CN102005477B - 集成电路、鳍式场效应晶体管及其制造方法 - Google Patents
集成电路、鳍式场效应晶体管及其制造方法 Download PDFInfo
- Publication number
- CN102005477B CN102005477B CN2010102638023A CN201010263802A CN102005477B CN 102005477 B CN102005477 B CN 102005477B CN 2010102638023 A CN2010102638023 A CN 2010102638023A CN 201010263802 A CN201010263802 A CN 201010263802A CN 102005477 B CN102005477 B CN 102005477B
- Authority
- CN
- China
- Prior art keywords
- raceway groove
- fin formula
- effect transistor
- field effect
- source electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 12
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 9
- 230000005669 field effect Effects 0.000 title claims description 70
- 239000004065 semiconductor Substances 0.000 claims abstract description 27
- 229910000577 Silicon-germanium Inorganic materials 0.000 claims abstract description 25
- 229910052732 germanium Inorganic materials 0.000 claims description 53
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 53
- 239000000463 material Substances 0.000 claims description 34
- 229910052710 silicon Inorganic materials 0.000 claims description 21
- 239000010703 silicon Substances 0.000 claims description 21
- 229910005898 GeSn Inorganic materials 0.000 claims description 4
- 230000007547 defect Effects 0.000 abstract description 17
- 230000000694 effects Effects 0.000 abstract description 10
- 239000000758 substrate Substances 0.000 abstract 2
- 239000002019 doping agent Substances 0.000 abstract 1
- 238000009825 accumulation Methods 0.000 description 35
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 19
- 238000002955 isolation Methods 0.000 description 11
- 229910044991 metal oxide Inorganic materials 0.000 description 5
- 150000004706 metal oxides Chemical class 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 238000005036 potential barrier Methods 0.000 description 4
- 229910021332 silicide Inorganic materials 0.000 description 4
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 4
- 229910000980 Aluminium gallium arsenide Inorganic materials 0.000 description 3
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 description 3
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- 230000002950 deficient Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000004904 shortening Methods 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 229910004129 HfSiO Inorganic materials 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- MCMNRKCIXSYSNV-UHFFFAOYSA-N ZrO2 Inorganic materials O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 1
- 229910006501 ZrSiO Inorganic materials 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000002800 charge carrier Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- YBMRDBCBODYGJE-UHFFFAOYSA-N germanium oxide Inorganic materials O=[Ge]=O YBMRDBCBODYGJE-UHFFFAOYSA-N 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 239000002784 hot electron Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- PVADDRMAFCOOPC-UHFFFAOYSA-N oxogermanium Chemical compound [Ge]=O PVADDRMAFCOOPC-UHFFFAOYSA-N 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 230000005641 tunneling Effects 0.000 description 1
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/785—Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/785—Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
- H01L29/7851—Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET with the body tied to the substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66787—Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel
- H01L29/66795—Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/04—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
- H01L27/08—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
- H01L27/085—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
- H01L27/088—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
- H01L27/0886—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate including transistors with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/7842—Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
- H01L29/7848—Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate the means being located in the source/drain region, e.g. SiGe source and drain
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/785—Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
- H01L2029/7857—Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET of the accumulation type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/822—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
- H01L21/8232—Field-effect technology
- H01L21/8234—MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
- H01L21/823431—MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of transistors with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/16—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
- H01L29/161—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys
- H01L29/165—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys in different semiconductor regions, e.g. heterojunctions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/26—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, elements provided for in two or more of the groups H01L29/16, H01L29/18, H01L29/20, H01L29/22, H01L29/24, e.g. alloys
- H01L29/267—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, elements provided for in two or more of the groups H01L29/16, H01L29/18, H01L29/20, H01L29/22, H01L29/24, e.g. alloys in different semiconductor regions, e.g. heterojunctions
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
- Thin Film Transistor (AREA)
Abstract
本发明提供一种集成电路、鳍式场效应晶体管及其制造方法,该鳍式场效应晶体管包括一基材及一鳍式结构于此基材上。此鳍式结构包含一沟道,位于一源极及一漏极之间,其中此源极、此漏极及此沟道具有一第一型掺杂。此沟道包含锗、锗化硅或III-V族半导体。一栅极介电层涂布于此沟道上,且一栅极位于此栅极介电层上。本发明可抑制界面缺陷的影响,还可掺入锗化硅应力源至锗的鳍式场效应晶体管NMOS中,以增进效能。
Description
技术领域
本发明涉及一种半导体装置,尤其涉及一种累积型(accumulation type)鳍式场效应晶体管。
背景技术
随着集成电路尺寸微缩,需克服因尺寸微缩所面临的问题。例如,金属氧化物半导体场效应晶体管(MOSFET)因沟道长度缩减而造成效能降低,包括漏电流增加。因此,业界需要新颖的方法及结构来改善金属氧化物半导体场效应晶体管的效能。
发明内容
为了解决现有技术的问题,本发明提供一种鳍式场效应晶体管,包括:一基材;一鳍式结构,位于此基材上,此鳍式结构包含一沟道,位于一源极及一漏极之间,其中此源极、此漏极及此沟道具有一第一型掺杂,且此沟道包含锗、锗化硅或III-V族半导体至少其一;一栅极介电层,位于此沟道上;以及一栅极,位于此栅极介电层上。
本发明也提供一种鳍式场效应晶体管的制造方法,包括:形成一鳍式结构于一基材上,此鳍式结构包含一沟道,位于一源极及一漏极之间,其中此源极、此漏极及此沟道具有一第一型掺杂,且此源极、此漏极及此沟道包含锗、锗化硅或III-V族半导体;形成一栅极介电层于此沟道上;以及形成一栅极于此栅极介电层上。
本发明还提供一种集成电路,包括:一基材;一虚置图案,包含至少一第一鳍式结构于此基材上,此第一鳍式结构包含一第一沟道,位于一第一源极及一第一漏极之间,其中此第一源极、此第一漏极及此第一沟道具有一第一型掺杂;以及一鳍式场效应晶体管,位于此基材上,此鳍式场效应晶体管包含:一第二鳍式结构,位于此基材上,此第二鳍式结构包含一第二沟道,位于一第二源极及一第二漏极之间,其中此第二源极、此第二漏极及此第二沟道具有一第二型掺杂,且此第二沟道包含锗、锗化硅或III-V族半导体至少其一;一栅极介电层,位于此第二沟道上;及一栅极,位于此栅极介电层上。
本发明可抑制界面缺陷的影响,还可掺入锗化硅应力源至锗的鳍式场效应晶体管NMOS中,以增进效能。
为让本发明的上述和其他目的、特征、和优点能更明显易懂,下文特举出优选实施例,并配合所附附图,作详细说明如下:
附图说明
图1A显示为鳍式场效应晶体管,并显示用于图1B及图1C的不同的剖面方向;
图1B~图1C显示为依照本发明一实施例的累积型鳍式场效应晶体管的剖面图;
图2显示为依照本发明一实施例的累积型鳍式场效应晶体管与传统装置的开电流Ion的比较;
图3显示为本发明一实施例的累积型鳍式场效应晶体管与传统装置的内部电子密度的比较;
图4显示为依照本发明另一实施例的形成累积型鳍式场效应晶体管的工艺;及
图5显示为依照本发明又一实施例的具有虚置图案及含多个累积型鳍式场效应晶体管结构的鳍式场效应晶体管装置的集成电路的剖面图。
其中,附图标记说明如下:
106~源极108~沟道
107~硅化物110~漏极
111~硅化物112~阱区
114~栅极介电层115~氧化层
116~栅极117~氮化间隔层
118~浅沟槽隔离120~基材
502~虚置图案
504~鳍式场效应晶体管装置
506~鳍式场效应晶体管装置
508~沟道
具体实施方式
以下将详细讨论本发明各种实施例的制造及使用方法。然而值得注意的是,本发明所提供的许多可行的发明概念可实施在各种特定范围中。这些特定实施例仅用于举例说明本发明的制造及使用方法,但非用于限定本发明的范围。
某些使用材料不同于硅的平面金属氧化物半导体场效应晶体管相较于传统的硅平面金属氧化物半导体装置(Si planar MOS device)具有优势,例如锗平面金属氧化物半导体装置(Ge planar MOS device),其载流子(电子/空穴)迁移率较硅高约2.64倍。经发现,锗平面MOS装置面临下列问题:(1)较低的能隙间距Eg及高次临界漏电流Isub(subthreshold leakage current)、(2)高介电常数ε及短沟道效应(short channel effect,SCE)、(3)高界面缺陷(Nit)导致锗的NMOS中的载流子迁移率μ不佳。
当沟道长度缩短时,平面金属氧化物半导体场效应晶体管可具有的沟道长度与源极及漏极所接合的耗尽层的宽度具有相同的数量级。相较于其他金属氧化物半导体场效应晶体管,短沟道效应使平面金属氧化物半导体场效应晶体管的效能更加衰退。当缩短沟道长度以同时增加操作速度及芯片积集度时,短沟道效应也会增加。短沟道效应可归因于两种物理现象:(1)沟道中的电子漂移有其限制,及(2)由于沟道缩短而修改了临界电压。短沟道效应包含:(1)漏极引致势垒下降(drain-induced barrier lowering,DIBL)、(2)表面散射、(3)速度饱和、(4)撞击游离及(5)热电子。特别的是,由于锗平面型MOS具有较高的介电常数ε,显示出更糟的漏极引致势垒下降(DIBL)。
在锗的NMOS中,发现到在介电层及靠近锗的导带(Ec)之间的界面有高密度的界面缺陷(Nit),而大幅降低电子迁移率。相较于二氧化硅与硅的系统,氧化锗(或其他介电层)及锗不具有理想的界面,二氧化硅/硅具有良好的界面而提供硅的MOS所需的界面品质及低界面缺陷。
如上所述,业界所需的是金属氧化物半导体场效应晶体管结构及其制造方法。在本发明实施例中,提供一种累积型鳍式场效应晶体管(accumulation-type FinFET)装置100,以增进金属氧化物半导体场效应晶体管的效能。图1A显示为一实施例的鳍式场效应晶体管。在图1A中,鳍式场效应晶体管100可包含鳍式结构102。图1B及图1C各自显示图1A所示的鳍式场效应晶体管100沿着线段1B及1C的剖面图。在图1A-图1B中,显示累积型鳍式场效应晶体管100具有基材120及鳍式结构102于基材120上。鳍式结构102包含位于源极106及漏极110之间的沟道108。源极106、漏极110及沟道108具有第一型掺杂。位于源极106、漏极110及沟道108之下的阱区112具有第二型掺杂。沟道108包含锗、锗化硅或III-V族半导体。栅极介电层114位于沟道108上。栅极116位于栅极介电层114上。
在一形成锗的N型累积型鳍式场效应晶体管(N-type accumulation GeFinFET)的实施例中,源极106(例如n+源极区)可通过硅化物107连接至源极电压VS。沟道108(例如n-沟道区)可例如包含锗鳍式区(Ge fin region)。漏极110(例如n+漏极区)可通过硅化物111连接至漏极电压VD。阱区112(例如p型阱区)可提供与其他装置电性隔离。栅极介电层114可包含氧化物、氮化物、氮氧化物、高介电常数介电质或前述的任意组合。栅极116(例如金属栅极)可连接至栅极电压VG。氧化层115及氮化间隔物117显示位于栅极116后方。基材120可包含硅、锗、锗化硅、III-V族半导体及/或前述的组合。高介电常数材料可例如包含硅酸铪(HfSiO)、硅酸锆(ZrSiO4)、二氧化锆、其他高介电常数介电材料或前述的任意组合。在其他实施例中,沟道108可包含锗化硅或III-V族半导体,例如AlGaAs、InGaAs等。
图1C显示为累积型鳍式场效应晶体管100的剖面图,其具有沟道108、栅极介电层114及栅极116。位于鳍底下的阱区112提供电性隔离。在一实施例中,沟道108(例如n-沟道)包含锗鳍式区。阱区112(例如p型阱区)提供电性隔离。栅极116可设置于栅极介电层114上。浅沟槽隔离118可形成邻近于阱区112。在其他实施例中,沟道108可包含锗化硅或III-V族半导体,例如AlGaAs、InGaAs等。
在N型累积型鳍式场效应晶体管102中,沟道108、源极106及漏极110可具有n型掺杂。在另一实施例中,P型累积型PMOS装置的沟道108、源极106及漏极110可具有p型掺杂。累积型鳍式场效应晶体管可改变电子/空穴轮廓(electron/hole profile)及费米能阶(EF)位置,其可抑制界面缺陷(Nit)的影响。此外,可掺入锗化硅应力源至锗的鳍式场效应晶体管NMOS中,以增进效能。
于传统反转型(inversion type)NMOS(具有p-沟道)中,电子堆积在界面层,且装置可能会因界面缺陷而降低迁移率。然而,累积型NMOS与传统反转型NMOS相反,块材反转(bulk inversion)减少了可造成降低次临界电流摆幅及电子迁移率的界面缺陷。块材反转(bulk inversion)意指大多数的反转电荷位于图1C所示的鳍中的块材鳍状区(bulk Fin region)作为内部电子(bulk electrons)。然而,在传统的表面反转型装置中,大多数电子堆积于栅极介电质/鳍的表面作为表面电子。使用等同于电源供应电压的栅极电压(VG=VDD),累积的费米能阶较靠近能隙(Eg)中间值(mid-bandgap),且可实质上减少界面缺陷(Nit)的影响。
经发现,沟道掺杂浓度及/或施予漏极110的电源供应电压VDD可影响累积型鳍式场效应晶体管100的电性效能。例如,在NMOS/PMOS的一实施例中,沟道中的反掺杂密度(counter doping density)为n型/p型1e18cm-3~3e18cm-3,电源供应电压VDD为0.5V。在NMOS累积型装置中,n型沟道可减少费米能阶(EF),增加内部电子密度(bulk electron density),因此减少表面界面缺陷(Nit)的影响。例如,在一累积型NMOS的实施例中,电子密度为7.1e12cm-2,相比较的反转型NMOS的电子密度为6.7e12cm-2。此外,低的电源供应电压VDD使费米能阶EF移向能隙中间值,增加内部电子/空穴百分比,及减少在NMOS/PMOS中的表面界面缺陷(Nit)的影响。
锗及III-V族半导体沟道材料,例如AlGaAs、InGaAs等,可提供较硅高的载流子迁移率。鳍式场效应晶体管结构提供较佳的栅极控制、较低的漏电流及较佳的尺寸可调性(scalability)。基材120可为硅或锗基材晶片。在一实施例中,可在基材120上进行锗的外延,以形成用于沟道108的锗鳍(Ge-fin)。在NMOS的实施例中,由于锗化硅或硅的源极/漏极可在沟道108中(例如锗沟道)具有拉伸应力以提高电子迁移率,较佳可选择锗化硅或硅的源极/漏极。在P型金属氧化物半导体导体的实施例中,也可使用锗的源极/漏极区,但较佳为GeSn、SiGeSn或III-V族半导体,由于GeSn、SiGeSn或III-V族半导体源极/漏极可在沟道108(例如锗沟道)中具有压缩应力以提高空穴迁移率。
具有锗鳍式沟道区108的鳍式场效应晶体管结构可帮助降低由高介电常数ε所导致的短沟道效应(SCE)。在累积型装置中,鳍式场效应晶体管结构可显著抑制漏电流。相较于平面装置,鳍式场效应晶体管结构可借由较低的沟道掺杂(例如1e17cm-3)及降低的电源供应电压VDD来显著减少能带穿遂(Band to band tunneling,BTBT)漏电流。
图2显示本发明一实施例的锗的累积型鳍式场效应晶体管与传统装置的开电流Ion(turn-on current)的比较。结果呈现在NMOS中,鳍的表面区域的电子迁移率降低了80%,这是由于在锗装置中的界面缺陷Nit(陷阱)的影响。
在图2中,显示传统无界面缺陷(Nit)的硅反转型鳍式场效应晶体管NMOS的开电流Ion。将锗的鳍式场效应晶体管的开电流Ion正规化并与硅的反转型鳍式场效应晶体管相比,具有界面缺陷的锗的反转型鳍式场效应晶体管NMOS装置仅有74%的开电流Ion,这是由于电子迁移率在鳍表面上因锗的界面缺陷而降低。换言之,由TACD模拟可显示出,相较于硅的场效应晶体管(反转模式),界面缺陷造成了开电流Ion降低26%。上述的锗的反转型鳍式场效应晶体管NMOS,非为累积型态且不具有应力源。然而,具有累积型态的锗的反转型鳍式场效应晶体管NMOS装置,虽然同样具有锗的界面缺陷,但开电流Ion增加至108%。因此,使用累积型沟道可实现34%增益的开电流Ion,也表示锗的累积型沟道的开电流Ion较硅的鳍式场效应晶体管高8%。另外,当加入锗化硅(SiGe)应力源,开电流Ion更增进至132%。在一些实施例中,还可使用表面钝化技术以进一步降低锗累积型鳍式场效应晶体管的界面缺陷。
在累积型装置中,鳍区(Wfin)的宽度较窄,可抑制闭路漏电流Ioff及改善装置效能因短沟道效应(SCE)/漏极引致势垒下降(DIBL)的影响。在一实施例中,鳍宽度小于30nm而具有较佳的效能。在鳍区(Wfin)较宽的平面结构中,需高浓度袋状掺杂(pocket doping)且实际上较难制造累积型沟道。
此外,累积型装置显示在块材区域具有较高的电子密度,特别是在低的电源供应电压VDD及栅极电压VG(例如0.5V)。图3显示本发明一实施例的块材内部电子密度与传统装置的比较。如图3所示,在一实施例中,在栅极电压为0.5V的条件下,锗的累积型鳍式场效应晶体管约有70%的内部电子密度,相较之下,反转型装置则具有约40%的内部电子体积密度。锗的累积型鳍式场效应晶体管NMOS装置具有约1e18cm-3(N型)的沟道掺杂密度,及漏极引致势垒下降(DIBL)为105mV/V,然而,反转型态装置的沟道掺杂浓度为5e18cm-3(p型)。
图4显示依照本发明另一实施例制造鳍式场效应晶体管的工艺流程图。于步骤402,形成鳍式结构于基材120上,其中鳍式结构包含位于源极106及漏极110之间的沟道108(源极106、漏极110及沟道108皆具有相同型态的半导体,且沟道108包含锗、锗化硅或III-V族半导体)。于步骤404,形成栅极介电层104(例如氧化物及/或高介电常数介电质)于沟道108上。于步骤406,形成栅极116于栅极介电层114上。此工艺可还包含沉积及蚀刻浅沟槽隔离(shallow trench isolation,STI)118层,其可提供与邻近装置的隔离。
此工艺可还包含在源极106、漏极110及沟道108下方形成阱区112,其中阱区112具有第二型掺杂。沟道108可具有约1e18cm-3至3e18cm-3的掺杂浓度。栅极116能接收电压,且此电压能使沟道的费米能阶移向沟道的能隙中间值。形成鳍式结构可包含定义沟道108的宽度。在一实施例中,沟道108的宽度可为约30nm或更小。源极106或漏极110至少其一包含用于NMOS装置的锗、锗化硅或硅。源极106或漏极110至少其一包含用于NMOS装置的锗、锗化硅、硅或III-V族半导体。
图5显示为依照本发明又一实施例的包含虚置图案及含多个累积型鳍式场效应晶体管结构的鳍式场效应晶体管装置的集成电路。集成电路包含基材120、虚置图案502及鳍式场效应晶体管装置504、506。虚置图案502包含至少一鳍式结构于基材上。鳍式结构包含位于第一源极及第一漏极之间的沟道508。此源极、漏极及沟道508具有第一型掺杂。阱区112具有第二型掺杂,并提供与其他邻近装置的电性隔离。
位于基材120上的鳍式场效应晶体管装置504、506也包含位于基材120上的鳍式结构。鳍式结构包含位于源极及漏极之间的沟道。此源极、漏极及第二沟道108具有第一型掺杂。沟道108包含锗、锗化硅或III-V族半导体。栅极介电层114位于沟道108上。栅极116位于栅极介电层114上。在此实施例中,在同一装置中使用多个沟道108。
此装置具有累积型沟道,因而鳍式场效应晶体管装置504、506具有相同型态的半导体的沟道108、源极、漏极,例如各自用于NMOS/PMOS的n型/p型半导体。用于NMOS的阱区112为p型,而用于PMOS的阱区112为n型,此阱区112与浅沟槽隔离(STI)各自用作装置间的电性隔离及物理隔离。也可设置无栅极116的虚置图案502,以利于化学机械研磨(CMP)、蚀刻或鳍式轮廓的一致性。此装置可形成于硅或锗基材120上。
如前述,累积型鳍式场效应晶体管可提供所需电子或空穴迁移率,而可增进装置效能。借由使用累积型鳍式场效应晶体管结构,漏电流、界面缺陷(陷阱)及短沟道效应等先前传统锗平面装置所具有的缺点,已不复存于本发明实施例中。在本实施中,不仅可应用于锗沟道、也可应用于锗化硅或其他III-V族沟道材料。
另外,在同一装置中可使用多个鳍式结构,而可提供每单位面积有较高的电流。例如,既然锗及硅之间有晶格失配(lattice mismatch),较窄的鳍相较于较宽的鳍易于成长良好品质的锗外延层。晶格失配导致的应力可由宽度较窄的鳍及缺陷及错位较少的锗外延层获得抒解。例如,当用于传统锗装置的鳍宽度为50nm时,其可被分隔成两个25nm的鳍。本领域普通技术人员可知本发明还具有许多其他变化实施例。
虽然本发明已以数个优选实施例揭示如上,然其并非用以限定本发明,任何本领域普通技术人员,在不脱离本发明的精神和范围内,当可作任意的更动与润饰。此外,本发明的范围不限定于现有或未来所发展的特定程序、机器、制造、物质的组合、功能、方法或步骤,其实质上进行与依照本发明所述的实施例相同的功能或达成相同的结果。因此,本发明的保护范围当视所附的权利要求所界定的范围为准。此外,每个权利要求建构成一独立的实施例,且各种权利要求及实施例的组合均介于本发明的范围内。
Claims (7)
1.一种鳍式场效应晶体管,包括:
一基材;
一鳍式结构,位于该基材上,该鳍式结构包含一沟道,位于一源极及一漏极之间,其中该源极、该漏极及该沟道具有一第一型掺杂,且该沟道具有介于1e18cm-3至3e18cm-3之间的掺杂浓度,并包含锗、锗化硅或III-V族半导体至少其一;
一第二型掺杂的阱区,位于该基材中及该源极、漏极及该沟道下方;以及
一栅极介电层,位于该沟道上;以及
一栅极,位于该栅极介电层上。
2.如权利要求1所述的鳍式场效应晶体管,其中该栅极能接受一电压,且该电压能使该沟道的费米能阶移向该沟道的能隙中间值。
3.如权利要求1所述的鳍式场效应晶体管,其中该鳍式场效应晶体管为一N型鳍式场效应晶体管,且该源极及该漏极至少其一包含锗、锗化硅或硅至少其一。
4.如权利要求1所述的鳍式场效应晶体管,其中该鳍式场效应晶体管为一P型鳍式场效应晶体管,且该源极及该漏极至少其一包含Ge、GeSn、SiGeSn或III-V族半导体至少其一。
5.一种鳍式场效应晶体管的制造方法,包括:
形成一鳍式结构于一基材上,该鳍式结构包含一沟道,位于一源极及一漏极之间,其中该源极、该漏极及该沟道具有一第一型掺杂,该沟道具有介于1e18cm-3至3e18cm-3之间的掺杂浓度,且该源极、该漏极及该沟道包含锗、锗化硅或III-V族半导体,且其中该基材包含一阱区于该源极、该漏极及该沟道下方,该阱区具有一第二型掺杂;
形成一栅极介电层于该沟道上;以及
形成一栅极于该栅极介电层上。
6.一种集成电路,包括:
一基材;
一虚置图案,包含至少一第一鳍式结构于该基材上,该第一鳍式结构包含一第一沟道,位于一第一源极及一第一漏极之间,其中该第一源极、该第一漏极及该第一沟道具有一第一型掺杂;以及
一鳍式场效应晶体管,位于该基材上,该鳍式场效应晶体管包含:
一第二鳍式结构,位于该基材上,该第二鳍式结构包含一第二沟道,位于一第二源极及一第二漏极之间,其中该第二源极、该第二漏极及该第二沟道具有一第二型掺杂,且该第二沟道具有介于1e18cm-3至3e18cm-3之间的掺杂浓度,并包含锗、锗化硅或III-V族半导体至少其一;
一栅极介电层,位于该第二沟道上;及
一栅极,位于该栅极介电层上。
7.如权利要求6所述的集成电路,其中该第二源极及该第二漏极至少其一包含锗、锗化硅、硅、GeSn、SiGeSn或III-V族半导体至少其一。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US23882809P | 2009-09-01 | 2009-09-01 | |
US61/238,828 | 2009-09-01 | ||
US12/757,271 US8264032B2 (en) | 2009-09-01 | 2010-04-09 | Accumulation type FinFET, circuits and fabrication method thereof |
US12/757,271 | 2010-04-09 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102005477A CN102005477A (zh) | 2011-04-06 |
CN102005477B true CN102005477B (zh) | 2013-10-02 |
Family
ID=43623559
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2010102638023A Active CN102005477B (zh) | 2009-09-01 | 2010-08-25 | 集成电路、鳍式场效应晶体管及其制造方法 |
Country Status (5)
Country | Link |
---|---|
US (2) | US8264032B2 (zh) |
JP (1) | JP5373722B2 (zh) |
KR (2) | KR20110025075A (zh) |
CN (1) | CN102005477B (zh) |
TW (1) | TWI426607B (zh) |
Families Citing this family (127)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8440517B2 (en) * | 2010-10-13 | 2013-05-14 | Taiwan Semiconductor Manufacturing Company, Ltd. | FinFET and method of fabricating the same |
US8492235B2 (en) * | 2010-12-29 | 2013-07-23 | Globalfoundries Singapore Pte. Ltd. | FinFET with stressors |
CN102956483B (zh) * | 2011-08-22 | 2015-06-03 | 中国科学院微电子研究所 | 半导体器件结构及其制作方法 |
US8492206B2 (en) | 2011-08-22 | 2013-07-23 | Institute of Microelectronics, Chinese Academy of Sciences | Semiconductor device structure and method for manufacturing the same |
US8969999B2 (en) * | 2011-10-27 | 2015-03-03 | Taiwan Semiconductor Manufacturing Company, Ltd. | Fin-like field effect transistor (FinFET) based, metal-semiconductor alloy fuse device and method of manufacturing same |
CN103107139B (zh) * | 2011-11-09 | 2017-06-06 | 联华电子股份有限公司 | 具有鳍状结构的场效晶体管的结构及其制作方法 |
US8987824B2 (en) | 2011-11-22 | 2015-03-24 | Taiwan Semiconductor Manufacturing Co., Ltd. | Multi-gate semiconductor devices |
CN103137685B (zh) * | 2011-11-24 | 2015-09-30 | 中芯国际集成电路制造(北京)有限公司 | 半导体器件及其制造方法 |
US8742457B2 (en) | 2011-12-16 | 2014-06-03 | Taiwan Semiconductor Manufacturing Company, Ltd. | Anti-fuses on semiconductor fins |
WO2013095376A1 (en) | 2011-12-20 | 2013-06-27 | Intel Corporation | Strained channel region transistors employing source and drain stressors and systems including the same |
US9059024B2 (en) | 2011-12-20 | 2015-06-16 | Intel Corporation | Self-aligned contact metallization for reduced contact resistance |
WO2013101237A1 (en) | 2011-12-31 | 2013-07-04 | Intel Corporation | Hard mask etch stop for tall fins |
CN103187296B (zh) * | 2011-12-31 | 2015-07-08 | 中芯国际集成电路制造(上海)有限公司 | 鳍式场效应晶体管的形成方法 |
US9281378B2 (en) | 2012-01-24 | 2016-03-08 | Taiwan Semiconductor Manufacturing Company, Ltd. | Fin recess last process for FinFET fabrication |
US9171925B2 (en) * | 2012-01-24 | 2015-10-27 | Taiwan Semiconductor Manufacturing Company, Ltd. | Multi-gate devices with replaced-channels and methods for forming the same |
US8809178B2 (en) | 2012-02-29 | 2014-08-19 | Globalfoundries Inc. | Methods of forming bulk FinFET devices with replacement gates so as to reduce punch through leakage currents |
US8836016B2 (en) | 2012-03-08 | 2014-09-16 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor structures and methods with high mobility and high energy bandgap materials |
US9082684B2 (en) * | 2012-04-02 | 2015-07-14 | Applied Materials, Inc. | Method of epitaxial doped germanium tin alloy formation |
US8866195B2 (en) * | 2012-07-06 | 2014-10-21 | Taiwan Semiconductor Manufacturing Co., Ltd. | III-V compound semiconductor device having metal contacts and method of making the same |
CN103426926B (zh) * | 2012-05-14 | 2016-05-25 | 中芯国际集成电路制造(上海)有限公司 | 半导体结构及其形成方法、pmos晶体管及其形成方法 |
US8901615B2 (en) | 2012-06-13 | 2014-12-02 | Synopsys, Inc. | N-channel and P-channel end-to-end finfet cell architecture |
US9583398B2 (en) * | 2012-06-29 | 2017-02-28 | Taiwan Semiconductor Manufacturing Company, Ltd. | Integrated circuit having FinFETS with different fin profiles |
US8629420B1 (en) * | 2012-07-03 | 2014-01-14 | Intel Mobile Communications GmbH | Drain extended MOS device for bulk FinFET technology |
US9142400B1 (en) | 2012-07-17 | 2015-09-22 | Stc.Unm | Method of making a heteroepitaxial layer on a seed area |
CN102810555B (zh) * | 2012-08-14 | 2015-04-15 | 北京大学 | 一种锗锡隧穿场效应晶体管及其制备方法 |
CN103594495A (zh) * | 2012-08-16 | 2014-02-19 | 中国科学院微电子研究所 | 半导体器件及其制造方法 |
US8912070B2 (en) * | 2012-08-16 | 2014-12-16 | The Institute of Microelectronics Chinese Academy of Science | Method for manufacturing semiconductor device |
CN102832135A (zh) * | 2012-09-05 | 2012-12-19 | 北京大学 | 锗、三五族半导体材料衬底上制备FinFET的方法 |
US9564367B2 (en) * | 2012-09-13 | 2017-02-07 | Globalfoundries Inc. | Methods of forming different FinFET devices with different threshold voltages and integrated circuit products containing such devices |
US8890264B2 (en) * | 2012-09-26 | 2014-11-18 | Intel Corporation | Non-planar III-V field effect transistors with conformal metal gate electrode and nitrogen doping of gate dielectric interface |
US8823065B2 (en) * | 2012-11-08 | 2014-09-02 | Taiwan Semiconductor Manufacturing Company, Ltd. | Contact structure of semiconductor device |
US9287138B2 (en) | 2012-09-27 | 2016-03-15 | Taiwan Semiconductor Manufacturing Company, Ltd. | FinFET low resistivity contact formation method |
US9105490B2 (en) | 2012-09-27 | 2015-08-11 | Taiwan Semiconductor Manufacturing Company, Ltd. | Contact structure of semiconductor device |
US8633516B1 (en) * | 2012-09-28 | 2014-01-21 | Taiwan Semiconductor Manufacturing Company, Ltd. | Source/drain stack stressor for semiconductor device |
US8765563B2 (en) | 2012-09-28 | 2014-07-01 | Intel Corporation | Trench confined epitaxially grown device layer(s) |
US9082853B2 (en) * | 2012-10-31 | 2015-07-14 | International Business Machines Corporation | Bulk finFET with punchthrough stopper region and method of fabrication |
US9443962B2 (en) | 2012-11-09 | 2016-09-13 | Taiwan Semiconductor Manufacturing Company, Ltd. | Recessing STI to increase fin height in fin-first process |
CN103811341B (zh) * | 2012-11-09 | 2016-05-11 | 中国科学院微电子研究所 | 半导体器件及其制造方法 |
US8836018B2 (en) * | 2012-11-16 | 2014-09-16 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor integrated device with channel region |
CN103824775B (zh) * | 2012-11-16 | 2018-04-24 | 中国科学院微电子研究所 | FinFET及其制造方法 |
US9093492B2 (en) * | 2012-11-29 | 2015-07-28 | Taiwan Semiconductor Manufacturing Company, Ltd. | Diode structure compatible with FinFET process |
US20140167162A1 (en) * | 2012-12-13 | 2014-06-19 | International Business Machines Corporation | Finfet with merge-free fins |
US8748940B1 (en) * | 2012-12-17 | 2014-06-10 | Intel Corporation | Semiconductor devices with germanium-rich active layers and doped transition layers |
US8896101B2 (en) * | 2012-12-21 | 2014-11-25 | Intel Corporation | Nonplanar III-N transistors with compositionally graded semiconductor channels |
US8933435B2 (en) * | 2012-12-26 | 2015-01-13 | Globalfoundries Singapore Pte. Ltd. | Tunneling transistor |
US9093530B2 (en) | 2012-12-28 | 2015-07-28 | Taiwan Semiconductor Manufacturing Company, Ltd. | Fin structure of FinFET |
US20140264607A1 (en) | 2013-03-13 | 2014-09-18 | International Business Machines Corporation | Iii-v finfets on silicon substrate |
US8975125B2 (en) | 2013-03-14 | 2015-03-10 | International Business Machines Corporation | Formation of bulk SiGe fin with dielectric isolation by anodization |
US20140264488A1 (en) * | 2013-03-15 | 2014-09-18 | Globalfoundries Inc. | Methods of forming low defect replacement fins for a finfet semiconductor device and the resulting devices |
