[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
IDEAS home Printed from https://ideas.repec.org/p/iab/iabdpa/201317.html
   My bibliography  Save this paper

Constructing a new leading indicator for unemployment from a survey among German employment agencies

Author

Listed:
  • Hutter, Christian

    (Institute for Employment Research (IAB), Nuremberg, Germany)

  • Weber, Enzo

    (Institute for Employment Research (IAB), Nuremberg, Germany ; Universität Regensburg)

Abstract
"The paper investigates the predictive power of a new survey implemented by the Federal Employment Agency (FEA) for forecasting German unemployment in the short run. Every month, the CEOs of the FEA's regional agencies are asked about their expectations of future labor market developments. We generate an aggregate unemployment leading indicator that exploits serial correlation in response behavior through identifying and adjusting temporarily unreliable predictions. We use out-of-sample tests suitable in nested model environments to compare forecasting performance of models including the new indicator to that of purely autoregressive benchmarks. For all investigated forecast horizons (1, 2, 3 and 6 months), test results show that models enhanced by the new leading indicator significantly outperform their benchmark counterparts. To compare our indicator to potential competitors we employ the model confidence set. Results reveal that models including the new indicator perform very well." (Author's abstract, IAB-Doku) ((en))

Suggested Citation

  • Hutter, Christian & Weber, Enzo, 2013. "Constructing a new leading indicator for unemployment from a survey among German employment agencies," IAB-Discussion Paper 201317, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany].
  • Handle: RePEc:iab:iabdpa:201317
    as

    Download full text from publisher

    File URL: https://doku.iab.de/discussionpapers/2013/dp1713.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Clark, Todd E. & McCracken, Michael W., 2015. "Nested forecast model comparisons: A new approach to testing equal accuracy," Journal of Econometrics, Elsevier, vol. 186(1), pages 160-177.
    2. Mortensen, Dale & Pissarides, Christopher, 2011. "Job Creation and Job Destruction in the Theory of Unemployment," Ekonomicheskaya Politika / Economic Policy, Russian Presidential Academy of National Economy and Public Administration, vol. 1, pages 1-19.
    3. Zabel, Cordula, 2013. "Effects of participating in skill training and workfare on employment entries for lone mothers receiving means-tested benefits in Germany," IAB-Discussion Paper 201303, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany].
    4. Christoffersen, Peter F & Diebold, Francis X, 1998. "Cointegration and Long-Horizon Forecasting," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(4), pages 450-458, October.
    5. Nikolaos Askitas & Klaus F. Zimmermann, 2009. "Google Econometrics and Unemployment Forecasting," Applied Economics Quarterly (formerly: Konjunkturpolitik), Duncker & Humblot, Berlin, vol. 55(2), pages 107-120.
    6. Clark, Todd E. & McCracken, Michael W., 2001. "Tests of equal forecast accuracy and encompassing for nested models," Journal of Econometrics, Elsevier, vol. 105(1), pages 85-110, November.
    7. Schanne, N. & Wapler, R. & Weyh, A., 2010. "Regional unemployment forecasts with spatial interdependencies," International Journal of Forecasting, Elsevier, vol. 26(4), pages 908-926, October.
    8. Christopher A. Pissarides & Barbara Petrongolo, 2001. "Looking into the Black Box: A Survey of the Matching Function," Journal of Economic Literature, American Economic Association, vol. 39(2), pages 390-431, June.
    9. Bauer, Anja, 2013. "Mismatch unemployment : evidence from Germany 2000-2010," IAB-Discussion Paper 201310, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany].
    10. Peter Reinhard Hansen & Allan Timmermann, 2012. "Choice of Sample Split in Out-of-Sample Forecast Evaluation," CREATES Research Papers 2012-43, Department of Economics and Business Economics, Aarhus University.
    11. Marcellino, Massimiliano & Stock, James H. & Watson, Mark W., 2006. "A comparison of direct and iterated multistep AR methods for forecasting macroeconomic time series," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 499-526.
    12. Schanne, Norbert, 2012. "The formation of experts' expectations on labour markets : do they run with the pack?," IAB-Discussion Paper 201225, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany].
    13. Clements, Michael P & Hendry, David F, 1996. "Multi-step Estimation for Forecasting," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 58(4), pages 657-684, November.
    14. Golan, Amos & Perloff, Jeffrey M., 2002. "Superior Forecasts of the U.S. Unemployment Rate Using a Nonparametric Method," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt2bw559zk, Department of Agricultural & Resource Economics, UC Berkeley.
    15. Werner, Daniel, 2013. "New insights into the development of regional unemployment disparities," IAB-Discussion Paper 201311, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany].
    16. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    17. Amos Golan & Jeffrey M. Perloff, 2004. "Superior Forecasts of the U.S. Unemployment Rate Using a Nonparametric Method," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 433-438, February.
    18. Eggs, Johannes, 2013. "Unemployment benefit II, unemployment and health," IAB-Discussion Paper 201312, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany].
    19. Clark, Todd E. & McCracken, Michael W., 2009. "Tests of Equal Predictive Ability With Real-Time Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 441-454.
    20. Yashiv, Eran, 2007. "Labor search and matching in macroeconomics," European Economic Review, Elsevier, vol. 51(8), pages 1859-1895, November.
    21. Clark, Todd E. & West, Kenneth D., 2007. "Approximately normal tests for equal predictive accuracy in nested models," Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
    22. Pauser, Johannes, 2013. "Capital mobility, imperfect labour markets, and the provision of public goods," IAB-Discussion Paper 201309, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany].
    23. Hamilton, James D & Perez-Quiros, Gabriel, 1996. "What Do the Leading Indicators Lead?," The Journal of Business, University of Chicago Press, vol. 69(1), pages 27-49, January.
    24. James H. Stock & Mark W. Watson, 1993. "Business Cycles, Indicators, and Forecasting," NBER Books, National Bureau of Economic Research, Inc, number stoc93-1.
    25. Stephani, Jens, 2013. "Does it matter where you work? : employer characteristics and the wage growth of low-wage workers and higher-wage workers," IAB-Discussion Paper 201304, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany].
    26. Stock, James H. & Watson, Mark W. (ed.), 1993. "Business Cycles, Indicators, and Forecasting," National Bureau of Economic Research Books, University of Chicago Press, edition 1, number 9780226774886, September.
    27. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    28. Abberger, Klaus, 2007. "Qualitative business surveys and the assessment of employment -- A case study for Germany," International Journal of Forecasting, Elsevier, vol. 23(2), pages 249-258.
    29. Moczall, Andreas, 2013. "Subsidies for substitutes? : New evidence on deadweight loss and substitution effects of a wage subsidy for hard-to-place job-seekers," IAB-Discussion Paper 201305, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany].
    30. Kang, In-Bong, 2003. "Multi-period forecasting using different models for different horizons: an application to U.S. economic time series data," International Journal of Forecasting, Elsevier, vol. 19(3), pages 387-400.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Robert Lehmann & Antje Weyh, 2016. "Forecasting Employment in Europe: Are Survey Results Helpful?," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 12(1), pages 81-117, September.
    2. Claveria, Oscar, 2019. "Forecasting the unemployment rate using the degree of agreement in consumer unemployment expectations," Journal for Labour Market Research, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany], vol. 53(1), pages 1-3.
    3. Klaus Wohlrabe, 2018. "Das neue ifo Beschäftigungsbarometer," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 71(09), pages 34-36, May.
    4. Oscar Claveria, 2019. "Forecasting the unemployment rate using the degree of agreement in consumer unemployment expectations," Journal for Labour Market Research, Springer;Institute for Employment Research/ Institut für Arbeitsmarkt- und Berufsforschung (IAB), vol. 53(1), pages 1-10, December.
    5. Blanchflower, David G. & Bryson, Alex, 2021. "The Economics of Walking About and Predicting Unemployment," GLO Discussion Paper Series 922, Global Labor Organization (GLO).
    6. Hutter, Christian, 2020. "A new indicator for nowcasting employment subject to social security contributions in Germany," Journal for Labour Market Research, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany], vol. 54(1), pages 1-4.
    7. Sorić, Petar & Lolić, Ivana & Claveria, Oscar & Monte, Enric & Torra, Salvador, 2019. "Unemployment expectations: A socio-demographic analysis of the effect of news," Labour Economics, Elsevier, vol. 60(C), pages 64-74.
    8. repec:iab:iabjlr:v:53:i:1:p:art.3 is not listed on IDEAS
    9. Stefan Sauer & Klaus Wohlrabe, 2020. "ifo Handbuch der Konjunkturumfragen," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 88.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christian Hutter & Enzo Weber, 2017. "Mismatch and the Forecasting Performance of Matching Functions," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 79(1), pages 101-123, February.
    2. Hutter, Christian & Weber, Enzo, 2014. "Forecasting with a mismatch-enhanced labor market matching function," IAB-Discussion Paper 201416, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany].
    3. Weber, Enzo & Zika, Gerd, 2013. "Labour market forecasting : is disaggregation useful?," IAB-Discussion Paper 201314, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany].
    4. Firmin Doko Tchatoka & Qazi Haque, 2023. "On bootstrapping tests of equal forecast accuracy for nested models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1844-1864, November.
    5. Clark, Todd & McCracken, Michael, 2013. "Advances in Forecast Evaluation," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1107-1201, Elsevier.
    6. Bossler, Mario, 2013. "Recruiting abroad: the role of foreign affinity and labour market scarcity," IAB-Discussion Paper 201319, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany].
    7. Carriero, Andrea & Marcellino, Massimiliano, 2007. "A comparison of methods for the construction of composite coincident and leading indexes for the UK," International Journal of Forecasting, Elsevier, vol. 23(2), pages 219-236.
    8. Galvão, Ana Beatriz, 2013. "Changes in predictive ability with mixed frequency data," International Journal of Forecasting, Elsevier, vol. 29(3), pages 395-410.
    9. Rossi, Barbara, 2013. "Advances in Forecasting under Instability," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324, Elsevier.
    10. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2016. "Common Drifting Volatility in Large Bayesian VARs," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(3), pages 375-390, July.
    11. Faust, Jon & Wright, Jonathan H., 2013. "Forecasting Inflation," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 2-56, Elsevier.
    12. Hutter, Christian, 2020. "A new indicator for nowcasting employment subject to social security contributions in Germany," Journal for Labour Market Research, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany], vol. 54(1), pages 1-4.
    13. Matheson, Troy D., 2008. "Phillips curve forecasting in a small open economy," Economics Letters, Elsevier, vol. 98(2), pages 161-166, February.
    14. Alquist, Ron & Kilian, Lutz & Vigfusson, Robert J., 2013. "Forecasting the Price of Oil," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 427-507, Elsevier.
    15. Coble, David & Pincheira, Pablo, 2017. "Nowcasting Building Permits with Google Trends," MPRA Paper 76514, University Library of Munich, Germany.
    16. Pincheira, Pablo M. & West, Kenneth D., 2016. "A comparison of some out-of-sample tests of predictability in iterated multi-step-ahead forecasts," Research in Economics, Elsevier, vol. 70(2), pages 304-319.
    17. Raffaella Giacomini & Barbara Rossi, 2013. "Forecasting in macroeconomics," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 17, pages 381-408, Edward Elgar Publishing.
    18. Blasques, F. & Koopman, S.J. & Mallee, M. & Zhang, Z., 2016. "Weighted maximum likelihood for dynamic factor analysis and forecasting with mixed frequency data," Journal of Econometrics, Elsevier, vol. 193(2), pages 405-417.
    19. Werner, Daniel, 2013. "New insights into the development of regional unemployment disparities," IAB-Discussion Paper 201311, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany].
    20. David Coble & Pablo Pincheira, 2021. "Forecasting building permits with Google Trends," Empirical Economics, Springer, vol. 61(6), pages 3315-3345, December.

    More about this item

    Keywords

    Bundesrepublik Deutschland ; Befragung ; Indikatoren ; Indikatorenbildung ; Prognosegenauigkeit ; Prognoseverfahren ; Prognostik ; IAB-Arbeitsmarktbarometer ; Arbeitsagenturen ; Arbeitslosenstatistik ; Arbeitslosigkeit ; Arbeitsmarkt ; Arbeitsmarktbeobachtung ; Arbeitsmarktindikatoren ; Arbeitsmarktprognose;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E24 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Employment; Unemployment; Wages; Intergenerational Income Distribution; Aggregate Human Capital; Aggregate Labor Productivity

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:iab:iabdpa:201317. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: IAB, Geschäftsbereich Wissenschaftliche Fachinformation und Bibliothek (email available below). General contact details of provider: https://edirc.repec.org/data/iabbbde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.