Antifungal Activity of a Medical-Grade Honey Formulation against Candida auris
<p>The effect of L-Mesitran<sup>®</sup> Soft and its honey component on different <span class="html-italic">Candida</span> species. Isolates from five <span class="html-italic">Candida</span> species (<span class="html-italic">n</span> = 3 for each species) were incubated with L-Mesitran<sup>®</sup> Soft—16% and —40% and medical-grade honey—16%. Data are presented as reduction in CFU. Significant differences (<span class="html-italic">p</span> < 0.05) are indicated with an asterisk.</p> "> Figure 2
<p>The effect of medical-grade honey vs local honey on the growth of different <span class="html-italic">Candida</span> species. Isolates from five <span class="html-italic">Candida</span> species (<span class="html-italic">n</span> = 3 for each species) were incubated with 40% of medical-grade honey (MGH) or local unprocessed honey (LUH). Data are presented as reduction in CFU. Significant differences (<span class="html-italic">p</span> < 0.05) as compared to MGH are indicated with an asterisk.</p> "> Figure 3
<p>The impact of <span class="html-italic">C. auris</span> traits on antifungal activity of L-Mesitran<sup>®</sup> Soft. <span class="html-italic">C. auris</span> isolates with (<b>a</b>) different geographic origins, and; (<b>b</b>) different antifungal susceptibilities, were incubated with L-Mesitran<sup>®</sup> Soft—40%. Multiresistant isolates include those that are resistant to fluconazole and echinocandin and/or amphotericin B. No significant differences were found between groups.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Honey Samples and Preparation
2.2. Candida Strains
2.3. Testing Antifungal Effect Honey
2.4. Antifungal Susceptibility Testing
2.5. C. auris DNA Isolation, Molecular Beacon-Based Melting Curve Analysis and Sequencing
2.6. Statistical Analysis
3. Results
3.1. Medical-Grade Honey Formulation Reduces C. auris Growth in a Concentration-Dependent Manner
3.2. Candida Growth Is Inhibited by Honey
3.3. C. auris Susceptibility to Medical-Grade Honey Formulation Is Not Dependent on Genetic Origin but Seems Increased in Multiresistant Isolates
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kühbacher, A.; Burger-Kentischer, A.; Rupp, S. Interaction of Candida species with the skin. Microorganisms 2017, 5, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, D.K.; Tóth, R.; Gácser, A. Mechanisms of pathogenic Candida species to evade the host complement attack. Front. Cell Infect. Microbiol. 2020, 10, 94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chowdhary, A.; Sharma, C.; Meis, J.F. Candida auris: A rapidly emerging cause of hospital-acquired multidrug-resistant fungal infections globally. PLoS Pathog. 2017, 13, e1006290. [Google Scholar] [CrossRef] [PubMed]
- Cortegiani, A.; Misseri, G.; Fasciana, T.; Giammanco, A.; Giarratano, A.; Chowdhary, A. Epidemiology, clinical characteristics, resistance, and treatment of infections by Candida auris. J. Intensive Care 2018, 6, 69. [Google Scholar] [CrossRef]
- Chowdhary, A.; Prakash, A.; Sharma, C.; Kordalewska, M.; Kumar, A.; Sarma, S.; Tarai, B.; Singh, A.; Upadhyaya, G.; Upadhyay, S.; et al. A multicentre study of antifungal susceptibility patterns among 350 Candida auris isolates (2009-17) in India: Role of the ERG11 and FKS1 genes in azole and echinocandin resistance. J. Antimicrob. Chemother. 2018, 73, 891–899. [Google Scholar] [CrossRef]
- Chow, N.A.; de Groot, T.; Badali, H.; Abastabar, M.; Chiller, T.M.; Meis, J.F. Potential fifth clade of Candida auris, Iran, 2018. Emerg. Infect. Dis. 2019, 25, 1780–1781. [Google Scholar] [CrossRef] [Green Version]
- Lockhart, S.R.; Etienne, K.A.; Vallabhaneni, S.; Farooqi, J.; Chowdhary, A.; Govender, N.P.; Colombo, A.L.; Calvo, B.; Cuomo, C.A.; Desjardins, C.A.; et al. Simultaneous emergence of multidrug-resistant Candida auris on 3 continents confirmed by whole-genome sequencing and epidemiological analyses. Clin. Infect. Dis 2017, 64, 134–140. [Google Scholar] [CrossRef] [Green Version]
