CN1159352C - 流化床单体聚合法 - Google Patents
流化床单体聚合法 Download PDFInfo
- Publication number
- CN1159352C CN1159352C CNB951954377A CN95195437A CN1159352C CN 1159352 C CN1159352 C CN 1159352C CN B951954377 A CNB951954377 A CN B951954377A CN 95195437 A CN95195437 A CN 95195437A CN 1159352 C CN1159352 C CN 1159352C
- Authority
- CN
- China
- Prior art keywords
- rho
- reactor
- tap density
- gas
- fluidizing medium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F10/00—Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/34—Polymerisation in gaseous state
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/18—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
- B01J8/1809—Controlling processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/18—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
- B01J8/1818—Feeding of the fluidising gas
- B01J8/1827—Feeding of the fluidising gas the fluidising gas being a reactant
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/00008—Controlling the process
- B01J2208/00017—Controlling the temperature
- B01J2208/00106—Controlling the temperature by indirect heat exchange
- B01J2208/00265—Part of all of the reactants being heated or cooled outside the reactor while recycling
- B01J2208/00274—Part of all of the reactants being heated or cooled outside the reactor while recycling involving reactant vapours
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/00008—Controlling the process
- B01J2208/00584—Controlling the density
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F110/00—Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F110/02—Ethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F210/00—Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F210/14—Monomers containing five or more carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F210/00—Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F210/16—Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2410/00—Features related to the catalyst preparation, the catalyst use or to the deactivation of the catalyst
- C08F2410/02—Anti-static agent incorporated into the catalyst
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/42—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
- C08F4/44—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
- C08F4/60—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
- C08F4/62—Refractory metals or compounds thereof
- C08F4/64—Titanium, zirconium, hafnium or compounds thereof
- C08F4/659—Component covered by group C08F4/64 containing a transition metal-carbon bond
- C08F4/65916—Component covered by group C08F4/64 containing a transition metal-carbon bond supported on a carrier, e.g. silica, MgCl2, polymer
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/42—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
- C08F4/44—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
- C08F4/60—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
- C08F4/62—Refractory metals or compounds thereof
- C08F4/64—Titanium, zirconium, hafnium or compounds thereof
- C08F4/659—Component covered by group C08F4/64 containing a transition metal-carbon bond
- C08F4/6592—Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
- C08F4/65922—Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not
- C08F4/65925—Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not two cyclopentadienyl rings being mutually non-bridged
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S526/00—Synthetic resins or natural rubbers -- part of the class 520 series
- Y10S526/901—Monomer polymerized in vapor state in presence of transition metal containing catalyst
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Combustion & Propulsion (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Polymers & Plastics (AREA)
- Polymerisation Methods In General (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
- Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
Abstract
本发明涉及在金属茂催化剂存在下,在有流化床和流化介质的气相反应器中,使α-烯烃单独,或与一种或多种其他α-烯烃组合进行聚合或共聚合的方法,结果是,进入反应器的流化介质包含气相和液相。
Description
发明领域
本发明涉及一种在流化床反应器中在金属茂催化剂存在下烯烃的气相聚合法。另外,通过对给定尺寸的反应器明显增加聚合物的生产率,本发明还能大大地节省能量和成本。
发明背景
业已发现,在流化床中生产聚合物的方法提供了生产各种各样聚合物的手段。与其它方法相比,使用气体流化床聚合法能大量降低所需的能量,而且,最重要的是降低了运行该方法以生产聚合物所需的资金投入。
气体流化床聚合工厂通常使用连续循环。在循环的一部分中,在反应器中,循环气流被聚合热加热。这部分热量通过反应器外部的冷却体系在循环的另一部分取出。
在由α-烯烃单体生产聚合物的气体流化床方法中,通常将含一种或多种单体的气流在催化剂存在下在反应条件下连续通过流化床。该气流从流化床中排出并再循环入反应器中。同样地,聚合物产物从反应器中取出并添加新的单体以替代已反应的单体。
为了将反应器内气流的温度维持在低于聚合物和催化剂降解温度以下的温度,除去由反应所产生的热量是非常重要的。另外,防止不能作为产品取出的聚合物发生聚集或形成聚合物块也是很重要的。这可通过将反应床中气流的温度控制在聚合反应期间产生的聚合物颗粒的熔融或发粘温度以下的温度而完成。因此,已知的是,在流化床聚合方法中产生的聚合物量与可从反应器内流化床中的反应区取出的热量有关。
通常,通过在反应器外部对气流进行冷却而将热量从循环气流中取出。流化床法的要求是循环气流的速度应足以维持流化床成流化态。在常规的流化床反应器中,除去聚合热所需循环液量大于支撑流化床以及充分混合流化床中固体所需的液量。然而,为了防止从流化床中排出的气流中过多的夹带固体,必须调节气流速度。另外,在稳定态流化床聚合过程中,聚合反应所产生的热量与聚合物生产速率基本上是成比例的,等于气流所吸收的和其它方式所损失的热量,结果是,床温保持恒定。
暂且认为,反应器外部的气流温度(还称之为循环流温度)不能降至低于循环流的露点。循环流的露点是,在循环气流中开始形成液体冷凝物时的温度。据信,将液体引入流化床聚合过程的循环气流中必然会导致循环流管线,热交换器,以及流化床或气体分布板下面的区域发生堵塞。由于在循环流露点以上的温度进行操作,以避免与循环气流中液体有关的问题,因此,在不加大反应器直径下,工业反应器的生产率不可能有明显的增加。
过去,所担心的是,循环流中过量的液体可能会干扰流化过程,结果是,使流化床崩溃,使固体聚合物颗粒粘结成固体物,使该反应器中断。这种避免循环气流中液体所广泛持有的看法可从下面材料中得知:US3,922,322,4,035,560,4,359,561和5,028,670以及EP-A-0050447和0100879。
与此看法相反的是,如Jenkins,III,等人在US4,543,399和相应的US4,588,790中所公开的,其中已经表明,循环流可冷却至流化床聚合过程的露点以下,结果使一部分循环流发生冷凝。然后,将得到的含夹杂液体的气流返回至该反应器中,而不会有当将液体引入流化床聚合过程中据信要发生的上述的聚集和/或堵塞现象。这种蓄意地将液体引入循环流或反应器中的方法,工业上称之为“冷凝方式”操作的气相聚合法。
上述US专利(Jenkins,III,等人)披露了,当循环流的温度降至其低于“冷凝方式”操作的露点时,当与由于增加冷却能力的非冷凝方式的生产时,可能增加聚合物的产量。另外,Jenkins,III,等人还发现,通过以“冷凝方式”进行操作,并且几乎不或根本不改变产品性能,可大大增加时空产率,即大大增加给定反应器体积的聚合物产量。
以“冷凝方式”的两相气/液循环流混合物的液相夹带或悬浮于混合物的气相中。产生该两相混合物的循环流的冷却将导致液/汽平衡。液体的汽化仅当添加热量或降低压力时才发生。Jenkins,III,等人所取得的时空产率的增加是循环流冷却能力增加的结果,而这又是由于进入的循环流和流化床温度间更大的温度差和夹带在循环流中冷凝的流体的汽化所致。
Jenkins,III,等人阐明了总体控制和试图延伸稳定操作区以使气相反应器中的时空产率最佳化的困难性和复杂性。
在Jenkins,III,等人的专利中,循环气体被冷却,并以低于露点的温度加至反应器中,结果是,冷凝的流体在反应器中蒸发。另外还可在冷却传热介质给定的温度增加循环气体的冷却能力。所述的一种方式是添加非聚合材料(异戊烷)以增加露点。由于更大的冷却量所致,因此,可除去更多的热量,并且,据说能获得更高的时空产率。Jenkins等人推荐,在循环气中可冷凝的流体的量不超过20重量%,优选从2-12重量%。所公开专利的某些潜在的危害包括,为维持足够高的循环气体速度或避免在分布板上积累液体所形成的“淀渣”。Jenkins等人没有提到不可聚合的或可聚合的可冷凝材料的上限和怎样使使用冷凝方式的时空产率最佳化的问题。
可控制气体流化床反应器,以给出所希望的熔融指数和最佳产量时聚合物的密度。通常应小心的进行控制,以避免会导致形成聚合物块或片的条件,或更糟的是导致使崩溃的不稳定的流化床,或使聚合物颗粒熔化在一起。因而,必须对流化床进行控制,以减少成块和成片并防止流化床崩溃或必须中止反应和关闭反应器。这就是为什么工业规模的反应器被设计成在被证明的稳定操作区中运行良好的原因,以及为什么要以仔细限定的方式使用反应器的原因。
如果希望找到新的和改善的操作条件,甚至在常规、安全操作的约束条件下,控制也是复杂的,另外还会给实验增加困难性和不可靠性。
对于操作温度而言,存在着由聚合物和催化剂确定的目标值,共聚单体对单体的比率和氢对单体的比率。将反应器和冷却体系包含在压力容器中。在没有不适当地干扰流化作用下,通过测量其中包括(1)在顶部的压力;(2)沿流化床不同高度的压差;(3)流化床上游的温度;(4)流化床中的温度和流化床下游的温度以及(5)气体组成和(6)气体流速,可监测其内含物。这些测量值用来控制催化剂的添加,单体分压以及循环气体的速度。在某些场合,聚合物的取出受沉积的堆积密度(非流化的)或流化的堆积密度(它们取决于工厂设计并且还必须进行观察)以及聚合物中的灰分量所制约。所述工厂是一密闭体系。在该方法中,在操作时一个或多个测量值的改变将导致随后其它地方的改变。在工厂的设计中,生产能力的最佳化取决于整个设计中绝大多数的节流元件。
对于导致成块或成片,还没有总体上可接受的观点。经观察,某些熔化在一起的聚合物颗粒可能是由于流化床中不适当的流化作用而导致的不充分的传热所致。然而,至今还未发现,各设置和尺寸与出现成块和成片之间明确的关系。因此,对于给定的工厂设计,通常将整个测量值和控制值用来维持已知、安全的操作区。
大规模的气相工厂是昂贵的和高生产率的。因为停车时间是费用高的,因此,在这些工厂中有关试验的风险很高。因而,就成本和风险而言,很难实验性地进行研究设计和确定操作范围。
因此,,提供一种确定气体流化床聚合的稳定操作条件的方法,以有助于工厂的最佳设计和在给定的工厂设计中确定所希望的方法条件,这将是人们所希望的。另外,还希望提供一种能获得最大反应器生产率的气体流化床聚合法。
因此,本发明的目的之一是帮助确定气体流化床法的稳定操作区和工厂设计;在低的故障风险以及同时在高反应器生产率下找到安全运行该方法的技术条件;和/或避免由于反应器生产率而导致的整个工厂能力的任何限制。
发明内容
发明概要
本发明涉及一种在气相反应器中,以比以前想象更高的生产率使α-烯烃进行聚合的方法。本发明涉及一种在金属茂催化剂存在下,在带有流化床和流化介质的气相反应器中使α-烯烃进行聚合的方法,在反应器中,以流化介质总重量为准,流化介质中液体量多于2重量%。
本发明首先提供了一种在有流化床和流化介质的气相反应器中,在金属茂催化剂存在下进行α-烯烃聚合的方法,其中,流化介质起控制所述反应器冷却能力的作用,该方法包括,在流化介质中使用液体进入反应器,液体量以流化介质总重量计大于2%重量,以及将堆积密度作用(Z)维持在等于或大于由下式计算得到的本文中表A中的堆积密度作用的限定值,
其中表A中的X和Y根据下面的等式来计算:
其中,ρbf为流化的堆积密度,ρbs为沉积的堆积密度,ρg为气体密度,ρs为固体(树脂)密度,和其中dp为重均粒径,g为重力加速度(9.805m/sec2),Uo为气体的空塔速度,μ为气体的粘度;且其中流化的堆积密度与沉积的堆积密度的比值小于0.59。
本发明还提供了一种在金属茂催化剂存在下,在带有流化床和流化介质的气相反应器中使α-烯烃进行聚合的方法,该方法包括:
a)借助控制所述气相与所述液相的比率,而控制所述流化介质的冷却能力;
b)计算堆积密度作用的限定值;
c)维持或监测堆积密度作用(Z);和
d)调节堆积密度作用(Z),以将堆积密度作用(Z)维持在大于或等于由下式计算得到的本文表A中的堆积密度作用的限定值,
其中表A中的X和Y根据下面的等式来计算:
其中,ρbf为流化的堆积密度,ρbs为沉积的堆积密度,ρg为气体密度,ρs为固体(树脂)密度,和其中dp为重均粒径,g为重力加速度(9.805m/sec2),Uo为气体的空塔速度,μ为气体的粘度;且其中流化的堆积密度与沉积的堆积密度的比值小于0.59。
本发明进一步提供了一种使带有流化介质和流化床的气相聚合反应器增加生产率的连续聚合方法,所述的方法包括,在金属茂催化剂存在下,将含单体的气流通过反应区,以产生聚合产物;从所述的反应区中取出所述的聚合产物,取出所述的含未反应单体的流化介质;将所述的流化介质与烃和可聚合的单体混合,以形成液相和气相;然后,将所述的流化介质循环至所述的反应器中;该方法包括:
a)将所述的烃引入所述的流化介质中,以增加使流化介质的冷却能力的增加至少在40Btu/lb(21.62cal/g)以上;
b)将聚合产物的取出速率增加至至少500lb/hr-ft2(2441kg/hr-m2);
c)计算堆积密度作用限定值;和
d)将堆积密度作用(Z)维持在大于或等于由下式计算得到的本文表A中的堆积密度作用的限定值,
其中表A中的X和Y根据下面的等式来计算:
其中,ρbf为流化的堆积密度,ρbs为沉积的堆积密度,ρg为气体密度,ρs为固体(树脂)密度,和其中dp为重均粒径,g为重力加速度(9.805m/sec2),Uo为气体的空塔速度,μ为气体的粘度;且其中流化的堆积密度与沉积的堆积密度的比值小于0.59。
本发明涉及一种用于在有流化体和流化介质的气相反应器中,在金属茂催化剂存在下进行α-烯烃聚合方法,其使得进入和离开反应器为流化介质的焓变化大于35Btu/lb(18.92cal/g),优选大于40Btu/lb(21.62cal/g)。
本发明还涉及一种在金属茂催化剂存在下,在气相反应器中以大于约500lb/hr-ft2(2441kg/hr-m2)的生产率使α-烯烃进行聚合的方法。
本发明还涉及一种确定气相流化床聚合反应器稳定操作条件的方法;该方法包括:规定对确定流化床稳定性是有用的性能,并控制流化介质或循环流的组成,以便确立维持稳定操作条件的性能值范围。
气相流化床聚合反应器可通过监测堆积密度的作用来控制。这种作用被维持在等于或优选大于一值,该值取决于温度,压力,颗粒变量如大小、固体密度和沉积的堆积密度,和气体变量如组成以及随后在本专利说明书中定义的速度。
一般来说,堆积密度作用降低至低于随后在本专利说明书中定义的最小值或限定值时,可能会出现流化床中断的危险,因此应予以避免。
冷却所述的气流,以致使液相的重量大于返回流总重量的2%,优选大于15%,特别是大于20%。
在本发明优选的实施方案中,将所述的烃引入所述的流化介质中,以增加使流化介质的冷却能力的增加至少在40Btu/lb(21.62cal/g)以上;和将聚合产物的取出速率增加至至少500lb/hr-ft2(2441kg/hr-m2)。
附图简述
当结合附图阅读随后的详细说明时,本发明的目的,特征,和优点将变得更加清楚并且更易理解,其中:
图1是在实施改进的气体流化床聚合法中使用的反应器的优选实施方案的流程图,该反应器用来生产本发明的聚合物。
发明详述
在下述说明中,在整个说明书和附图中,相同的部件分别用相同的参考号表示。该附图不一定按比例,而且为了更好的说明本发明改进的方法,某些部件已被放大。
本发明并不局限于任何特定类型或种类的聚合或共聚合反应,但特别适合于包含一种或多种单体进行聚合的聚合反应,所述单体例如是,乙烯、丙烯、丁烯-1、戊烯-1,4-甲基戊烯-1、己烯-1、辛烯-1和苯乙烯的烯烃单体。其它的单体可包括,极性乙烯基、共轭和非共轭二烯,乙炔和醛类单体。
在改进的方法中使用的催化剂可包括金属茂组分,该组分包括与烷基或烷氧基金属组分或离子化合物组分反应的单一或多元的环戊二烯组分。这些催化剂或包括部分和完全活化的前体组分。可通过预聚合或包封以及将这些催化剂载在载体上而改性这些催化剂。
如前所述,虽然本发明并不局限于任何特定类型的聚合反应,但是,改进方法的下面操作方面的讨论涉及烯烃类单体的气相聚合、例如聚乙烯。在烯烃类单体气相聚合中,业已发现,本发明是特别有利的。在对产品质量或性能没有副作用下,能够明显增加反应器的生产率。
为了取得更高的冷却能力,并因此取得更高的反应器生产率,升高循环流的露点以便更大量地增加从流化床中除去的热量,这是人们所希望的。为此,术语“循环流”和“流化介质”是可互换的。根据Jenkins等人的专利US 4,588,790和4,543,399所披露的方式,通过增加反应/循环体系的操作压力,和/或增加可冷凝的流体的百分数和降低循环流中非冷凝气体的百分数,可增加循环流的露点。可冷凝的流体可以是对催化剂,反应剂和所生产的聚合物产物惰性的;它还可包括共聚单体。正如将根据图1在随后说明的那样,可冷凝的流体可在该体系的任一位置引入反应/循环体系中。对于本专利申请而言,术语可冷凝的流体包括饱和或不饱和的烃类。合适的惰性可冷凝的流体的例子是易挥发的液态烃类,它们可选自含2-8个碳原子的饱和烃类。某些合适的饱和烃是丙烷,正丁烷,异丁烷,正戊烷,异戊烷,新戊烷,正己烷,异己烷,和其它6个碳原子的饱和烃类,正庚烷,正辛烷和其它7个碳原子和8个碳原子的饱和烃类或它们的混合物。优选的惰性可冷凝烃类是4个碳原子和6个碳原子的饱和烃类。可冷凝的流体还可包括可聚合的可缩合的共聚单体,如烯烃,α-烯烃,二烯烃,含至少一种α-烯烃的二烯烃或包括某些上述单体的混合物;所述流体可以是部分或全部掺入聚合产物中。
在实施本发明中,循环流中的气体量和循环流的速度必须维持在足以保持混合物的液相悬浮于气相中直至该循环流进入流化床为止,结果是,液体不会在分布板下反应器的底盘中积累。另外,循环流的速度还必须高至足以支撑和混合反应器中的流化床。另外也希望的是,进入流化床的液体迅速分散和汽化。
控制与聚合物的组成和物理性能有关的气体的组成、温度、压力和空塔速度,对于维持可行的流化床来说是十分重要的。可行的流化床或稳定的操作条件被定义为,在不形成将干扰反应器或下游的操作的大量聚集物(块或片)下,在反应条件下悬浮并充分混合成稳定态的颗粒的流化床。
在一个优选的实施方案中,在不遭遇对流化工艺的干扰下,可冷凝大于15%重量,优选大于20%重量的循环流,或处于液相;前提条件是,不超出借助于流化床堆积密度量度确定的稳定操作区的安全操作范围。
在聚合过程中,少量(通常是少于约10%)向上流经流化床的气流发生反应。不反应的那部分气流即大部分气流流入在流化床上面被称之为上缘区的区域,该区域是降速区。在上缘区中,通过表面或夹杂在气流中气泡的喷发而抛至流化床上方的固体聚合物大颗粒落回到流化床中。因为在工业上称之为“细粒”的固体聚合物小颗粒的最终沉积速度低于上缘区中循环流的速度,所以,它们与循环流一起取出。
将过程操作温度设置或调节至低于所生产聚合物颗粒的熔化或发粘温度的温度。为了防止如果温度较高可迅速增长的聚合物块对反应器的堵塞,维持该温度是十分重要的。这些聚合物块可大到无法从反应器中以聚合物产物取出,并可使过程和反应器出现故障。另外,进入在下游的聚合物产物处理过程的块可干扰例如输送体系,干燥装置或挤塑机。反应器壁可根据US 4,876,320进行处理。
在本发明的一个优选实施方案中,为了将流化床维持在悬浮状态,并为了保证循环流均匀地向上通过流化床,优选将循环流的进入点设置在流化床的最低点以下,以便提供循环流在整个反应器中均匀的流动。在本发明的另一实施方案中,可将循环流分成两股或多股单独的(液汽)流,其中之一或多股可直接引入流化床,前提条件是,在流化床下方和贯穿流化床的气体速度应足以保持该流化床成悬浮态。例如,可将循环流分成可单独引入反应器中的液流和气流。
在实施本发明的改进方法中,在将产生含两相(液汽)流的条件下,通过单独注入液体和循环气体,可形成包含在分布板下方于反应器中的气相和液相混合物的循环流。
本发明的优点并不局限于生产聚烯烃。因此,本发明可与在气体流化床中进行的任何放热反应一起实施。以冷凝方式操作的方法的优点优于通常是直接使循环流的露点温度与流化床内部的反应温度更为接近的其它方法。对于给定的露点来说,该方法的优点是,可直接增加返回至反应器的循环流中液体的百分数。本发明允许在该方法中使用高百分含量的液体。借助本发明的方法,特别适合于生产聚合物的气体流化床反应器,在附图中将进行最佳的说明;在图1中通常以参考号10来表示。应指出的是,规定图1中所述的反应体系只是举例性的。本发明特别适合于任何常规的流化床反应体系。
现在参考图1,反应器10包含反应区12和在本例中还是减速区14的上缘区。反应区12的高度和直径之比可根据希望的生产能力和停留时间来变化。反应区12包括流化床,该床含有增长的聚合物颗粒,现存的聚合物颗粒和少量催化剂。反应区12中的流化床由通常由进料和循环液流组成的循环流或流化介质16支撑。循环流通过反应器底部的分布板18进入反应器,所述分布板有助于均匀的流化作用和在反应区12中支撑流化床。为了将反应区12的流化床维持在悬浮和可行的状态,通过反应器的气流的空塔速度(superficial velocity)通常应大于流化作用所需的最小流动的空塔速度。
在反应区12中的聚合物颗粒有助于防止形成局部的“热点”并贯穿整个流化床夹持和分布催化剂颗粒。在开始工作时,在循环流16引入之前,向反应器10中装入聚合物颗粒基料。优选这些聚合物颗粒与待生产的新的聚合物颗粒相同,然而,如果不同的话,在循环流和催化剂开始流动并且已开始反应后,将它们与新形成的第一批产物一起取出。通常,将该混合物与主要是新一轮生产的产物分开。在本发明改进方法中使用的催化剂通常对氧是敏感的,因而,优选将催化剂储存在对储存的催化剂惰性的气体气氛下的催化剂储蓄器20中;所述气体如(但不局限于)氮气或氩气。
例如,金属茂催化剂通常是由下式衍生得到的那些松散配位体的过渡金属化合物:
[L]mM[A]n
式中L是松散的配位体;A是离去基团和/或连接至M上的配位体并能在M-A键之间插入烯烃;M是过渡金属,m和n以总的配位价等于过渡金属价为准。优选该催化剂是四配位的,以致使该化合物可离子化成1+电荷状态。
任何两个L和/或A配位体均可彼此桥接。所述金属茂化合物可以是带有两个或多个配位体L的全夹层的化合物,所述配位体L可以是环戊二烯基配位体,环戊二烯衍生得到的配位体或取代的环戊二烯基配位体。另外,所述金属茂化合物可以是带有一个配位体L的半夹层的化合物,所述配位体L可以是环戊二烯基配位体或杂原子取代的环戊二烯基配位体或烃基取代的环戊二烯基配位体如茚基配位体,苯并茚基配位体或芴基配位体,或者是任何其它能η5键合至过渡金属原子(M)上的配位体。其中一种或多种这些松散的配位体被π-键合至过渡金属原子上。每个L均可用相同或不同的取代基的组合进行取代,所述取代基例如包括氢或线性、支链或环状的烷基,烯基或芳基基团。金属原子(M)可以是第4,5,6族的过渡金属,或是镧系和锕系的金属,优选第4族的过渡金属,特别是,以任何形式氧化态、优选是+4价的钛,锆和铪。在一个实施方案中,过渡金属是锆并且环是被两个或多个烷基基团,优选是两个不同的烷基基团取代的环戊二烯基环。可将其它配位体连接至过渡金属上,如离去基团上,如(但不局限于)弱碱,如胺类,膦类和/或醚。除过渡金属以外,任意还可将这些配位体连接至A或L上。