US8940602B2 (en) * | 2013-04-11 | 2015-01-27 | International Business Machines Corporation | Self-aligned structure for bulk FinFET |
US8859355B1 (en) | 2013-05-06 | 2014-10-14 | International Business Machines Corporation | Method to make dual material finFET on same substrate |
US9412664B2 (en) | 2013-05-06 | 2016-08-09 | International Business Machines Corporation | Dual material finFET on single substrate |
US9293534B2 (en) | 2014-03-21 | 2016-03-22 | Taiwan Semiconductor Manufacturing Company, Ltd. | Formation of dislocations in source and drain regions of FinFET devices |
US8957478B2 (en) | 2013-06-24 | 2015-02-17 | International Business Machines Corporation | Semiconductor device including source/drain formed on bulk and gate channel formed on oxide layer |
CN104282561B (zh) * | 2013-07-02 | 2018-11-06 | 中国科学院微电子研究所 | FinFET器件及其制作方法 |
CN104282566B (zh) * | 2013-07-03 | 2017-12-29 | 中芯国际集成电路制造(上海)有限公司 | 鳍式场效应晶体管及其形成方法 |
EP3050088A4 (en) | 2013-09-25 | 2017-05-03 | Intel Corporation | Isolation well doping with solid-state diffusion sources for finfet architectures |
WO2015047264A1 (en) * | 2013-09-26 | 2015-04-02 | Intel Corporation | Methods of forming low band gap source and drain structures in microelectronic devices |
US9583590B2 (en) | 2013-09-27 | 2017-02-28 | Samsung Electronics Co., Ltd. | Integrated circuit devices including FinFETs and methods of forming the same |
US9178045B2 (en) | 2013-09-27 | 2015-11-03 | Samsung Electronics Co., Ltd. | Integrated circuit devices including FinFETS and methods of forming the same |
EP3050089A4 (en) * | 2013-09-27 | 2017-05-03 | Intel Corporation | Non-planar semiconductor devices having multi-layered compliant substrates |
US9184089B2 (en) | 2013-10-04 | 2015-11-10 | Taiwan Semiconductor Manufacturing Company, Ltd. | Mechanism of forming a trench structure |
US9312387B2 (en) * | 2013-11-01 | 2016-04-12 | Globalfoundries Inc. | Methods of forming FinFET devices with alternative channel materials |
US9716176B2 (en) | 2013-11-26 | 2017-07-25 | Samsung Electronics Co., Ltd. | FinFET semiconductor devices including recessed source-drain regions on a bottom semiconductor layer and methods of fabricating the same |
US10825738B2 (en) * | 2013-11-28 | 2020-11-03 | Institute of Microelectronics, Chinese Academy of Sciences | Semiconductor arrangements and methods of manufacturing the same |
CN104671194B (zh) * | 2013-12-03 | 2016-08-17 | 中芯国际集成电路制造(上海)有限公司 | 防止结构层脱落的mems器件及其制备方法 |
US9054192B1 (en) | 2013-12-20 | 2015-06-09 | International Business Machines Corporation | Integration of Ge-containing fins and compound semiconductor fins |
CN104733390B (zh) * | 2013-12-20 | 2018-06-26 | 台湾积体电路制造股份有限公司 | 用于FinFET阱掺杂的机制 |
US9076869B1 (en) | 2014-01-08 | 2015-07-07 | Taiwan Semiconductor Manufacturing Company, Ltd. | FinFET device and method |
US9048303B1 (en) | 2014-01-30 | 2015-06-02 | Infineon Technologies Austria Ag | Group III-nitride-based enhancement mode transistor |
US9105663B1 (en) | 2014-01-30 | 2015-08-11 | International Business Machines Corporation | FinFET with silicon germanium stressor and method of forming |
CN103839832A (zh) * | 2014-02-25 | 2014-06-04 | 清华大学 | 具有GeSn源漏的鳍式场效应晶体管及其形成方法 |
WO2015127701A1 (en) * | 2014-02-25 | 2015-09-03 | Tsinghua University | Method for forming fin field effect transistor |
CN103855033A (zh) * | 2014-02-25 | 2014-06-11 | 清华大学 | 具有SiGeSn沟道的鳍式场效应晶体管及其形成方法 |
CN103840004A (zh) * | 2014-02-25 | 2014-06-04 | 清华大学 | 具有SiGeSn源漏的鳍式场效应晶体管及其形成方法 |
CN103840005A (zh) * | 2014-02-25 | 2014-06-04 | 清华大学 | 具有SiGeSn源漏的鳍式场效应晶体管及其形成方法 |
US9337279B2 (en) | 2014-03-03 | 2016-05-10 | Infineon Technologies Austria Ag | Group III-nitride-based enhancement mode transistor |
US10468528B2 (en) | 2014-04-16 | 2019-11-05 | Taiwan Semiconductor Manufacturing Company, Ltd. | FinFET device with high-k metal gate stack |
US9178067B1 (en) | 2014-04-25 | 2015-11-03 | Taiwan Semiconductor Manufacturing Company, Ltd. | Structure and method for FinFET device |
US9721955B2 (en) | 2014-04-25 | 2017-08-01 | Taiwan Semiconductor Manufacturing Company, Ltd. | Structure and method for SRAM FinFET device having an oxide feature |
CN106463535B (zh) * | 2014-06-24 | 2021-04-27 | 英特尔公司 | 用于在相同管芯上形成Ge/SiGe沟道和III-V族沟道晶体管的技术 |
US9224736B1 (en) | 2014-06-27 | 2015-12-29 | Taiwan Semicondcutor Manufacturing Company, Ltd. | Structure and method for SRAM FinFET device |
US9735153B2 (en) | 2014-07-14 | 2017-08-15 | Samsung Electronics Co., Ltd. | Semiconductor device having fin-type field effect transistor and method of manufacturing the same |
CN112670349B (zh) | 2014-07-14 | 2024-09-17 | 太浩研究有限公司 | 用于基于鳍状物的电子设备的固体源扩散结 |
KR102263045B1 (ko) * | 2014-07-25 | 2021-06-10 | 삼성전자주식회사 | 공통 스트레인-완화 버퍼를 구비하는 cmos 장치 및 그 제조 방법 |
US9276117B1 (en) * | 2014-08-19 | 2016-03-01 | Taiwan Semiconductor Manufacturing Company, Ltd. | Structure and method and FinFET device |
US9293588B1 (en) * | 2014-08-28 | 2016-03-22 | International Business Machines Corporation | FinFET with a silicon germanium alloy channel and method of fabrication thereof |
US10854735B2 (en) * | 2014-09-03 | 2020-12-01 | Taiwan Semiconductor Manufacturing Company Limited | Method of forming transistor |
US9847329B2 (en) | 2014-09-04 | 2017-12-19 | Taiwan Semiconductor Manufacturing Company, Ltd. | Structure of fin feature and method of making same |
US9773865B2 (en) * | 2014-09-22 | 2017-09-26 | International Business Machines Corporation | Self-forming spacers using oxidation |
KR102255174B1 (ko) | 2014-10-10 | 2021-05-24 | 삼성전자주식회사 | 활성 영역을 갖는 반도체 소자 및 그 형성 방법 |
US9741811B2 (en) | 2014-12-15 | 2017-08-22 | Samsung Electronics Co., Ltd. | Integrated circuit devices including source/drain extension regions and methods of forming the same |
WO2016105336A1 (en) * | 2014-12-22 | 2016-06-30 | Intel Corporation | Prevention of subchannel leakage current |
US9859423B2 (en) * | 2014-12-31 | 2018-01-02 | Stmicroelectronics, Inc. | Hetero-channel FinFET |
US9601626B2 (en) | 2015-01-23 | 2017-03-21 | Taiwan Semiconductor Manufacturing Co., Ltd. | Semiconductor device including fin structure with two channel layers and manufacturing method thereof |
US9537010B2 (en) * | 2015-02-04 | 2017-01-03 | Taiwan Semiconductor Manufacturing Co., Ltd. | Semiconductor device structure and method for forming the same |
US9553172B2 (en) | 2015-02-11 | 2017-01-24 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method and structure for FinFET devices |
US9673112B2 (en) | 2015-02-13 | 2017-06-06 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method of semiconductor fabrication with height control through active region profile |
KR102395071B1 (ko) | 2015-05-14 | 2022-05-10 | 삼성전자주식회사 | 전계 효과 트랜지스터를 포함하는 반도체 소자 |
US9761584B2 (en) * | 2015-06-05 | 2017-09-12 | Taiwan Semiconductor Manufacturing Co., Ltd. | Buried channel semiconductor device and method for manufacturing the same |
KR102427071B1 (ko) * | 2015-06-24 | 2022-08-01 | 인텔 코포레이션 | 대체 채널 FinFET들에서의 서브-핀 측벽 패시베이션 |
EP3314666A4 (en) * | 2015-06-26 | 2019-02-13 | INTEL Corporation | SOURCE SPACER / SEMICONDUCTOR DRAIN WITH HIGH MOBILITY |
EP3314667A4 (en) * | 2015-06-27 | 2019-02-27 | INTEL Corporation | DOPING OF A SELF-ALIGNED AMPHOTER FINFET TIP WITH LOW INJURY |
US9660025B2 (en) * | 2015-08-31 | 2017-05-23 | Taiwan Semiconductor Manufacturing Co., Ltd. | Structure and formation method of semiconductor device structure |
CN108028272B (zh) | 2015-09-25 | 2022-09-27 | 英特尔公司 | 具有反向掺杂的掺杂剂扩散屏障的高电子迁移率晶体管 |
US10340374B2 (en) | 2015-09-25 | 2019-07-02 | Intel Corporation | High mobility field effect transistors with a retrograded semiconductor source/drain |
DE112015006945T5 (de) | 2015-09-25 | 2018-06-21 | Intel Corporation | Transistoren mit hoher Elektronenbeweglichkeit mit Heteroübergang-Dotierstoffdiffusionsbarriere |
US10411007B2 (en) | 2015-09-25 | 2019-09-10 | Intel Corporation | High mobility field effect transistors with a band-offset semiconductor source/drain spacer |
DE112015006974T5 (de) | 2015-09-25 | 2019-01-24 | Intel Corporation | Verfahren zum Dotieren von Finnenstrukturen nicht planarer Transsistorenvorrichtungen |
KR102323943B1 (ko) | 2015-10-21 | 2021-11-08 | 삼성전자주식회사 | 반도체 장치 제조 방법 |
KR102509925B1 (ko) * | 2015-12-03 | 2023-03-15 | 삼성전자주식회사 | 반도체 소자의 제조 방법 |
WO2017111958A1 (en) * | 2015-12-22 | 2017-06-29 | Intel Corporation | Transistors having ultra thin fin profiles and their methods of fabrication |
US10573750B2 (en) | 2015-12-24 | 2020-02-25 | Intel Corporation | Methods of forming doped source/drain contacts and structures formed thereby |
US10466731B2 (en) | 2016-01-27 | 2019-11-05 | Taiwan Semiconductor Manufacturing Co., Ltd. | Two-transistor bandgap reference circuit and FinFET device suited for same |
US10008580B2 (en) * | 2016-03-21 | 2018-06-26 | Samsung Electronics Co., Ltd. | FET including an InGaAs channel and method of enhancing performance of the FET |
US10340383B2 (en) * | 2016-03-25 | 2019-07-02 | Taiwan Semiconductor Manufacturing Co., Ltd. | Semiconductor device having stressor layer |
WO2017218015A1 (en) | 2016-06-17 | 2017-12-21 | Intel Corporation | High-mobility field effect transistors with wide bandgap fin cladding |
US10580901B2 (en) * | 2016-09-02 | 2020-03-03 | International Business Machines Corporation | Stacked series connected VFETs for high voltage applications |
US20180076281A1 (en) * | 2016-09-12 | 2018-03-15 | Jeng-Jye Shau | Deep channel isolated drain metal-oxide-semiconductor transistors |
US20180076280A1 (en) * | 2016-09-12 | 2018-03-15 | Jeng-Jye Shau | Shallow drain metal-oxide-semiconductor transistors |
US9847392B1 (en) * | 2016-10-11 | 2017-12-19 | United Microelectronics Corp. | Semiconductor device and method for fabricating the same |
US10553494B2 (en) | 2016-11-29 | 2020-02-04 | Taiwan Semiconductor Manufacturing Company, Ltd. | Breakdown resistant semiconductor apparatus and method of making same |
JP2019050314A (ja) * | 2017-09-11 | 2019-03-28 | ルネサスエレクトロニクス株式会社 | 半導体装置およびその製造方法 |
EP3718142A4 (en) * | 2017-11-30 | 2021-09-22 | Intel Corporation | STRUCTURING RIBS FOR THE PRODUCTION OF AN INTEGRATED CIRCUIT |
DE102018126911A1 (de) | 2017-11-30 | 2019-06-06 | Intel Corporation | Gate-Schnitt und Finnentrimmisolation für fortschrittliche Integrierter-Schaltkreis-Struktur-Fertigung |
JP2020096000A (ja) * | 2018-12-10 | 2020-06-18 | ソニーセミコンダクタソリューションズ株式会社 | 半導体素子および半導体素子の製造方法 |
US20220190159A1 (en) * | 2020-12-15 | 2022-06-16 | Intel Corporation | Integrated circuit structures having gesnb source or drain structures |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1518771A (zh) * | 2002-08-23 | 2004-08-04 | ض� | 三栅极器件及其加工方法 |
CN1551368A (zh) * | 2003-05-09 | 2004-12-01 | 台湾积体电路制造股份有限公司 | 半导体组件、累积模式多重闸晶体管及其制造方法 |
CN1622336A (zh) * | 2003-11-24 | 2005-06-01 | 三星电子株式会社 | 具有锗沟道区域的非平面晶体管及其制备方法 |
Family Cites Families (172)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0590573A (ja) * | 1991-09-30 | 1993-04-09 | Sharp Corp | 半導体装置 |
JP2833946B2 (ja) | 1992-12-08 | 1998-12-09 | 日本電気株式会社 | エッチング方法および装置 |
JP3144967B2 (ja) | 1993-11-08 | 2001-03-12 | 株式会社日立製作所 | 半導体集積回路およびその製造方法 |
KR0146203B1 (ko) | 1995-06-26 | 1998-12-01 | 김광호 | 반도체 집적회로의 회로소자값 조정회로 |
US5963789A (en) | 1996-07-08 | 1999-10-05 | Kabushiki Kaisha Toshiba | Method for silicon island formation |
JPH10223901A (ja) * | 1996-12-04 | 1998-08-21 | Sony Corp | 電界効果型トランジスタおよびその製造方法 |
US6065481A (en) | 1997-03-26 | 2000-05-23 | Fsi International, Inc. | Direct vapor delivery of enabling chemical for enhanced HF etch process performance |
TW468273B (en) | 1997-04-10 | 2001-12-11 | Hitachi Ltd | Semiconductor integrated circuit device and method for manufacturing the same |
JP3660783B2 (ja) | 1997-06-30 | 2005-06-15 | 松下電器産業株式会社 | 半導体集積回路 |
JP3586072B2 (ja) | 1997-07-10 | 2004-11-10 | 株式会社東芝 | 不揮発性半導体記憶装置 |
US6740247B1 (en) | 1999-02-05 | 2004-05-25 | Massachusetts Institute Of Technology | HF vapor phase wafer cleaning and oxide etching |
JP4037029B2 (ja) * | 2000-02-21 | 2008-01-23 | 株式会社ルネサステクノロジ | 半導体集積回路装置 |
EP1292989A1 (en) * | 2000-05-10 | 2003-03-19 | Koninklijke Philips Electronics N.V. | A semiconductor device |
JP4044721B2 (ja) | 2000-08-15 | 2008-02-06 | 株式会社ルネサステクノロジ | 半導体集積回路装置の製造方法 |
US6558477B1 (en) | 2000-10-16 | 2003-05-06 | Micron Technology, Inc. | Removal of photoresist through the use of hot deionized water bath, water vapor and ozone gas |
US6830994B2 (en) | 2001-03-09 | 2004-12-14 | Semiconductor Energy Laboratory Co., Ltd. | Method of manufacturing a semiconductor device having a crystallized semiconductor film |
US6531412B2 (en) | 2001-08-10 | 2003-03-11 | International Business Machines Corporation | Method for low temperature chemical vapor deposition of low-k films using selected cyclosiloxane and ozone gases for semiconductor applications |
FR2830984B1 (fr) | 2001-10-17 | 2005-02-25 | St Microelectronics Sa | Tranchee d'isolement et procede de realisation |
US6737302B2 (en) | 2001-10-31 | 2004-05-18 | Semiconductor Energy Laboratory Co., Ltd. | Manufacturing method for field-effect transistor |
US6621131B2 (en) | 2001-11-01 | 2003-09-16 | Intel Corporation | Semiconductor transistor having a stressed channel |
JP4118045B2 (ja) | 2001-12-07 | 2008-07-16 | 富士通株式会社 | 半導体装置 |
US6642090B1 (en) | 2002-06-03 | 2003-11-04 | International Business Machines Corporation | Fin FET devices from bulk semiconductor and method for forming |
JP2004014737A (ja) | 2002-06-06 | 2004-01-15 | Renesas Technology Corp | 半導体装置およびその製造方法 |
US6812103B2 (en) | 2002-06-20 | 2004-11-02 | Micron Technology, Inc. | Methods of fabricating a dielectric plug in MOSFETS to suppress short-channel effects |
US6974729B2 (en) * | 2002-07-16 | 2005-12-13 | Interuniversitair Microelektronica Centrum (Imec) | Integrated semiconductor fin device and a method for manufacturing such device |
US6713365B2 (en) | 2002-09-04 | 2004-03-30 | Macronix International Co., Ltd. | Methods for filling shallow trench isolations having high aspect ratios |
JP4031329B2 (ja) | 2002-09-19 | 2008-01-09 | 株式会社東芝 | 半導体装置及びその製造方法 |
US6791155B1 (en) | 2002-09-20 | 2004-09-14 | Integrated Device Technology, Inc. | Stress-relieved shallow trench isolation (STI) structure and method for forming the same |
US6833588B2 (en) | 2002-10-22 | 2004-12-21 | Advanced Micro Devices, Inc. | Semiconductor device having a U-shaped gate structure |
US6706571B1 (en) | 2002-10-22 | 2004-03-16 | Advanced Micro Devices, Inc. | Method for forming multiple structures in a semiconductor device |
US6946373B2 (en) | 2002-11-20 | 2005-09-20 | International Business Machines Corporation | Relaxed, low-defect SGOI for strained Si CMOS applications |
US7087499B2 (en) | 2002-12-20 | 2006-08-08 | International Business Machines Corporation | Integrated antifuse structure for FINFET and CMOS devices |
US20040192067A1 (en) | 2003-02-28 | 2004-09-30 | Bruno Ghyselen | Method for forming a relaxed or pseudo-relaxed useful layer on a substrate |
DE10310740A1 (de) | 2003-03-10 | 2004-09-30 | Forschungszentrum Jülich GmbH | Verfahren zur Herstellung einer spannungsrelaxierten Schichtstruktur auf einem nicht gitterangepassten Substrat, sowie Verwendung eines solchen Schichtsystems in elektronischen und/oder optoelektronischen Bauelementen |
US6762448B1 (en) | 2003-04-03 | 2004-07-13 | Advanced Micro Devices, Inc. | FinFET device with multiple fin structures |
US6838322B2 (en) | 2003-05-01 | 2005-01-04 | Freescale Semiconductor, Inc. | Method for forming a double-gated semiconductor device |
US6872647B1 (en) | 2003-05-06 | 2005-03-29 | Advanced Micro Devices, Inc. | Method for forming multiple fins in a semiconductor device |
US7906441B2 (en) | 2003-05-13 | 2011-03-15 | Texas Instruments Incorporated | System and method for mitigating oxide growth in a gate dielectric |
TWI242232B (en) | 2003-06-09 | 2005-10-21 | Canon Kk | Semiconductor substrate, semiconductor device, and method of manufacturing the same |
US7456476B2 (en) | 2003-06-27 | 2008-11-25 | Intel Corporation | Nonplanar semiconductor device with partially or fully wrapped around gate electrode and methods of fabrication |
KR100487567B1 (ko) * | 2003-07-24 | 2005-05-03 | 삼성전자주식회사 | 핀 전계효과 트랜지스터 형성 방법 |
US7101742B2 (en) | 2003-08-12 | 2006-09-05 | Taiwan Semiconductor Manufacturing Company, Ltd. | Strained channel complementary field-effect transistors and methods of manufacture |
US7172943B2 (en) | 2003-08-13 | 2007-02-06 | Taiwan Semiconductor Manufacturing Company, Ltd. | Multiple-gate transistors formed on bulk substrates |
US7112495B2 (en) | 2003-08-15 | 2006-09-26 | Taiwan Semiconductor Manufacturing Company, Ltd. | Structure and method of a strained channel transistor and a second semiconductor component in an integrated circuit |
JP4212435B2 (ja) | 2003-08-29 | 2009-01-21 | 株式会社東芝 | 半導体装置およびその製造方法 |
US7078312B1 (en) | 2003-09-02 | 2006-07-18 | Novellus Systems, Inc. | Method for controlling etch process repeatability |
US6881668B2 (en) | 2003-09-05 | 2005-04-19 | Mosel Vitel, Inc. | Control of air gap position in a dielectric layer |
US20050054164A1 (en) * | 2003-09-09 | 2005-03-10 | Advanced Micro Devices, Inc. | Strained silicon MOSFETs having reduced diffusion of n-type dopants |
JP2005116969A (ja) | 2003-10-10 | 2005-04-28 | Toshiba Corp | 半導体装置及びその製造方法 |
US7303949B2 (en) | 2003-10-20 | 2007-12-04 | International Business Machines Corporation | High performance stress-enhanced MOSFETs using Si:C and SiGe epitaxial source/drain and method of manufacture |
KR100513405B1 (ko) | 2003-12-16 | 2005-09-09 | 삼성전자주식회사 | 핀 트랜지스터의 형성 방법 |
KR100702552B1 (ko) | 2003-12-22 | 2007-04-04 | 인터내셔널 비지네스 머신즈 코포레이션 | 이중 게이트 FinFET 디자인을 위한 자동화 레이어생성 방법 및 장치 |
KR100552058B1 (ko) * | 2004-01-06 | 2006-02-20 | 삼성전자주식회사 | 전계 효과 트랜지스터를 갖는 반도체 소자 및 그 제조 방법 |
KR100587672B1 (ko) | 2004-02-02 | 2006-06-08 | 삼성전자주식회사 | 다마신 공법을 이용한 핀 트랜지스터 형성방법 |
US6956277B1 (en) | 2004-03-23 | 2005-10-18 | Taiwan Semiconductor Manufacturing Company, Ltd. | Diode junction poly fuse |
US7154118B2 (en) | 2004-03-31 | 2006-12-26 | Intel Corporation | Bulk non-planar transistor having strained enhanced mobility and methods of fabrication |
US20050221591A1 (en) | 2004-04-06 | 2005-10-06 | International Business Machines Corporation | Method of forming high-quality relaxed SiGe alloy layers on bulk Si substrates |
US7115920B2 (en) | 2004-04-12 | 2006-10-03 | International Business Machines Corporation | FinFET transistor and circuit |
KR100568448B1 (ko) | 2004-04-19 | 2006-04-07 | 삼성전자주식회사 | 감소된 불순물을 갖는 고유전막의 제조방법 |
US7259050B2 (en) | 2004-04-29 | 2007-08-21 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor device and method of making the same |
US7300837B2 (en) | 2004-04-30 | 2007-11-27 | Taiwan Semiconductor Manufacturing Co., Ltd | FinFET transistor device on SOI and method of fabrication |
KR100605104B1 (ko) | 2004-05-04 | 2006-07-26 | 삼성전자주식회사 | 핀-펫 소자 및 그 제조 방법 |
JP4493398B2 (ja) | 2004-05-13 | 2010-06-30 | 富士通マイクロエレクトロニクス株式会社 | 半導体装置 |
US7157351B2 (en) | 2004-05-20 | 2007-01-02 | Taiwan Semiconductor Manufacturing Co., Ltd. | Ozone vapor clean method |
US20060153995A1 (en) | 2004-05-21 | 2006-07-13 | Applied Materials, Inc. | Method for fabricating a dielectric stack |
JP4796329B2 (ja) * | 2004-05-25 | 2011-10-19 | 三星電子株式会社 | マルチ−ブリッジチャンネル型mosトランジスタの製造方法 |
US7015150B2 (en) | 2004-05-26 | 2006-03-21 | International Business Machines Corporation | Exposed pore sealing post patterning |
KR100634372B1 (ko) | 2004-06-04 | 2006-10-16 | 삼성전자주식회사 | 반도체 소자들 및 그 형성 방법들 |
WO2005122276A1 (ja) * | 2004-06-10 | 2005-12-22 | Nec Corporation | 半導体装置及びその製造方法 |
KR100604870B1 (ko) | 2004-06-16 | 2006-07-31 | 삼성전자주식회사 | 접합 영역의 어브럽트니스를 개선시킬 수 있는 전계 효과트랜지스터 및 그 제조방법 |
US7361563B2 (en) | 2004-06-17 | 2008-04-22 | Samsung Electronics Co., Ltd. | Methods of fabricating a semiconductor device using a selective epitaxial growth technique |
JP5203558B2 (ja) | 2004-08-20 | 2013-06-05 | 三星電子株式会社 | トランジスタ及びこれの製造方法 |
TWI283066B (en) | 2004-09-07 | 2007-06-21 | Samsung Electronics Co Ltd | Field effect transistor (FET) having wire channels and method of fabricating the same |
US7067400B2 (en) | 2004-09-17 | 2006-06-27 | International Business Machines Corporation | Method for preventing sidewall consumption during oxidation of SGOI islands |
KR20070057200A (ko) | 2004-09-27 | 2007-06-04 | 다우 글로벌 테크놀로지스 인크. | 플라즈마 강화 화학 기상 증착에 의한 다층 코팅 |
US7018901B1 (en) | 2004-09-29 | 2006-03-28 | Freescale Semiconductor, Inc. | Method for forming a semiconductor device having a strained channel and a heterojunction source/drain |
KR100652381B1 (ko) | 2004-10-28 | 2006-12-01 | 삼성전자주식회사 | 다수의 나노 와이어 채널을 구비한 멀티 브릿지 채널 전계효과 트랜지스터 및 그 제조방법 |
KR100605499B1 (ko) | 2004-11-02 | 2006-07-28 | 삼성전자주식회사 | 리세스된 게이트 전극을 갖는 모스 트랜지스터 및 그제조방법 |
KR100693783B1 (ko) | 2004-11-04 | 2007-03-12 | 주식회사 하이닉스반도체 | 내부전원 발생장치 |
US7235472B2 (en) | 2004-11-12 | 2007-06-26 | Infineon Technologies Ag | Method of making fully silicided gate electrode |
WO2006061731A1 (en) | 2004-12-06 | 2006-06-15 | Koninklijke Philips Electronics N.V. | Method of producing an epitaxial layer on a semiconductor substrate and device produced with such a method |
KR100614800B1 (ko) * | 2004-12-10 | 2006-08-22 | 삼성전자주식회사 | 복수개의 돌출된 채널을 갖는 트랜지스터의 제조 방법 |
US7026232B1 (en) | 2004-12-23 | 2006-04-11 | Texas Instruments Incorporated | Systems and methods for low leakage strained-channel transistor |
US20060151808A1 (en) | 2005-01-12 | 2006-07-13 | Chien-Hao Chen | MOSFET device with localized stressor |
US7282766B2 (en) | 2005-01-17 | 2007-10-16 | Fujitsu Limited | Fin-type semiconductor device with low contact resistance |
JP4958797B2 (ja) | 2005-02-24 | 2012-06-20 | ソイテック | SiGe層の表面領域を酸化させる方法、SGOI構造体内の少なくとも1つの接合境界面を安定化させる方法、及びSiGe層を半導体材料製の基板層と接合する方法 |