- Kordalewska, M.; Perlin, D.S. Identification of drug resistant Candida auris. Front. Microbiol. 2019, 10, 1918. [Google Scholar] [CrossRef]
- Kordalewska, M.; Lee, A.; Park, S.; Berrio, I.; Chowdhary, A.; Zhao, Y.; Perlin, D.S. Understanding echinocandin resistance in the emerging pathogen Candida auris. Antimicrob. Agents Chemother. 2018, 62, e00238-18. [Google Scholar] [CrossRef] [Green Version]
- Hermanns, R.; Mateescu, C.; Thrasyvoulou, A.; Tananaki, C.; Wagener, F.A.D.T.G.; Cremers, N.A.J. Defining the standards for medical grade honey. J. Apic. Res. 2020, 59, 125–135. [Google Scholar] [CrossRef]
- Anand, S.; Deighton, M.; Livanos, G.; Pang, E.C.K.; Mantri, N. Agastache honey has superior antifungal activity in comparison with important commercial honeys. Sci. Rep. 2019, 9, 18197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandes, L.; Oliveira, A.; Henriques, M.; Rodrigues, M.E. Honey as a strategy to fight Candida tropicalis in mixed-biofilms with Pseudomonas aeruginosa. Antibiotics 2020, 9, 43. [Google Scholar] [CrossRef] [Green Version]
- Irish, J.; Carter, D.A.; Shokohi, T.; Blair, S.E. Honey has an antifungal effect against Candida species. Med. Mycol 2006, 44, 289–291. [Google Scholar] [CrossRef] [Green Version]
- Nolan, V.C.; Harrison, J.; Cox, J.A.G. Dissecting the antimicrobial composition of honey. Antibiotics 2019, 8, 251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hermanns, R.; Cremers, N.A.J.; Leeming, J.P.; van der Werf, E.T. Sweet relief: Determining the antimicrobial activity of medical grade honey against vaginal isolates of Candida albicans. J. Fungi 2019, 5, 85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nair, H.K.R.; Tatavilis, N.; Pospisilova, I.; Kucerova, J.; Cremers, N.A.J. Medical-grade honey kills antibiotic-resistant bacteria and prevents amputation in diabetics with infected ulcers: A prospective case series. Antibiotics 2020, 9, 529. [Google Scholar] [CrossRef]
- Cremers, N.; Belas, A.; Santos, C.S.; Couto, I.; de Rooster, H.; Pomba, C. In vitro antimicrobial efficacy of two medical grade honey formulations against common high-risk meticillin-resistant staphylococci and Pseudomonas spp. pathogens. Vet. Dermatol. 2020, 31, 90–96. [Google Scholar] [CrossRef]
- Oliveira, A.M.P.; Devesa, J.S.P.; Hill, P.B. In vitro efficacy of a honey-based gel against canine clinical isolates of Staphylococcus pseudintermedius and Malassezia pachydermatis. Vet. Dermatol. 2018, 29, 180-e65. [Google Scholar] [CrossRef]
- Smaropoulos, E.; Cremers, N.A.J. Medical grade honey for the treatment of extravasation-induced injuries in preterm neonates—A case series. Adv. Neonatal Care 2020, in press. [Google Scholar] [CrossRef]
- Prakash, A.; Sharma, C.; Singh, A.; Kumar, S.P.; Kumar, A.; Hagen, F.; Govender, N.P.; Colombo, A.L.; Meis, J.F.; Chowdhary, A. Evidence of genotypic diversity among Candida auris isolates by multilocus sequence typing, matrix-assisted laser desorption ionization time-of-flight mass spectrometry and amplified fragment length polymorphism. Clin. Microbiol. Infect. 2016, 22, 277.e1–277.e9. [Google Scholar] [CrossRef] [Green Version]
- Hou, X.; Lee, A.; Jiménez-Ortigosa, C.; Kordalewska, M.; Perlin, D.S.; Zhao, Y. Rapid detection of ERG11-associated azole resistance and FKS-associated echinocandin resistance in Candida auris. Antimicrob. Agents Chemother. 2019, 63, e01811-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Groot, T.; Puts, Y.; Berrio, I.; Chowdhary, A.; Meis, J.F. Development of Candida auris short tandem repeat typing and its application to a global collection of isolates. mBio 2020, 11, e02971-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pleeging, C.C.F.; Coenye, T.; Mossialos, D.; De Rooster, H.; Chrysostomou, D.; Wagener, F.A.D.T.G.; Cremers, N.A.J. Synergistic antimicrobial activity of supplemented medical-grade honey against Pseudomonas aeruginosa biofilm formation and eradication. Antibiotics 2020, 9, 866. [Google Scholar] [CrossRef] [PubMed]
- Lusby, P.E.; Coombes, A.L.; