Colonisation and Transmission Dynamics of Candida auris among Chronic Respiratory Diseases Patients Hospitalised in a Chest Hospital, Delhi, India: A Comparative Analysis of Whole Genome Sequencing and Microsatellite Typing
<p>Maximum likelihood phylogenetic tree constructed based on 1000 bootstrap constructed by RAxML. Relationships among our nine strains and South Asian strains including 18 previously published Indian <span class="html-italic">C. auris</span> strains (B11200, B11201, B11205-B11207, B11209, B11210, B11212-B11218, VPCI_510/P/14, VPCI_692/P/12, VPCI_550/P/14, VPCI_479/P/13), and one reference Clade I strain B8441 from Pakistan.</p> "> Figure 2
<p>Maximum clade credibility phylogenetic tree of 9 <span class="html-italic">Candida auris</span> strains (clinical, <span class="html-italic">n</span> = 4; environmental, <span class="html-italic">n</span> = 5) isolated in the present study, and 18 previously published Indian <span class="html-italic">C. auris</span> strains, (B11200, B11201, B11205-B11207, B11209, B11210, B11212-B11218, VPCI_510/P/14, VPCI_692/P/12, VPCI_550/P/14, VPCI_479/P/13) along with Clade1 isolate (B8441) using BEAST strict clock model and coalescent model. Values indicate the posterior probability of the nodes in the maximum clade credibility tree. Purple bars indicate 95% highest posterior density.</p> ">
Abstract
:1. Introduction
2. Methods
2.1. Ethical Statement
Study Design
2.2. Collection and Processing of Clinical and Environmental Specimens
2.2.1. Collection of Swab Specimens
2.2.2. Processing of Swab Specimens
2.2.3. Yeast Identification and Antifungal Susceptibility Testing
2.2.4. Genome Sequencing, SNP Calling, and Phylogenetic Analysis
2.2.5. Microsatellite Typing of C. auris
3. Results
3.1. Patient Details and C. auris Colonisation
3.2. Yeast Identification and Evaluation of CHROMagarTM Candida Plus for C. auris
3.3. Environmental C. auris
3.4. Genome Sequencing and Phylogenetic Analysis of C. auris Isolates
3.5. Microsatellite Analysis
3.6. Comparison of Data Obtained with the STR Assay and WGS Analysis
3.7. In Vitro Antifungal Susceptibility Testing (AFST) and Mutation Analysis
3.7.1. Antifungal Susceptibility Testing
3.7.2. Genomic Analysis of Drug Resistant Genes
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Parra-Giraldo, C.M.; Valderrama, S.L.; Cortes-Fraile, G.; Garzón, J.R.; Ariza, B.E.; Morio, F.; Linares-Linares, M.Y.; Ceballos-Garzón, A.; de la Hoz, A.; Hernandez, C.; et al. First report of sporadic cases of Candida auris in Colombia. Int. J. Infect. Dis. 2018, 69, 63–67. [Google Scholar] [CrossRef] [Green Version]
- Chowdhary, A.; Sharma, C.; Duggal, S.; Agarwal, K.; Prakash, A.; Singh, P.K.; Jain, S.; Kathuria, S.; Randhawa, H.S.; Hagen, F.; et al. New clonal strain of Candida auris, Delhi, India: New clonal strain of Candida auris, Delhi, India. Emerg. Infect. Dis. 2013, 19, 1670–1673. [Google Scholar] [CrossRef] [Green Version]
- Chowdhary, A.; Anil Kumar, V.; Sharma, C.; Prakash, A.; Agarwal, K.; Babu, R.; Dinesh, K.R.; Karim, S.; Singh, S.K.; Hagen, F.; et al. Multidrug-resistant endemic clonal strain of Candida auris in India. Eur. J. Clin. Microbiol. Infect. Dis. 2014, 33, 919–926. [Google Scholar] [CrossRef]
- Adam, R.D.; Revathi, G.; Okinda, N.; Fontaine, M.; Shah, J.; Kagotho, E.; Castanheira, M.; Pfaller, M.A.; Maina, D. Analysis of Candida auris fungemia at a single facility in Kenya. Int. J. Infect. Dis. 2019, 85, 182–187. [Google Scholar] [CrossRef] [Green Version]
- Alfouzan, W.; Ahmad, S.; Dhar, R.; Asadzadeh, M.; Almerdasi, N.; Abdo, N.M.; Joseph, L.; de Groot, T.; Alali, W.Q.; Khan, Z.; et al. Molecular epidemiology of Candida auris outbreak in a major secondary-care hospital in Kuwait. J. Fungi 2020, 6, 307. [Google Scholar] [CrossRef]
- Al Maani, A.; Paul, H.; Al-Rashdi, A.; Wahaibi, A.A.; Al-Jardani, A.; Al Abri, A.M.A.; AlBalushi, M.A.H.; Al-Abri, S.; Al Reesi, M.; Al Maqbali, A.; et al. Ongoing challenges with healthcare-associated Candida auris outbreaks in Oman. J. Fungi 2019, 5, 101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sana, F.; Hussain, W.; Zaman, G.; Satti, L.; Khurshid, U.; Khadim, M.T. Candida auris outbreak report from Pakistan: A success story of infection control in ICUs of a tertiary care hospital. J. Hosp. Infect. 2019, 103, 108–110. [Google Scholar] [CrossRef] [PubMed]
- Van Schalkwyk, E.; Mpembe, R.S.; Thomas, J.; Shuping, L.; Ismail, H.; Lowman, W.; Karstaedt, A.S.; Chibabhai, V.; Wadula, J.; Avenant, T.; et al. Epidemiologic shift in candidemia driven by Candida auris, South Africa, 2016–2017. Emerg. Infect. Dis. 2019, 25, 1698–1707. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Gaitán, A.; Moret, A.M.; Tasias-Pitarch, M.; Aleixandre-López, A.I.; Martínez-Morel, H.; Calabuig, E.; Salavert-Lletí, M.; Ramírez, P.; López-Hontangas, J.L.; Hagen, F.; et al. An outbreak due to Candida auris with prolonged colonisation and candidaemia in a tertiary care European hospital. Mycoses 2018, 61, 498–505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schelenz, S.; Hagen, F.; Rhodes, J.L.; Abdolrasouli, A.; Chowdhary, A.; Hall, A.; Ryan, L.; Shackleton, J.; Trimlett, R.; Meis, J.F.; et al. First hospital outbreak of the globally emerging Candida auris in a European hospital. Antimicrob. Resist. Infect. Control 2016, 5, 35. [Google Scholar] [CrossRef] [Green Version]
- Eyre, D.W.; Sheppard, A.E.; Madder, H.; Moir, I.; Moroney, R.; Quan, T.P.; Griffiths, D.; George, S.; Butcher, L.; Morgan, M.; et al. A Candida auris outbreak and its control in an intensive care setting. N. Engl. J. Med. 2018, 379, 1322–1331. [Google Scholar] [CrossRef] [PubMed]
- Adams, E.; Quinn, M.; Tsay, S.; Poirot, E.; Chaturvedi, S.; Southwick, K.; Greenko, J.; Fernandez, R.; Kallen, A.; Vallabhaneni, S.; et al. Candida auris in healthcare facilities, New York, USA, 2013–2017. Emerg. Infect. Dis. 2018, 24, 1816–1824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calvo, B.; Melo, A.S.A.; Perozo-Mena, A.; Hernandez, M.; Francisco, E.C.; Hagen, F.; Meis, J.F.; Colombo, A.L. First report of Candida auris in America: Clinical and microbiological aspects of 18 episodes of candidemia. J. Infect. 2016, 73, 369–374. [Google Scholar] [CrossRef] [PubMed]
- Escandón, P.; Chow, N.A.; Caceres, D.H.; Gade, L.; Berkow, E.L.; Armstrong, P.; Rivera, S.; Misas, E.; Duarte, C.; Moulton-Meissner, H.; et al. Molecular epidemiology of Candida auris in Colombia reveals a highly related, countrywide colonization with regional patterns in amphotericin B resistance. Clin. Infect. Dis. 2019, 68, 15–21. [Google Scholar] [CrossRef] [Green Version]
- Piedrahita, C.T.; Cadnum, J.L.; Jencson, A.L.; Shaikh, A.A.; Ghannoum, M.A.; Donskey, C.J. Environmental surfaces in healthcare facilities are a potential source for transmission of Candida auris and other Candida species. Infect. Control Hosp. Epidemiol. 2017, 38, 1107–1109. [Google Scholar] [CrossRef] [Green Version]
- Rhodes, J.; Abdolrasouli, A.; Farrer, R.A.; Cuomo, C.A.; Aanensen, D.M.; Armstrong-James, D.; Fisher, M.C.; Schelenz, S. Genomic epidemiology of the UK outbreak of the emerging human fungal pathogen Candida auris. Emerg. Microbes Infect. 2018, 7, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Chow, N.A.; Gade, L.; Tsay, S.V.; Forsberg, K.; Greenko, J.A.; Southwick, K.L.; Barrett, P.M.; Kerins, J.L.; Lockhart, S.R.; Chiller, T.M.; et al. Multiple introductions and subsequent transmission of multidrug-resistant Candida auris in the USA: A molecular epidemiological survey. Lancet Infect. Dis. 2018, 18, 1377–1384. [Google Scholar] [CrossRef]
- De Groot, T.; Puts, Y.; Berrio, I.; Chowdhary, A.; Meis, J.F. Development of Candida auris short tandem repeat typing and its application to a global collection of isolates. mBio 2020, 11, e02971-19. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Gaitán, A.; Martínez, H.; Moret, A.M.; Calabuig, E.; Tasias, M.; Alastruey-Izquierdo, A.; Zaragoza, Ó.; Mollar, J.; Frasquet, J.; Salavert-Lletí, M.; et al. Detection and treatment of Candida auris in an outbreak situation: Risk factors for developing colonization and candidemia by this new species in critically ill patients. Expert Rev. Anti Infect. Ther. 2019, 17, 295–305. [Google Scholar]
- Welsh, R.M.; Bentz, M.L.; Shams, A.; Houston, H.; Lyons, A.; Rose, L.J.; Litvintseva, A.P. Survival, persistence, and isolation of the emerging multidrug-resistant pathogenic yeast Candida auris on a plastic health care surface. J. Clin. Microbiol. 2017, 55, 2996–3005. [Google Scholar] [CrossRef] [Green Version]
- Borman, A.M.; Fraser, M.; Johnson, E.M. CHROMagarTM Candida Plus: A novel chromogenic agar that permits the rapid identification of Candida auris. Med. Mycol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Kathuria, S.; Singh, P.K.; Sharma, C.; Prakash, A.; Masih, A.; Kumar, A.; Meis, J.F.; Chowdhary, A. Multidrug-resistant Candida auris misidentified as Candida haemulonii: Characterization by matrix-assisted laser desorption ionization-time of flight mass spectrometry and DNA sequencing and its antifungal susceptibility profile variability by Vitek 2, CLSI broth microdilution, and Etest method. J. Clin. Microbiol. 2015, 53, 1823–1830. [Google Scholar] [PubMed] [Green Version]
- Clinical and Laboratory Standards Institute. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi—Approved Standard CLSI Document M38-Ed3; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2017. [Google Scholar]
- Singh, A.; Masih, A.; Monroy-Nieto, J.; Singh, P.K.; Bowers, J.; Travis, J.; Khurana, A.; Engelthaler, D.M.; Meis, J.F.; Chowdhary, A. A unique multidrug-resistant clonal Trichophyton population distinct from Trichophyton mentagrophytes/Trichophyton interdigitale complex causing an ongoing alarming dermatophytosis outbreak in India: Genomic insights and resistance Profile. Fungal Genet. Biol. 2019, 133, 103266. [Google Scholar] [CrossRef]
- Sharma, C.; Kumar, N.; Pandey, R.; Meis, J.F.; Chowdhary, A. Whole genome sequencing of emerging multidrug resistant Candida auris isolates in India demonstrates low genetic variation. New Microbes New Infect. 2016, 13, 77–82. [Google Scholar] [CrossRef] [Green Version]
- Lockhart, S.R.; Etienne, K.A.; Vallabhaneni, S.; Farooqi, J.; Chowdhary, A.; Govender, N.P.; Colombo, A.L.; Calvo, B.; Cuomo, C.A.; Desjardins, C.A.; et al. Simultaneous emergence of multidrug-resistant Candida auris on 3 continents confirmed by whole-genome sequencing and epidemiological analyses. Clin. Infect. Dis. 2017, 64, 134–140. [Google Scholar] [CrossRef] [Green Version]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [Green Version]
- Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv 2013, arXiv:bio/1303.3997. [Google Scholar]
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.; et al. The genome analysis toolkit: A map reduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drummond, A.J.; Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 2007, 7, 214. [Google Scholar] [CrossRef] [Green Version]
- Rambaut, A.; Drummond, A.J.; Xie, D.; Baele, G.; Suchard, M.A. Posterior summarization in Bayesian phylogenetics using tracer 1.7. Syst. Biol. 2018, 67, 901–904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nei, M.; Li, W.H. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. USA 1979, 76, 5269–5273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chow, N.A.; Muñoz, J.F.; Gade, L.; Berkow, E.L.; Li, X.; Welsh, R.M.; Forsberg, K.; Lockhart, S.R.; Adam, R.; Alanio, A.; et al. Tracing the evolutionary history and global expansion of Candida auris using population genomic analyses. mBio 2020, 11. [Google Scholar] [CrossRef] [PubMed]
- Chowdhary, A.; Prakash, A.; Sharma, C.; Kordalewska, M.; Kumar, A.; Sarma, S.; Tarai, B.; Singh, A.; Upadhyaya, G.; Upadhyay, S.; et al. A multicentre study of antifungal susceptibility patterns among 350 Candida auris isolates (2009–2017) in India: Role of the ERG11 and FKS1 genes in azole and echinocandin resistance. J. Antimicrob. Chemother. 2018, 73, 891–899. [Google Scholar] [CrossRef] [PubMed]
- Healey, K.R.; Kordalewska, M.; Jiménez Ortigosa, C.; Singh, A.; Berrío, I.; Chowdhary, A.; Perlin, D.S. Limited ERG11 mutations identified in isolates of Candida auris directly contribute to reduced azole susceptibility. Antimicrob. Agents Chemother. 2018, 62. [Google Scholar] [CrossRef] [Green Version]
- Rybak, J.M.; Muñoz, J.F.; Barker, K.S.; Parker, J.E.; Esquivel, B.D.; Berkow, E.L.; Lockhart, S.R.; Gade, L.; Palmer, G.E.; White, T.C.; et al. Mutations in TAC1B: A novel genetic determinant of clinical fluconazole resistance in Candida auris. mBio 2020, 11. [Google Scholar] [CrossRef]
- Hsueh, Y.-P.; Shen, W.-C. A homolog of Ste6, the a-factor transporter in Saccharomyces cerevisiae, is required for mating but not for monokaryotic fruiting in Cryptococcus neoformans. Eukaryot. Cell 2005, 4, 147–155. [Google Scholar] [CrossRef] [Green Version]
- Rossow, J.; Ostrowsky, B.; Adams, E.; Greenko, J.; McDonald, R.; Vallabhaneni, S.; Forsberg, K.; Perez, S.; Lucas, T.; Alroy, K.A.; et al. Factors associated with Candida auris colonization and transmission in skilled nursing facilities with ventilator units, New York, 2016–2018. Clin. Infect. Dis. 2020. [Google Scholar] [CrossRef]
- Pacilli, M.; Kerins, J.L.; Clegg, W.J.; Walblay, K.A.; Adil, H.; Kemble, S.K.; Xydis, S.; McPherson, T.D.; Lin, M.Y.; Hayden, M.K.; et al. Regional emergence of Candida auris in Chicago and lessons learned from intensive follow-up at one ventilator-capable skilled nursing facility. Clin. Infect. Dis. 2020. [Google Scholar] [CrossRef]
- Caceres, D.H.; Forsberg, K.; Welsh, R.M.; Sexton, D.J.; Lockhart, S.R.; Jackson, B.R.; Chiller, T. Candida auris: A review of recommendations for detection and control in healthcare settings. J. Fungi 2019, 5, 111. [Google Scholar] [CrossRef] [Green Version]
- Kenters, N.; Kiernan, M.; Chowdhary, A.; Denning, D.W.; Pemán, J.; Saris, K.; Schelenz, S.; Tartari, E.; Widmer, A.; Meis, J.F.; et al. Control of Candida auris in healthcare institutions: Outcome of an international society for antimicrobial chemotherapy expert meeting. Int. J. Antimicrob. Agents 2019, 54, 400–406. [Google Scholar] [CrossRef]
- Chowdhary, A.; Voss, A.; Meis, J.F. Multidrug-resistant Candida auris: “new kid on the block” in hospital-associated infections? J. Hosp. Infect. 2016, 94, 209–212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, J.; Eilertson, B.; Cadnum, J.L.; Whitlow, C.S.; Jencson, A.L.; Safdar, N.; Krein, S.L.; Tanner, W.D.; Mayer, J.; Samore, M.H.; et al. Environmental contamination with Candida species in multiple hospitals including a tertiary care hospital with a Candida auris outbreak. Pathog. Immun. 2019, 4, 260–270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cuomo, C.A.; Alanio, A. Tracking a global threat: A new genotyping method for Candida auris. mBio 2020, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vincent, B.M.; Lancaster, A.K.; Scherz-Shouval, R.; Whitesell, L.; Lindquist, S. Fitness Trade-Offs Restrict the evolution of resistance to Amphotericin, B. PLoS Biol. 2013, 11, e1001692. [Google Scholar] [CrossRef]
- Jensen-Pergakes, K.L.; Kennedy, M.A.; Lees, N.D.; Barbuch, R.; Koegel, C.; Bard, M. Sequencing, disruption, and characterization of the Candida albicans sterol methyltransferase (ERG6) Gene: Drug susceptibility studies in Erg6 mutants. Antimicrob. Agents Chemother. 1998, 42, 1160–1167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vale-Silva, L.A.; Coste, A.T.; Ischer, F.; Parker, J.E.; Kelly, S.L.; Pinto, E.; Sanglard, D. Azole resistance by loss of function of the sterol Δ5,6-desaturase gene (ERG3) in Candida albicans does not necessarily decrease virulence. Antimicrob. Agents Chemother. 2012, 56, 1960–1968. [Google Scholar] [CrossRef] [Green Version]
- Sanglard, D.; Ischer, F.; Parkinson, T.; Falconer, D.; Bille, J. Candida albicans mutations in the ergosterol biosynthetic pathway and resistance to several antifungal agents. Antimicrob. Agents Chemother. 2003, 47, 2404–2412. [Google Scholar] [CrossRef] [Green Version]
- Martel, C.M.; Parker, J.E.; Bader, O.; Weig, M.; Gross, U.; Warrilow, A.G.S.; Kelly, D.E.; Kelly, S.L. A clinical isolate of Candida albicans with mutations in ERG11 (Encoding Sterol 14alpha-Demethylase) and ERG5 (Encoding C22 Desaturase) is cross resistant to azoles and Amphotericin, B. Antimicrob. Agents Chemother. 2010, 54, 3578–3583. [Google Scholar] [CrossRef] [Green Version]
- Morio, F.; Pagniez, F.; Lacroix, C.; Miegeville, M.; Le Pape, P. Amino acid substitutions in the Candida albicans sterol Δ5,6-desaturase (Erg3p) confer azole resistance: Characterization of two novel mutants with impaired virulence. J. Antimicrob. Chemother. 2012, 67, 2131–2138. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, S.; Joseph, L.; Parker, J.E.; Asadzadeh, M.; Kelly, S.L.; Meis, J.F.; Khan, Z. ERG6 and ERG2 are major targets conferring reduced susceptibility to Amphotericin B in clinical Candida glabrata isolates in Kuwait. Antimicrob. Agents Chemother. 2018, 63, e01900-18. [Google Scholar] [CrossRef] [Green Version]
- Shivarathri, R.; Jenull, S.; Stoiber, A.; Chauhan, M.; Mazumdar, R.; Singh, A.; Nogueira, F.; Kuchler, K.; Chowdhary, A.; Chauhan, N. The two-component response regulator Ssk1 and the mitogen-activated protein kinase Hog1 control antifungal drug resistance and cell wall architecture of Candida auris. mSphere 2020, 5. [Google Scholar] [CrossRef] [PubMed]
Patients Code | Age/Sex | Diagnosis | Weekly Culture Positivity (Body Sites Colonised) | Duration of Hospitalization | |||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 * | On Discharge | ||||
A | 52/M | COPD, DM, HTN, | - | - | + (G) | + (G) | + (G) | 26 days | |
B # | 60/M | COPD, Post tubercular cavity, DM, CPA | - | - | - | - | + (E,N,G) | - | 150 days |
C # | 64/M | COPD | - | - | + (G) | + (G) | + (G) | 25days | |
D # | 47/M | COPD, post tuberculosis complications | - | - | + (E,N,G) | + (E,N,G) | - | - | 58 days |
E | 52/M | HIV with pneumothorax | - | + (G) | - | - | - | + (G) | 13 days |
F | 48/M | COPD, bronchiectasis | - | + (E) | + (E) | 12 days | |||
G | 42/M | Post tuberculosis complications, cor pulmonale | - | - | + (N) | + (N) | - | - | 33 days |
H | 45/M | COPD, | + (N) | + (N) | + (N) | 13 days | |||
I | 58/M | COPD, CPA | - | - | + (E,N,G) | + (E,N,G) | - | + (E,N,G) | 23 days |
J | 57/M | Post tuberculosis fibroatelectasis | - | - | + (G) | + (G) | + (G) | 24 days | |
K | 51/F | ILD, DM | + (G) | + (G) | + (G) | + (G) | 17 days | ||
L | 61/M | COPD, post tubercular cavity | + (G) | + (G) | + (G) | 10 days |
Species (Number of Colonies) | Environment Sampling Sites (Number of Colonies) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Floor | Railing | Bed Sheet | Bed Side Trolley | IV Pole | Nebuliser | Oxygen Mask | A.C Wings | Pillow | Sink Samples | Mobile | Wheel Chair | |
C. auris (n = 15) | + (n = 4) | + (n = 3) | + (n = 1) | + (n = 2) | + (n = 1) | - | + (n = 1) | + (n = 1) | + (n = 1) | - | + (n = 1) | - |
C. parapsilosis sensu stricto (n = 75) | + (n = 22) | + (n = 13) | + (n = 4) | + (n = 5) | + (n = 9) | + (n = 1) | - | + (n = 3) | + (n = 13) | + (n = 4) | + (n = 1) | - |
C. orthopsilosis (n = 4) | - | + (n = 1) | - | + (n = 1) | - | - | - | - | + (n = 1) | - | + (n = 1) | - |
C. metapsilosis (n = 1) | - | - | - | - | - | - | - | - | + (n = 1) | - | - | - |
C. guilliermondii (n = 21) | + (n = 5) | - | + (n = 6) | + (n = 2) | + (n = 3) | - | - | - | + (n = 1) | + (n = 1) | - | + (n = 3) |
C. tropicalis (n = 11) | + (n = 3) | + (n = 1) | - | - | - | - | + (n = 1) | + (n = 2) | + (n = 2) | + (n = 1) | + (n = 1) | - |
C. lusitaniae (n = 5) | + (n = 3) | - | - | + (n = 2) | - | - | - | - | - | - | - | - |
L. elongisporus (n = 3) | + (n = 3) | - | - | - | - | - | - | - | - | - | - | - |
T. asahii (n = 3) | + (n = 2) | - | - | - | - | - | - | - | + (n = 1) | - | - | - |
C. albicans (n = 3) | - | - | - | + (n = 1) | - | - | - | - | + (n = 1) | + (n = 1) | - | - |
H. burtonii (n = 2) | - | - | - | - | + (n = 2) | - | - | - | - | - | - | - |
K. ohmeri (n = 2) | + (n = 1) | + (n = 1) | - | - | - | - | - | - | - | - | - | - |
P. kudriavzevii (n = 1) | - | - | - | - | - | - | - | - | + (n = 1) | - | - | - |
C. catenulata (n = 1) | - | - | - | - | - | - | - | - | + (n = 1) | - | - | - |
Patient | Room No. | DOA/DOD | Patient Body Sites Positive for C. auris (STR Code) | Environment Sample Details (STR Code) | STR Code | M-2 | M3-I | M3-II | M9 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
a | b | c | a | b | c | a | b | c | a | b | c | ||||||
A | 3 | 07-11-19/31-12-19 | Groin (1) | Negative | 1 | 66 | 19 | 9 | 60 | 10 | 18 | 37 | 29 | 22 | 19 | 11 | 9 |
B | 3 | 01-08-19/30-12-19 | Ear (2) * | Bed Railing (3) * | 2 | 66 | 19 | 9 | 64 | 10 | 18 | 36 | 29 | 22 | 19 | 11 | 9 |
Nose (2) | 2 | 66 | 19 | 9 | 64 | 10 | 18 | 36 | 29 | 22 | 19 | 11 | 9 | ||||
Groin (2) | 2 | 66 | 19 | 9 | 64 | 10 | 18 | 36 | 29 | 22 | 19 | 11 | 9 | ||||
3(BR) | 66 | 19 | 9 | 62 | 10 | 18 | 36 | 29 | 22 | 19 | 11 | 9 | |||||
C | 1 | 21-11-19/17-12-19 | Groin (3) * | Negative | 3 | 66 | 19 | 9 | 62 | 10 | 18 | 36 | 29 | 22 | 19 | 11 | 9 |
D | 4 | 01-12-19/28-01-20 | Ear (1) * | Mobile (1) * | 1 | 66 | 19 | 9 | 60 | 10 | 18 | 37 | 29 | 22 | 19 | 11 | 9 |
Groin (1) | Pillow (1) * | 1 | 66 | 19 | 9 | 60 | 10 | 18 | 37 | 29 | 22 | 19 | 11 | 9 | |||
Ear (2) * | Floor 1 (1) * | 2 | 66 | 19 | 9 | 64 | 10 | 18 | 36 | 29 | 22 | 19 | 11 | 9 | |||
Nose (3) | Floor 2 (1) | 3 | 66 | 19 | 9 | 62 | 10 | 18 | 36 | 29 | 22 | 19 | 11 | 9 | |||
Floor 3 (1) | 1(M) | 66 | 19 | 9 | 60 | 10 | 18 | 37 | 29 | 22 | 19 | 11 | 9 | ||||
Floor 4 (2) | 1(P) | 66 | 19 | 9 | 60 | 10 | 18 | 37 | 29 | 22 | 19 | 11 | 9 | ||||
1(F 1) | 66 | 19 | 9 | 60 | 10 | 18 | 37 | 29 | 22 | 19 | 11 | 9 | |||||
1(F 2) | 66 | 19 | 9 | 60 | 10 | 18 | 37 | 29 | 22 | 19 | 11 | 9 | |||||
1(F 3) | 66 | 19 | 9 | 60 | 10 | 18 | 37 | 29 | 22 | 19 | 11 | 9 | |||||
2(F 4) | 66 | 19 | 9 | 64 | 10 | 18 | 36 | 29 | 22 | 19 | 11 | 9 | |||||
E | 2 | 15-01-20/28-01-20 | Groin (2) | Negative | 2 | 66 | 19 | 9 | 64 | 10 | 18 | 36 | 29 | 22 | 19 | 11 | 9 |
F | 2 | 21-01-20/28-01-20 | Ear (2) | Negative | 2 | 66 | 19 | 9 | 64 | 10 | 18 | 36 | 29 | 22 | 19 | 11 | 9 |
G | 2 | 03-01-20/06-02-20 | Nose (2) | Negative | 2 | 66 | 19 | 9 | 64 | 10 | 18 | 36 | 29 | 22 | 19 | 11 | 9 |
H | 4 | 24-01-20/31-01-20 | Nose (3) | Negative | 3 | 66 | 19 | 9 | 62 | 10 | 18 | 36 | 29 | 22 | 19 | 11 | 9 |
I | 4 | 07-01-20/30-01-20 | Ear (2) | Oxygen mask (3) | 2 | 66 | 19 | 9 | 64 | 10 | 18 | 36 | 29 | 22 | 19 | 11 | 9 |
Groin (2) | Trolly (3) | 2 | 66 | 19 | 9 | 64 | 10 | 18 | 36 | 29 | 22 | 19 | 11 | 9 | |||
Nose (3) | Bed railing (3) * | 3 | 66 | 19 | 9 | 62 | 10 | 18 | 36 | 29 | 22 | 19 | 11 | 9 | |||
3(OM) | 66 | 19 | 9 | 62 | 10 | 18 | 36 | 29 | 22 | 19 | 11 | 9 | |||||
3(T) | 66 | 19 | 9 | 62 | 10 | 18 | 36 | 29 | 22 | 19 | 11 | 9 | |||||
3(BR) | 66 | 19 | 9 | 62 | 10 | 18 | 36 | 29 | 22 | 19 | 11 | 9 |
Drugs a | No. of Isolates with MIC/MEC (mg/L) | Range | GM b | MIC50 c | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
≤0.015 | 0.03 | 0.06 | 0.125 | 0.25 | 0.5 | 1 | 2 | 4 | 8 | 16 | 32 | 64 | ≥128 | ||||
FLU | 1 | 2 | 17 | 32–128 | 111.4 | 128 | |||||||||||
ITC | 1 | 2 | 7 | 10 | 0.25–4 | 2.37 | 4 | ||||||||||
VRC | 3 | 3 | 9 | 3 | 2 | 0.25–4 | 0.93 | 1 | |||||||||
ISA | 1 | 2 | 1 | 9 | 5 | 2 | 0.06–1 | 0.24 | 0.25 | ||||||||
POS | 1 | 1 | 5 | 9 | 4 | 0.015–0.5 | 0.19 | 0.25 | |||||||||
AMB | 12 | 8 | 0.5–2 | 0.87 | 0.5 | ||||||||||||
5-FC | 4 | 1 | 12 | 3 | 0.06–0.5 | 0.20 | 0.25 | ||||||||||
MFG | 3 | 3 | 6 | 7 | 1 | 0.06–1 | 0.25 | 0.25 | |||||||||
AFG | 5 | 1 | 8 | 2 | 4 | 0.125–2 | 0.48 | 0.5 | |||||||||
CFG | 4 | 2 | 2 | 6 | 3 | 0.25–8 | 2.30 | 4 | |||||||||
FLU | 1 | 3 | 11 | 16–128 | 97 | 128 | |||||||||||
ITC | 2 | 8 | 5 | 1–4 | 2.30 | 2 | |||||||||||
VRC | 1 | 4 | 5 | 2 | 3 | 0.25–4 | 1.09 | 1 | |||||||||
ISA | 3 | 2 | 1 | 4 | 4 | 1 | 0.03–1 | 0.17 | 0.25 | ||||||||
POS | 3 | 1 | 3 | 8 | 0.03–0.25 | 0.13 | 0.25 | ||||||||||
AMB | 4 | 5 | 1 | 2 | 3 | 0.25–4 | 0.74 | 0.5 | |||||||||
5-FC | 4 | 10 | 1 | 0.03–0.125 | 0.05 | 0.06 | |||||||||||
MFG | 4 | 6 | 5 | 0.03–0.125 | 0.06 | 0.06 | |||||||||||
AFG | 6 | 3 | 6 | 0.125–0.5 | 0.12 | 0.25 | |||||||||||
CFG | 10 | 5 | 0.125–0.5 | 0.29 | 0.25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yadav, A.; Singh, A.; Wang, Y.; Haren, M.H.v.; Singh, A.; de Groot, T.; Meis, J.F.; Xu, J.; Chowdhary, A. Colonisation and Transmission Dynamics of Candida auris among Chronic Respiratory Diseases Patients Hospitalised in a Chest Hospital, Delhi, India: A Comparative Analysis of Whole Genome Sequencing and Microsatellite Typing. J. Fungi 2021, 7, 81. https://doi.org/10.3390/jof7020081
Yadav A, Singh A, Wang Y, Haren MHv, Singh A, de Groot T, Meis JF, Xu J, Chowdhary A. Colonisation and Transmission Dynamics of Candida auris among Chronic Respiratory Diseases Patients Hospitalised in a Chest Hospital, Delhi, India: A Comparative Analysis of Whole Genome Sequencing and Microsatellite Typing. Journal of Fungi. 2021; 7(2):81. https://doi.org/10.3390/jof7020081
Chicago/Turabian StyleYadav, Anamika, Anubhav Singh, Yue Wang, Merlijn HI van Haren, Ashutosh Singh, Theun de Groot, Jacques F. Meis, Jianping Xu, and Anuradha Chowdhary. 2021. "Colonisation and Transmission Dynamics of Candida auris among Chronic Respiratory Diseases Patients Hospitalised in a Chest Hospital, Delhi, India: A Comparative Analysis of Whole Genome Sequencing and Microsatellite Typing" Journal of Fungi 7, no. 2: 81. https://doi.org/10.3390/jof7020081
APA StyleYadav, A., Singh, A., Wang, Y., Haren, M. H. v., Singh, A., de Groot, T., Meis, J. F., Xu, J., & Chowdhary, A. (2021). Colonisation and Transmission Dynamics of Candida auris among Chronic Respiratory Diseases Patients Hospitalised in a Chest Hospital, Delhi, India: A Comparative Analysis of Whole Genome Sequencing and Microsatellite Typing. Journal of Fungi, 7(2), 81. https://doi.org/10.3390/jof7020081