JP2006303451A (ja) | 2005-03-23 | 2006-11-02 | Renesas Technology Corp | 半導体装置及び半導体装置の製造方法 |
US7338614B2 (en) | 2005-04-05 | 2008-03-04 | Analog Devices, Inc. | Vapor HF etch process mask and method |
JP2006324628A (ja) | 2005-05-16 | 2006-11-30 | Interuniv Micro Electronica Centrum Vzw | 完全ケイ化ゲート形成方法及び当該方法によって得られたデバイス |
US7859065B2 (en) * | 2005-06-07 | 2010-12-28 | Nec Corporation | Fin-type field effect transistor and semiconductor device |
JP4427489B2 (ja) | 2005-06-13 | 2010-03-10 | 株式会社東芝 | 半導体装置の製造方法 |
US7547637B2 (en) | 2005-06-21 | 2009-06-16 | Intel Corporation | Methods for patterning a semiconductor film |
US7960791B2 (en) | 2005-06-24 | 2011-06-14 | International Business Machines Corporation | Dense pitch bulk FinFET process by selective EPI and etch |
KR100655788B1 (ko) | 2005-06-30 | 2006-12-08 | 삼성전자주식회사 | 반도체 소자의 세정방법 및 이를 이용한 반도체 소자의제조방법. |
US7279375B2 (en) | 2005-06-30 | 2007-10-09 | Intel Corporation | Block contact architectures for nanoscale channel transistors |
US7190050B2 (en) | 2005-07-01 | 2007-03-13 | Synopsys, Inc. | Integrated circuit on corrugated substrate |
US7807523B2 (en) | 2005-07-01 | 2010-10-05 | Synopsys, Inc. | Sequential selective epitaxial growth |
US7247887B2 (en) | 2005-07-01 | 2007-07-24 | Synopsys, Inc. | Segmented channel MOS transistor |
US7508031B2 (en) | 2005-07-01 | 2009-03-24 | Synopsys, Inc. | Enhanced segmented channel MOS transistor with narrowed base regions |
US7265008B2 (en) | 2005-07-01 | 2007-09-04 | Synopsys, Inc. | Method of IC production using corrugated substrate |
US8466490B2 (en) | 2005-07-01 | 2013-06-18 | Synopsys, Inc. | Enhanced segmented channel MOS transistor with multi layer regions |
US7605449B2 (en) | 2005-07-01 | 2009-10-20 | Synopsys, Inc. | Enhanced segmented channel MOS transistor with high-permittivity dielectric isolation material |
EP1744351A3 (en) | 2005-07-11 | 2008-11-26 | Interuniversitair Microelektronica Centrum ( Imec) | Method for forming a fully silicided gate MOSFET and devices obtained thereof |
JP4774247B2 (ja) | 2005-07-21 | 2011-09-14 | Okiセミコンダクタ株式会社 | 電圧レギュレータ |
KR101172853B1 (ko) | 2005-07-22 | 2012-08-10 | 삼성전자주식회사 | 반도체 소자의 형성 방법 |
JP4749076B2 (ja) | 2005-07-27 | 2011-08-17 | ルネサスエレクトロニクス株式会社 | 半導体装置 |
US20070029576A1 (en) | 2005-08-03 | 2007-02-08 | International Business Machines Corporation | Programmable semiconductor device containing a vertically notched fusible link region and methods of making and using same |
KR101155097B1 (ko) * | 2005-08-24 | 2012-06-11 | 삼성전자주식회사 | 반도체 장치의 제조 방법 및 그에 의해 제조된 반도체 장치 |
JP2007088255A (ja) * | 2005-09-22 | 2007-04-05 | Toshiba Corp | 半導体装置の製造方法 |
US7589387B2 (en) | 2005-10-05 | 2009-09-15 | Taiwan Semiconductor Manufacturing Company, Ltd. | SONOS type two-bit FinFET flash memory cell |
US7425740B2 (en) | 2005-10-07 | 2008-09-16 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method and structure for a 1T-RAM bit cell and macro |
WO2007046150A1 (ja) * | 2005-10-21 | 2007-04-26 | Fujitsu Limited | フィン型半導体装置及びその製造方法 |
US8513066B2 (en) | 2005-10-25 | 2013-08-20 | Freescale Semiconductor, Inc. | Method of making an inverted-T channel transistor |
US7767541B2 (en) | 2005-10-26 | 2010-08-03 | International Business Machines Corporation | Methods for forming germanium-on-insulator semiconductor structures using a porous layer and semiconductor structures formed by these methods |
DE102005052055B3 (de) | 2005-10-31 | 2007-04-26 | Advanced Micro Devices, Inc., Sunnyvale | Eingebettete Verformungsschicht in dünnen SOI-Transistoren und Verfahren zur Herstellung desselben |
US7718500B2 (en) | 2005-12-16 | 2010-05-18 | Chartered Semiconductor Manufacturing, Ltd | Formation of raised source/drain structures in NFET with embedded SiGe in PFET |
US7525160B2 (en) | 2005-12-27 | 2009-04-28 | Intel Corporation | Multigate device with recessed strain regions |
US20070152276A1 (en) | 2005-12-30 | 2007-07-05 | International Business Machines Corporation | High performance CMOS circuits, and methods for fabricating the same |
US7410844B2 (en) | 2006-01-17 | 2008-08-12 | International Business Machines Corporation | Device fabrication by anisotropic wet etch |
JP2007194336A (ja) | 2006-01-18 | 2007-08-02 | Sumco Corp | 半導体ウェーハの製造方法 |
KR100827435B1 (ko) | 2006-01-31 | 2008-05-06 | 삼성전자주식회사 | 반도체 소자에서 무산소 애싱 공정을 적용한 게이트 형성방법 |
JP2007258485A (ja) * | 2006-03-23 | 2007-10-04 | Toshiba Corp | 半導体装置及びその製造方法 |
US7407847B2 (en) | 2006-03-31 | 2008-08-05 | Intel Corporation | Stacked multi-gate transistor design and method of fabrication |
KR100813527B1 (ko) | 2006-04-06 | 2008-03-17 | 주식회사 하이닉스반도체 | 반도체 메모리의 내부 전압 발생 장치 |
WO2007115585A1 (en) | 2006-04-11 | 2007-10-18 | Freescale Semiconductor, Inc. | Method of forming a semiconductor device and semiconductor device |
US7663185B2 (en) * | 2006-05-27 | 2010-02-16 | Taiwan Semiconductor Manufacturing Co, Ltd | FIN-FET device structure formed employing bulk semiconductor substrate |
DE602007000665D1 (de) | 2006-06-12 | 2009-04-23 | St Microelectronics Sa | Verfahren zur Herstellung von auf Si1-yGey basierenden Zonen mit unterschiedlichen Ge-Gehalten auf ein und demselben Substrat mittels Kondensation von Germanium |
JP4271210B2 (ja) * | 2006-06-30 | 2009-06-03 | 株式会社東芝 | 電界効果トランジスタ、集積回路素子、及びそれらの製造方法 |
US8211761B2 (en) | 2006-08-16 | 2012-07-03 | Globalfoundries Singapore Pte. Ltd. | Semiconductor system using germanium condensation |
US7554110B2 (en) | 2006-09-15 | 2009-06-30 | Taiwan Semiconductor Manufacturing Company, Ltd. | MOS devices with partial stressor channel |
US7494862B2 (en) | 2006-09-29 | 2009-02-24 | Intel Corporation | Methods for uniform doping of non-planar transistor structures |
US7410854B2 (en) | 2006-10-05 | 2008-08-12 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method of making FUSI gate and resulting structure |
CN100527380C (zh) | 2006-11-06 | 2009-08-12 | 北京北方微电子基地设备工艺研究中心有限责任公司 | 硅片浅沟槽隔离刻蚀的方法 |
US7534689B2 (en) | 2006-11-21 | 2009-05-19 | Advanced Micro Devices, Inc. | Stress enhanced MOS transistor and methods for its fabrication |
US7943469B2 (en) | 2006-11-28 | 2011-05-17 | Intel Corporation | Multi-component strain-inducing semiconductor regions |
US7968952B2 (en) * | 2006-12-29 | 2011-06-28 | Intel Corporation | Stressed barrier plug slot contact structure for transistor performance enhancement |
US7538387B2 (en) | 2006-12-29 | 2009-05-26 | Taiwan Semiconductor Manufacturing Company, Ltd. | Stack SiGe for short channel improvement |
US7456087B2 (en) | 2007-02-09 | 2008-11-25 | United Microelectronics Corp. | Semiconductor device and method of fabricating the same |
JP2008227026A (ja) | 2007-03-12 | 2008-09-25 | Toshiba Corp | 半導体装置の製造方法 |
KR100844938B1 (ko) | 2007-03-16 | 2008-07-09 | 주식회사 하이닉스반도체 | 반도체 소자 및 그 제조 방법 |
US8258029B2 (en) | 2007-04-10 | 2012-09-04 | Macronix International Co., Ltd. | Semiconductor structure and process for reducing the second bit effect of a memory device |
US7727842B2 (en) | 2007-04-27 | 2010-06-01 | Texas Instruments Incorporated | Method of simultaneously siliciding a polysilicon gate and source/drain of a semiconductor device, and related device |
US8174073B2 (en) * | 2007-05-30 | 2012-05-08 | Taiwan Semiconductor Manufacturing Co., Ltd. | Integrated circuit structures with multiple FinFETs |
US7939862B2 (en) | 2007-05-30 | 2011-05-10 | Synopsys, Inc. | Stress-enhanced performance of a FinFet using surface/channel orientations and strained capping layers |
TW200901368A (en) | 2007-06-23 | 2009-01-01 | Promos Technologies Inc | Shallow trench isolation structure and method for forming thereof |
JP2009016418A (ja) | 2007-07-02 | 2009-01-22 | Nec Electronics Corp | 半導体装置 |
US7851865B2 (en) | 2007-10-17 | 2010-12-14 | International Business Machines Corporation | Fin-type field effect transistor structure with merged source/drain silicide and method of forming the structure |
US7812370B2 (en) * | 2007-07-25 | 2010-10-12 | Taiwan Semiconductor Manufacturing Company, Ltd. | Tunnel field-effect transistor with narrow band-gap channel and strong gate coupling |
US8063437B2 (en) | 2007-07-27 | 2011-11-22 | Panasonic Corporation | Semiconductor device and method for producing the same |
US8883597B2 (en) * | 2007-07-31 | 2014-11-11 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method of fabrication of a FinFET element |
US7692213B2 (en) | 2007-08-07 | 2010-04-06 | Chartered Semiconductor Manufacturing Ltd. | Integrated circuit system employing a condensation process |
US20090053883A1 (en) | 2007-08-24 | 2009-02-26 | Texas Instruments Incorporated | Method of setting a work function of a fully silicided semiconductor device, and related device |
JP4361102B2 (ja) | 2007-09-12 | 2009-11-11 | 富士フイルム株式会社 | 圧電素子の製造方法 |
US7795097B2 (en) | 2007-11-20 | 2010-09-14 | Texas Instruments Incorporated | Semiconductor device manufactured by removing sidewalls during replacement gate integration scheme |
US7767579B2 (en) | 2007-12-12 | 2010-08-03 | International Business Machines Corporation | Protection of SiGe during etch and clean operations |
US20090166625A1 (en) | 2007-12-28 | 2009-07-02 | United Microelectronics Corp. | Mos device structure |
WO2009107031A1 (en) | 2008-02-26 | 2009-09-03 | Nxp B.V. | Method for manufacturing semiconductor device and semiconductor device |
US8003466B2 (en) | 2008-04-08 | 2011-08-23 | Advanced Micro Devices, Inc. | Method of forming multiple fins for a semiconductor device |
JP5554701B2 (ja) | 2008-05-29 | 2014-07-23 | パナソニック株式会社 | 半導体装置 |
DE102008030864B4 (de) | 2008-06-30 | 2010-06-17 | Advanced Micro Devices, Inc., Sunnyvale | Halbleiterbauelement als Doppelgate- und Tri-Gatetransistor, die auf einem Vollsubstrat aufgebaut sind und Verfahren zur Herstellung des Transistors |
US7923321B2 (en) | 2008-11-03 | 2011-04-12 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method for gap filling in a gate last process |
US8247285B2 (en) | 2008-12-22 | 2012-08-21 | Taiwan Semiconductor Manufacturing Company, Ltd. | N-FET with a highly doped source/drain and strain booster |
US8120063B2 (en) | 2008-12-29 | 2012-02-21 | Intel Corporation | Modulation-doped multi-gate devices |
CA2659912C (en) | 2009-03-24 | 2012-04-24 | Sarah Mary Brunet | Nasal prong protector |
US8236658B2 (en) | 2009-06-03 | 2012-08-07 | Taiwan Semiconductor Manufacturing Company, Ltd. | Methods for forming a transistor with a strained channel |
US8759943B2 (en) | 2010-10-08 | 2014-06-24 | Taiwan Semiconductor Manufacturing Company, Ltd. | Transistor having notched fin structure and method of making the same |
US8043920B2 (en) | 2009-09-17 | 2011-10-25 | International Business Machines Corporation | finFETS and methods of making same |
US7993999B2 (en) | 2009-11-09 | 2011-08-09 | International Business Machines Corporation | High-K/metal gate CMOS finFET with improved pFET threshold voltage |
US8114761B2 (en) | 2009-11-30 | 2012-02-14 | Applied Materials, Inc. | Method for doping non-planar transistors |
US8088685B2 (en) | 2010-02-09 | 2012-01-03 | Taiwan Semiconductor Manufacturing Company, Ltd. | Integration of bottom-up metal film deposition |
US8785286B2 (en) | 2010-02-09 | 2014-07-22 | Taiwan Semiconductor Manufacturing Company, Ltd. | Techniques for FinFET doping |
US20110256682A1 (en) | 2010-04-15 | 2011-10-20 | Taiwan Semiconductor Manufacturing Company, Ltd. | Multiple Deposition, Multiple Treatment Dielectric Layer For A Semiconductor Device |
-
2010
- 2010-04-09 US US12/757,271 patent/US8264032B2/en active Active
- 2010-08-11 KR KR1020100077470A patent/KR20110025075A/ko active Application Filing
- 2010-08-25 CN CN2010102638023A patent/CN102005477B/zh active Active
- 2010-08-27 TW TW099128794A patent/TWI426607B/zh active
- 2010-08-31 JP JP2010194220A patent/JP5373722B2/ja active Active
-
2012
- 2012-08-14 US US13/585,436 patent/US8896055B2/en active Active
-
2014
- 2014-06-19 KR KR1020140074989A patent/KR20140083964A/ko not_active Application Discontinuation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1518771A (zh) * | 2002-08-23 | 2004-08-04 | ض� | 三栅极器件及其加工方法 |
CN1551368A (zh) * | 2003-05-09 | 2004-12-01 | 台湾积体电路制造股份有限公司 | 半导体组件、累积模式多重闸晶体管及其制造方法 |
CN1622336A (zh) * | 2003-11-24 | 2005-06-01 | 三星电子株式会社 | 具有锗沟道区域的非平面晶体管及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
KR20110025075A (ko) | 2011-03-09 |
TWI426607B (zh) | 2014-02-11 |
US8896055B2 (en) | 2014-11-25 |
US20120306002A1 (en) | 2012-12-06 |
US20110049613A1 (en) | 2011-03-03 |
TW201110352A (en) | 2011-03-16 |
US8264032B2 (en) | 2012-09-11 |
KR20140083964A (ko) | 2014-07-04 |
JP5373722B2 (ja) | 2013-12-18 |
JP2011061196A (ja) | 2011-03-24 |
CN102005477A (zh) | 2011-04-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102005477B (zh) | 集成电路、鳍式场效应晶体管及其制造方法 | |
US9698060B2 (en) | Germanium FinFETs with metal gates and stressors | |
US7834345B2 (en) | Tunnel field-effect transistors with superlattice channels | |
KR101226827B1 (ko) | 경사 3가 또는 4가 멀티-게이트 트랜지스터 | |
KR101386838B1 (ko) | 도핑된 SiGe 소스/드레인 스트레서 증착을 위한 방법 및 장치 | |
US8587075B2 (en) | Tunnel field-effect transistor with metal source | |
US8674341B2 (en) | High-mobility multiple-gate transistor with improved on-to-off current ratio | |
US9698270B2 (en) | FinFET with dual workfunction gate structure | |
US9159809B2 (en) | Multi-gate transistor device | |
CN103928327B (zh) | 鳍式场效应晶体管及其形成方法 | |
CN101764062A (zh) | 具有高掺杂源/漏极和应变增强器的n型场效应晶体管 | |
US8723223B2 (en) | Hybrid Fin field-effect transistors | |
US9852954B2 (en) | Methods of forming transistors with retrograde wells in CMOS applications and the resulting device structures | |
JP2007123880A (ja) | 電界効果トランジスタ(fet)およびその製造方法(高性能および低リーク電界効果トランジスタを製造するための構造および方法) | |
US11183591B2 (en) | Lateral double-diffused metal-oxide-semiconductor (LDMOS) fin field effect transistor with enhanced capabilities | |
US20150084130A1 (en) | Semiconductor structure and method for manufacturing the same | |
CN102315268A (zh) | 半导体器件及其制造方法 | |
US20160190318A1 (en) | Semiconductor device and manufacturing method thereof | |
Luan et al. | Performance investigations of novel dual-material gate (DMG) MOSFET with dielectric pockets (DP) | |
Kim et al. | Fabrication and electrical characteristics of self-aligned (SA) gate-all-around (GAA) Si nanowire MOSFETs (SNWFET) | |
CN116632006A (zh) | 一种纵向堆叠的栅极自对准反相器集成电路结构 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |