[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
IDEAS home Printed from https://ideas.repec.org/a/iab/iabjlr/v53part.03.html
   My bibliography  Save this article

Forecasting the unemployment rate using the degree of agreement in consumer unemployment expectations

Author

Listed:
  • Claveria, Oscar

    (AQR-IREA, University of Barcelona)

Abstract
"This study aims to refine unemployment forecasts by incorporating the degree of consensus in consumers' expectations. With this objective, we first model the unemployment rate in eight European countries using the step-wise algorithm proposed by Hyndman and Khandakar (J Stat Softw 27(3):1 - 22, 2008). The selected optimal autoregressive integrated moving average (ARIMA) models are then used to generate out-of-sample recursive forecasts of the unemployment rates, which are used as benchmark. Finally, we replicate the forecasting experiment including as predictors both an indicator of unemployment, based on the degree of agreement in consumer unemployment expectations, and a measure of disagreement based on the dispersion of expectations. In both cases, we obtain an improvement in forecast accuracy in most countries. These results reveal that the degree of agreement in consumers' expectations contains useful information to predict unemployment rates, especially for the detection of turning points." (Author's abstract, © Springer-Verlag) ((en))

Suggested Citation

  • Claveria, Oscar, 2019. "Forecasting the unemployment rate using the degree of agreement in consumer unemployment expectations," Journal for Labour Market Research, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany], vol. 53(1), pages 1-3.
  • Handle: RePEc:iab:iabjlr:v:53:p:art.03
    DOI: 10.1186/s12651-019-0253-4
    as

    Download full text from publisher

    File URL: https://doi.org/10.1186/s12651-019-0253-4
    Download Restriction: no

    File URL: https://libkey.io/10.1186/s12651-019-0253-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Nikolaos Askitas & Klaus F. Zimmermann, 2009. "Google Econometrics and Unemployment Forecasting," Applied Economics Quarterly (formerly: Konjunkturpolitik), Duncker & Humblot, Berlin, vol. 55(2), pages 107-120.
    2. Christian Hutter & Enzo Weber, 2015. "Constructing a new leading indicator for unemployment from a survey among German employment agencies," Applied Economics, Taylor & Francis Journals, vol. 47(33), pages 3540-3558, July.
    3. Frieder Mokinski & Xuguang (Simon) Sheng & Jingyun Yang, 2015. "Measuring Disagreement in Qualitative Expectations," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 34(5), pages 405-426, August.
    4. Glas, Alexander & Hartmann, Matthias, 2016. "Inflation uncertainty, disagreement and monetary policy: Evidence from the ECB Survey of Professional Forecasters," Journal of Empirical Finance, Elsevier, vol. 39(PB), pages 215-228.
    5. Vicente, María Rosalía & López-Menéndez, Ana J. & Pérez, Rigoberto, 2015. "Forecasting unemployment with internet search data: Does it help to improve predictions when job destruction is skyrocketing?," Technological Forecasting and Social Change, Elsevier, vol. 92(C), pages 132-139.
    6. Hyndman, Rob J. & Khandakar, Yeasmin, 2008. "Automatic Time Series Forecasting: The forecast Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
    7. Ivana Lolić & Petar Sorić, 2018. "A critical re-examination of the Carlson–Parkin method," Applied Economics Letters, Taylor & Francis Journals, vol. 25(19), pages 1360-1363, November.
    8. R?diger Bachmann & Steffen Elstner & Eric R. Sims, 2013. "Uncertainty and Economic Activity: Evidence from Business Survey Data," American Economic Journal: Macroeconomics, American Economic Association, vol. 5(2), pages 217-249, April.
    9. Alessandro Girardi & Andreas Reuter, 2017. "New uncertainty measures for the euro area using survey data," Oxford Economic Papers, Oxford University Press, vol. 69(1), pages 278-300.
    10. Robert Lehmann & Antje Weyh, 2016. "Forecasting Employment in Europe: Are Survey Results Helpful?," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 12(1), pages 81-117, September.
    11. D’Amuri, Francesco & Marcucci, Juri, 2017. "The predictive power of Google searches in forecasting US unemployment," International Journal of Forecasting, Elsevier, vol. 33(4), pages 801-816.
    12. Joachim Zuckarelli, 2015. "A new method for quantification of qualitative expectations," Economics and Business Letters, Oviedo University Press, vol. 4(3), pages 123-128.
    13. Soybilgen, Barış & Yazgan, Ege, 2018. "Evaluating nowcasts of bridge equations with advanced combination schemes for the Turkish unemployment rate," Economic Modelling, Elsevier, vol. 72(C), pages 99-108.
    14. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    15. Martinsen, Kjetil & Ravazzolo, Francesco & Wulfsberg, Fredrik, 2014. "Forecasting macroeconomic variables using disaggregate survey data," International Journal of Forecasting, Elsevier, vol. 30(1), pages 65-77.
    16. Canova, Fabio & Hansen, Bruce E, 1995. "Are Seasonal Patterns Constant over Time? A Test for Seasonal Stability," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 237-252, July.
    17. Abberger, Klaus, 2007. "Qualitative business surveys and the assessment of employment -- A case study for Germany," International Journal of Forecasting, Elsevier, vol. 23(2), pages 249-258.
    18. Hyndman, Rob J. & Koehler, Anne B., 2006. "Another look at measures of forecast accuracy," International Journal of Forecasting, Elsevier, vol. 22(4), pages 679-688.
    19. Claveria, Oscar & Pons, Ernest & Ramos, Raul, 2007. "Business and consumer expectations and macroeconomic forecasts," International Journal of Forecasting, Elsevier, vol. 23(1), pages 47-69.
    20. R. Lehmann & K. Wohlrabe, 2017. "Experts, firms, consumers or even hard data? Forecasting employment in Germany," Applied Economics Letters, Taylor & Francis Journals, vol. 24(4), pages 279-283, February.
    21. Oscar Claveria, 2019. "A new consensus-based unemployment indicator," Applied Economics Letters, Taylor & Francis Journals, vol. 26(10), pages 812-817, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Emilia Tomczyk & Barbara Kowalczyk, 2023. "Consensus in Business Tendency Surveys: Comparison of Alternative Measures," Gospodarka Narodowa. The Polish Journal of Economics, Warsaw School of Economics, issue 4, pages 17-29.
    2. Petar Sorić & Blanka Škrabić Perić & Marina Matošec, 2022. "Breaking new grounds: a fresh insight into the leading properties of business and consumer survey indicators," Quality & Quantity: International Journal of Methodology, Springer, vol. 56(6), pages 4511-4535, December.
    3. Oscar Claveria & Enric Monte & Salvador Torra, 2020. "Spectral analysis of business and consumer survey data," IREA Working Papers 202006, University of Barcelona, Research Institute of Applied Economics, revised May 2020.
    4. Wooi Chen Khoo & Kim Leng Yeah & Shun Yi Hong, 2022. "Modeling unemployment duration, determinants and insurance premium pricing of Malaysia: insights from an upper middle-income developing country," SN Business & Economics, Springer, vol. 2(8), pages 1-25, August.
    5. Aurelia Rybak & Aleksandra Rybak, 2021. "The Impact of the COVID-19 Pandemic on Gaseous and Solid Air Pollutants Concentrations and Emissions in the EU, with Particular Emphasis on Poland," Energies, MDPI, vol. 14(11), pages 1-25, June.
    6. Gillmann, Niels & Kim, Alisa, 2021. "Quantification of Economic Uncertainty: a deep learning approach," VfS Annual Conference 2021 (Virtual Conference): Climate Economics 242421, Verein für Socialpolitik / German Economic Association.
    7. Oscar Claveria, 2020. "“Measuring and assessing economic uncertainty”," AQR Working Papers 2012003, University of Barcelona, Regional Quantitative Analysis Group, revised Jul 2020.
    8. Sorić, Petar & Lolić, Ivana & Claveria, Oscar & Monte, Enric & Torra, Salvador, 2019. "Unemployment expectations: A socio-demographic analysis of the effect of news," Labour Economics, Elsevier, vol. 60(C), pages 64-74.
    9. Petar Soric & Oscar Claveria, 2021. ""Employment uncertainty a year after the irruption of the covid-19 pandemic"," IREA Working Papers 202112, University of Barcelona, Research Institute of Applied Economics, revised May 2021.
    10. Lenka Mynaříková & Vít Pošta, 2023. "The Effect of Consumer Confidence and Subjective Well-being on Consumers’ Spending Behavior," Journal of Happiness Studies, Springer, vol. 24(2), pages 429-453, February.
    11. Oscar Claveria & Petar Sorić, 2023. "Labour market uncertainty after the irruption of COVID-19," Empirical Economics, Springer, vol. 64(4), pages 1897-1945, April.
    12. Periklis Gogas & Theophilos Papadimitriou & Emmanouil Sofianos, 2022. "Forecasting unemployment in the euro area with machine learning," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(3), pages 551-566, April.
    13. Oscar Claveria, 2021. "Uncertainty indicators based on expectations of business and consumer surveys," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 48(2), pages 483-505, May.
    14. Phi-Hung Nguyen & Jung-Fa Tsai & Ihsan Erdem Kayral & Ming-Hua Lin, 2021. "Unemployment Rates Forecasting with Grey-Based Models in the Post-COVID-19 Period: A Case Study from Vietnam," Sustainability, MDPI, vol. 13(14), pages 1-27, July.
    15. Oscar Claveria, 2021. "Forecasting with Business and Consumer Survey Data," Forecasting, MDPI, vol. 3(1), pages 1-22, February.
    16. Mihaela, Simionescu, 2020. "Improving unemployment rate forecasts at regional level in Romania using Google Trends," Technological Forecasting and Social Change, Elsevier, vol. 155(C).
    17. António Bento Caleiro, 2021. "Learning to Classify the Consumer Confidence Indicator (in Portugal)," Economies, MDPI, vol. 9(3), pages 1-12, September.
    18. Adriana AnaMaria Davidescu & Simona-Andreea Apostu & Liviu Adrian Stoica, 2021. "Socioeconomic Effects of COVID-19 Pandemic: Exploring Uncertainty in the Forecast of the Romanian Unemployment Rate for the Period 2020–2023," Sustainability, MDPI, vol. 13(13), pages 1-22, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:iab:iabjlr:v:53:i:1:p:art.3 is not listed on IDEAS
    2. Oscar Claveria, 2019. "Forecasting the unemployment rate using the degree of agreement in consumer unemployment expectations," Journal for Labour Market Research, Springer;Institute for Employment Research/ Institut für Arbeitsmarkt- und Berufsforschung (IAB), vol. 53(1), pages 1-10, December.
    3. Oscar Claveria & Enric Monte & Salvador Torra, 2018. "“Tracking economic growth by evolving expectations via genetic programming: A two-step approach”," AQR Working Papers 201801, University of Barcelona, Regional Quantitative Analysis Group, revised Jan 2018.
    4. Oscar Claveria, 2021. "Forecasting with Business and Consumer Survey Data," Forecasting, MDPI, vol. 3(1), pages 1-22, February.
    5. Oscar Claveria & Enric Monte & Salvador Torra, 2019. "Evolutionary Computation for Macroeconomic Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 53(2), pages 833-849, February.
    6. Oscar Claveria & Enric Monte & Salvador Torra, 2019. "Empirical modelling of survey-based expectations for the design of economic indicators in five European regions," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 46(2), pages 205-227, May.
    7. Robert Lehmann & Antje Weyh, 2016. "Forecasting Employment in Europe: Are Survey Results Helpful?," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 12(1), pages 81-117, September.
    8. Caperna, Giulio & Colagrossi, Marco & Geraci, Andrea & Mazzarella, Gianluca, 2022. "A babel of web-searches: Googling unemployment during the pandemic," Labour Economics, Elsevier, vol. 74(C).
    9. Robert Lehmann, 2023. "The Forecasting Power of the ifo Business Survey," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 19(1), pages 43-94, March.
    10. Oscar Claveria, 2021. "On the Aggregation of Survey-Based Economic Uncertainty Indicators Between Different Agents and Across Variables," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 17(1), pages 1-26, April.
    11. Sorić, Petar & Lolić, Ivana & Claveria, Oscar & Monte, Enric & Torra, Salvador, 2019. "Unemployment expectations: A socio-demographic analysis of the effect of news," Labour Economics, Elsevier, vol. 60(C), pages 64-74.
    12. Oscar Claveria & Enric Monte & Salvador Torra, 2018. "A Data-Driven Approach to Construct Survey-Based Indicators by Means of Evolutionary Algorithms," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 135(1), pages 1-14, January.
    13. Oscar Claveria & Enric Monte & Salvador Torra, 2017. "Let the data do the talking: Empirical modelling of survey-based expectations by means of genetic programming," IREA Working Papers 201711, University of Barcelona, Research Institute of Applied Economics, revised May 2017.
    14. Petar Soric & Oscar Claveria, 2021. "“Employment uncertainty a year after the irruption of the covid-19 pandemic”," AQR Working Papers 202104, University of Barcelona, Regional Quantitative Analysis Group, revised May 2021.
    15. Blanchflower, David G. & Bryson, Alex, 2021. "The Economics of Walking About and Predicting Unemployment," GLO Discussion Paper Series 922, Global Labor Organization (GLO).
    16. R. Lehmann & K. Wohlrabe, 2017. "Experts, firms, consumers or even hard data? Forecasting employment in Germany," Applied Economics Letters, Taylor & Francis Journals, vol. 24(4), pages 279-283, February.
    17. Gillmann, Niels & Kim, Alisa, 2021. "Quantification of Economic Uncertainty: a deep learning approach," VfS Annual Conference 2021 (Virtual Conference): Climate Economics 242421, Verein für Socialpolitik / German Economic Association.
    18. Hutter, Christian, 2020. "A new indicator for nowcasting employment subject to social security contributions in Germany," Journal for Labour Market Research, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany], vol. 54(1), pages 1-4.
    19. Siklos, Pierre, 2017. "What Has Publishing Inflation Forecasts Accomplished? Central Banks And Their Competitors," LCERPA Working Papers 0098, Laurier Centre for Economic Research and Policy Analysis, revised 01 Apr 2017.
    20. Oscar Claveria & Enric Monte & Salvador Torra, 2019. "Economic Uncertainty: A Geometric Indicator of Discrepancy Among Experts’ Expectations," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 143(1), pages 95-114, May.
    21. Stefan Sauer & Klaus Wohlrabe, 2020. "ifo Handbuch der Konjunkturumfragen," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 88.

    More about this item

    Keywords

    Bundesrepublik Deutschland ; Frankreich ; Griechenland ; Großbritannien ; Italien ; Niederlande ; Österreich ; Portugal ; Erwartung ; internationaler Vergleich ; Prognosegenauigkeit ; Prognoseverfahren ; Arbeitslosenquote ; Arbeitslosigkeit ; Verbraucher ; Verbraucherverhalten ; Arbeitsmarktprognose ; 2007-2017;
    All these keywords.

    JEL classification:

    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • D12 - Microeconomics - - Household Behavior - - - Consumer Economics: Empirical Analysis
    • E24 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Employment; Unemployment; Wages; Intergenerational Income Distribution; Aggregate Human Capital; Aggregate Labor Productivity

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:iab:iabjlr:v:53:p:art.03. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: IAB, Geschäftsbereich Wissenschaftliche Fachinformation und Bibliothek (email available below). General contact details of provider: https://edirc.repec.org/data/iabbbde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.