金属茂催化剂至少是一种包含一个或多个与过渡金属结合的环戊二烯基部分的上述的金属茂催化剂组分或金属茂催化剂化合物。通过活化剂如铝氧烷或其衍生物,离子化活化剂,路易斯酸,或它们的组合物,可使该金属茂催化剂进行活化,以形成可支撑在载体上的活化聚合催化剂体系,所述载体通常是无机氧化物或氯化物,或树脂材料如聚乙烯。金属茂催化剂的非限定性例子以及催化剂体系的种类详述于例如US4,808,561;5,017,714;5,055,438;5,064,802;5,124,418;5,153,157和5,324,800。
在反应区12中流化床的流化作用通过循环流16流入和通过反应器10的高速度而取得的。在操作中,循环流16的速度通常约等于进料引入循环流16中速度的10-50倍。循环流16的这种高速度提供了在反应区12中悬浮和混合流化床成流化态所需的空塔速度。
该流化床具有与剧烈沸腾液体相同的总体外观,并含有由通过流化床的气体的渗流和鼓泡所产生的单独运动的致密颗粒物质。当循环流16通过反应区12的流化床时,有一压差。该压差等于或稍大于反应区12中流化床的重量除以反应区12的横截面积,因此,使压差取决于反应器的几何构形。
再参考图1,在(但不限于)位置22处使补充进料进入循环流16中。气体分析仪24从循环流16中接收气体试样,并监测通过分析仪的循环流16的组成。该气体分析仪24还适于调节循环流16和进料的组成,以使反应区12中循环流16的组成保持稳定状态。通常,气体分析仪24分析取自上缘区14和热交换器26之间,优选在压缩机28和热交换器26之间的循环流管线16的试样。
循环流16向上通过反应区12,吸收由该聚合过程产生的热量。在反应区12中不发生反应的那部分循环流16排出反应区12,并通过减速区或上缘区14。如前所述,在该区即减速区14中,大部分夹杂的聚合物落入反应区12的流化床中,由此减少了带入循环流管线16中的固体聚合物颗粒。一旦在上缘区14上方从反应器中取出循环流16,马上使之在压缩机28中进行压缩,并通过热交换器26,在将循环流16返回至反应器10的反应区12之前,在热交换器中,从循环流16中除去由聚合反应产生的热量以及气体压缩力。热交换器26是常规的并可以垂直或水平位置将其放在循环流管线16内。在本发明的另一实施方案中,在循环流管线16内可包括有多于一个的热交换区或压缩区。
再回过来参考图1,从热交换器26排出的循环流16返回至反应器10的底部。优选在气体分布板18下方设置流体流动档板30。该流体流动档板30防止聚合物沉积为固体物质,并使液体和聚合物颗粒夹杂在分布板18下方的循环流16中。优选种类的流体流动档板是环形盘状的,例如是描述于US4,933,149中的类型。使用环形盘不仅提供了中央向上的流动而且提供了四周的流动。中央向上的流动有助于在底盘中夹杂液滴,外部四周的流动有助于在底盘中最少地形成聚合物颗粒。分布板18使循环流16扩散,以避免进入反应区12的(液汽)流成向上中央排列的运动流或射流,它们将干扰反应区12中流化床的流化作用。
根据颗粒的发粘点来设置流化床的温度,但主要是根据以下三个因素:(1)催化剂活性和控制聚合速率和伴随的产生热量速率的催化剂的注入速率,(2)循环流和引入反应器中的补充流的温度,压力和组成,和(3)通过流化床的循环流的体积。由于在反应器中液体发生蒸发并起降低流化床温度的作用,因此,如前所述,或者是与循环流一起或者是单独引入流化床的液体量尤其将影响温度。通常,催化剂的添加速率用来控制聚合物的生产速率。
在优选的实施方案中,通过连续除去反应热,将反应区12中流化床的温度保持在稳定状态。当在该过程中产生的热量与除去的热量达到平衡时,就出现了反应区12的稳定状态。该稳定状态需要,进入聚合过程的材料总量通过除去的聚合物和其它材料的量来平衡。因此,在该过程中任何给定的位置,温度,压力,和组成在任何时间均是恒定的。在反应区12中绝大部分的流化床内,没有明显的温度梯度,然而,在反应区12中流化床的底部,在气体分布板18上方的区域中有温度梯度。该梯度是由于通过反应器10底部的分布板18而加入的循环流16的温度和反应区12中流化床的温度之间的差所造成的。
反应器10的有效操作需要循环流16的良好分布。万一增长或形成的聚合物和催化剂颗粒从流化床中沉淀下来,那么聚合物将发生熔化。在极端的场合,这会在整个反应器中形成固体物质。工业规模的反应器在任何给定的时间含有数千磅或公斤的聚合物固体。除去这样大量的固体聚合物必然有巨大的困难,需要付出巨大的努力并且将有延长的停工时间。借助流化床堆积密度的量度,通过确定稳定的操作条件,可进行改进的聚合方法,在该方法中,可将反应器10内反应区12中的流化床保持流化作用并被支撑住。
在优选的实施方案中,对于给定等级的聚合物和/或催化剂组成,流化堆积密度的变更可用来使工艺条件和工厂设计最佳化。流化堆积密度是向上横跨反应器中央固定部分测得的压差与该固定部分的高度之比值。该值为平均值,它可大于或小于反应器固定部分中任一位置的局部堆积密度。应该理解的是,可在对本领域熟练技术人员是已知的某些条件下,测量平均值,该值大于或小于流化床局部的堆积密度。
申请人业已发现,当流经流化床的气流中可冷凝成分的浓度增加时,可获得一可识别的点,如果浓度继续增加超出此点时,就会有该过程出现故障的危险。该点的特征在于,随着气体中可冷凝流体浓度的增加,流化的堆积密度将不可逆地降低。进入反应器的循环流液体含量可能不是直接相关的。在没有相应改变最终产物颗粒的沉积的堆积密度下,通常将发生流化的堆积密度的降低。因此,很显然的是,受流化的堆积密度影响的流化作用的改变不会涉及聚合物颗粒特性的任何永久性的改变。
发生流化的堆积密度降低的气体可冷凝的流体浓度取决于被生产的聚合物的类型和其它的工艺条件。对于给定种类的聚合物和其它工艺条件而言,当气体中可冷凝流体的浓度增加时,可通过监测流化的堆积密度对它们进行确定。
除气体中可冷凝的流体浓度以外,流化的堆积密度(FBD)还将取决于其它的变量,这些变量包括流经反应器的气体的空塔速度,和颗粒的特性如大小,密度和沉积的堆积密度(SBD)以及气体的密度,粘度,温度和压力。因此,在试验确定归因于气体可冷凝的流体浓度改变的流化的堆积密度的改变时,应避免其它条件的明显改变。因而,监测由此可确定流化的堆积密度的这些其它的变量在本发明的范围之内,这些变量将对流化床的不稳定性起作用。为此,监测或维持流化的堆积密度包括监测或维持上述的对流化的堆积密度起作用的或用来确定流化的堆积密度的那些变量。
尽管在不失控的情况下可容忍流化的堆积密度的某些适度的下降,但是,进一步改变也将增加露点温度的气体组成或其它变量时,可能会伴随不可逆的流化的堆积密度的降低,在反应器流化床中形成“热点”,形成熔化的聚集物,并且甚至于使反应器关闭。
直接与降低流化的堆积密度有关的其它实际影响包括,在恒定聚合物生产率下,固定体积的反应器排料体系减少的聚合物生产能力和减少的聚合物/催化剂反应器滞留时间。对于给定的催化剂而言,后者可能会降低催化剂的生产率并增加残留在产物聚合物中的催化剂量。在优选的实施方案中,对于给定的反应器生产率和相应的冷却需求,使气体中可冷凝的流体浓度最小化是所希望的。
使用这些流化的堆积密度变量,可确定稳定的操作条件。一旦确定了合适的组成,通过对该组成进行更大程度的冷却,可用它来取得循环流的高得多的冷却能力(没有出现流化床的不稳定性)。可适量添加特定等级的,可冷凝的、不可聚合的材料,以获得高的反应器生产率,与此同时,通过保留在如此确定的稳定操作区内,可维持良好的流化床条件。可用一方法来获得高的反应器生产率,或者,就工厂设计而言,可用相对小的反应器直径来设计大生产能力的工厂,或可对现存的反应器进行改进以在没有改变反应器大小下提供增加的生产能力,所述的这些内容可参见,US5,352,749,WO 9608521-A、US 5,462,999。
在更高反应器生产率时,业已发现,只要保持在由可接受的流化的堆积密度改变限定的界限内,可容忍冷凝液量超过、通常是大于2%,5%,10%,12%,15%,18%,20%,22%,25%,27%,30%或甚至于35%,与此同时,可避免由流化床离散作用造成的大量结块或成片。以循环流或流化介质总重量为准,冷凝液量在2-50重量%的范围内,优选大于10-50重量%,更优选的是,15-40重量%,更好的是20-40重量%,最佳为25-约40重量%。
优选通过使用压差量度来观察流化的堆积密度,所述的压差量度取自不易对分布板产生影响的流化床部分。而常规地是取流化床下部流化的堆积密度变更来表明分布板上流化床的离散,将远离分布板测得的上部的流化的堆积密度用作稳定的参考,令人惊奇地发现,上部流化的堆积密度的改变与循环流中的组成有关,并可用来找到和确定稳定的操作区。
在一个实施方案中,堆积密度作用(Z)定义为
式中,ρbf为流化的堆积密度,ρbs为沉积的堆积密度,ρg为气体密度,ρs为固体(树脂)密度。该堆积密度作用(Z)可根据方法和产物的量度进行计算。
在本发明中,通过将堆积密度作用(Z)值保持在以X和Y的计算值为基础示于下表A和B中的最小或限定值之上,可避免流化作用的离散。
对于本专利说明书和所附的权利要求来说,X和Y根据下面的等式来确定:
式中,dp为重均粒径,g为重力加速度(9.805m/sec2),Uo为气体的空塔速度,μ为气体的粘度。
对于本专利说明书和所附的权利要求来说,堆积密度作用的计算限定值以使用上述公式进行计算的X和Y的值为基础。计算限定值是使用X和Y的计算值由表A和/或B确定的数。
表A列出了所有X和Y范围的堆积密度的作用计算限定值。表B列出了优选X和Y范围的堆积密度作用的计算限定值。
尽管表A和/或B示出的只是X和Y的选定点值,但本领域熟练技术人员将知道的是,通常需要对X和Y值进行内推,以获得相应的限定值Z。
在优选的实施方案中,堆积密度作用(Z)维持在大于或等于,更优选是大于使用X和Y值在表A和/或B中提供的值。
在另一实施方案中,堆积密度作用(Z)维持在大于表A和B确定的堆积密度作用限定值之上1%的值,更优选的是,大于2%以上,更好的是大于4%以上,最佳的是,大于5%以上。
在另一实施方案中,堆积密度作用(Z)在0.2-0.7,优选在0.3-0.6,更佳的是,大于0.4-0.6。
粒径(dp)可从100-3000微米,优选从500-2500微米,更优选从500-2000微米,最佳从500-1500微米。
气体粘度(μ)范围可从0.01-0.02厘泊(cp),优选0.01-0.018厘泊,最佳为0.911-0.015厘泊。
沉积的堆积密度(SBD)或(ρbs)的范围从10-35lb/ft3(160.2-561kg/m3),优选从12-35lb/ft3(193-561kg/m3),更佳从14-32lb/ft3(224.3-513kg/m3),最佳从15-30lb/ft3(240.3-481kg/m3)。
气体的密度(ρg)范围从0.5-4.8lb/ft3(8-77kg/m3),优选从1-4lb/ft3(16-64.1kg/m3),更佳从1.1-4lb/ft3(17.6-64.1kg/m3),最佳从1.2-3.6lb/ft3(19.3-57.9kg/m3)。
固体树脂密度(ρs)范围从0.86-0.97g/cc,优选从0.87-0.97g/cc,更佳从0.875-0.970g/cc,最佳从0.88-0.97g/cc。
反应器温度可在60-120℃,优选在60-115℃,最佳在70-110℃。
反应器压力可在100-1000psig(689.5-6895kPag),优选在150-600psig(1034-4137kPag),更佳在200-500psig(1379-3448kPag),最佳在250-400psig(1724-2758kPag)。
表A堆积密度作用的限定值
Y | 2.0 | 2.5 | 3.0 | 3.5 | 4.0 | 4.5 | 5.0 | 5.5 | 6.0 | 6.5 | 7.0 | 7.5 | 8.0 |
X | |||||||||||||
0.3 | 0.411 | ||||||||||||
0.4 | 0.403 | ||||||||||||
0.5 | 0.393 | ||||||||||||
0.6 | 0.381 | ||||||||||||
0.7 | 0.367 | 0.460 | |||||||||||
0.8 | 0.351 | 0.450 | |||||||||||
0.9 | 0.332 | 0.437 | |||||||||||
1.0 | 0.311 | 0.422 | 0.522 | ||||||||||
1.1 | 0.289 | 0.404 | 0.510 | ||||||||||
1.2 | 0 265 | 0.384 | 0.496 | ||||||||||
1.3 | 0.239 | 0.361 | 0.480 | ||||||||||
1.4 | 0.214 | 0.336 | 0.460 | 0.561 | |||||||||
1.5 | 0.188 | 0.309 | 0.438 | 0.546 | |||||||||
1.6 | 0.281 | 0.413 | 0.529 | ||||||||||
1.7 | 0.252 | 0.386 | 0.508 | 0.598 | |||||||||
1.8 | 0.223 | 0.355 | 0.484 | 0.582 | |||||||||
1.9 | 0.324 | 0.457 | 0.563 | ||||||||||
2.0 | 0.291 | 0.427 | 0.541 | 0.620 | |||||||||
2.1 | 0.258 | 0.394 | 0.516 | 0.602 | |||||||||
2.2 | 0.226 | 0.360 | 0.487 | 0.581 | |||||||||
2.3 | 0.324 | 0.455 | 0.557 | 0.633 | |||||||||
2.4 | 0.288 | 0.421 | 0.529 | 0.614 | |||||||||
2.5 | 0.252 | 0.384 | 0.497 | 0.590 | |||||||||
2.6 | 0.346 | 0.462 | 0.563 | 0.635 | |||||||||
2.7 | 0.307 | 0.425 | 0 533 | 0.614 | |||||||||
2.8 | 0.270 | 0.385 | 0.499 | 0.588 | |||||||||
2.9 | 0.339 | 0.461 | 0.559 | 0.628 | |||||||||
3.0 | 0.299 | 0.422 | 0.526 | 0.605 | |||||||||
3.1 | 0.261 | 0.381 | 0.490 | 0.577 | 0.641 | ||||||||
3.2 | 0.339 | 0.451 | 0.546 | 0.619 | |||||||||
3.3 | 0.298 | 0.410 | 0.511 | 0 593 | |||||||||
3.4 | 0.259 | 0.368 | 0.473 | 0.564 | 0.631 | ||||||||
3.5 | 0.325 | 0.433 | 0.531 | 0.608 | |||||||||
3.6 | 0.284 | 0.391 | 0.494 | 0.580 | 0.643 | ||||||||
3.7 | 0.245 | 0.348 | 0.455 | 0.549 | 0.621 | ||||||||
3.8 | 0.306 | 0.413 | 0.514 | 0.595 | 0.653 | ||||||||
3.9 | 0.266 | 0.371 | 0.476 | 0.566 | 0.633 | ||||||||
4.0 | 0.328 | 0.435 | 0.532 | 0.609 | |||||||||
4.1 | 0.287 | 0.393 | 0.496 | 0.581 | |||||||||
4.2 | 0.247 | 0.350 | 0.456 | 0.550 | |||||||||
4.3 | 0.308 | 0.415 | 0.515 | ||||||||||
4.4 | 0.267 | 0.372 | 0.477 | ||||||||||
4.5 | 0.329 | 0.436 | |||||||||||
4.6 | 0.288 | 0.394 |
表B优选范围的堆积密度作用限定值
Y | 4.00 | 4.25 | 4.50 | 4.75 | 5.00 | 5.25 | 5.50 | 5.75 | 6.00 | 6.25 | 6.50 | 6.75 | 7.00 |
X | |||||||||||||
2.00 | 0.541 | 0.584 | |||||||||||
2.05 | 0.529 | 0.574 | |||||||||||
2.10 | 0.516 | 0.562 | |||||||||||
2.15 | 0.502 | 0.550 | 0.592 | ||||||||||
2.20 | 0.487 | 0.537 | 0.581 | ||||||||||
2.25 | 0.472 | 0.524 | 0.569 | ||||||||||
2.30 | 0.455 | 0.509 | 0.557 | 0.598 | |||||||||
2.35 | 0.438 | 0.493 | 0.543 | 0.587 | |||||||||
2.40 | 0.420 | 0.477 | 0.529 | 0.574 | |||||||||
2.45 | 0.402 | 0.460 | 0.513 | 0.561 | 0.602 | ||||||||
2.50 | 0.384 | 0.442 | 0.497 | 0.547 | 0.590 | ||||||||
2.55 | 0.424 | 0.480 | 0.532 | 0.577 | |||||||||
2.60 | 0.405 | 0 462 | 0.515 | 0.563 | 0.605 | ||||||||
2.65 | 0.386 | 0.444 | 0.499 | 0.548 | 0.592 | ||||||||
2.70 | 0.425 | 0.481 | 0.533 | 0.579 | |||||||||
2.75 | 0.405 | 0.463 | 0.516 | 0.564 | 0.601 | ||||||||
2.80 | 0.385 | 0.444 | 0.499 | 0.549 | 0.588 | ||||||||
2.85 | 0.424 | 0.480 | 0.533 | 0.574 | 0.609 | ||||||||
2.90 | 0.404 | 0.461 | 0.515 | 0.559 | 0.597 | ||||||||
2.95 | 0.384 | 0.442 | 0.497 | 0.543 | 0.583 | ||||||||
3.00 | 0.422 | 0.478 | 0.526 | 0.568 | 0.605 | ||||||||
3.05 | 0.401 | 0.459 | 0.509 | 0.553 | 0.591 | ||||||||
3.10 | 0.381 | 0.439 | 0.490 | 0.536 | 0.577 | 0.612 | |||||||
3.15 | 0.418 | 0.471 | 0.519 | 0.562 | 0.599 | ||||||||
3.20 | 0.398 | 0.451 | 0.501 | 0.546 | 0.585 | ||||||||
3.25 | 0.377 | 0.431 | 0.482 | 0.529 | 0.571 | 0.607 | |||||||
3.30 | 0.410 | 0.462 | 0.511 | 0.555 | 0.593 | ||||||||
3.35 | 0.389 | 0.442 | 0.493 | 0.539 | 0.579 | 0.613 | |||||||
3.40 | 0.422 | 0.473 | 0.521 | 0.564 | 0.601 | ||||||||
3.45 | 0.401 | 0.453 | 0.503 | 0.548 | 0.587 | ||||||||
3.50 | 0.379 | 0.433 | 0.484 | 0.531 | 0.572 | 0.608 | |||||||
3.55 | 0.412 | 0.464 | 0.513 | 0.556 | 0.594 | ||||||||
3.60 | 0.391 | 0.444 | 0.494 | 0.540 | 0.580 | ||||||||
3.65 | 0.423 | 0.475 | 0.522 | 0.565 | |||||||||
3.70 | 0.402 | 0.455 | 0.504 | 0.549 | |||||||||
3.75 | 0.381 | 0.434 | 0.485 | 0.532 | |||||||||
3.80 | 0.413 | 0.465 | 0.514 | ||||||||||
3.85 | 0.392 | 0.445 | 0.495 | ||||||||||
3.90 | 0.424 | 0.476 | |||||||||||
3.95 | 0.403 | 0.456 | |||||||||||
4.00 | 0.382 | 0.435 |
有益的是,将循环流进行冷却并以一定的速度通过反应器,以致使冷却能力足以使得用每平方英尺反应器横截面积每小时聚合物的磅数表示的反应器的生产率超过500lb/hr-ft2(2441kg/hr-m2),尤其是超过600lb/hr-ft2(2929kg/hr-m2),并且从反应器的进口至反应器的出口至少有40Btu/lb(21.62cal/g),优选有50Btu/lb(27.03cal/g)的热含量改变。优选的是,在反应器分布板下方,以混合物的形式添加(液汽)流的气体和液体组分。该反应器的生产率等于时空产率乘以流化床的高度。
在本发明优选的实施方案中,为了获得本聚合方法增加的反应器冷却能力的益处,使引入反应器10的液体进行蒸发。在流化床中大量的液体可能会有助于形成借助床内的机械力不能破碎的聚集物,并因此可能导致去流化作用,床体崩溃和反应器关闭。此外,由于本发明要求在整个流化床中有基本恒定的温度,因此液体的存在会干扰局部床温,并对生产恒定性能聚合物的方法的生产能力产生影响。为此,引入给定条件流化床中的液体量不应超过在流化床下部蒸发的量,这样的话,与通过分布板进入的循环流有关的机械力足以破碎由液体-颗粒的相互作用所形成的聚集物。
在本发明中已发现,对于在流化床中产物颗粒给定的组成和物理特性以及另外给定的或相应的反应器和循环条件,通过限定与流经流化床的气体的组成有关的边界条件,可将可行的流化床维持在高的冷却水平。
尽管不希望被任何理论所束缚,但发明人认为,所观察到的流化的堆积密度的降低可能会影响流化床内致密颗粒相的膨胀和气泡性能的改变。
再来参考图1,如果需要,通常在热交换器26的下游添加取决于所用催化剂有关的催化剂活化剂。催化剂活化剂可从分配器32引入循环流16中。然而,本发明改进的方法并不局限于插入催化剂活化剂或任何其它需要的组分如助催化剂的位置。
能以优选的速率,在气体分布板18之上的位置34处,将来自催化剂储蓄器的催化剂或者间歇或者连续地注入流化床反应区12中。在如上所述的优选实施方案中,在能与流化床12内聚合物颗粒实现最佳混合的位置,注入催化剂。由于某些催化剂的活性很大,因此,优选应在气体分布板18的上方而不是下方将催化剂注入反应器10中。在气体分布板18以下区域注入催化剂可能会在该区域导致产物的聚合,这将最终导致气体分布板18的堵塞。另外,在气体分布板18上方引入催化剂有助于在整个流化床12中均匀分布催化剂,因此,有助于排除由局部的高催化剂浓度所致的“热点”的形成。优选在反应区12中流化床的下部注入催化剂,以提供均匀的分布并使带入循环管线中的催化剂变得最小,在循环管线中的聚合作用可能会导致最终循环管线和热交换器的堵塞。
在本发明改进的方法中,可使用各种催化剂的注入工艺,例如使用在US3,779,712中所述的工艺。惰性气体如氮气或在反应器条件下容易挥发的惰性液体,优选可用来将催化剂带入流化床反应区12。催化剂的注入速率和循环流16中单体的浓度确定了流化床反应区12中聚合物的生产率。能控制通过简单调节催化剂注入速率而产生的聚合物的生产率。
在使用本发明改进方法的反应器10的优选操作方式中,反应区12中流化床的高度,通过以与形成聚合物产物一致的速率取出一部分聚合物产物来保持。将用来检测整个反应器10和循环流16中任何温度或压力改变的仪器用来监测反应区12中流化床条件的改变。此外,该仪器使得手动或自动调节催化剂的注入速率和/或循环流的温度成为可能。
在反应器10的操作中,产物通过排料体系36从反应器中排出。聚合物产物的排料优选在从聚合物产物中分离出流体之后进行。可将这些流体返回至循环流管线16,如果是气体在位置38处和/或如果是冷凝液在位置40处。在位置42处,将聚合物产物送至下游进行加工。对聚合物产物的排料并不局限于图1所示的方法,图1只是阐明了一种特定的排料方法。还可使用其它的排料体系,例如,在Jenkins等人的US4,543,399和4,588,790中所披露的和所要求保护的。
根据本发明,提供了一种方法,通过将循环流冷却至其露点以下,并将得到的循环流返回至该反应器中,该方法可增加采用放热聚合反应的流化床反应器中进行聚合物生产的反应器生产率。可将含有大于15%、优选大于20%重量液体的循环流循环至该反应器中,以将流化床保持在希望的温度。
在本发明方法中,通过夹带在循环流中冷凝液的蒸发和进入的循环流和流化床温度之间更大的温差,可明显增加循环流或流化介质的冷却能力。在优选的实施方案中,所生产的聚合物、均聚物或共聚物选自:薄膜级树脂,其MI从0.01-5.0,优选从0.5-5.0,密度从0.900-0.930;或模塑级树脂,其MI从0.10-150.0,优选从4.0-150.0,密度从0.920-0.939;或高密度树脂,其MI从0.01-70.0,优选从2.0-70.0,密度从0.940-.0970;所有密度单位均为g/cm3,熔融指数为g/10分钟,它们是根据ASTM-1238条件E测定的。
取决于最终的树脂可采用不同的循环条件,以提供先前没想到的反应器生产率水平。
首先,例如本发明的方法可生产薄膜级的树脂,其中,循环流中,丁烯/乙烯的摩尔比从0.001-0.60,优选从0.30-0.50;或4-甲基戊烯-1/乙烯的摩尔比从0.001-0.50,优选从0.08-0.33;或己烯/乙烯的摩尔比从0.001-0.30,优选从0.05-0.20;或辛烯-1/乙烯的摩尔比从0.001-0.10,优选从0.02-0.07;氢/乙烯的摩尔比从0.00-0.4,优选从0.1-0.3;异戊烷量从3-20摩尔%或异己烷量从1.5-10摩尔%,并且其中循环流的冷却能力至少为40Btu/lb(21.62cal/g),优选至少为50Btu/lb(27.03cal/g),或冷凝的重量%至少为15%,优选大于20%。
其次,该方法可用来生产模塑级的树脂,其中,循环流中,丁烯-1/乙烯的摩尔比从0.001-0.60,优选从0.10-0.50;或4-甲基戊烯-1/乙烯的摩尔比从0.001-0.50,优选从0.08-0.20;或己烯/乙烯的摩尔比从0.001-0.30,优选从0.05-0.12;或辛烯-1/乙烯的摩尔比从0.001-0.10,优选从0.02-0.04;氢/乙烯的摩尔比从0.00-1.6,优选从0.3-1.4;异戊烷量从3-30摩尔%或异已烷量从1.5-15摩尔%,并且其中循环流的冷却能力至少为40Btu/lb(21.62cal/g),优选至少为50Btu/lb(27.03cal/g),或冷凝的重量%至少为15%,优选大于20%。
再者,可通过一方法制备高密度等级的树脂,其中,循环流中,丁烯/乙烯的摩尔比从0.001-0.30,优选从0.001-0.15;或4-甲基戊烯-1/乙烯的摩尔比从0.001-0.25,优选从0.001-0.12;或己烯/乙烯的摩尔比从0.001-0.15,优选从0.001-0.07;或辛烯-1/乙烯的摩尔比从0.001-0.05,优选从0.001-0.02;氢/乙烯的摩尔比从0.00-1.5,优选从0.3-1.0;异戊烷量从10-40摩尔%或异己烷量从5-20摩尔%,并且其中循环流的冷却能力至少为60Btu/lb(32.4cal/g),优选大于73Btu/lb(39.42cal/g),最佳至少大于75Btu/lb(40.5cal/g),或冷凝的重量%至少为12%,优选大于20%。
实施例
为了能更好地理解本发明,包括其有代表性的优点和限定,现提供与本发明实践中进行的实际试验有关的下面的实施例。
实施例1
运行流化的气相反应器,以生产乙烯和已烯-1的共聚物。通过二氧化硅在600℃进行脱水而制备金属茂催化剂。该催化剂是在带搅拌器的混合容器中制得的工业规模的催化剂。将起始装料,1156磅(462kg)甲苯加入混合器中。然后,混合925磅(421kg)在甲苯中的30%重量的甲基铝氧烷。接着再混合100磅(46kg)在甲苯中的20%重量的二氯化二(1,3-甲基-正丁基环戊二烯基)合锆(包含有20.4磅(9.3kg)的金属茂)。再向混合器中添加另外的144磅(66kg)的甲苯,以清洗金属茂给料筒,并在室温下混合30分钟。然后是54.3磅(25kg)在甲苯中的AS-990,表面改性剂溶液,其中包含有5.3磅(2.4kg)的AS-990。用另外的100磅(46kg)甲苯来清洗表面改性剂容器,并加至混合器中。将得到的浆液在3.2psia(70.6kPa),于175°F(79℃)真空干燥成自由流动的粉未。最终的催化剂重量为1093磅(497kg)。催化剂最终的锆装载量为0.4%,铝的装载量为12.0%。
在工业规模的连续气相流化床反应器中进行聚合。流化床由聚合物颗粒组成。将气相给料气管乙烯和氢从反应器流化床的下方引入循环气管线中。将已烯共聚单体从反应器流化床下方以单独的管线引入到循环气流线中的反应器中。控制乙烯,氢和共聚单体各自的流速,以维持固定组成的目标。控制乙烯的浓度,以维持恒定的氢/乙烯比率。通过在线的气相色谱测量各种气体的浓度,以保证循环气流中相对恒定的组成。在引入催化剂之前,将在异戊烷载体溶剂中的20%重量的三乙基铝(TEAL)溶液以32lb/hr(14.5kg/hr)的速率向流化床中加料约2小时40分钟。在开始添加催化剂后,如上所述连续引入TEAL约1小时,然后停止。在流化床上TEAL的总量为122ppm。
使用纯氮直接将固体催化剂注入到流化床中。调节催化剂的注入速率,以维持恒定的生产率。通过将补充给料和循环气流连续的通过反应区,将聚合物颗粒增长的反应床维持在流化态。反应器在310psig(2138kPa)下进行操作。为了维持恒定的反应器温度,连续地调节循环气的温度,以接纳由于聚合作用所导致的产生热量速率的改变。
通过以等于形成颗粒产物的速率取出一部分床体,而将流化床的高度保持恒定。通过一系列阀门,将产物半连续地取入一固定体积的容器中。通过一回收反应气体的循环气压缩机,将固定体积容器中的气体排回至反应器中。将产物送至清洗容器中,以除去夹带的烃,并且用湿润的氮进行处理,以使残留的催化剂钝化。
表1第一列是实际操作的聚合数据。表1的第二列和第三列的数据是,通过使用现有技术中熟知的热力学等式,由第一列的实际操作数据进行外推而得到的。由于上述原因,在第二列和第三列中没有列出流化的堆积密度作用(Z),然而,列出了堆积密度作用的计算限定值。
表1
时间(小时) | 1 | 2 | 3 | |
树脂熔融指数(dg/10分钟) | 3.42 | 3.42 | 3.42 | 3.42 |
树脂密度(g/ml) | 0.9179 | 0.9179 | 0.9179 | 0.9179 |
循环流的组成: | -- | -- | -- | -- |
乙烯 | 46.3 | 46.3 | 46.3 | 46.3 |
丁烯-1 | -- | -- | -- | -- |
己烯-1 | 0.9 | 0.9 | 0.9 | 0.9 |
氢(ppm) | 250 | 250 | 250 | 250 |
异戊烷 | 11.5 | 15.0 | 18.0 | 18.0 |
6个碳原子的饱和烃 | ||||
氮 | 39.9 | 36.4 | 33.4 | 33.4 |
乙烷 | 0.3 | 0.3 | 0.3 | 0.3 |
甲烷 | -- | -- | -- | -- |
8个碳原子的饱和烃 | -- | -- | -- | -- |
循环气流的露点(°F) | 137.7 | 152.7 | 163.7 | 163.7 |
循环气流的露点(℃) | 58.7 | 67.1 | 73.2 | 73.2 |
反应器进口温度(°F) | 113.6 | 100.0 | 100.0 | 100.0 |
反应器进口温度(℃) | 45.3 | 37.8 | 37.8 | 37.8 |
循环气流中的液体量(wt%) | 10.4 | 22.5 | 29.0 | 29.0 |
反应器温度(°F) | 175.3 | 175.3 | 175.3 | 175.3 |
反应器温度(℃) | 79.6 | 79.6 | 79.6 | 79.6 |
反应器压力(psig) | 312.7 | 312.7 | 312.7 | 312.7 |
反应器压力(kPag) | 2156.0 | 2156.0 | 2156.0 | 2156.0 |
反应器空塔气体速度(ft/sec) | 2.12 | 2.12 | 2.12 | 2.50 |
反应器空塔气体速度(m/sec) | 0.65 | 0.65 | 0.65 | 0.76 |
反应器高度(ft) | 43.4 | 43.4 | 43.4 | 43.4 |
反应器高度(m) | 13.2 | 13.2 | 13.2 | 13.2 |
树脂沉积的堆积密度(lb/ft3) | 25.7 | 25.7 | 25.7 | 25.7 |
树脂沉积的堆积密度(kg/m3) | 411.7 | 411.7 | 411.7 | 411.7 |
反应床流化的堆积密度(lb/ft3) | 19.2 | -- | -- | -- |
反应床流化的堆积密度(kg/m3) | 307.5 | -- | -- | -- |
时空产率(lb/hr-ft3) | 8.6 | 14.8 | 18.1 | 20.8 |
时空产率(kg/hr-m3) | 137.5 | 236.5 | 289.3 | 333.1 |
生产率(klb/hr) | 61.5 | 105.8 | 129.4 | 149.0 |
生产率(Tons/hr) | 27.9 | 48.0 | 58.7 | 67.6 |
反应器生产率(lb/hr-ft2) | 373 | 641 | 784 | 902 |
反应器生产率(kg/hr-m2) | 1819 | 3129 | 3827 | 4406 |
循环流的热含量改变(Btu/lb) | 37 | 58 | 66 | 66 |
循环流的热含量改变(cal/g) | 20 | 32 | 37 | 37 |
气体密度(lb/ft3) | 1.73 | 1.88 | 1.98 | 1.98 |
气体密度(kg/m3) | 27.7 | 30.2 | 31.6 | 31.6 |
气体粘度(cp) | 0.014 | 0.013 | 0.013 | 0.013 |
粒径(英寸) | 0.042 | 0.042 | 0.042 | 0.042 |
粒径(微米) | 1054 | 1054 | 1054 | 1054 |
X作用 | 3.13 | 3.20 | 3.22 | 3.29 |
Y作用 | 5.81 | 5.91 | 5.93 | 5.93 |
密度作用(Z) | 0.70 | -- | -- | -- |
表A和B*的限定值 | 0.54 | 0.53 | 0.53 | 0.50 |
*以X和Y作用的值为基础:表A和B用来确定限定值。
使用增加活性的催化剂来增加生产率,或通过使用制冷装置来降低循环流的温度,均落入本发明的范围内。
Claims (20)
1.一种在有流化床和流化介质的气相反应器中,在金属茂催化剂存在下进行α-烯烃聚合的方法,其中,流化介质起控制所述反应器冷却能力的作用,该方法包括,在流化介质中使用液体进入反应器,液体量以流化介质总重量计大于2%重量,以及将堆积密度作用Z维持在等于或大于由下式计算得到的本文表A中的堆积密度作用的限定值,
其中表A中的X和Y根据下面的等式来计算:
其中,ρbf为流化的堆积密度,ρbs为沉积的堆积密度,ρg为气体密度,ρs为固体密度,和其中dp为重均粒径,g为重力加速度,Uo为气体的空塔速度,μ为气体的粘度。
2.根据权利要求1的方法,其中,以流化介质的总重量计,液体量大于20%重量。
3.根据权利要求1或2的方法,其中,以流化介质的总重量计,液体量为25-40%重量。
4.一种使带有流化介质和流化床的气相聚合反应器增加生产率的连续聚合方法,所述的方法包括,在金属茂催化剂存在下,将含单体的气流通过反应区,以产生聚合产物;从所述的反应区中取出所述的聚合产物,取出所述的含未反应单体的流化介质;将所述的流化介质与可冷凝流体和可聚合的单体混合,以形成液相和气相;然后,将所述的流化介质循环至所述的反应器中;其中可冷凝流体的量以流化介质总重量计大于2%重量;该方法包括:
a)将所述的可冷凝流体引入所述的流化介质中,以使流化介质的冷却能力的增加至少21.62cal/g;
b)将聚合产物的取出速率增加至至少2441kg/hr-m2;
c)计算堆积密度作用限定值;和
d)将堆积密度作用(Z)维持在大于或等于由下式计算得到的本文表A中的堆积密度作用的限定值,
其中表A中的X和Y根据下面的等式来计算:
其中,ρbf为流化的堆积密度,ρbs为沉积的堆积密度,ρg为气体密度,ρs为固体密度,和其中dp为重均粒径,g为重力加速度,Uo为气体的空塔速度,μ为气体的粘度。
5.根据权利要求4的方法,其中,以流化介质的总重量计,液体量为15-50%重量。
6.根据权利要求5的方法,其中,以流化介质的总重量计,液体量为20-40%重量。
7.根据权利要求4-6任一项的方法,其中,聚合物产物以大于2441kg/hr-m2的速率取出。
8.根据权利要求7的方法,其中,聚合物产物以大于2929kg/hr-m2的速率取出。
9.根据权利要求1-6中任一项的方法,其中,堆积密度作用Z大于堆积密度作用的计算限定值。
10.根据权利要求1-6中任一项的方法,其中,计算限定值为0.2-0.7。
11.根据权利要求10的方法,其中,计算限定值为0.3-0.6。
12.根据权利要求11的方法,其中,计算限定值为0.4-0.6。
13.根据权利要求1-6中任一项的方法,其中,堆积密度作用Z比堆积密度作用的计算限定值高出1%。
14.根据权利要求13的方法,其中,堆积密度作用Z比堆积密度作用的计算限定值高出2%。
15.根据权利要求1-6中任一项的方法,其中,所述的流化介质包括:
i)摩尔比从0.001-0.60的丁烯-1和乙烯,或摩尔比从0.001-0.50的4-甲基戊烯-1和乙烯,或摩尔比从0.001-0.30的己烯-1和乙烯,或摩尔比从0.001-0.10的辛烯-1和乙烯;
ii)以流化介质为准含1.5-20摩尔%的可冷凝流体。
16.根据权利要求1-6中任一项的方法,所述的流化介质包括:
i)摩尔比从0.001-0.60的丁烯-1和乙烯,或摩尔比从0.001-0.50的4-甲基戊烯-1和乙烯,或摩尔比从0.001-0.30的己烯-1和乙烯,或摩尔比从0.001-0.10的辛烯-1和乙烯;
ii)以流化介质为准含1.5-30摩尔%的可冷凝流体。
17.根据权利要求1-6中任一项的方法,所述的流化介质包括:
i)摩尔比从0.001-0.30的丁烯-1和乙烯,或摩尔比从0.001-0.25的4-甲基戊烯-1和乙烯,或摩尔比从0.001-0.15的己烯-1和乙烯,或摩尔比从0.001-0.05的辛烯-1和乙烯;
ii)以流化介质为准含5-40摩尔%的可冷凝流体。
18.根据权利要求1-6中任一项的方法,其中,气相单独并脱离液相进入反应器,和/或其中液相在分布板下面进入反应器。
19.根据权利要求1-6中任一项的方法,其中,堆积密度作用Z大于或等于(0.59-ρg/ρbs)/(1-ρg/ρs),其中,ρbf为流化的堆积密度,ρbs为沉积的堆积密度,ρg为气体密度,ρs为固体密度。
20.根据权利要求1-6中任一项的方法,其中,通过流化床的流化介质包含露点增加组成,其用量大于2.0摩尔%。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/316,769 US5462999A (en) | 1993-04-26 | 1994-10-03 | Process for polymerizing monomers in fluidized beds |
US08/316,769 | 1994-10-03 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1164860A CN1164860A (zh) | 1997-11-12 |
CN1159352C true CN1159352C (zh) | 2004-07-28 |
Family
ID=23230602
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB951954377A Expired - Lifetime CN1159352C (zh) | 1994-10-03 | 1995-09-26 | 流化床单体聚合法 |
Country Status (21)
Country | Link |
---|---|
US (1) | US5462999A (zh) |
EP (2) | EP0784638B1 (zh) |
JP (1) | JP3356435B2 (zh) |
KR (1) | KR100419695B1 (zh) |
CN (1) | CN1159352C (zh) |
AT (2) | ATE191490T1 (zh) |
AU (1) | AU705438B2 (zh) |
BR (1) | BR9509227A (zh) |
CA (1) | CA2198144C (zh) |
CZ (1) | CZ296150B6 (zh) |
DE (2) | DE69532306T2 (zh) |
DK (2) | DK0970970T3 (zh) |
ES (2) | ES2146777T3 (zh) |
GR (1) | GR3033771T3 (zh) |
MY (1) | MY116372A (zh) |
NO (1) | NO311260B1 (zh) |
PL (1) | PL184584B1 (zh) |
PT (2) | PT784638E (zh) |
RU (1) | RU2140425C1 (zh) |
SA (1) | SA95160298B1 (zh) |
WO (1) | WO1996010591A1 (zh) |
Families Citing this family (446)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6025448A (en) | 1989-08-31 | 2000-02-15 | The Dow Chemical Company | Gas phase polymerization of olefins |
US6538080B1 (en) | 1990-07-03 | 2003-03-25 | Bp Chemicals Limited | Gas phase polymerization of olefins |
US5608019A (en) * | 1992-12-28 | 1997-03-04 | Mobil Oil Corporation | Temperature control of MW in olefin polymerization using supported metallocene catalyst |
US6001938A (en) * | 1993-05-20 | 1999-12-14 | Bp Chemicals Limited | Polymerization process |
ZA943399B (en) * | 1993-05-20 | 1995-11-17 | Bp Chem Int Ltd | Polymerisation process |
US5969061A (en) * | 1995-10-16 | 1999-10-19 | Eastman Chemical Company | Suppression of fines in a fluid bed polyethylene process |
CA2190678A1 (en) | 1995-11-22 | 1997-05-23 | Robert Joseph Noel Bernier | Process for preparing elastomeric compounds from granular elastomers and polymers and articles manufactured therefrom |
CA2191383A1 (en) | 1995-12-01 | 1997-06-02 | Union Carbide Chemicals & Plastics Technology Corporation | Olefin polymerization catalyst compositions |
TR199601005A2 (tr) | 1995-12-15 | 1997-07-21 | Union Carbide Chem Plastic | Uzun zincirli, dallanmis poliolefinlerin üretimi icin yöntem. |
SK162296A3 (en) | 1995-12-18 | 1997-08-06 | Union Carbide Chem Plastic | Method of manufacturing polymers in fluidized bed reactor with using unsupported catalysts |
JP3296180B2 (ja) * | 1996-03-29 | 2002-06-24 | 矢崎総業株式会社 | 自動車ドアの回路接続構造 |
JPH10152509A (ja) * | 1996-05-14 | 1998-06-09 | Mitsui Chem Inc | 気相重合方法及びそのための気相重合装置ならびにブロワー |
US6211310B1 (en) | 1997-06-05 | 2001-04-03 | Union Carbide Chemicals & Plastics Technology Corporation | Manufacture of stereoregular polymers |
US5693727A (en) * | 1996-06-06 | 1997-12-02 | Union Carbide Chemicals & Plastics Technology Corporation | Method for feeding a liquid catalyst to a fluidized bed polymerization reactor |
EP0853091A1 (en) * | 1997-01-13 | 1998-07-15 | Bp Chemicals S.N.C. | Polymerisation process |
FR2758823B1 (fr) * | 1997-01-24 | 1999-06-04 | Bp Chemicals Snc | Procede de polymerisation en phase gazeuse |
US5911734A (en) * | 1997-05-08 | 1999-06-15 | Embol-X, Inc. | Percutaneous catheter and guidewire having filter and medical device deployment capabilities |
US5990250A (en) * | 1997-05-30 | 1999-11-23 | Union Carbide Chemicals & Plastics Technology Corporation | Method of fluidized bed temperature control |
AU8382698A (en) * | 1997-07-08 | 1999-02-08 | Union Carbide Chemicals & Plastics Technology Corporation | Method for reducing sheeting during olefin polymerization |
US6063877A (en) * | 1997-07-31 | 2000-05-16 | Union Carbide Chemicals & Plastics Technology Corporation | Control of gas phase polymerization reactions |
US6677265B1 (en) | 1997-12-08 | 2004-01-13 | Albemarle Corporation | Process of producing self-supported catalysts |
US6245868B1 (en) * | 1998-05-29 | 2001-06-12 | Univation Technologies | Catalyst delivery method, a catalyst feeder and their use in a polymerization process |
EP1522553B1 (en) | 1998-07-01 | 2007-04-11 | ExxonMobil Chemical Patents Inc. | Elastic blends comprising crystalline polymer and crystallizable polymers of propylene |
US6403773B1 (en) | 1998-09-30 | 2002-06-11 | Exxon Mobil Chemical Patents Inc. | Cationic group 3 catalyst system |
US6486088B1 (en) | 1998-10-23 | 2002-11-26 | Exxonmobil Chemical Patents Inc. | High activity carbenium-activated polymerization catalysts |
KR100623106B1 (ko) | 1998-11-02 | 2006-09-13 | 다우 글로벌 테크놀로지스 인크. | 전단시닝 에틸렌/α―올레핀 인터폴리머 및 그의 제조 방법 |
US6306981B1 (en) | 1999-04-02 | 2001-10-23 | Union Carbide Chemicals & Plastics Technology Corporation | Gas phase polymerization process |
US6384157B1 (en) * | 2000-05-16 | 2002-05-07 | Union Carbide Chemicals & Plastics Technology Corporation | Method of detecting and correcting local defluidization and channeling in fluidized-bed reactors for polymerization |
US6391985B1 (en) | 1999-10-21 | 2002-05-21 | Union Carbide Chemicals & Plastics Technology Corporation | High condensing mode polyolefin production under turbulent conditions in a fluidized bed |
US6476164B1 (en) | 1999-10-22 | 2002-11-05 | Exxonmobil Chemical Patents Inc. | Carbenium cationic complexes suitable for polymerization catalysts |
US6475946B1 (en) * | 1999-10-22 | 2002-11-05 | Exxonmobil Chemical Patents Inc. | Olefin polymerization catalysis with aryl substituted carbenium cationic complexes |
US6822057B2 (en) * | 1999-12-09 | 2004-11-23 | Exxon Mobil Chemical Patents Inc. | Olefin polymerization catalysts derived from Group-15 cationic compounds and processes using them |
US6489480B2 (en) | 1999-12-09 | 2002-12-03 | Exxonmobil Chemical Patents Inc. | Group-15 cationic compounds for olefin polymerization catalysts |
US6281306B1 (en) | 1999-12-16 | 2001-08-28 | Univation Technologies, Llc | Method of polymerization |
BR0016495A (pt) | 1999-12-20 | 2002-09-17 | Exxon Chemical Patents Inc | Processos para a preparação de resinas poliolefìnicas usando catalisadores iÈnicos suportados |
US6815512B2 (en) * | 2000-02-28 | 2004-11-09 | Union Carbide Chemicals & Plastics Technology Corporation | Polyolefin production using condensing mode in fluidized beds, with liquid phase enrichment and bed injection |
US6809209B2 (en) | 2000-04-07 | 2004-10-26 | Exxonmobil Chemical Patents Inc. | Nitrogen-containing group-13 anionic compounds for olefin polymerization |
US6541578B2 (en) | 2001-03-22 | 2003-04-01 | Nova Chemicals (International) S.A. | Increased space-time yield in gas phase polymerization |
DE60238049D1 (de) | 2001-04-12 | 2010-12-02 | Exxonmobil Chem Patents Inc | Verfahren zur Polymerisation von Propylen und Ethylen in Lösung |
WO2003000740A2 (en) | 2001-06-20 | 2003-01-03 | Exxonmobil Chemical Patents Inc. | Polyolefins made by catalyst comprising a noncoordinating anion and articles comprising them |
CA2450570A1 (en) * | 2001-06-22 | 2003-01-03 | Exxonmobil Chemical Patents, Inc. | Metallocene-produced very low density polyethylenes or linear lowdensity polyethylenes as impact modifiers |
EP1927617A1 (en) | 2001-07-19 | 2008-06-04 | Univation Technologies, LLC | Polyethylene films with improved physical properties. |
US6927256B2 (en) | 2001-11-06 | 2005-08-09 | Dow Global Technologies Inc. | Crystallization of polypropylene using a semi-crystalline, branched or coupled nucleating agent |
SG147306A1 (en) | 2001-11-06 | 2008-11-28 | Dow Global Technologies Inc | Isotactic propylene copolymers, their preparation and use |
WO2003042646A2 (en) * | 2001-11-09 | 2003-05-22 | Exxonmobil Chemical Patents Inc. | On-line measurement and control of polymer properties by raman spectroscopy |
AU2002337850A1 (en) | 2001-11-15 | 2003-06-10 | Exxonmobil Chemical Patents Inc. | Polymerization monitoring and control using leading indicators |
EP1780226B1 (en) * | 2001-12-20 | 2011-03-30 | Union Carbide Chemicals & Plastics Technology LLC | High condensing mode polylefin production under turbulent conditions in a fluidized bed |
EP1348720B1 (en) * | 2002-03-29 | 2004-12-29 | Mitsui Chemicals, Inc. | Process for producing olefinic polymer |
US7153571B2 (en) * | 2002-07-31 | 2006-12-26 | Exxonmobil Chemical Patents Inc. | Silane crosslinkable polyethylene |
EP1539866B1 (en) * | 2002-09-05 | 2011-01-05 | ExxonMobil Chemical Patents Inc. | Method for wrapping an article with a stretch film |
ES2306884T3 (es) * | 2002-09-05 | 2008-11-16 | Exxonmobil Chemical Patents Inc. | Pelicula contraible. |
US7943700B2 (en) * | 2002-10-01 | 2011-05-17 | Exxonmobil Chemical Patents Inc. | Enhanced ESCR of HDPE resins |
ES2399364T3 (es) | 2002-10-02 | 2013-03-27 | Dow Global Technologies Llc | Composiciones poliméricas que comprenden un extendedor de etileno/alfa-olefina homogéneamente ramificado, de baja viscosidad |
KR20060024318A (ko) * | 2002-10-15 | 2006-03-16 | 엑손모빌 케미칼 패턴츠 인코포레이티드 | 라만 분광분석법에 의해 중합체 특성을 온-라인 측정 및조절하는 방법 |
US7223822B2 (en) | 2002-10-15 | 2007-05-29 | Exxonmobil Chemical Patents Inc. | Multiple catalyst and reactor system for olefin polymerization and polymers produced therefrom |
AU2003302033A1 (en) | 2002-10-15 | 2004-06-15 | Exxonmobil Chemical Patents Inc. | Multiple catalyst system for olefin polymerization and polymers produced therefrom |
US7459500B2 (en) | 2002-11-05 | 2008-12-02 | Dow Global Technologies Inc. | Thermoplastic elastomer compositions |
US7579407B2 (en) | 2002-11-05 | 2009-08-25 | Dow Global Technologies Inc. | Thermoplastic elastomer compositions |
ES2276129T3 (es) * | 2002-12-31 | 2007-06-16 | Univation Technologies, Llc | Procedimiento para la transacion de un catalizador a un catalizador incompatible en un reactor en fase gaseosa. |
US6867270B2 (en) * | 2002-12-31 | 2005-03-15 | Univation Technologies, Llc | Process for transitioning between incompatible catalysts using a substantially contaminant free seedbed |
AU2003302739A1 (en) * | 2003-01-06 | 2004-08-10 | Exxonmobil Chemical Patents Inc. | On-line measurement and control of polymer product properties by raman spectroscopy |
JP4742221B2 (ja) | 2003-03-21 | 2011-08-10 | ダウ グローバル テクノロジーズ エルエルシー | モルホロジー制御オレフィン重合プロセス |
US6759489B1 (en) | 2003-05-20 | 2004-07-06 | Eastern Petrochemical Co. | Fluidized bed methods for making polymers |
CA2527615C (en) * | 2003-05-30 | 2013-10-15 | Union Carbide Chemicals & Plastics Technology Corporation | Gas phase polymerization and method of controlling same |
BRPI0415341B1 (pt) * | 2003-10-15 | 2014-02-04 | Método para produção de uma composição polimérica | |
US7838605B2 (en) * | 2003-10-17 | 2010-11-23 | Univation Technologies, Llc | Polymerization monitoring and control using improved leading indicators |
US8058366B2 (en) * | 2003-10-17 | 2011-11-15 | Univation Technologies, Llc | Polymerization monitoring and method of selecting leading indicators |
EP1687346B1 (en) | 2003-11-14 | 2012-06-06 | ExxonMobil Chemical Patents Inc. | Propylene-based elastomers and uses thereof |
US6982304B2 (en) * | 2003-12-22 | 2006-01-03 | Union Carbide Chemicals & Plastics Technology Corporation | Blow molding resins with improved ESCR |
US20050137364A1 (en) * | 2003-12-23 | 2005-06-23 | Univation Technologies, Llc | Condensing mode operation of gas-phase polymerization reactor |
US7410926B2 (en) * | 2003-12-30 | 2008-08-12 | Univation Technologies, Llc | Polymerization process using a supported, treated catalyst system |
ES2321632T3 (es) * | 2004-03-16 | 2009-06-09 | UNION CARBIDE CHEMICALS & PLASTICS TECHNOLOGY LLC | Oligomerizacion de etileno con cataklizadores de amida de metal del grupo 6 soportados sobre fosfato de aluminio. |
SG183748A1 (en) | 2004-03-17 | 2012-09-27 | Dow Global Technologies Llc | Catalyst composition comprising shuttling agent for ethylene multi-block copolymer formation |
EP2357203B1 (en) | 2004-03-17 | 2017-05-24 | Dow Global Technologies LLC | Catalyst composition comprising shuttling agent for higher olefin multi-block copolymer formation |
EP2327727B1 (en) | 2004-03-17 | 2015-07-22 | Dow Global Technologies LLC | Catalyst composition comprising shuttling agent for ethylene copolymer formation |
US7683140B2 (en) * | 2004-05-20 | 2010-03-23 | Univation Technologies, Llc | Method for determining temperature value indicative of resin stickiness from data generated by polymerization reaction monitoring |
US7754830B2 (en) | 2004-05-20 | 2010-07-13 | Univation Technologies, Llc | Polymerization reaction monitoring with determination of induced condensing agent concentration for preventing discontinuity events |
BRPI0510392A (pt) | 2004-05-20 | 2007-11-13 | Univation Tech Llc | processo de polimerização |
US7531606B2 (en) * | 2004-05-26 | 2009-05-12 | Chevron Phillips Chemical Company Lp | Method for operating a gas phase polymerization reactor |
GB0411742D0 (en) | 2004-05-26 | 2004-06-30 | Exxonmobil Chem Patents Inc | Transition metal compounds for olefin polymerization and oligomerization |
DE102004029475A1 (de) * | 2004-06-18 | 2006-01-26 | Henkel Kgaa | Neues enzymatisches Bleichsystem |
US7157531B2 (en) * | 2004-06-21 | 2007-01-02 | Univation Technologies, Llc | Methods for producing polymers with control over composition distribution |
KR101195320B1 (ko) * | 2004-08-09 | 2012-10-29 | 다우 글로벌 테크놀로지스 엘엘씨 | 중합체를 제조하기 위한 지지된비스(하이드록시아릴아릴옥시) 촉매 |
WO2006049699A1 (en) | 2004-10-29 | 2006-05-11 | Exxonmobil Chemical Patents Inc | Catalyst compound containing divalent tridentate ligand |
US7829623B2 (en) * | 2004-11-05 | 2010-11-09 | Exxonmobil Chemical Patents Inc. | Thermoplastic vulcanizates having improved fabricability |
US7745526B2 (en) | 2004-11-05 | 2010-06-29 | Exxonmobil Chemical Patents Inc. | Transparent polyolefin compositions |
US7598327B2 (en) * | 2004-11-10 | 2009-10-06 | Chevron Phillips Chemical Company Lp | Method for polymerizing olefins in a gas phase reactor using a seedbed during start-up |
US7473750B2 (en) * | 2004-12-07 | 2009-01-06 | Fina Technology, Inc. | Random copolymers and formulations useful for thermoforming and blow molding applications |
DE602005009028D1 (de) * | 2004-12-16 | 2008-09-25 | Exxonmobil Chem Patents Inc | Polymerzusammensetzungen einschliesslich ihrer verwendungen und herstellungsverfahren |
US7803876B2 (en) * | 2005-01-31 | 2010-09-28 | Exxonmobil Chemical Patent Inc. | Processes for producing polymer blends and polymer blend pellets |
US8945169B2 (en) | 2005-03-15 | 2015-02-03 | Cook Medical Technologies Llc | Embolic protection device |
EP2894176B1 (en) | 2005-03-17 | 2022-06-01 | Dow Global Technologies LLC | Catalyst composition comprising shuttling agent for regio-irregular multi-block copolymer formation |
EP1861439B1 (en) | 2005-03-17 | 2013-01-30 | Dow Global Technologies LLC | Catalyst composition comprising shuttling agent for tactic/ atactic multi-block copolymer formation |
US9410009B2 (en) | 2005-03-17 | 2016-08-09 | Dow Global Technologies Llc | Catalyst composition comprising shuttling agent for tactic/ atactic multi-block copolymer formation |
WO2006107373A1 (en) * | 2005-03-31 | 2006-10-12 | Exxonmobil Chemical Patents Inc. | Processes for producing high density polyethylene |
US20060247394A1 (en) * | 2005-04-29 | 2006-11-02 | Fina Technology, Inc. | Process for increasing ethylene incorporation into random copolymers |
US7220806B2 (en) * | 2005-04-29 | 2007-05-22 | Fina Technology, Inc. | Process for increasing ethylene incorporation into random copolymers |
US7081285B1 (en) | 2005-04-29 | 2006-07-25 | Fina Technology, Inc. | Polyethylene useful for blown films and blow molding |
US7645834B2 (en) * | 2005-04-29 | 2010-01-12 | Fina Technologies, Inc. | Catalyst system for production of polyolefins |
US8109962B2 (en) | 2005-06-20 | 2012-02-07 | Cook Medical Technologies Llc | Retrievable device having a reticulation portion with staggered struts |
US20070003720A1 (en) * | 2005-06-22 | 2007-01-04 | Fina Technology, Inc. | Cocatalysts useful for preparing polyethylene pipe |
US20070004875A1 (en) * | 2005-06-22 | 2007-01-04 | Fina Technology, Inc. | Cocatalysts useful for improving polyethylene film properties |
US7282546B2 (en) * | 2005-06-22 | 2007-10-16 | Fina Technology, Inc. | Cocatalysts for reduction of production problems in metallocene-catalyzed polymerizations |
US20070004876A1 (en) * | 2005-06-22 | 2007-01-04 | Fina Technology, Inc. | Cocatalysts for olefin polymerizations |
US7634937B2 (en) * | 2005-07-01 | 2009-12-22 | Symyx Solutions, Inc. | Systems and methods for monitoring solids using mechanical resonator |
US7505129B2 (en) | 2005-07-22 | 2009-03-17 | Exxonmobil Chemical Patents Inc. | On-line analysis of polymer properties for control of a solution phase reaction system |
US7505127B2 (en) * | 2005-07-22 | 2009-03-17 | Exxonmobil Chemical Patents Inc. | On-line raman analysis and control of a high pressure reaction system |
US7483129B2 (en) * | 2005-07-22 | 2009-01-27 | Exxonmobil Chemical Patents Inc. | On-line properties analysis of a molten polymer by raman spectroscopy for control of a mixing device |
US20070060724A1 (en) * | 2005-09-13 | 2007-03-15 | Nova Chemicals Corporation And Innovene Europe Ltd. | Enhanced catalyst productivity |
KR20080055838A (ko) | 2005-09-15 | 2008-06-19 | 다우 글로벌 테크놀로지스 인크. | 다중심 셔틀링제를 통한 중합체 구성 및 분자량 분포의제어 |
ES2526056T3 (es) * | 2005-09-15 | 2015-01-05 | Dow Global Technologies Llc | Copolímeros de bloque de olefinas catalíticos por medio de agente de transporte polimerizable |
US7714082B2 (en) * | 2005-10-04 | 2010-05-11 | Univation Technologies, Llc | Gas-phase polymerization process to achieve a high particle density |
US7737206B2 (en) | 2005-11-18 | 2010-06-15 | Exxonmobil Chemical Patents Inc. | Polyolefin composition with high filler loading capacity |
EP1963347B1 (en) | 2005-12-14 | 2011-10-19 | ExxonMobil Chemical Patents Inc. | Halogen substituted metallocene compounds for olefin polymerization |
EP1803747A1 (en) | 2005-12-30 | 2007-07-04 | Borealis Technology Oy | Surface-modified polymerization catalysts for the preparation of low-gel polyolefin films |
DE102006004429A1 (de) * | 2006-01-31 | 2007-08-02 | Advanced Micro Devices, Inc., Sunnyvale | Halbleiterbauelement mit einem Metallisierungsschichtstapel mit einem porösen Material mit kleinem ε mit einer erhöhten Integrität |
US7714083B2 (en) * | 2006-03-08 | 2010-05-11 | Exxonmobil Chemical Patents Inc. | Recycle of hydrocarbon gases from the product tanks to a reactor through the use of ejectors |
US20070299222A1 (en) | 2006-04-04 | 2007-12-27 | Fina Technology, Inc. | Transition metal catalysts and formation thereof |
US7683002B2 (en) | 2006-04-04 | 2010-03-23 | Fina Technology, Inc. | Transition metal catalyst and formation thereof |
US7951873B2 (en) * | 2006-05-05 | 2011-05-31 | Exxonmobil Chemical Patents Inc. | Linear low density polymer blends and articles made therefrom |
US7696289B2 (en) * | 2006-05-12 | 2010-04-13 | Exxonmobil Chemical Patents Inc. | Low molecular weight induced condensing agents |
EP2021378B1 (en) * | 2006-05-17 | 2016-03-09 | Dow Global Technologies LLC | Polypropylene solution polymerization process |
US20080051538A1 (en) * | 2006-07-11 | 2008-02-28 | Fina Technology, Inc. | Bimodal pipe resin and products made therefrom |
US7893181B2 (en) * | 2006-07-11 | 2011-02-22 | Fina Technology, Inc. | Bimodal film resin and products made therefrom |
US7449529B2 (en) * | 2006-07-11 | 2008-11-11 | Fina Technology, Inc. | Bimodal blow molding resin and products made therefrom |
US7514510B2 (en) | 2006-07-25 | 2009-04-07 | Fina Technology, Inc. | Fluorenyl catalyst compositions and olefin polymerization process |
US7470759B2 (en) * | 2006-07-31 | 2008-12-30 | Fina Technology, Inc. | Isotactic-atactic polypropylene and methods of making same |
RU2446175C2 (ru) * | 2006-09-07 | 2012-03-27 | Юнивейшн Текнолоджиз, Ллк | Способы определения значения температуры, характеризующие липкость смолы, на основе данных мониторинга реакции полимеризации |
BRPI0716543B1 (pt) * | 2006-09-07 | 2018-08-07 | Univation Technologies, Llc | Método para determinação em tempo real do grau de pegajosidade de resinas utilizando um modelo para depressão da temperatura de iniciação de fusão |
US20080071307A1 (en) | 2006-09-19 | 2008-03-20 | Cook Incorporated | Apparatus and methods for in situ embolic protection |
US8198373B2 (en) * | 2006-10-02 | 2012-06-12 | Exxonmobil Chemical Patents Inc. | Plastic toughened plastics |
CN101568554B (zh) | 2006-10-03 | 2012-09-26 | 尤尼威蒂恩技术有限责任公司 | 基于生产速率变化防止催化剂团聚的方法 |
US7538167B2 (en) * | 2006-10-23 | 2009-05-26 | Fina Technology, Inc. | Syndiotactic polypropylene and methods of preparing same |
US20080114130A1 (en) * | 2006-11-10 | 2008-05-15 | John Ashbaugh | Resin composition for production of high tenacity slit film, monofilaments and fibers |
US8075830B2 (en) | 2006-12-15 | 2011-12-13 | Fina Technology, Inc. | Polypropylene blown film |
EP2097459A1 (en) * | 2006-12-29 | 2009-09-09 | Fina Technology, Inc. | Succinate-containing polymerization catalyst system using n-butylmethyldimethoxysilane for preparation of polypropylene film grade resins |
US9901434B2 (en) | 2007-02-27 | 2018-02-27 | Cook Medical Technologies Llc | Embolic protection device including a Z-stent waist band |
US7754834B2 (en) * | 2007-04-12 | 2010-07-13 | Univation Technologies, Llc | Bulk density promoting agents in a gas-phase polymerization process to achieve a bulk particle density |
PL2185609T3 (pl) | 2007-08-24 | 2021-06-14 | W.R. Grace & Co. - Conn. | Proces polimeryzacji w fazie gazowej |
US9138307B2 (en) | 2007-09-14 | 2015-09-22 | Cook Medical Technologies Llc | Expandable device for treatment of a stricture in a body vessel |
TW200932762A (en) | 2007-10-22 | 2009-08-01 | Univation Tech Llc | Polyethylene compositions having improved properties |
CN101873883B (zh) | 2007-11-27 | 2013-07-03 | 尤尼威蒂恩技术有限责任公司 | 整合的烃进料汽提器及其应用方法 |
EP2112173A1 (en) | 2008-04-16 | 2009-10-28 | ExxonMobil Chemical Patents Inc. | Catalyst compounds and use thereof |
US8481666B2 (en) | 2008-01-29 | 2013-07-09 | Dow Global Technologies Llc. | Polyethylene compositions, method of producing the same, articles made therefrom, and method of making the same |
US8859084B2 (en) * | 2008-01-29 | 2014-10-14 | Fina Technology, Inc. | Modifiers for oriented polypropylene |
US8003741B2 (en) | 2008-02-07 | 2011-08-23 | Fina Technology, Inc. | Ziegler-Natta catalyst |
US20090202770A1 (en) * | 2008-02-08 | 2009-08-13 | Fengkui Li | Polypropylene/polyisobutylene blends and films prepared from same |
EP2119732A1 (en) | 2008-05-16 | 2009-11-18 | Borealis Technology Oy | Metallocene catalyst compositions with improved properties, process for its preparation and use for preparing polyolefin homo- or copolymers |
US8545971B2 (en) * | 2008-06-30 | 2013-10-01 | Fina Technology, Inc. | Polymeric compositions comprising polylactic acid and methods of making and using same |
US8759446B2 (en) | 2008-06-30 | 2014-06-24 | Fina Technology, Inc. | Compatibilized polypropylene and polylactic acid blends and methods of making and using same |
US8268913B2 (en) * | 2008-06-30 | 2012-09-18 | Fina Technology, Inc. | Polymeric blends and methods of using same |
CN102731694B (zh) | 2008-08-01 | 2015-04-01 | 埃克森美孚化学专利公司 | 催化剂体系和用于烯烃聚合的方法 |
US8580902B2 (en) | 2008-08-01 | 2013-11-12 | Exxonmobil Chemical Patents Inc. | Catalyst system, process for olefin polymerization, and polymer compositions produced therefrom |
EP2315789B1 (en) | 2008-08-21 | 2015-09-02 | W.R. Grace & CO. - CONN. | Catalyst composition with mixed selectivity control agent and polymerisation method using it |
US9334342B2 (en) | 2008-10-01 | 2016-05-10 | Fina Technology, Inc. | Polypropylene for reduced plate out in polymer article production processes |
US20100087602A1 (en) * | 2008-10-08 | 2010-04-08 | Fina Technology, Inc. | Long chain branched polypropylene for cast film applications |
US20100119855A1 (en) * | 2008-11-10 | 2010-05-13 | Trazollah Ouhadi | Thermoplastic Elastomer with Excellent Adhesion to EPDM Thermoset Rubber and Low Coefficient of Friction |
EP2186831B1 (en) | 2008-11-10 | 2013-01-02 | Borealis AG | Process for the preparation of an unsupported, solid olefin polymerisation catalyst and use in polymerisation of olefins |
EP2186832B1 (en) | 2008-11-10 | 2012-09-12 | Borealis AG | Process for the preparation of an unsupported, solid metallocene catalyst system and its use in polymerization of olefins |
BRPI0923478B1 (pt) | 2008-12-22 | 2019-11-05 | Univation Tech Llc | sistemas e processos para a fabricação de polímeros |
EP2361265A1 (en) | 2008-12-22 | 2011-08-31 | Univation Technologies, LLC | Systems and methods for fabricating polymers |
KR101698618B1 (ko) | 2009-01-08 | 2017-01-20 | 유니베이션 테크놀로지즈, 엘엘씨 | 폴리올레핀 중합 방법을 위한 첨가제 |
WO2010080871A1 (en) | 2009-01-08 | 2010-07-15 | Univation Technologies, Llc | Additive for gas phase polymerization processes |
MX2011008226A (es) * | 2009-02-06 | 2011-08-17 | Dow Global Technologies Llc | Polimeros basados en etileno y composiciones, metodos para prepararlos y articulos preparados a partir de los mismos. |
US20100247887A1 (en) | 2009-03-26 | 2010-09-30 | Fina Technology, Inc. | Polyolefin films for in-mold labels |
US8653198B2 (en) | 2009-03-26 | 2014-02-18 | Fina Technology, Inc. | Method for the preparation of a heterophasic copolymer and uses thereof |
US9090000B2 (en) | 2009-03-26 | 2015-07-28 | Fina Technology, Inc. | Injection stretch blow molded articles and random copolymers for use therein |
US9289739B2 (en) | 2009-06-23 | 2016-03-22 | Chevron Philips Chemical Company Lp | Continuous preparation of calcined chemically-treated solid oxides |
US20100326017A1 (en) * | 2009-06-25 | 2010-12-30 | Darla Kindel | Protective Cover |
BR112012000454A2 (pt) | 2009-07-09 | 2016-02-16 | Union Carbide Chem Plastic | processo de polimerização em fase gasosa para produzir polímero de polietileno, polímero de polietileno e sistema para melhorar iniciação de catalisador |
KR101678247B1 (ko) | 2009-07-28 | 2016-11-21 | 유니베이션 테크놀로지즈, 엘엘씨 | 지지된 기하학적 구속 촉매를 사용한 중합 방법 |
BR112012001948B1 (pt) | 2009-07-29 | 2019-08-20 | Dow Global Technologies Llc | Agente de translado de cadeia, processo para a polimerização de pelo menos um monômero polimerizável por adição, copolímero em multi-bloco e composição de catalisador |
BR112012003539A2 (pt) | 2009-08-28 | 2017-05-23 | Dow Global Technologies Llc | artigo rotomoldado e processo para fabricar um artigo |
US9174384B2 (en) * | 2009-09-01 | 2015-11-03 | Fina Technology, Inc. | Multilayer polypropylene films and methods of making and using same |
US8425924B2 (en) * | 2009-11-24 | 2013-04-23 | Exxonmobil Chemical Patents Inc. | Propylene compositions containing a pyrethroid and products made therefrom |
BR112012013675A2 (pt) | 2009-12-07 | 2016-04-19 | Univation Tech Llc | métodos para a produção de carga estática de um catalisador e métodos para o uso do catalisador para produzir poliolefinas |
JP2013515143A (ja) * | 2009-12-21 | 2013-05-02 | ダウ グローバル テクノロジーズ エルエルシー | 多様な流動様式を有する気相重合法 |
WO2011078923A1 (en) | 2009-12-23 | 2011-06-30 | Univation Technologies, Llc | Methods for producing catalyst systems |
US8592535B2 (en) | 2010-01-11 | 2013-11-26 | Fina Technology, Inc. | Ziegler-natta catalyst systems and polymers formed therefrom |
EP2539123A1 (en) | 2010-02-22 | 2013-01-02 | Ineos Commercial Services UK Limited | Improved polyolefin manufacturing process |
US8058461B2 (en) | 2010-03-01 | 2011-11-15 | Exxonmobil Chemical Patents Inc. | Mono-indenyl transition metal compounds and polymerization therewith |
CN102906320A (zh) | 2010-03-19 | 2013-01-30 | 陶氏环球技术有限责任公司 | 双组分纤维 |
EP2539376B1 (en) | 2010-04-05 | 2014-11-05 | Dow Global Technologies LLC | Process for polymerizing olefin-based polymers containing high molecular weight fractions in condensed and super-condensed mode |
US10351640B2 (en) | 2010-04-22 | 2019-07-16 | Fina Technology, Inc. | Formation of Ziegler-Natta catalyst using non-blended components |
CA2707171C (en) | 2010-06-07 | 2018-08-14 | Nova Chemicals Corporation | Increased run length in gas phase reactors |
US8278403B2 (en) | 2010-07-08 | 2012-10-02 | Fina Technology, Inc. | Multi-component catalyst systems and polymerization processes for forming broad composition distribution polymers |
US20120046429A1 (en) | 2010-08-23 | 2012-02-23 | Fina Technology, Inc. | Sequential Formation of Ziegler-Natta Catalyst Using Non-blended Components |
US8557906B2 (en) | 2010-09-03 | 2013-10-15 | Exxonmobil Chemical Patents Inc. | Flame resistant polyolefin compositions and methods for making the same |
KR101821026B1 (ko) | 2010-10-21 | 2018-01-22 | 유니베이션 테크놀로지즈, 엘엘씨 | 폴리에틸렌 및 그의 제조 방법 |
EP2634296B1 (en) | 2010-10-29 | 2015-12-02 | Dow Global Technologies LLC | Polyethylene-based oriented tapes and method for the preparation thereof |
EP2643409B1 (en) | 2010-11-24 | 2016-06-08 | ExxonMobil Chemical Patents Inc. | High filler loaded polymer composition |
SG190835A1 (en) | 2010-11-29 | 2013-07-31 | Ineos Commercial Services Uk | Polymerisation control process |
BR112013012741B1 (pt) | 2010-11-30 | 2020-04-28 | Univation Tech Llc | processo de polimerização |
ES2543432T3 (es) | 2010-11-30 | 2015-08-19 | Univation Technologies, Llc | Composición de catalizador con características de flujo mejoradas y métodos de producir y utilizar la misma |
BR112013016116B1 (pt) | 2010-12-22 | 2020-04-28 | Univation Tech Llc | processo de polimerização e sistema catalisador |
US10711077B2 (en) | 2011-02-07 | 2020-07-14 | Fina Technology, Inc. | Ziegler-natta catalyst composition with controlled morphology |
US8586192B2 (en) | 2011-02-15 | 2013-11-19 | Fina Technology, Inc. | Compatibilized polymeric compositions comprising polyolefin-polylactic acid copolymers and methods of making the same |
US9382347B2 (en) | 2011-02-16 | 2016-07-05 | Fina Technology Inc | Ziegler-Natta catalysts doped with non-group IV metal chlorides |
CA2734167C (en) | 2011-03-15 | 2018-03-27 | Nova Chemicals Corporation | Polyethylene film |
CA2739969C (en) | 2011-05-11 | 2018-08-21 | Nova Chemicals Corporation | Improving reactor operability in a gas phase polymerization process |
US9637567B2 (en) | 2011-05-13 | 2017-05-02 | Univation Technologies, Llc | Spray-dried catalyst compositions and polymerization processes employing the same |
CA2740755C (en) | 2011-05-25 | 2019-01-15 | Nova Chemicals Corporation | Chromium catalysts for olefin polymerization |
JP5932980B2 (ja) | 2011-05-27 | 2016-06-08 | ダウ グローバル テクノロジーズ エルエルシー | 押し出しプロセスの間のチルロールビルドアップが低減されるポリエチレンブレンド組成物 |
US9127106B2 (en) | 2011-06-09 | 2015-09-08 | Nova Chemicals (International) S.A. | Modified phosphinimine catalysts for olefin polymerization |
CA2742454C (en) | 2011-06-09 | 2018-06-12 | Nova Chemicals Corporation | Methods for controlling ethylene copolymer properties |
US9221935B2 (en) | 2011-06-09 | 2015-12-29 | Nova Chemicals (International) S.A. | Modified phosphinimine catalysts for olefin polymerization |
US9243092B2 (en) | 2011-06-09 | 2016-01-26 | Nova Chemicals (International) S.A. | Modified phosphinimine catalysts for olefin polymerization |
CA2742461C (en) | 2011-06-09 | 2018-06-12 | Nova Chemicals Corporation | Modified phosphinimine catalysts for olefin polymerization |
US9321859B2 (en) | 2011-06-09 | 2016-04-26 | Nova Chemicals (International) S.A. | Modified phosphinimine catalysts for olefin polymerization |
US9127094B2 (en) | 2011-06-09 | 2015-09-08 | Nova Chemicals (International) S.A. | Modified phosphinimine catalysts for olefin polymerization |
US9315591B2 (en) | 2011-06-09 | 2016-04-19 | Nova Chemicals (International) S.A. | Modified phosphinimine catalysts for olefin polymerization |
US10647790B2 (en) | 2011-06-30 | 2020-05-12 | W. R. Grace & Co.-Conn. | Process for gas-phase polymerization having high bed bulk density |
CA2749835C (en) | 2011-08-23 | 2018-08-21 | Nova Chemicals Corporation | Feeding highly active phosphinimine catalysts to a gas phase reactor |
US10131114B2 (en) | 2011-10-05 | 2018-11-20 | Dow Global Technologies Llc | Spunbond nonwoven fabrics |
MX339257B (es) | 2011-11-30 | 2016-05-18 | Univation Tech Llc | Metodos y sistemas para entrega de catalizadores. |
CA2760264C (en) | 2011-12-05 | 2018-08-21 | Nova Chemicals Corporation | Passivated supports for use with olefin polymerization catalysts |
US8580893B2 (en) | 2011-12-22 | 2013-11-12 | Fina Technology, Inc. | Methods for improving multimodal polyethylene and films produced therefrom |
EP2610269A1 (en) | 2011-12-28 | 2013-07-03 | Saudi Basic Industries Corporation | Catalyst composition and method for preparing the same |
CA2798855C (en) | 2012-06-21 | 2021-01-26 | Nova Chemicals Corporation | Ethylene copolymers having reverse comonomer incorporation |
US9115233B2 (en) | 2012-06-21 | 2015-08-25 | Nova Chemicals (International) S.A. | Ethylene copolymer compositions, film and polymerization processes |
ES2587740T3 (es) | 2012-06-26 | 2016-10-26 | Dow Global Technologies Llc | Una composición mezcla de polietileno adecuada para películas sopladas y películas obtenidas a partir de la misma |
MX2015004632A (es) | 2012-10-12 | 2015-07-14 | Dow Global Technologies Llc | Composicion sellante. |
MX2015004631A (es) | 2012-10-12 | 2015-07-21 | Dow Global Technologies Llc | Composicion de polietileno adecuada para aplicaciones en pelicula de estiramiento y metodo de produccion de la misma. |
US20150259445A1 (en) | 2012-10-12 | 2015-09-17 | Dow Global Technologies Llc | Linear low density composition suitable for film applications and films made therefrom |
CN104704043B (zh) | 2012-10-12 | 2017-04-19 | 陶氏环球技术有限公司 | 聚烯烃共混物组合物 |
JP2015535011A (ja) | 2012-10-12 | 2015-12-07 | ダウ グローバル テクノロジーズ エルエルシー | ポリオレフィンブレンド組成物および当該組成物から作製されるフィルム |
RU2656997C2 (ru) | 2012-10-26 | 2018-06-08 | Эксонмобил Кемикэл Пейтентс Инк. | Смеси полимеров и изготовленные из них изделия |
IN2015DN02467A (zh) | 2012-11-01 | 2015-09-04 | Univation Tech Llc | |
CN104781628B (zh) | 2012-11-12 | 2017-07-07 | 尤尼威蒂恩技术有限责任公司 | 用于气相聚合方法的再循环气体冷却器系统 |
US9695290B2 (en) | 2012-11-21 | 2017-07-04 | Exxonmobil Chemical Patents Inc. | Films comprising ethylene-based polymers and methods of making same |
MX363101B (es) | 2012-11-26 | 2019-03-08 | Braskem Sa | Catalizador de metaloceno soportado por medios de soporte hibridos, procesos para producir el mismo, procesos de polimerizacion para producir un homopolimero o copolimero de etileno con distribucion de masa molar amplia o bimodal, uso del catalizador de metaloceno soportado y polimero de etileno con distribucion de masa molar amplia o bimodal. |
CA2797620C (en) | 2012-12-03 | 2019-08-27 | Nova Chemicals Corporation | Controlling resin properties in a gas phase polymerization process |
WO2014088791A1 (en) | 2012-12-05 | 2014-06-12 | Exxonmobile Chemical Patents Inc. | Ethylene-based polymers and articles made therefrom |
ES2711950T3 (es) | 2012-12-17 | 2019-05-08 | Dow Global Technologies Llc | Composición de polietileno apropiada para aplicaciones de película y películas preparadas a partir de la misma |
CN106113851A (zh) | 2012-12-18 | 2016-11-16 | 埃克森美孚化学专利公司 | 聚乙烯膜及其制造方法 |
CA2800056A1 (en) | 2012-12-24 | 2014-06-24 | Nova Chemicals Corporation | Polyethylene blend compositions |
US9328177B2 (en) | 2012-12-28 | 2016-05-03 | Exxonmobil Research And Engineering Company | Methods for processing and interpreting signals from static and acoustic probes in fluidized bed reactor systems |
US9360453B2 (en) | 2012-12-28 | 2016-06-07 | Exxonmobil Research And Engineering Company | Instruments for monitoring electrostatic phenomena in reactors |
WO2014106078A2 (en) | 2012-12-28 | 2014-07-03 | Exxonmobil Research And Engineering Company | Instruments for monitoring electrostatic phenomena in reactors |
RU2656343C2 (ru) | 2013-01-30 | 2018-06-05 | ЮНИВЕЙШН ТЕКНОЛОДЖИЗ, ЭлЭлСи | Способы изготовления каталитических композиций, имеющих улучшенную текучесть |
EP2992024B2 (en) | 2013-05-02 | 2023-12-20 | Dow Global Technologies LLC | A polyethylene composition and articles made therefrom |
BR112015026427B1 (pt) | 2013-05-14 | 2020-07-21 | Exxonmobil Chemical Patents Inc. | polímeros à base de etileno e artigos feitos do mesmo |
US20160102429A1 (en) | 2013-07-02 | 2016-04-14 | Exxonmobil Chemical Patents Inc. | Carpet Backing Compositions and Carpet Backing Comprising the Same |
EP3074433B1 (en) | 2013-11-29 | 2018-05-23 | Saudi Basic Industries Corporation | Process for continuous polymerization of olefin monomers in a reactor |
EP3074432B1 (en) | 2013-11-29 | 2018-08-29 | Saudi Basic Industries Corporation | Process for continuous polymerization of olefin monomers in a reactor |
WO2015078816A1 (en) * | 2013-11-29 | 2015-06-04 | Saudi Basic Industries Corporation | Multi-zone reactor for continuous polymerization of alpha olefin monomers |
US9206293B2 (en) | 2014-01-31 | 2015-12-08 | Fina Technology, Inc. | Polyethyene and articles produced therefrom |
US9676885B2 (en) | 2014-04-02 | 2017-06-13 | Univation Technologies, Llc | Continuity compositions and methods of making and using the same |
US9389161B2 (en) | 2014-04-09 | 2016-07-12 | Exxonmobil Chemical Patents Inc. | On-line FT-NIR method to determine particle size and distribution |
EA038649B1 (ru) | 2014-06-11 | 2021-09-29 | Фина Технолоджи, Инк. | Способ транспортировки воды, содержащей диоксид хлора, хлор, хлорамины или гипохлориты, и изделие для транспортировки воды, выполненное из полиэтиленового соединения, устойчивого к хлору |
US9650448B2 (en) | 2014-06-13 | 2017-05-16 | Fina Technology, Inc. | Formation of a Ziegler-Natta catalyst |
US9624321B2 (en) | 2014-06-13 | 2017-04-18 | Fina Technology, Inc. | Formation of a Ziegler-Natta catalyst |
US9765164B2 (en) | 2014-06-27 | 2017-09-19 | Dow Global Technologies Llc | Polyolefin compositions and uses thereof |
US10196508B2 (en) | 2014-10-24 | 2019-02-05 | Exxonmobil Chemical Patents Inc. | Thermoplastic vulcanizate compositions |
CA2870027C (en) | 2014-11-07 | 2022-04-26 | Matthew Zaki Botros | Blow molding composition and process |
CA2871463A1 (en) | 2014-11-19 | 2016-05-19 | Nova Chemicals Corporation | Passivated supports: catalyst, process and product |
US10266622B2 (en) | 2014-12-12 | 2019-04-23 | Exxonmobil Research And Engineering Company | Olefin polymerization catalyst system comprising mesoporous organosilica support |
WO2016094861A1 (en) | 2014-12-12 | 2016-06-16 | Exxonmobil Chemical Patents Inc. | Olefin polymerization catalyst system comprising mesoporous organosilica support |
WO2016094870A1 (en) | 2014-12-12 | 2016-06-16 | Exxonmobil Chemical Patents Inc. | Olefin polymerization catalyst system comprising mesoporous organosilica support |
US10294312B2 (en) | 2014-12-12 | 2019-05-21 | Exxonmobil Research And Engineering Company | Olefin polymerization catalyst system comprising mesoporous organosilica support |
CA2874344C (en) | 2014-12-15 | 2021-08-31 | Nova Chemicals Corporation | Spheroidal catalyst for olefin polymerization |
EP3247548B1 (en) | 2015-01-21 | 2021-09-01 | Univation Technologies, LLC | Methods for controlling polymer chain scission |
EP3247547B1 (en) | 2015-01-21 | 2023-03-22 | Univation Technologies, LLC | Methods for gel reduction in polyolefins |
WO2016145179A1 (en) | 2015-03-10 | 2016-09-15 | Univation Technologies, Llc | Spray dried catalyst compositions, methods for preparation and use in olefin polymerization processes |
BR112017022494A2 (pt) | 2015-04-20 | 2018-07-17 | Univation Tech Llc | ligandos biaromáticos em ponte e compostos de metais de transição preparados a partir dos mesmos |
US10533063B2 (en) | 2015-04-20 | 2020-01-14 | Exxonmobil Chemical Patents Inc. | Supported catalyst systems and processes for use thereof |
US10640583B2 (en) | 2015-04-20 | 2020-05-05 | Exxonmobil Chemical Patents, Inc. | Catalyst composition comprising fluorided support and processes for use thereof |
CA2982900C (en) | 2015-04-20 | 2023-09-12 | Univation Technologies, Llc | Bridged bi-aromatic ligands and olefin polymerization catalysts prepared therefrom |
CN107667123B (zh) | 2015-04-20 | 2020-09-01 | 埃克森美孚化学专利公司 | 聚乙烯组合物 |
WO2016176135A1 (en) | 2015-04-27 | 2016-11-03 | Univation Technologies, Llc | Supported catalyst compositions having improved flow properties and preparation thereof |
CA2890606C (en) | 2015-05-07 | 2022-07-19 | Nova Chemicals Corporation | Process for polymerization using dense and spherical ziegler-natta type catalyst |
CA2985112C (en) | 2015-05-08 | 2020-06-30 | Exxonmobil Chemical Patents Inc. | Polymerization process comprising 2,2-dimethylpropane as condensing agent |
CA2891002C (en) | 2015-05-13 | 2022-09-06 | Veronica Rose Zimmerman | Modeling a bed plate and its use |
CA2891693C (en) | 2015-05-21 | 2022-01-11 | Nova Chemicals Corporation | Controlling the placement of comonomer in an ethylene copolymer |
CA2892552C (en) | 2015-05-26 | 2022-02-15 | Victoria Ker | Process for polymerization in a fluidized bed reactor |
CA2892882C (en) | 2015-05-27 | 2022-03-22 | Nova Chemicals Corporation | Ethylene/1-butene copolymers with enhanced resin processability |
WO2016195824A1 (en) | 2015-05-29 | 2016-12-08 | Exxonmobil Chemical Patents Inc. | Polymerization process using bridged metallocene compounds supported on organoaluminum treated layered silicate supports |
WO2016192097A1 (en) | 2015-06-05 | 2016-12-08 | Exxonmobil Chemical Patents Inc. | Spunbond fabrics comprising propylene-based elastomer compositions and methods thereof |
CA2900772C (en) | 2015-08-20 | 2022-07-12 | Nova Chemicals Corporation | Method for altering melt flow ratio of ethylene polymers |
EP4257639A3 (en) | 2015-09-17 | 2023-12-06 | ExxonMobil Chemical Patents Inc. | Polyethylene polymers and articles made therefrom |
CN108137730B (zh) | 2015-09-24 | 2021-10-29 | 埃克森美孚化学专利公司 | 使用在有机铝处理过的层状硅酸盐载体上负载的吡啶基二氨基化合物的聚合方法 |
EP3356374A1 (en) | 2015-09-30 | 2018-08-08 | Dow Global Technologies LLC | Multi- or dual-headed compositions useful for chain shuttling and process to prepare the same |
WO2017139031A1 (en) | 2016-02-10 | 2017-08-17 | Exxonmobil Chemical Patents Inc. | Polyethylene shrink films and processes for making the same |
BR112018068845B1 (pt) | 2016-03-29 | 2022-10-11 | Univation Technologies, Llc | Complexo de metal de fórmula ii, complexo de metal suportado e método de formação de um polímero |
US10790404B2 (en) | 2016-03-30 | 2020-09-29 | Exxonmobil Chemical Patents Inc. | Thermoplastic vulcanizate compositions for photovoltaic cell applications |
JP6743463B2 (ja) * | 2016-04-12 | 2020-08-19 | 住友化学株式会社 | ポリオレフィンの製造方法 |
CN109071844A (zh) | 2016-04-22 | 2018-12-21 | 埃克森美孚化学专利公司 | 聚乙烯片材 |
US10844529B2 (en) | 2016-05-02 | 2020-11-24 | Exxonmobil Chemicals Patents Inc. | Spunbond fabrics comprising propylene-based elastomer compositions and methods for making the same |
US9803037B1 (en) | 2016-05-03 | 2017-10-31 | Exxonmobil Chemical Patents Inc. | Tetrahydro-as-indacenyl catalyst composition, catalyst system, and processes for use thereof |
CN109312015B (zh) | 2016-05-03 | 2021-10-26 | 埃克森美孚化学专利公司 | 四氢引达省基催化剂组合物、催化剂体系及其使用方法 |
EP3464390A1 (en) | 2016-05-27 | 2019-04-10 | ExxonMobil Chemical Patents Inc. | Metallocene catalyst compositions and polymerization process therewith |
WO2018017180A1 (en) | 2016-07-21 | 2018-01-25 | Exxonmobil Chemical Patents Inc. | Rotomolded compositions, articles, and processes for making the same |
WO2018063764A1 (en) | 2016-09-27 | 2018-04-05 | Exxonmobil Chemical Patents Inc. | Polymerization process |
WO2018063767A1 (en) | 2016-09-27 | 2018-04-05 | Exxonmobil Chemical Patents Inc. | Polymerization process |
WO2018063765A1 (en) | 2016-09-27 | 2018-04-05 | Exxonmobil Chemical Patents Inc. | Polymerization process |
TW201840572A (zh) | 2016-09-30 | 2018-11-16 | 美商陶氏全球科技有限責任公司 | 適用於鏈梭移之多頭或雙頭組合物及其製備方法 |
JP7123040B2 (ja) | 2016-09-30 | 2022-08-22 | ダウ グローバル テクノロジーズ エルエルシー | 連鎖シャトリングに有用な多頭または二頭組成物の調製方法 |
BR112019006150B1 (pt) | 2016-09-30 | 2023-02-28 | Dow Global Technologies Llc | Composição e processo para preparar a composição |
WO2018067259A1 (en) | 2016-10-05 | 2018-04-12 | Exxonmobil Chemical Patents Inc. | Metallocene catalysts, catalyst systems, and methods for using the same |
WO2018067289A1 (en) | 2016-10-05 | 2018-04-12 | Exxonmobil Chemical Patents Inc. | Sterically hindered metallocenes, synthesis and use |
WO2018071250A1 (en) | 2016-10-14 | 2018-04-19 | Exxonmobil Chemical Patents Inc. | Oriented films comprising ethylene-based and methods of making same |
CN110062777A (zh) | 2016-10-19 | 2019-07-26 | 埃克森美孚化学专利公司 | 混合催化剂体系及其使用方法 |
WO2018075243A1 (en) | 2016-10-19 | 2018-04-26 | Exxonmobil Chemical Patents Inc. | Supported catalyst systems and methods of using same |
BR112019006896B1 (pt) | 2016-10-28 | 2022-12-06 | Fina Technology, Inc | Processo para fabricação de uma película de bopp |
KR102454616B1 (ko) | 2016-11-08 | 2022-10-18 | 유니베이션 테크놀로지즈, 엘엘씨 | 폴리에틸렌 조성물 |
EP3538569B1 (en) | 2016-11-08 | 2021-12-01 | Univation Technologies, LLC | Polyethylene composition |
WO2018089195A1 (en) | 2016-11-08 | 2018-05-17 | Univation Technologies, Llc | Bimodal polyethylene |
WO2018093877A1 (en) | 2016-11-17 | 2018-05-24 | Univation Technologies, Llc | Methods of measuring solids content in a slurry catalyst composition |
CN109996822A (zh) | 2016-11-18 | 2019-07-09 | 埃克森美孚化学专利公司 | 使用含铬催化剂的聚合方法 |
US10662262B2 (en) | 2016-12-02 | 2020-05-26 | Exxonmobil Chemical Patents, Inc. | Olefin polymerization catalyst systems and methods for making the same |
WO2018102091A1 (en) | 2016-12-02 | 2018-06-07 | Exxonmobil Chemical Patents Inc. | Polyethylene films |
US10563055B2 (en) | 2016-12-20 | 2020-02-18 | Exxonmobil Chemical Patents Inc. | Carpet compositions and methods of making the same |
WO2018118258A1 (en) | 2016-12-20 | 2018-06-28 | Exxonmobil Chemical Patents Inc. | Methods for controlling start up conditions in polymerization processes |
WO2018118155A1 (en) | 2016-12-20 | 2018-06-28 | Exxonmobil Chemical Patents Inc. | Polymerization process |
CN114395065A (zh) | 2016-12-22 | 2022-04-26 | 埃克森美孚化学专利公司 | 喷雾干燥的烯烃聚合催化剂组合物和使用其的聚合方法 |
CN110461882B (zh) | 2017-02-03 | 2021-12-14 | 埃克森美孚化学专利公司 | 制备聚乙烯聚合物的方法 |
US11311870B2 (en) | 2017-02-07 | 2022-04-26 | Exxonmobil Chemical Patents Inc. | Processes for reducing the loss of catalyst activity of a Ziegler-Natta catalyst |
WO2018151904A1 (en) | 2017-02-20 | 2018-08-23 | Exxonmobil Chemical Patents Inc. | Group 4 catalyst compounds and process for use thereof |
CN110325561B (zh) | 2017-02-20 | 2022-10-14 | 埃克森美孚化学专利公司 | 第4族催化剂化合物及其使用方法 |
WO2018151790A1 (en) | 2017-02-20 | 2018-08-23 | Exxonmobil Chemical Patents Inc. | Hafnocene catalyst compounds and process for use thereof |
WO2018151903A1 (en) | 2017-02-20 | 2018-08-23 | Exxonmobil Chemical Patents Inc. | Supported catalyst systems and processes for use thereof |
WO2018170208A1 (en) | 2017-03-15 | 2018-09-20 | Dow Global Technologies Llc | Catalyst system for multi-block copolymer formation |
EP3596142B1 (en) | 2017-03-15 | 2023-05-24 | Dow Global Technologies LLC | Catalyst system for multi-block copolymer formation |
CN110603274B (zh) | 2017-03-15 | 2022-09-30 | 陶氏环球技术有限责任公司 | 用于形成多嵌段共聚物的催化剂体系 |
EP3596143B1 (en) | 2017-03-15 | 2023-04-26 | Dow Global Technologies LLC | Catalyst system for multi-block copolymer formation |
CN110582518B (zh) | 2017-03-15 | 2022-08-09 | 陶氏环球技术有限责任公司 | 用于形成多嵌段共聚物的催化剂体系 |
US20200108539A1 (en) | 2017-04-06 | 2020-04-09 | ExxonMobil Chemica Patents Inc. | Cast Films and Processes for Making the Same |
US11193008B2 (en) | 2017-04-10 | 2021-12-07 | Exxonmobil Chemical Patents Inc. | Methods for making polyolefin polymer compositions |
JP6868714B2 (ja) | 2017-05-10 | 2021-05-12 | ユニベーション・テクノロジーズ・エルエルシー | 触媒系およびその使用のためのプロセス |
CN107033264B (zh) * | 2017-05-27 | 2019-06-25 | 武汉科技大学 | 一种流化床分区反应器及其工艺方法 |
CA2969627C (en) | 2017-05-30 | 2024-01-16 | Nova Chemicals Corporation | Ethylene copolymer having enhanced film properties |
WO2018226311A1 (en) | 2017-06-08 | 2018-12-13 | Exxonmobil Chemical Patents Inc. | Polyethylene blends and extrudates and methods of making the same |
CN110785438B (zh) | 2017-06-08 | 2022-07-01 | 尤尼威蒂恩技术有限责任公司 | 维持聚乙烯聚合物产物的熔融流动指数的方法 |
WO2019022801A1 (en) | 2017-07-24 | 2019-01-31 | Exxonmobil Chemical Patents Inc. | POLYETHYLENE FILMS AND METHODS OF PRODUCING THE SAME |
WO2019027587A1 (en) | 2017-08-04 | 2019-02-07 | Exxonmobil Chemical Patents Inc. | POLYETHYLENE COMPOSITIONS AND FILMS PREPARED THEREFROM |
WO2019027586A1 (en) | 2017-08-04 | 2019-02-07 | Exxonmobil Chemical Patents Inc. | MIXED CATALYSTS COMPRISING 2,6-BIS (IMINO) PYRIDYL-IRON COMPLEXES AND BRONZED HAFNOCENES |
US10913808B2 (en) | 2017-08-04 | 2021-02-09 | Exxonmobil Chemical Patents Inc. | Mixed catalysts with unbridged hafnocenes with -CH2-SiMe3 moieties |
US11046796B2 (en) | 2017-08-04 | 2021-06-29 | Exxonmobil Chemical Patents Inc. | Films made from polyethylene compositions and processes for making same |
CN111051353B (zh) | 2017-08-28 | 2022-09-09 | 尤尼威蒂恩技术有限责任公司 | 双峰聚乙烯 |
CN111051419A (zh) | 2017-09-11 | 2020-04-21 | 尤尼威蒂恩技术有限责任公司 | 含有碳黑的双峰聚乙烯组合物 |
EP3700947A1 (en) | 2017-10-23 | 2020-09-02 | ExxonMobil Chemical Patents Inc. | Polyethylene compositions and articles made therefrom |
EP3700946B1 (en) | 2017-10-27 | 2021-09-08 | Univation Technologies, LLC | Selectively transitioning polymerization processes |
WO2019083716A1 (en) | 2017-10-27 | 2019-05-02 | Univation Technologies, Llc | RESINS AND FILMS BASED ON A POLYETHYLENE COPOLYMER |
SG11202001743RA (en) | 2017-10-31 | 2020-05-28 | Exxonmobil Chemical Patents Inc | Toluene free silica supported single-site metallocene catalysts from in-situ supported alumoxane formation in aliphatic solvents |
WO2019094132A1 (en) | 2017-11-13 | 2019-05-16 | Exxonmobil Chemical Patents Inc. | Polyethylene compositions and articles made therefrom |
WO2019094131A1 (en) | 2017-11-13 | 2019-05-16 | Exxonmobil Chemical Patents Inc. | Polyethylene compositions and articles made therefrom |
EP3710501A2 (en) | 2017-11-15 | 2020-09-23 | ExxonMobil Chemical Patents Inc. | Polymerization processes |
WO2019099577A1 (en) | 2017-11-15 | 2019-05-23 | Exxonmobil Chemical Patents Inc. | Polymerization processes |
CN111356706B (zh) | 2017-11-15 | 2022-04-15 | 埃克森美孚化学专利公司 | 聚合方法 |
CN111356869B (zh) | 2017-11-17 | 2022-02-22 | 埃克森美孚化学专利公司 | Pe-rt管道及其制造方法 |
EP3717527A1 (en) | 2017-11-28 | 2020-10-07 | ExxonMobil Chemical Patents Inc. | Polyethylene compositions and films made therefrom |
EP3717525B1 (en) | 2017-11-28 | 2023-06-07 | ExxonMobil Chemical Patents Inc. | Catalyst systems and polymerization processes for using the same |
EP3717522A1 (en) | 2017-12-01 | 2020-10-07 | ExxonMobil Chemical Patents Inc. | Catalyst systems and polymerization processes for using the same |
WO2019108327A1 (en) | 2017-12-01 | 2019-06-06 | Exxonmobil Chemical Patents Inc. | Films comprising polyethylene composition |
US11325927B2 (en) | 2017-12-05 | 2022-05-10 | Univation Technologies, Llc | Activated spray-dried Ziegler-Natta catalyst system |
US11325928B2 (en) | 2017-12-05 | 2022-05-10 | Univation Technologies, Llc | Modified spray-dried Ziegler-Natta (pro)catalyst systems |
US11591417B2 (en) | 2017-12-13 | 2023-02-28 | Exxonmobil Chemical Patents Inc. | Deactivation methods for active components from gas phase polyolefin polymerization processes |
KR20200099540A (ko) | 2017-12-18 | 2020-08-24 | 다우 글로벌 테크놀로지스 엘엘씨 | 하프노센-티타노센 촉매 시스템 |
ES2978120T3 (es) | 2017-12-18 | 2024-09-05 | Dow Global Technologies Llc | Sistema de catalizador de circonoceno-titanoceno |
EP3749707A1 (en) | 2018-02-05 | 2020-12-16 | ExxonMobil Chemical Patents Inc. | Enhanced processability of lldpe by addition of ultra-high molecular weight high density polyethylene |
CN111741961B (zh) | 2018-02-19 | 2024-01-12 | 埃克森美孚化学专利公司 | 催化剂、催化剂体系和使用它们的方法 |
WO2019173030A1 (en) | 2018-03-08 | 2019-09-12 | Exxonmobil Chemical Patents Inc. | Methods of preparing and monitoring a seed bed for polymerization reactor startup |
EP3768740A4 (en) | 2018-03-19 | 2021-12-29 | ExxonMobil Chemical Patents Inc. | Processes for producing high propylene content pedm using tetrahydroindacenyl catalyst systems |
US11142600B2 (en) | 2018-03-19 | 2021-10-12 | Univation Technologies, Llc | Ethylene/1-hexene copolymer |
WO2019182746A2 (en) | 2018-03-23 | 2019-09-26 | Univation Technologies, Llc | Catalyst formulations |
EP3774943A1 (en) | 2018-03-26 | 2021-02-17 | Dow Global Technologies LLC | Spray-dried zirconocene catalyst system |
BR112020018814B1 (pt) | 2018-03-28 | 2023-12-12 | Univation Technologies, Llc | Composição de polietileno bimodal, método para produzir uma composição de polietileno bimodal, artigo fabricado e tampa ou fecho de garrafa |
CA3037503A1 (en) | 2018-04-26 | 2019-10-26 | Nova Chemicals Corporation | Phosphinimine amido-ether complexes |
CN112088172A (zh) | 2018-04-26 | 2020-12-15 | 埃克森美孚化学专利公司 | 在脂族和脂环族烃溶剂中制备非配位阴离子型活化剂的方法 |
WO2019209334A1 (en) | 2018-04-27 | 2019-10-31 | Exxonmobil Chemical Patents Inc. | Polyethylene films and methods of making the same |
WO2019213227A1 (en) | 2018-05-02 | 2019-11-07 | Exxonmobil Chemical Patents Inc. | Methods for scale-up from a pilot plant to a larger production facility |
EP3788082A1 (en) | 2018-05-02 | 2021-03-10 | ExxonMobil Chemical Patents Inc. | Methods for scale-up from a pilot plant to a larger production facility |
CN112154174B (zh) | 2018-05-22 | 2024-02-06 | 埃克森美孚化学专利公司 | 形成膜的方法及其相关的计算装置 |
CA3099703A1 (en) | 2018-05-24 | 2019-11-28 | Univation Technologies, Llc | Unimodal polyethylene copolymer and film thereof |
CA3102426A1 (en) | 2018-06-12 | 2019-12-19 | Dow Global Technologies Llc | Activator-nucleator formulations |
CN112469748B (zh) | 2018-06-13 | 2023-04-04 | 尤尼威蒂恩技术有限责任公司 | 双峰聚乙烯共聚物和其薄膜 |
CN112105652B (zh) | 2018-06-13 | 2023-05-05 | 尤尼威蒂恩技术有限责任公司 | 喷雾干燥的齐格勒-纳塔(前)催化剂体系 |
CN112313254B (zh) | 2018-06-19 | 2023-04-18 | 埃克森美孚化学专利公司 | 聚乙烯组合物和由其制备的膜 |
CA3106989C (en) | 2018-07-31 | 2023-07-04 | Univation Technologies, Llc | Unimodal polyethylene copolymer and film thereof |
CA3106990A1 (en) | 2018-07-31 | 2020-02-06 | Univation Technologies, Llc | Unimodal polyethylene copolymer and film thereof |
CA3126921A1 (en) | 2018-08-29 | 2020-03-05 | Univation Technologies, Llc | Method of changing melt rheology property of bimodal polyethylene polymer |
EP3844194A1 (en) | 2018-08-29 | 2021-07-07 | Univation Technologies, LLC | Bimodal polyethylene copolymer and film thereof |
WO2020046406A1 (en) | 2018-08-30 | 2020-03-05 | Exxonmobil Chemical Patents Inc. | Polymerization processes and polymers made therefrom |
WO2020056119A1 (en) | 2018-09-14 | 2020-03-19 | Fina Technology, Inc. | Polyethylene and controlled rheology polypropylene polymer blends and methods of use |
SG11202102947QA (en) | 2018-09-28 | 2021-04-29 | Univation Tech Llc | Bimodal polyethylene copolymer composition and pipe made thereof |
WO2020096734A1 (en) | 2018-11-06 | 2020-05-14 | Dow Global Technologies Llc | Alkane-soluble non-metallocene precatalysts |
JP7524170B2 (ja) | 2018-11-06 | 2024-07-29 | ダウ グローバル テクノロジーズ エルエルシー | アルカン可溶性非メタロセンプレ触媒 |
KR20210091199A (ko) | 2018-11-06 | 2021-07-21 | 다우 글로벌 테크놀로지스 엘엘씨 | 알칸-가용성 비-메탈로센 전촉매를 사용한 올레핀 중합 방법 |
CN113227244A (zh) | 2018-12-27 | 2021-08-06 | 埃克森美孚化学专利公司 | 具有较快结晶时间的基于丙烯的纺粘织物 |
CN113474404A (zh) | 2019-02-20 | 2021-10-01 | 弗纳技术股份有限公司 | 具有低翘曲的聚合物组合物 |
EP3941950A1 (en) | 2019-03-21 | 2022-01-26 | ExxonMobil Chemical Patents Inc. | Methods for improving production in gas phase polymerization |
EP3941949A1 (en) | 2019-03-21 | 2022-01-26 | ExxonMobil Chemical Patents Inc. | Methods for improving gas phase polymerization |
WO2020214958A1 (en) | 2019-04-17 | 2020-10-22 | Exxonmobil Chemical Patents Inc. | Method for improving uv weatherability of thermoplastic vulcanizates |
SG11202111124PA (en) | 2019-04-30 | 2021-11-29 | Dow Global Technologies Llc | Metal-ligand complexes |
WO2020223193A1 (en) | 2019-04-30 | 2020-11-05 | Dow Global Technologies Llc | Bimodal poly(ethylene-co-1-alkene) copolymer |
WO2020223191A1 (en) | 2019-04-30 | 2020-11-05 | Dow Global Technologies Llc | Bimodal poly(ethylene-co-1-alkene) copolymer |
CA3142138A1 (en) | 2019-06-10 | 2020-12-17 | Univation Technologies, Llc | Polyethylene blend |
JP7430774B2 (ja) | 2019-07-17 | 2024-02-13 | エクソンモービル・ケミカル・パテンツ・インク | 低ガラス転移温度を有する高プロピレン含有量ep |
AR119631A1 (es) | 2019-08-26 | 2021-12-29 | Dow Global Technologies Llc | Composición a base de polietileno bimodal |
US20220325083A1 (en) | 2019-09-26 | 2022-10-13 | Univation Technologies, Llc | Bimodal polyethylene homopolymer composition |
CN114729080A (zh) | 2019-11-14 | 2022-07-08 | 埃克森美孚化学专利公司 | 气相聚乙烯共聚物 |
WO2021154204A1 (en) | 2020-01-27 | 2021-08-05 | Formosa Plastics Corporation, U.S.A. | Process for preparing catalysts and catalyst compositions |
US11820841B2 (en) | 2020-01-28 | 2023-11-21 | Exxonmobil Chemical Patents Inc. | Reducing accumulation of C6+ hydrocarbon components in polyolefin gas-phase reactors |
WO2021154442A1 (en) | 2020-01-31 | 2021-08-05 | Exxonmobil Research And Engineering Company | Polyethylene films having high tear strength |
EP4110835A1 (en) | 2020-02-24 | 2023-01-04 | ExxonMobil Chemical Patents Inc. | Lewis base catalysts and methods thereof |
WO2021173326A1 (en) | 2020-02-26 | 2021-09-02 | Exxonmobil Chemical Patents Inc. | Highly efficient c6 inert vent for gas phase polyethylene production |
WO2021188256A1 (en) | 2020-03-18 | 2021-09-23 | Exxonmobil Chemical Patents Inc. | Extrusion blow molded articles and processes for making same |
WO2021188361A1 (en) | 2020-03-20 | 2021-09-23 | Exxonmobil Chemical Patents Inc. | Linear alpha-olefin copolymers and impact copolymers thereof |
WO2021202483A1 (en) | 2020-04-01 | 2021-10-07 | Dow Global Technologies Llc | Bimodal linear low density polyethylene copolymer |
MX2022012093A (es) | 2020-04-07 | 2022-10-13 | Nova Chem Int Sa | Polietileno de alta densidad para articulos rigidos. |
US20230167205A1 (en) | 2020-04-21 | 2023-06-01 | Nova Chemicals (International) S.A. | Cyclopentadienyl/adamantyl phosphinimine titanium complexes |
US20230235100A1 (en) | 2020-04-21 | 2023-07-27 | Nova Chemicals (International) S.A. | Cyclopentadienyl/adamantyl phosphinimine zirconium and hafnium complexes |
US20230182366A1 (en) | 2020-05-19 | 2023-06-15 | Exxonmobil Chemical Patents Inc. | Extrusion Blow Molded Containers And Processes For Making Same |
BR112022021802A2 (pt) | 2020-05-29 | 2022-12-13 | Dow Global Technologies Llc | Métodos para produzir um catalisador e um polímero poliolefínico, catalisador pós-metalocênico atenuado, método de alimentar um catalisador pós-metalocênico, e, sistema de catalisador multimodal |
BR112022023744A2 (pt) | 2020-05-29 | 2022-12-20 | Dow Global Technologies Llc | Métodos para produzir um catalisador pós-metalocênico atenuado, de alimentar um catalisador pós-metalocênico a um reator de polimerização em fase de lama ou em fase gasosa e para produzir um polímero poliolefínico, catalisador pós-metalocênico atenuado, e, sistema de catalisador multimodal |
WO2021242801A1 (en) | 2020-05-29 | 2021-12-02 | Dow Global Technologies Llc | Attenuated hybrid catalysts |
WO2021242795A1 (en) | 2020-05-29 | 2021-12-02 | Dow Global Technologies Llc | Attenuated post-metallocene catalysts |
BR112022023957A2 (pt) | 2020-05-29 | 2023-11-14 | Dow Global Technologies Llc | Métodos para converter quimicamente um pré-catalisador de ligante-metal unimodal em um catalisador de ligante-metal bimodal e de fabricação de um copolímero de poli(etileno-co-alfa-olefina), copolímero de poli(etileno-co-alfa-olefina), artigo fabricado, e, sistema catalisador multimodal |
BR112022023898A2 (pt) | 2020-05-29 | 2022-12-27 | Dow Global Technologies Llc | Métodos para produzir um catalisador não metalocênico de produtividade aprimorada, de alimentar um catalisador não metalocênico de produtividade aprimorada a um reator de polimerização em fase de lama, em fase de solução ou em fase gasosa e para produzir um polímero de poliolefina, catalisador não metalocênico de produtividade aprimorada, sistema catalisador multimodal, polímero de poliolefina, e, artigo fabricado |
WO2022010622A1 (en) | 2020-07-07 | 2022-01-13 | Exxonmobil Chemical Patents Inc. | Processes for making 3-d objects from blends of polyethylene and polar polymers |
CN116209683A (zh) | 2020-08-10 | 2023-06-02 | 埃克森美孚化学专利公司 | 向聚合反应器递送非芳族溶液的方法 |
WO2022047449A1 (en) | 2020-08-25 | 2022-03-03 | Exxonmobil Chemical Patents Inc. | High density polyethylene compositions with exceptional physical properties |
US20230257498A1 (en) | 2020-09-22 | 2023-08-17 | Dow Global Technologies Llc | Bimodal polyethylene copolymer and film thereof |
CA3193704A1 (en) | 2020-09-30 | 2022-04-07 | Rujul M. MEHTA | Bimodal polyethylene copolymers for pe-80 pipe applications |
EP4225816A1 (en) | 2020-10-08 | 2023-08-16 | ExxonMobil Chemical Patents Inc. | Supported catalyst systems and processes for use thereof |
CN116490525A (zh) | 2020-11-19 | 2023-07-25 | 埃克森美孚化学专利公司 | 聚烯烃排放工艺和设备 |
EP4247819A1 (en) | 2020-11-23 | 2023-09-27 | ExxonMobil Chemical Patents Inc. | Toluene free supported methylalumoxane precursor |
US20240018278A1 (en) | 2020-11-23 | 2024-01-18 | ExxonMobil Technology and Engineering Company-Chem | Improved Process to Prepare Catalyst from In-Situ Formed Alumoxane |
US20230416418A1 (en) | 2020-11-23 | 2023-12-28 | Exxonmobil Chemical Patents Inc. | Metallocene polypropylene prepared using aromatic solvent-free supports |
WO2022173915A1 (en) | 2021-02-15 | 2022-08-18 | Dow Global Technologies Llc | Method for making a poly(ethylene-co-1-alkene) copolymer with reverse comonomer distribution |
CA3214562A1 (en) | 2021-04-26 | 2022-11-03 | Michael Mcleod | Thin single-site catalyzed polymer sheets |
WO2022260896A1 (en) | 2021-06-10 | 2022-12-15 | Dow Global Technologies Llc | Catalyst compositions that have modified activity and processes to make them |
WO2023044092A1 (en) | 2021-09-20 | 2023-03-23 | Dow Global Technologies Llc | Process of making catalytically-active prepolymer composition and compositions made thereby |
EP4405367A1 (en) | 2021-09-20 | 2024-07-31 | Nova Chemicals (International) S.A. | Olefin polymerization catalyst system and polymerization process |
EP4419571A1 (en) | 2021-10-21 | 2024-08-28 | Univation Technologies, LLC | Bimodal poly(ethylene-co-1-alkene) copolymer and blow-molded intermediate bulk containers made therefrom |
WO2023081577A1 (en) | 2021-11-02 | 2023-05-11 | Exxonmobil Chemical Patents Inc. | Polyethylene compositions, articles thereof, and methods thereof |
AR128453A1 (es) | 2022-02-11 | 2024-05-08 | Dow Global Technologies Llc | Composiciones de polietileno de densidad media bimodal adecuadas para el uso como cintas de goteo de microirrigación |
MX2024010013A (es) | 2022-03-22 | 2024-08-22 | Nova Chem Int Sa | Complejo organometalico, sistema catalizador de polimerizacion de olefina y proceso de polimerizacion. |
WO2023239560A1 (en) | 2022-06-09 | 2023-12-14 | Formosa Plastics Corporaton, U.S.A. | Clay composite support-activators and catalyst compositions |
WO2023244899A1 (en) | 2022-06-13 | 2023-12-21 | Exxonmobil Chemical Patents Inc. | Polyethylene compositions and related bicomponent fibers, nonwoven fabrics, and methods |
WO2023244901A1 (en) | 2022-06-15 | 2023-12-21 | Exxonmobil Chemical Patents Inc. | Ethylene-based polymers, articles made therefrom, and processes for making same |
WO2023250240A1 (en) | 2022-06-24 | 2023-12-28 | Exxonmobil Chemical Patents Inc. | Low cost processes of in-situ mao supportation and the derived finished polyolefin catalysts |
WO2024118536A1 (en) | 2022-11-29 | 2024-06-06 | Fina Technology, Inc. | Polypropylenes for additive manufacturing |
WO2024137235A1 (en) | 2022-12-19 | 2024-06-27 | Dow Global Technologies Llc | Method of making a morphology-improved polyethylene powder |
WO2024220175A1 (en) | 2023-04-19 | 2024-10-24 | Dow Global Technologies Llc | Pipes including high density multimodal polyethylene compositions |
KR20240019177A (ko) | 2024-01-24 | 2024-02-14 | 박왕희 | 트위스트스텝이동 운동기구 |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1720292B2 (de) * | 1967-08-10 | 1975-05-22 | Basf Ag, 6700 Ludwigshafen | Verfahren zur Herstellung von Propylenpolymerisaten |
US4012573A (en) * | 1970-10-09 | 1977-03-15 | Basf Aktiengesellschaft | Method of removing heat from polymerization reactions of monomers in the gas phase |
JPS5634709A (en) * | 1979-08-31 | 1981-04-07 | Mitsui Petrochem Ind Ltd | Gas phase polymerization or copolymerization of olefin |
JPS56166207A (en) * | 1980-05-27 | 1981-12-21 | Mitsui Petrochem Ind Ltd | Gas-phase polymerization of olefin |
US4287327A (en) * | 1980-09-29 | 1981-09-01 | Standard Oil Company (Indiana) | Process for controlling polymer particle size in vapor phase polymerization |
JPS57155204A (en) * | 1981-02-19 | 1982-09-25 | Chisso Corp | Vapor-phase polymerization of olefin and equipment therefor |
DE3123115A1 (de) * | 1981-06-11 | 1982-12-30 | Basf Ag, 6700 Ludwigshafen | Verfahren zum herstellen von homopolymerisaten oder copolymerisaten des propylens |
DZ520A1 (fr) * | 1982-03-24 | 2004-09-13 | Union Carbide Corp | Procédé perfectionné pour accroitre le rendement espace temps d'une réaction de polymérisation exothermique en lit fluidisé. |
US4543399A (en) * | 1982-03-24 | 1985-09-24 | Union Carbide Corporation | Fluidized bed reaction systems |
US4588790A (en) * | 1982-03-24 | 1986-05-13 | Union Carbide Corporation | Method for fluidized bed polymerization |
US4528790A (en) * | 1983-07-13 | 1985-07-16 | Owens-Corning Fiberglas Corporation | Roof insulation system |
DE3442659A1 (de) * | 1984-11-23 | 1986-05-28 | Basf Ag, 6700 Ludwigshafen | Verfahren zur kontinuierlichen messung des fuellungsgrades von wirbelschichtapparaten |
FR2634212B1 (fr) * | 1988-07-15 | 1991-04-19 | Bp Chimie Sa | Appareillage et procede de polymerisation d'olefines en phase gazeuse dans un reacteur a lit fluidise |
US5352749A (en) * | 1992-03-19 | 1994-10-04 | Exxon Chemical Patents, Inc. | Process for polymerizing monomers in fluidized beds |
US5436304A (en) * | 1992-03-19 | 1995-07-25 | Exxon Chemical Patents Inc. | Process for polymerizing monomers in fluidized beds |
US5317036A (en) * | 1992-10-16 | 1994-05-31 | Union Carbide Chemicals & Plastics Technology Corporation | Gas phase polymerization reactions utilizing soluble unsupported catalysts |
US5332706A (en) * | 1992-12-28 | 1994-07-26 | Mobil Oil Corporation | Process and a catalyst for preventing reactor fouling |
AU673048B2 (en) * | 1992-12-28 | 1996-10-24 | Mobil Oil Corporation | Linear low density polyethylene film |
KR100190268B1 (ko) * | 1993-04-26 | 1999-06-01 | 에인혼 해롤드 | 유동상에서 단량체를 중합시키는 방법 |
DE69433579T3 (de) * | 1993-04-26 | 2009-11-05 | Univation Technologies, LLC, Houston | Verfahren zur Polymerisation von Monomeren in Wirbelschichtbetten |
-
1994
- 1994-10-03 US US08/316,769 patent/US5462999A/en not_active Expired - Lifetime
-
1995
- 1995-09-26 EP EP95935108A patent/EP0784638B1/en not_active Revoked
- 1995-09-26 WO PCT/US1995/012242 patent/WO1996010591A1/en active IP Right Grant
- 1995-09-26 CA CA002198144A patent/CA2198144C/en not_active Expired - Lifetime
- 1995-09-26 ES ES95935108T patent/ES2146777T3/es not_active Expired - Lifetime
- 1995-09-26 DK DK99118594T patent/DK0970970T3/da active
- 1995-09-26 AT AT95935108T patent/ATE191490T1/de not_active IP Right Cessation
- 1995-09-26 PT PT95935108T patent/PT784638E/pt unknown
- 1995-09-26 DK DK95935108T patent/DK0784638T3/da active
- 1995-09-26 RU RU97107335A patent/RU2140425C1/ru active
- 1995-09-26 KR KR1019970701174A patent/KR100419695B1/ko not_active IP Right Cessation
- 1995-09-26 DE DE69532306T patent/DE69532306T2/de not_active Expired - Lifetime
- 1995-09-26 BR BR9509227A patent/BR9509227A/pt not_active IP Right Cessation
- 1995-09-26 PT PT99118594T patent/PT970970E/pt unknown
- 1995-09-26 JP JP51194596A patent/JP3356435B2/ja not_active Expired - Lifetime
- 1995-09-26 CN CNB951954377A patent/CN1159352C/zh not_active Expired - Lifetime
- 1995-09-26 PL PL95319375A patent/PL184584B1/pl not_active IP Right Cessation
- 1995-09-26 CZ CZ0062197A patent/CZ296150B6/cs not_active IP Right Cessation
- 1995-09-26 ES ES99118594T patent/ES2209306T3/es not_active Expired - Lifetime
- 1995-09-26 AT AT99118594T patent/ATE256150T1/de active
- 1995-09-26 DE DE69516159T patent/DE69516159T2/de not_active Revoked
- 1995-09-26 AU AU37249/95A patent/AU705438B2/en not_active Expired
- 1995-09-26 EP EP99118594A patent/EP0970970B1/en not_active Expired - Lifetime
- 1995-09-28 MY MYPI95002893A patent/MY116372A/en unknown
- 1995-10-09 SA SA95160298A patent/SA95160298B1/ar unknown
-
1997
- 1997-04-01 NO NO19971466A patent/NO311260B1/no unknown
-
2000
- 2000-06-23 GR GR20000401467T patent/GR3033771T3/el not_active IP Right Cessation
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1159352C (zh) | 流化床单体聚合法 | |
CN1149233C (zh) | 流化床中单体的聚合方法 | |
CN1069323C (zh) | 气相聚合方法 | |
RU2120947C1 (ru) | Способ газофазной полимеризации в псевдоожиженном слое | |
CN100547005C (zh) | 可控制组成分布的制备聚合物的方法 | |
CN1092206C (zh) | 防止反应器结垢的方法 | |
RU2533488C2 (ru) | Системы и способы производства полимеров | |
CN1249094C (zh) | 聚合方法 | |
CN1051737A (zh) | 生产粘性聚合物的方法 | |
CN1176257A (zh) | 烯烃气相聚合的终止方法、引发方法和聚合设备 | |
US11312797B2 (en) | Systems and methods for polyethylene recovery with low volatile content | |
CN1054777A (zh) | α-烯烃气相聚合方法及设备 | |
CN102257017A (zh) | 用于聚合反应种子床处理的方法 | |
CN1162449C (zh) | 在流化床反应器中的烯烃连续气相聚合或共聚合法 | |
CN1176255A (zh) | 聚合方法 | |
KR102333339B1 (ko) | 가스 고체 올레핀 중합 반응기의 냉각 성능을 향상시키기 위한 방법 | |
US5041473A (en) | Process for producing carbon black filled polyethylene resins | |
CN1068336C (zh) | 流化床中单体聚合方法 | |
MXPA97002417A (en) | Process for polymerizing monomers in fluidized beds |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CX01 | Expiry of patent term |
Granted publication date: 20040728 |
|
EXPY | Termination of patent right or utility model |