弛率为(100*(1-松弛应力(σr)与初始应力(σo)的比率)),其大于或等于10%、20%、30%、40%、50%、60%、70%、80%或更大,及/或小于或等于100%、小于或等于90%、小于或等于85%,以及包括其间的所有值及子范围的。在一个或更多个实施方式中,玻璃应力基基板的应力松弛率大于或等于10%且小于或等于100%、大于或等于20%且小于或等于90%、大于或等于25%且小于或等于80%,以及包括其间的所有值及子范围。用于合适的玻璃基基板的组合物相应地被设计成包含下列的期望组合:玻璃转化温度(Tg)、液体脆性指数(m)及假想温度(Tf)。
在一个或更多个实施方式中,Tg大于或等于550℃或小于或等于650℃,以及包括其间的所有值及子范围。在一个或更多个实施方式中,Tg大于或等于550℃且小于或等于650℃,以及包括其间的所有值及子范围。
在一个或更多个实施方式中,Tf减去Tg的值大于或等于-30℃或小于或等于100℃,以及包括其间的所有值及子范围。在一个或更多个实施方式中,Tf减去Tg的值大于或等于-30℃且小于或等于100℃、大于或等于0℃且小于或等于95℃、或大于或等于30℃且小于或等于90℃,以及包括其间的所有值及子范围。
在一个或更多个实施方式中,m大于或等于25或小于或等于60,以及包括其间的所有值及子范围。在一个或更多个实施方式中,m大于或等于25且小于或等于60、大于或等于30且小于或等于55、大于或等于35且小于或等于50,以及包括其间的所有值及子范围。
玻璃基基板的黏度有助于应力松弛率。针对处于非平衡状态的玻璃,测量时的黏度非常高。所期望的离子交换(IOX)处理温度(TIOX)与玻璃转化温度较佳为具有下列范围:Tg-200℃<TIOX<Tg-50℃。建立上限是为了确保仍然保留离子交换应力,而不是所有的应力大部分是松弛的。
应力松弛是玻璃在应力作用下的常见现象。只要存在应力,玻璃就会发生应力松弛。应力松弛遵循伸展指数方程,如方程(1)所示。
其中σr为松弛应力,σ0为初始应力,t为物理时间(physical time),τ为特征松弛时间,β为伸展指数。根据方程(1)的应力松弛为基础玻璃基板的特性,使用时不需要对基板进行离子交换(IOX)。预期若玻璃在通常用于IOX的热条件下经历显著的应力松弛,则在这样的热条件下经历过IOX的玻璃制品也将经历显著的应力松弛。因此,根据方程(1)的应力松弛为预测IOX玻璃的应力松弛性能的方式。在典型的IOX温度范围内,松弛时间可以藉由阿伦尼乌斯(Arrhenius)方程(2)加以近似:
其中,τ0为温度T趋于无穷大时的松弛时间,而E为活化能。
松弛时间通过麦克斯韦(Maxwell)方程(3)与黏度直接关联:
其中η为黏度,而G为剪切模量。根据实验室应力松弛资料,剪切模量不同于实验室测量的剪切模量。Potuzak等(Marcel Potuzak,Roger C.Welch,and John C.Mauro,J.ofChem.Phys.135,214502(2011))所发表的标题为“Topological origin of stretchedexponential relaxation in glass”(玻璃中拉伸指数松弛的拓扑起源)讨论了应力松弛测量,并藉由引用并入本文。为了最适配实验室测量的应力松弛,G为大约100MPa。
根据Mauro等(J.C.Mauro,D.C.Allan,M.Potuzak,Phys.Rev.B80,094204(2009))的MAP非平衡黏度模型和组成依赖性黏度模型(X.J.Guo,J.C.Mauro,D.C.Allan,M.M.Smedskjaer,J.Am.Ceram.Soc.2018;101:1169-1179),决定非平衡玻璃黏度的组成依赖性的表达式为:
log10η(T,Tf,x)=y(T,Tf,x)log10ηeq(Tf,x)+[(1-y(T,Tf,x)]log10ηne(T,Tf,x), (4)
其中
在方程(4)的黏度模型中,ηeq与ηne分别由方程(6)及(7)给定。我们假设A(x)=A(xref)与ΔH(x)=ΔH(xref)在所讨论的组成范围内是常数,亦即,ηne(T,Tf,x)的组成依赖性包含在方程(7)的最后一项中。
其中Tg为玻璃转化温度(1012Pa·s的等黏线温度),而m为液体脆性指数:
而η∞=10-2.9Pa·s为液体黏度的无限温度极限(硅酸盐液体不依赖于组成的通用常数)。
其中A为与尝试频率(attempt frequency)相关的常数,ΔH为等结构流动的主要活化焓,而S∞为无限温度极限下的构型熵(configurational entropy)。
依据先前的Mauro的焓景观建模,存在用于更高脆性系统的指数级大量构型微观状态,每一者具有指数级大量可能的过渡态。因此,我们假设S∞随着脆性呈现指数变化,
本文的实例展示此模型的使用。
在一个或更多个实施方式中,一种制造玻璃基制品的方法包含以下步骤:制备玻璃组合物;对玻璃组合物进行处理,以形成玻璃基基板,其包含:玻璃转化温度(Tg)、液体脆性指数(m)及假想温度(Tf),其中Tg小于或等于650℃,Tf与Tg之间的差异大于或等于-30℃,而m大于或等于25;将玻璃基基板置于小于或等于550℃(包括小于或等于500℃)的离子交换条件,以形成玻璃基制品,从而使得应力松弛率大于或等于10%。
玻璃基基板
可以用于形成玻璃基基板的材料的实例包括玻璃及玻璃陶瓷材料。可以作为基板使用的示例性玻璃可以包括碱金属铝硅酸盐玻璃组合物或含碱金属的铝硼硅酸盐玻璃组合物,也可预期其他玻璃组合物。可以使用的玻璃基板的具体实例包括但不限于碱金属铝硅酸盐玻璃、含碱金属的硼硅酸盐玻璃、碱金属铝硼硅酸盐玻璃、含碱金属的锂铝硅酸盐玻璃、或含碱金属的磷酸盐玻璃。玻璃基基板具有基础组合物,其特征可以是可离子交换。如本文所使用,“可离子交换”意指包含该组合物的基板能够将位于基板表面处或基板表面附近的阳离子与尺寸更大或更小的同价的阳离子交换。
在一个或更多个实施方式中,玻璃基基板可以包括含锂的铝硅酸盐。
在实施方式中,可以藉由能够形成应力分布曲线的任一组合物来形成玻璃基基板。在一些实施方式中,可以藉由2018年11月28日提交的标题为“Glasses with LowExcess Modifier Content”(具有低过量改性剂含量的玻璃)的美国申请16/202,691中所描述的玻璃组合物来形成玻璃基基板,其整体内容藉由引用并入本文。在一些实施方式中,可以藉由2018年11月28日提交的标题为“Ion-Exchangeable Mixed AlkaliAluminosilicate Glasses”(可离子交换混合碱金属铝硅酸盐玻璃)的美国申请16/202,767中所描述的玻璃组合物来形成玻璃制品,其整体内容藉由引用并入本文。
玻璃基基板的特征可以在于其可成形的方式。举例而言,玻璃基基板的特征可以是可浮法成形(亦即,藉由浮法处理形成)、可向下拉制及更具体为可熔合成形或可狭槽拉制成形(亦即,藉由下拉工艺(例如,熔合拉制工艺或狭槽拉制工艺))。在实施方式中,玻璃基基板可以是辊形成的。针对玻璃陶瓷,可以包括陶瓷化步骤。其他成形方法可以用于玻璃与玻璃陶瓷。
本文所述的玻璃基基板的一些实施方式可以藉由下拉工艺而成形。下拉工艺生产具有相对原始表面的均匀厚度的玻璃基基板。由于玻璃制品的平均挠曲强度由表面缺陷的数量及尺寸控制,所以具有最小接触的原始表面具有较高的初始强度。此外,下拉的玻璃制品具有非常平坦且平滑的表面,而可用于最终应用,而不需要昂贵的研磨及抛光。
玻璃基基板的一些实施方式可以描述成可熔融成形(亦即,可以使用熔合拉制工艺而成形)。熔融工艺使用具有用于接受熔融玻璃原料的沟槽的拉制容器。沟槽的堰沿着沟槽两侧的沟槽长度在顶部开放。当沟槽充满熔融材料时,熔融玻璃溢出堰。由于重力,熔融玻璃沿着拉制容器的外侧表面流下,成为两片流动的玻璃膜。拉制容器的这些外侧表面向下及向内延伸,而在拉制容器下方的边缘处连接。两片流动的玻璃膜在此边缘处连接在一起,以熔合并形成单一流动的玻璃制品。熔合拉制方法的优点在于,由于溢出沟槽流动的两片玻璃膜熔合在一起,因此所得到的玻璃制品的外侧表面都不会与设备的任何部分接触。因此,熔合拉伸的玻璃制品的表面性质并不会受到这种接触的影响。
本文所述的玻璃基基板的一些实施方式可以藉由狭槽拉制工艺形成。狭槽拉制工艺与熔合拉制方法不同。在狭槽拉制工艺中,熔融原料玻璃提供至拉制容器。拉制的底部具有开口狭槽,开口狭槽具有沿着狭槽长度延伸的喷嘴。熔融玻璃流经狭槽/喷嘴,并作为连续玻璃制品向下拉伸,而进入退火区域。
在一个或更多个实施方式中,基础组合物包含:50摩尔%至69摩尔%的SiO2;12.5摩尔%至25摩尔%的Al2O3;0摩尔%至8摩尔%的B2O3;大于0摩尔%至4摩尔%的CaO;大于0摩尔%至17.5摩尔%的MgO;0.5摩尔%至8摩尔%的Na2O;0摩尔%至2.5摩尔%的La2O3;以及大于8摩尔%至18摩尔%的Li2O。玻璃组合物的特征在于:(Li2O+Na2O+MgO)/Al2O3为0.9至小于1.3;以及Al2O3+MgO+Li2O+ZrO2+La2O3+Y2O3大于23摩尔%且小于50摩尔%。
在一个或更多个实施方式中,本文所述的玻璃基基板可以呈现非晶微结构,并且可以基本上不含结晶或微晶。换言之,在一些实施方式中,玻璃基基板不包括玻璃陶瓷材料。
在一个或更多个实施方式中,在离子交换之后进行退火步骤。亦即,退火步骤为可选择的。在例如500℃±50℃的温度下退火大约15至60分钟的持续时间可以用于实现更深的压缩深度(DOC)及/或应力松弛率。
离子交换(IOX)处理
藉由将可离子交换的玻璃基基板放置于离子交换介质中以完成具有基础组合物的玻璃基基板的化学强化。在实施方式中,离子交换介质可以是包含阳离子(例如,K+、Na+、Ag+等)的熔融浴,其中阳离子扩散进入玻璃,而玻璃的较小的碱金属离子(例如,Na+、Li+)扩散进入熔融浴。利用较大的阳离子来代替较小的阳离子会在玻璃的表面附近产生压缩应力。在玻璃的内部产生拉伸应力,以平衡近表面压缩应力。
离子交换处理可以为独立的热扩散处理或电扩散处理。将玻璃浸入多离子交换浴并在浸入之间进行清洗及/或退火步骤的离子交换处理的非限制性实例描述于DouglasC.Allan等人于2013年10月22日公告及请求于2008年7月11日提交的美国临时专利申请号61/079,995的优先权的标题为“Glass with Compressive Surface for ConsumerApplications”(用于消费应用的具有压缩表面的玻璃)的美国专利8,561,429,其中藉由浸入不同浓度的盐浴中进行多次连续离子交换处理而强化玻璃;以及Christopher M.Lee等人于2012年11月20日公告及请求于2008年7月29日提交的美国临时专利申请号61/084,398的优先权的标题为“Dual Stage Ion Exchange for Chemical Strengthening of Glass”(用于化学强化玻璃的双级离子交换)的美国专利8,312,739,其中藉由利用流出物离子稀释的第一浴进行离子交换,然后浸入具有比第一浴更小的流出物离子的浓度的第二浴中而强化玻璃。美国专利8,561,429与8,312,739的内容藉由引用整体并入本文。
在进行离子交换处理之后,应理解玻璃制品的表面处的组成可以与刚形成的玻璃基基板(亦即,进行离子交换处理之前的玻璃基基板)的组成不同。这是由于刚形成的玻璃中的一种碱金属离子(例如,Li+或Na+)分别被较大的碱金属离子(例如,Na+或K+)取代。然而,在实施方式中,在玻璃制品的深度的中心处或附近的玻璃组成仍然具有刚形成的玻璃基基板的组成。
在一个或更多个实施方式中,钾盐包含:KNO3、K2CO3、K3PO4、K2SO4、K3BO3、KCl、或其组合。
在一个或更多个实施方式中,钠盐包含:NaNO3、Na2CO3、Na3PO4、Na2SO4、Na3BO3、NaCl、或其组合。
在一个或更多个实施方式中,锂盐包含:LiNO3、Li2CO3、Li3PO4、Li2SO4、Li3BO3、LiCl、或其组合。
在一个或更多个实施方式中,钾盐包含KNO3,钠盐包含NaNO3,而锂盐包含LiNO3。
在IOX处理之后,可以应用如上所述的可选择的退火步骤。
在一个或更多个实施方式中,一种制造玻璃基制品的方法,包含以下步骤:对具有限定基板厚度(t)的相对的第一表面和第二表面以及锂基铝硅酸盐组合物的玻璃基基板进行离子交换处理,以形成玻璃基制品,离子交换处理包含:第一熔融盐浴与第二熔融盐浴;其中玻璃基制品包含:大于或等于0.75MPa*m0.5的断裂韧性;以及应力分布曲线,包含:从第一表面延伸至拐点的尖峰区域;以及从拐点延伸至玻璃基制品的中心的尾部区域,尾部区域包含:负曲率区域,其中应力与深度的函数的二阶导数为负;大于或等于0.22t的压缩深度(DOC),以及源自DOC处并延伸至玻璃基制品的中心的拋物线区域。
终端产品
本文所公开的玻璃基制品可以结合到另一制品(例如,具有显示器(或显示制品)的制品(例如,消费性电子产品,包括移动电话、平板计算机、计算机、导航系统等)、建筑制品、运输制品(例如,车辆、火车、飞行器、航海器等)、器具制品、或需要一些透明性、耐刮性、耐磨性、或其组合的任何制品)。图3A及图3B图示结合本文公开的任何玻璃制品的示例性制品。具体而言,图3A及图3B图示消费性电子装置200,包括:壳体202,具有前表面204、后表面206及侧表面208;电部件(未图示),其至少部分地位于壳体内侧或完全位于壳体内侧,并至少包括控制器、内存及在壳体的前表面处或附近的显示器210;以及盖板212,其在壳体的前表面处或前表面上,以覆盖显示器。在一些实施方式中,盖板212及/或壳体202中至少一者的至少一部分可以包括本文公开的任何玻璃制品。
实例
藉由下列实例,将会进一步厘清各种实施方式。在实例中,在强化之前,实例称为“基板”。在受到强化之后,实例称为“制品”或“玻璃基制品”。
在下列实例中,根据组合物A或B的玻璃基板经过离子交换,而所得到的制品经过测试。组合物A及B以及由此产生的玻璃基板具有下列属性。
组合物A:17.83摩尔%的Al2O3、6.11摩尔%的B2O3、4.41摩尔%的MgO、1.73摩尔%的Na2O、58.39摩尔%的SiO2、0.08摩尔%的SnO2、0.18摩尔%的K2O、0.02摩尔%的Fe2O3、0.58摩尔%的CaO及10.66摩尔%的Li2O(0.00摩尔%的SrO、0.00摩尔%的ZnO及0.00摩尔%的P2O5);以及Na2O/Li2O的摩尔比率为0.16。根据组合物A的玻璃基板具有:0.85mPaMPa*m0.5的断裂韧性;约660℃的Tf,约617℃的Tg,Tf与Tg之间的差异约为43℃;液体脆性指数(m)为35。
组合物B:12.88摩尔%的Al2O3、1.84摩尔%的B2O3、2.86摩尔%的MgO、2.39摩尔%的Na2O、70.96摩尔%的SiO2、0.07摩尔%的SnO2、0.02摩尔%的Fe2O3、8.13摩尔%的Li2O及0.85摩尔%的ZnO(0.00摩尔%的K2O、0.00摩尔%的CaO、0.00摩尔%的SrO及0.00摩尔%的P2O5);以及Na2O/Li2O的摩尔比率为0.29。根据组合物B的玻璃基板具有0.8mPa MPa*m0.5的断裂韧性。
经由折射近场(RNF)方法来测量本文的实验实例的应力分布曲线,其中CT匹配于藉由使用爱沙尼亚的玻璃应力公司(Glasstress Co.)所制造的SCALP-5的散射偏振法所提供的CT的测量。此外,由于此测量技术所使用的光束的尺寸所导致的用于提供应力分布曲线的前~2μm中的精确信息的RNF的限制,因此将RNF数据外推至表面,以在表面处找到应力,从而也匹配于藉由日本折原的FSM-6000LE所完成的用于测量表面处的估计应力的测量。因此,总应力分布曲线匹配于使用365nm的光源的藉由SCALP仪器所测量的样品的中心处的CT以及藉由FSM-6000LE仪器所测量的表面处的CS,以提供从表面至样品的中心的整个应力分布曲线的精确表示。
本文所使用的术语“保留强度”指当制品弯折以施加拉伸应力时,在藉由冲击力引入损伤之后的玻璃制品的强度。根据美国专利公开号2019/0072469A1所描述的“表面冲击测试”方法引入损伤,其藉由引用并入本文。举例而言,用于针对玻璃制品进行冲击测试的设备在图10中展示为组件符号1100。设备1100包括摆锤1102,摆锤1102包括附接至枢轴1106的秤锤1104。本文所使用的术语摆锤上的“秤锤”为藉由臂悬挂并连接至枢轴的重物。因此,所示的秤锤1104藉由臂1108连接至枢轴1106。秤锤1104包括用于接收玻璃制品的底座1110,而玻璃制品固定至底座。设备1100进一步包括冲击物体1140,经定位而使得在秤锤1104从与平衡位置成大于零的角度的位置释放时,秤锤1104的表面接触冲击物体1140。冲击物体包括具有磨擦表面的磨擦片材,以与玻璃制品的外表面接触。磨擦片材可以包含砂纸,而可以具有30粒度至400粒度或是100粒度至300粒度的范围内的粒度尺寸(例如,30或80粒度)。
出于本公开的目的,冲击物体为固定至设备的直径6mm的30粒度或80粒度的砂纸盘的形式。将大约600.0μm的厚度的玻璃制品固定至秤锤。针对每一冲击,都使用新的砂纸盘。藉由将设备的臂的摆动拉至大约90°角,在大约470N的冲击力下对玻璃制品造成损伤。每一玻璃制品的大约10个样品受到冲击。
在损伤引入12小时或更长时间之后,玻璃制品在四点弯折(4PB)下断裂。将损伤的玻璃制品放置在支撑杆(支撑跨度)上,其中受损伤部位在底部(亦即,张力侧)以及加载路径之间(加载跨度)。出于本公开的目的,加载跨度为18mm,而支撑跨度为36mm。加载与支撑杆的曲率半径为3.2mm。使用螺杆驱动测试机(美国马萨诸塞州诺伍德(Norwood,Massachusetts,USA))以5mm/分钟的恒定位移速率进行加载,直到玻璃破损。4PB测试是在22℃+2℃的温度与50%+5%的RH(相对湿度)下进行。
由方程(C)计算四点弯折(4PB)中的施加断裂应力(或施加破损应力)σapp。
其中P为最大破损负载,L(=36mm)为支撑杆之间的距离(支撑跨度),a(=18mm)为加载杆之间的距离(加载跨度),b为玻璃板的宽度,h为玻璃板的厚度,ν为玻璃组合物的泊松比。方程(C)中的(1/(1-v2))项考虑了板的加硬效果。在四点弯折中,应力在加载跨度下是恒定的,因此,损伤部位处于模式I单轴拉伸应力加载。针对样本的4点弯折测试的应力速率估计在每秒15至17MPa之间。玻璃组合物的保留强度为不发生破损的最高施加断裂应力。
实例1-2与A-B(比较)
表1提供针对实例1-2所标示的使用钾(K)与钠(Na)的硝酸盐的双离子交换(DIOX)条件的概略。使用800微米的厚度的根据组合物A的基板。DIOX条件包括在380℃下预热10分钟,并且与实例1-2相同。表1还展示下列数据:重量增益百分比、压缩应力(CS)、拐点层深度(DOLk)及中心张力(CT)。步骤I与步骤II二者均包括添加0.5重量%的硅酸至IOX浴。在步骤I与步骤II之间,清洁基板以移除多余的盐。
表1
*步骤I及步骤II各包括添加0.5重量%的硅酸。
实例1-2在DIOX之后在500℃下进行退火。表2提供CT数据与DOC(μm)。
表2
表3提供针对实例A-B(比较)的使用如所述的钾(K)、钠(Na)及锂(Li)的硝酸盐的单离子交换(SIOX)条件的概略。实例A使用组合物A的800微米厚的基板。实例B使用组合物B的800微米厚的基板。表3还展示下列数据:压缩应力(CS)、拐点处的压缩应力(CSk)、拐点层深度(DOLk)、中心张力(CT)及压缩深度(DOC)值。IOX步骤包括添加0.5重量%的硅酸至IOX浴。
表3
*包括添加0.5重量%的硅酸。
图4提供实例1-2与A-B(比较)的应力分布曲线(应力(MPa)与深度(微米))。图4显示负曲率区域:针对实例1,负曲率区域包括大约20至大约140微米的深度,针对实例2,负曲率区域包括大约10至大约160微米的深度。图5为针对实例1的藉由GD-OES所测量的二氧化钠(Na2O)浓度与深度的关系的图。实线为Na2O分布曲线的线性拟合。作为力平衡的结果的表面CS等于CS=BEΔC/(1-v),其中ΔC=C0-Cave表面Na2O浓度减去通过厚度的平均Na2O浓度,B为线性晶格膨胀系数,E为杨氏模量,ν为泊松比。依据图5,C0=10.2,而Cave=5.1。因此,理论非松弛应力(σo)在忽略应力松弛时大约超过300MPa,假设B为约0.6ppk/摩尔%。(如Tandia等发表在Journal of Non-Crystalline Solids,358(2012)316-320)。在此处引用的论文中,作者讨论Na+→K+IOX,系数B为大约1ppk/摩尔%。依据Li+(0.08nm)、Na+(0.102nm)及K+(0.0138nm)的离子半径,相较于1摩尔%的Na+→K+,1摩尔%的Li+→Na+IOX会造成约60%的增长,因此,B使用0.6ppk/摩尔%的Li+→Na+的值。E为83GPa,而ν为0.22。图4的针对实例1所测量的应力分布曲线展示忽略表面陡峭分布曲线时的约115MPa的表面应力(测量松弛应力(σr))。因此,此实例中的应力松弛为约60%(例如,(300-115)/300)。
根据上述方法,在损伤引入之后藉由表面冲击测试在4点弯折(4PB)中确定实例1的制品的保留强度。在第一组实验中,相对于30粒度砂纸的损伤冲击来确定第一保留强度。在第二组独立实验中,相对于80粒度砂纸的损伤冲击来确定第二保留强度。
图6为实例1的施加断裂应力(MPa)与粒度的关系的图,其中针对30粒度,第一保留强度平均为185MPa,而针对80粒度,第二保留强度平均为189MPa。相较于80粒度的砂纸,30粒度的砂纸通常会造成更深的损伤。针对实例1,出乎意料地发现以30粒度冲击之后的第二保留强度在统计学上等同于(例如,在5MPa以内)以80粒度冲击之后的第一保留强度。
实例3
表4提供针对实例3所标示的使用钾(K)与钠(Na)的硝酸盐的双离子交换(DIOX)条件的概略。使用800微米的厚度的根据组合物A的基板。DIOX条件包括在380℃下预热10分钟。表4还展示下列数据:步骤II之后的压缩应力(CS)、拐点层深度(DOLk)及中心张力(CT)。在步骤I之后,CS为540.0MPa,而DOLk为6.50μm。步骤I与步骤II二者均包括添加0.5重量%的硅酸至IOX浴。在步骤I与步骤II之间,清洁基板以移除多余的盐。
表4
*步骤I及步骤II中各包括添加0.5重量%的硅酸。
图7提供步骤II之后的实例3的平滑应力分布曲线(应力(MPa)与深度(微米))的关系。在此实例中,为了考虑测量的可变性,根据下列方程而针对应力与深度数据进行平滑化:y=9E-13x6-1E-09x5+6E-07x4-0.0001x3+0.0084x2-0.0475x+113.15;R2=0.9998。图8为图7的应力分布曲线图的二阶导数的图。从约50微米的深度开始,除了63至64微米的范围内的一些正值之外,二阶导数保持为负,直到大约制品的中心(400微米)。在50微米至202微米(DOC)的深度范围内,二阶导数的绝对值的范围为0.03至0.70。
实例3在DIOX之后在500℃下进行退火。表5提供CT数据。
表5
图9为退火之后的实例3的应力分布曲线的节录,以展示拋物线区域符合下列方程:
应力(x)=2.317E-03x 2-2.099E+00x+3.403E+02,其中R 2=9.987E-01。
实例5-8
玻璃基基板的Tg(x)与m(x)的组成依赖性基于实验测定值,并且使用由方程(1)至(7)产生的建模来评估范围。对于这些实例,Tg的范围为550℃至650℃,脆性指数的范围为25至35。Tf在下列范围进行研究:30℃<Tf-Tg<70℃。表6提供组合的概略。
表6
图10至图13绘制TIOX(IOX温度)的1小时处的应力松弛率与Tf-Tg(例如,Tf与Tg之间的差异)。根据方程(1)计算玻璃基基板的应力松弛率。
期望大于或等于10%(例如,20%至80%的范围,以及其间的所有值及子范围)的应力松弛率以及低于550℃(包括低于500℃)的IOX处理温度。关于图11至图15,针对500℃的TIOX温度,可以确定Tg、最小脆性mm及最小假想温度(Tf-Tg)之间的相关性,如图15所示。针对小于或等于500℃的TIOX以实现所期望的应力松弛,如基于图15的表7所示,可以使用小于或等于650℃的Tg、大于或等于30℃的Tf与Tg之间的差异(Tf-Tg)及大于或等于25的m的组合。
表7
除非另有说明,否则此说明书所描述的所有组合物成分、关系及比率均以摩尔%提供。无论是否在公开范围之前或之后明确说明,此说明书所公开的所有范围包括广泛公开的范围所涵盖的任一及所有范围与子范围。
尽管前述内容针对各种实施方式,但是可以在不背离本发明的基本范围的情况下设计本公开的其他及进一步的实施方式,而其范围由权利要求范围决定。举例而言,本公开的特征可以利用任何及所有组合来进行组合,如下列实施方式所阐述。
实施方式1:一种玻璃基制品,包含:包含锂基铝硅酸盐以及大于或等于0.75MPa*m0.5的断裂韧性的组合物;限定厚度(t)的相对的第一表面和第二表面;以及应力分布曲线,该应力分布曲线包含:从第一表面延伸至拐点的尖峰区域;以及从拐点延伸至玻璃基制品的中心的尾部区域,尾部区域包含:负曲率区域,其中应力与深度的函数的二阶导数为负;大于或等于0.22t的压缩深度(DOC),以及源自DOC处并延伸至玻璃基制品的中心的拋物线区域。
实施方式2:如实施方式1所述的玻璃基制品,其中玻璃基制品的中心处的组成包含大于8摩尔%的氧化锂(Li2O)含量。
实施方式3:如实施方式1或2中任一者所述的玻璃基制品,其中玻璃基制品的中心处的组成包含小于1.0的氧化钠(Na2O)与氧化锂(Li2O)的摩尔比率。
实施方式4:如前一实施方式所述的玻璃基制品,其中氧化钠(Na2O)与氧化锂(Li2O)的摩尔比率小于或等于0.63。
实施方式5:如实施方式1所述的玻璃基制品,其中锂基铝硅酸盐组合物以小于该组合物的2摩尔%的量包含氧化钾(K2O)和五氧化二磷(P2O5)。
实施方式6:如实施方式1所述的玻璃基制品,其中负曲率区域所包含的平均压缩应力(CS)大于或等于50MPa且小于或等于120MPa。
实施方式7:如实施方式1至前一实施方式中任一者所述的玻璃基制品,其中玻璃基制品的中心处的组成包含:50摩尔%至69摩尔%的SiO2;12.5摩尔%至25摩尔%的Al2O3;0摩尔%至8摩尔%的B2O3;大于0摩尔%至4摩尔%的CaO;大于0摩尔%至17.5摩尔%的MgO;0.5摩尔%至8摩尔%的Na2O;0摩尔%至2.5摩尔%的La2O3;以及大于8摩尔%至18摩尔%的Li2O。
实施方式8:如实施方式1至前一实施方式中任一者所述的玻璃基制品,其中应力分布曲线进一步包含:大于或等于150MPa的最大压缩应力(CS最大)。
实施方式9:如实施方式1至前一实施方式中任一者所述的玻璃基制品,其中应力分布曲线进一步包含:大于或等于80MPa且小于或等于160MPa的范围中的拋物线区域中的峰值中心张力(CT)*厚度(t)的值。
实施方式10:如实施方式1至前一实施方式中任一者所述的玻璃基制品,其中t的范围为大于或等于0.02毫米且小于或等于2毫米。
实施方式11:如实施方式1至前一实施方式中任一者所述的玻璃基制品,进一步包含从玻璃基制品的第一及/或第二表面延伸至玻璃基制品的深度的以非零变化浓度存在的碱金属。
实施方式12:如前一实施方式所述的玻璃基制品,其中碱金属选自下组:钾(K)、钠(Na)、锂(Li)、铷(Rb)、铯(Cs)、钫(Fr)及其组合。
实施方式13:如实施方式1至前一实施方式中任一者所述的玻璃基制品,包含针对具有600.0μm的厚度的制品利用30粒度砂纸以470.0N的力冲击之后所测量的大于或等于170MPa的保留强度。
实施方式14:如实施方式1至前一实施方式中任一者所述的玻璃基制品,包含针对具有600.0μm的厚度的制品利用80粒度砂纸以470.0N的力冲击之后所测量的大于或等于170MPa的保留强度。
实施方式15:一种玻璃基制品,包含:限定厚度(t)的相对的第一表面和第二表面;以及针对具有600.0μm的厚度的制品利用30粒度砂纸以470.0N的力冲击之后所测量的大于或等于170MPa的第一保留强度,以及针对具有600.0μm的厚度的制品利用80粒度砂纸以470.0N的力冲击之后所测量的大于或等于170MPa的第二保留强度。
实施方式16:如实施方式15所述的玻璃基制品,其中第一保留强度与第二保留强度相差±5MPa。
实施方式17:如实施方式15所述的玻璃基制品,包含:包含锂基铝硅酸盐以及大于或等于0.75MPa*m0.5的断裂韧性的组合物。
实施方式18:如实施方式15所述的玻璃基制品,包含:应力分布曲线,所述应力分布曲线包含:从第一表面延伸至拐点的尖峰区域;以及从拐点延伸至玻璃基制品的中心的尾部区域,其中尾部区域包含:负曲率区域,其中应力与深度的函数的二阶导数为负;大于或等于0.22t的压缩深度(DOC),以及源自DOC处并延伸至玻璃基制品的中心的拋物线区域。
实施方式19:一种消费性电子产品,包含:具有前表面、后表面及侧表面的壳体;电子部件,其至少部分设置于壳体内,电子部件至少包括控制器、内存及显示器,显示器设置于壳体的前表面处或与前表面相邻;以及盖板,其设置于显示器上方;其中壳体与盖板中至少一者的一部分包含实施方式1至前一实施方式中之任一者所述的玻璃基制品。
实施方式20:一种制造玻璃基制品的方法,包含以下步骤:对具有限定基板厚度(t)的相对的第一表面和第二表面以及锂基铝硅酸盐组合物的玻璃基基板进行离子交换处理,以形成玻璃基制品,离子交换处理包含:第一熔融盐浴与第二熔融盐浴;其中玻璃基制品包含:大于或等于0.75MPa*m0.5的断裂韧性;以及应力分布曲线,所述应力分布曲线包含:从第一表面延伸至拐点的尖峰区域;以及从拐点延伸至玻璃基制品的中心的尾部区域,尾部区域包含:负曲率区域,其中应力与深度的函数的二阶导数为负;大于或等于0.22t的压缩深度(DOC),以及源自DOC处并延伸至玻璃基制品的中心的拋物线区域。
实施方式21:如前一实施方式所述的方法,进一步包含离子交换处理之后的退火步骤。
实施方式22:如实施方式20所述的方法,其中锂基铝硅酸盐组合物包含大于8摩尔%的氧化锂(Li2O)含量。
实施方式23:如实施方式20所述的方法,其中玻璃基制品的中心处的组成包含小于1.0的氧化钠(Na2O)与氧化锂(Li2O)的摩尔比率。
实施方式24:如前一实施方式所述的方法,其中氧化钠(Na2O)与氧化锂(Li2O)的摩尔比率小于或等于0.63。
实施方式25:如实施方式20所述的方法,其中锂基铝硅酸盐组合物所包含的氧化钾(K2O)与五氧化二磷(P2O5)的量小于组合物的2摩尔%。
实施方式26:如实施方式20所述的方法,其中负曲率区域所包含的平均压缩应力(CS)大于或等于50MPa且小于或等于120MPa。
实施方式27:如实施方式20至26中任一者所述的方法,其中该组合物具有:50摩尔%至69摩尔%的SiO2;12.5摩尔%至25摩尔%的Al2O3;0摩尔%至8摩尔%的B2O3;大于0摩尔%至4摩尔%的CaO;大于0摩尔%至17.5摩尔%的MgO;0.5摩尔%至8摩尔%的Na2O;0摩尔%至2.5摩尔%的La2O3;以及大于8摩尔%至18摩尔%的Li2O。
实施方式28:如实施方式20至26中任一者所述的方法,其中应力分布曲线进一步包含:大于或等于150MPa的最大压缩应力(CS最大)。
本领域技术人员将理解,在不背离所请求保护的主题的精神及范围的情况下可对本文所述的实施方式作出各种修改及变化。因此,本公开意欲涵盖本文所提供的各种实施方式的修改与变化,这些修改与变化落于所附权利要求及其等价物的范围内。
Claims (28)
1.一种玻璃基制品,包含:
组合物,其包含锂基铝硅酸盐以及大于或等于0.75MPa*m0.5的断裂韧性;
相对的第一表面和第二表面,其限定厚度(t);以及
应力分布曲线,其包含:
尖峰区域,从该第一表面延伸至拐点;以及
尾部区域,从该拐点延伸至该玻璃基制品的中心,该尾部区域包含:
负曲率区域,其中应力与深度的函数的二阶导数为负;
压缩深度(DOC),其大于或等于0.22t,以及
拋物线区域,其源自该DOC处并延伸至该玻璃基制品的中心。
2.如权利要求1所述的玻璃基制品,其中该玻璃基制品的中心处的组成包含大于8摩尔%的氧化锂(Li2O)含量。
3.如权利要求1或2所述的玻璃基制品,其中该玻璃基制品的中心处的组成包含小于1.0的氧化钠(Na2O)与氧化锂(Li2O)的摩尔比率。
4.如前一项权利要求所述的玻璃基制品,其中氧化钠(Na2O)与氧化锂(Li2O)的摩尔比率小于或等于0.63。
5.如权利要求1所述的玻璃基制品,其中该锂基铝硅酸盐组合物以小于该组合物的2摩尔%的量包含氧化钾(K2O)和五氧化二磷(P2O5)。
6.如权利要求1所述的玻璃基制品,其中该负曲率区域所包含的平均压缩应力(CS)大于或等于50MPa且小于或等于120MPa。
7.如权利要求1至前一项权利要求中任一项所述的玻璃基制品,其中该玻璃基制品的中心处的组成包含:50摩尔%至69摩尔%的SiO2;12.5摩尔%至25摩尔%的Al2O3;0摩尔%至8摩尔%的B2O3;大于0摩尔%至4摩尔%的CaO;大于0摩尔%至17.5摩尔%的MgO;0.5摩尔%至8摩尔%的Na2O;0摩尔%至2.5摩尔%的La2O3;以及大于8摩尔%至18摩尔%的Li2O。
8.如权利要求1至前一项权利要求中任一项所述的玻璃基制品,其中该应力分布曲线进一步包含:大于或等于150MPa的最大压缩应力(CS最大)。
9.如权利要求1至前一项权利要求中任一项所述的玻璃基制品,其中该应力分布曲线进一步包含:该拋物线区域中的峰值中心张力(CT)*厚度(t)的值,该值在大于或等于80MPa且小于或等于160MPa的范围中。
10.如权利要求1至前一项权利要求中任一项所述的玻璃基制品,其中该t的范围为大于或等于0.02毫米且小于或等于2毫米。
11.如权利要求1至前一项权利要求中任一项所述的玻璃基制品,进一步包含从该玻璃基制品的第一表面和/或第二表面延伸至该玻璃基制品的一个深度的以非零变化浓度存在的碱金属。
12.如前一项权利要求所述的玻璃基制品,其中该碱金属选自下组:钾(K)、钠(Na)、锂(Li)、铷(Rb)、铯(Cs)、钫(Fr)及其组合。
13.如权利要求1至前一项权利要求中任一项所述的玻璃基制品,其包含针对具有600.0μm的厚度的制品利用30粒度砂纸以470.0N的力冲击之后所测量的大于或等于170MPa的保留强度。
14.如权利要求1至前一项权利要求中任一项所述的玻璃基制品,其包含针对具有600.0μm的厚度的制品利用80粒度砂纸以470.0N的力冲击之后所测量的大于或等于170MPa的保留强度。
15.一种玻璃基制品,包含:限定厚度(t)的相对的第一表面和第二表面;以及针对具有600.0μm的厚度的制品利用30粒度砂纸以470.0N的力冲击之后所测量的大于或等于170MPa的第一保留强度,以及针对具有600.0μm的厚度的制品利用80粒度砂纸以470.0N的力冲击之后所测量的大于或等于170MPa的第二保留强度。
16.如权利要求15所述的玻璃基制品,其中该第一保留强度与该第二保留强度相差±5MPa。
17.如权利要求15所述的玻璃基制品,其包含:包含锂基铝硅酸盐以及大于或等于0.75MPa*m0.5的断裂韧性的组合物。
18.如权利要求15所述的玻璃基制品,其包含:应力分布曲线,所述应力分布曲线包含:从该第一表面延伸至拐点的尖峰区域;以及从该拐点延伸至该玻璃基制品的中心的尾部区域,其中该尾部区域包含:负曲率区域,其中应力与深度的函数的二阶导数为负;大于或等于0.22t的压缩深度(DOC),以及源自该DOC处并延伸至该玻璃基制品的中心的拋物线区域。
19.一种消费性电子产品,包含:
壳体,其具有前表面、后表面及侧表面;
电子部件,其至少部分设置于该壳体内,所述电子部件至少包括控制器、内存及显示器,该显示器设置于该壳体的前表面处或与前表面相邻;以及
一盖板,其设置于该显示器上;
其中该壳体和该盖板中至少一者的一部分包含权利要求1至前一项权利要求中任一项所述的玻璃基制品。
20.一种制造玻璃基制品的方法,包含以下步骤:
对具有限定基板厚度(t)的相对的第一表面和第二表面以及锂基铝硅酸盐组合物的玻璃基基板进行离子交换处理,以形成玻璃基制品,该离子交换处理包含:第一熔融盐浴和第二熔融盐浴;
其中该玻璃基制品包含:
大于或等于0.75MPa*m0.5的断裂韧性;以及
应力分布曲线,所述应力分布曲线包含:
尖峰区域,其从该第一表面延伸至拐点;以及
尾部区域,其从该拐点延伸至该玻璃基制品的中心,该尾部区域包含:
负曲率区域,其中应力与深度的函数的二阶导数为负;
压缩深度(DOC),其大于或等于0.22t,以及
拋物线区域,其源自该DOC处并延伸至该玻璃基制品的中心。
21.如前一项权利要求所述的方法,进一步包含在该离子交换处理之后的退火步骤。
22.如权利要求20所述的方法,其中该锂基铝硅酸盐组合物包含大于8摩尔%的氧化锂(Li2O)含量。
23.如权利要求20所述的方法,其中该玻璃基制品的中心处的组成包含小于1.0的氧化钠(Na2O)与氧化锂(Li2O)的摩尔比率。
24.如前一项权利要求所述的方法,其中氧化钠(Na2O)与氧化锂(Li2O)的摩尔比率小于或等于0.63。
25.如权利要求20所述的方法,其中该锂基铝硅酸盐组合物以小于该组合物的2摩尔%的量包含氧化钾(K2O)和五氧化二磷(P2O5)。
26.如权利要求20所述的方法,其中该负曲率区域所包含的平均压缩应力(CS)大于或等于50MPa且小于或等于120MPa。
27.如权利要求20至26中任一项所述的方法,其中该组合物包含:50摩尔%至69摩尔%的SiO2;12.5摩尔%至25摩尔%的Al2O3;0摩尔%至8摩尔%的B2O3;大于0摩尔%至4摩尔%的CaO;大于0摩尔%至17.5摩尔%的MgO;0.5摩尔%至8摩尔%的Na2O;0摩尔%至2.5摩尔%的La2O3;以及大于8摩尔%至18摩尔%的Li2O。
28.如权利要求20至26中任一项所述的方法,其中该应力分布曲线进一步包含:大于或等于150MPa的最大压缩应力(CS最大)。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US202063083267P | 2020-09-25 | 2020-09-25 | |
US63/083,267 | 2020-09-25 | ||
PCT/US2021/049348 WO2022066408A1 (en) | 2020-09-25 | 2021-09-08 | Stress profiles of glass-based articles having improved drop performance |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116490477A true CN116490477A (zh) | 2023-07-25 |
Family
ID=78078391
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202180077447.7A Pending CN116490477A (zh) | 2020-09-25 | 2021-09-08 | 具有改善的掉落性能的玻璃基制品的应力分布曲线 |
Country Status (4)
Country | Link |
---|---|
US (1) | US12122703B2 (zh) |
CN (1) | CN116490477A (zh) |
TW (1) | TW202212281A (zh) |
WO (1) | WO2022066408A1 (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021137950A2 (en) * | 2019-11-26 | 2021-07-08 | Corning Incorporated | Magnesium aluminosilicate glasses with high fracture toughness |
WO2023192151A1 (en) * | 2022-04-01 | 2023-10-05 | Corning Incorporated | Phase separated glasses |
WO2024186887A1 (en) * | 2023-03-06 | 2024-09-12 | Corning Incorporated | Non-frangible stress profiles with high stress area for improved fracture resistance |
EP4431475A1 (en) * | 2023-03-17 | 2024-09-18 | SCHOTT Technical Glass Solutions GmbH | Chemically strengthened glass sheet and method for its production |
Family Cites Families (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2307328A1 (en) | 2008-07-11 | 2011-04-13 | Corning Incorporated | Glass with compressive surface for consumer applications |
EP2321230A4 (en) | 2008-07-29 | 2012-10-10 | Corning Inc | TWO-STAGE ION EXCHANGE FOR GLASS CHEMICAL REINFORCEMENT |
DE102010009584B4 (de) * | 2010-02-26 | 2015-01-08 | Schott Ag | Chemisch vorgespanntes Glas, Verfahren zu seiner Herstellung sowie Verwendung desselben |
US8666705B2 (en) | 2010-10-01 | 2014-03-04 | Corning Incorporated | Methods and apparatus for predicting glass properties |
US9533907B1 (en) * | 2011-10-31 | 2017-01-03 | Corning Incorporated | Methods and apparatus for predicting glass dynamics |
US9359251B2 (en) * | 2012-02-29 | 2016-06-07 | Corning Incorporated | Ion exchanged glasses via non-error function compressive stress profiles |
US8854623B2 (en) | 2012-10-25 | 2014-10-07 | Corning Incorporated | Systems and methods for measuring a profile characteristic of a glass sample |
US10611681B2 (en) * | 2015-12-08 | 2020-04-07 | Corning Incorporated | S-shaped stress profiles and methods of making |
KR101952085B1 (ko) * | 2016-01-12 | 2019-05-21 | 코닝 인코포레이티드 | 얇은, 열적 및 화학적으로 강화된 유리-계 제품 |
US10021226B2 (en) * | 2016-02-26 | 2018-07-10 | Essential Products, Inc. | Display cover mounting |
WO2018056168A1 (ja) * | 2016-09-21 | 2018-03-29 | 旭硝子株式会社 | 化学強化用ガラスおよび化学強化ガラス |
US10934209B2 (en) * | 2016-10-13 | 2021-03-02 | Corning Incorporated | Glass-based articles having improved fracture performance |
JP7040456B2 (ja) * | 2016-10-18 | 2022-03-23 | Agc株式会社 | 化学強化用ガラス、化学強化ガラスおよび化学強化ガラスの製造方法 |
JP7373397B2 (ja) * | 2017-01-09 | 2023-11-02 | コーニング インコーポレイテッド | 熱膨張係数が低いイオン交換可能なガラス |
JP7127058B2 (ja) * | 2017-01-18 | 2022-08-29 | コーニング インコーポレイテッド | 応力プロファイルが操作された被覆ガラス系物品およびその製造方法 |
DE102017102482B4 (de) * | 2017-02-08 | 2019-11-21 | Schott Ag | Gläser mit verbesserter Ionenaustauschbarkeit und thermischer Ausdehnung |
JP7378297B2 (ja) * | 2017-03-02 | 2023-11-13 | コーニング インコーポレイテッド | 低たわみおよび高損傷抵抗性ガラス物品のための非対称応力プロファイル |
CN116282908A (zh) * | 2017-06-28 | 2023-06-23 | Agc株式会社 | 化学强化玻璃、其制造方法和化学强化用玻璃 |
JP7173011B2 (ja) * | 2017-07-24 | 2022-11-16 | 日本電気硝子株式会社 | 化学強化ガラスおよび化学強化ガラスの製造方法 |
US11131611B2 (en) | 2017-09-07 | 2021-09-28 | Corning Incorporated | Impact testing apparatus and methods |
EP3704069A1 (en) * | 2017-10-31 | 2020-09-09 | Corning Incorporated | Peraluminous lithium aluminosilicates with high liquidus viscosity |
US10633279B2 (en) | 2017-11-29 | 2020-04-28 | Corning Incorporated | Glasses with low excess modifier content |
US10906834B2 (en) | 2017-11-29 | 2021-02-02 | Corning Incorporated | Ion-exchangeable mixed alkali aluminosilicate glasses |
WO2019150654A1 (ja) * | 2018-02-05 | 2019-08-08 | Agc株式会社 | 化学強化用ガラス |
WO2019191480A1 (en) * | 2018-03-29 | 2019-10-03 | Corning Incorporated | Glasses having high fracture toughness |
KR102644011B1 (ko) * | 2018-04-04 | 2024-03-07 | 에이지씨 가부시키가이샤 | 화학 강화용 유리 |
EP4279461A1 (en) * | 2018-06-08 | 2023-11-22 | Corning Incorporated | Fracture resistant stress profiles in glasses |
WO2020075708A1 (ja) * | 2018-10-09 | 2020-04-16 | 日本電気硝子株式会社 | 強化ガラスおよび強化ガラスの製造方法 |
CN112608032B (zh) * | 2018-10-26 | 2022-04-22 | 成都光明光电股份有限公司 | 微晶玻璃、微晶玻璃制品及其制造方法 |
CN113242841B (zh) * | 2018-12-11 | 2023-05-02 | Agc株式会社 | 玻璃、化学强化玻璃和包含化学强化玻璃的电子设备 |
JP2020097506A (ja) * | 2018-12-19 | 2020-06-25 | 日本電気硝子株式会社 | アルミノシリケートガラス |
KR20210106515A (ko) * | 2018-12-25 | 2021-08-30 | 니폰 덴키 가라스 가부시키가이샤 | 강화 유리판 및 그 제조 방법 |
JP7400738B2 (ja) * | 2019-01-18 | 2023-12-19 | Agc株式会社 | 化学強化ガラスおよびその製造方法 |
KR102642606B1 (ko) * | 2019-05-30 | 2024-03-05 | 삼성디스플레이 주식회사 | 윈도우 및 윈도우의 제조 방법 |
JP7533456B2 (ja) * | 2019-06-03 | 2024-08-14 | Agc株式会社 | ガラス、化学強化ガラスおよびその製造方法 |
WO2021041031A1 (en) * | 2019-08-30 | 2021-03-04 | Corning Incorporated | Scratch resistant glass and method of making |
CN110615610B (zh) * | 2019-10-10 | 2020-09-04 | 清远南玻节能新材料有限公司 | 锂锆质铝硅酸盐玻璃、强化玻璃及其制备方法和显示器件 |
CN114651535A (zh) * | 2019-11-04 | 2022-06-21 | 康宁股份有限公司 | 高度易碎玻璃的应力分布 |
CN114929641A (zh) * | 2020-01-14 | 2022-08-19 | Agc株式会社 | 化学强化玻璃物品及其制造方法 |
WO2022009850A1 (ja) * | 2020-07-10 | 2022-01-13 | Agc株式会社 | ガラスおよび化学強化ガラス |
CN113939398A (zh) * | 2020-08-21 | 2022-01-14 | 肖特玻璃科技(苏州)有限公司 | 可弯曲元件 |
-
2021
- 2021-09-08 CN CN202180077447.7A patent/CN116490477A/zh active Pending
- 2021-09-08 WO PCT/US2021/049348 patent/WO2022066408A1/en active Application Filing
- 2021-09-10 TW TW110133684A patent/TW202212281A/zh unknown
- 2021-09-21 US US17/480,394 patent/US12122703B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
WO2022066408A1 (en) | 2022-03-31 |
TW202212281A (zh) | 2022-04-01 |
US20220098091A1 (en) | 2022-03-31 |
US12122703B2 (en) | 2024-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7198560B2 (ja) | イオン交換可能な混合アルカリアルミノケイ酸塩ガラス | |
CN116490477A (zh) | 具有改善的掉落性能的玻璃基制品的应力分布曲线 | |
TWI794689B (zh) | 具有低過量改質劑含量的玻璃 | |
KR102501762B1 (ko) | 공학적 응력 프로파일을 갖는 코팅된 유리-계 제품 및 그 제조방법 | |
CN113661147B (zh) | 抗刮玻璃及制造方法 | |
CN116529211A (zh) | 具有改善的掉落性能的玻璃基制品的应力分布曲线 | |
TWI821420B (zh) | 具有改善的應力分佈曲線的玻璃基底製品 | |
CN112566877A (zh) | 玻璃中的抗碎裂应力分布 | |
TW202114958A (zh) | 耐刮擦玻璃及製作方法 | |
CN113039164B (zh) | 具有改进的组成的玻璃基材 | |
WO2021091761A1 (en) | Stress profiles of highly frangible glasses | |
CN114728835B (zh) | 具有高断裂韧性的铝硅酸盐玻璃 | |
CN114401931B (zh) | 抗断裂的玻璃基制品 | |
TWI825082B (zh) | 具有高破裂韌性之玻璃 | |
CN114728843A (zh) | 具有抗断裂性应力分布曲线的玻璃基制品 | |
CN114728836A (zh) | 具有高断裂韧性的镁铝硅酸盐玻璃 | |
CN115996896A (zh) | 具有高中心张力能力的玻璃组合物 | |
CN116568648A (zh) | 具有改善的韧性、表面应力及断裂抗性的可离子交换玻璃组合物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |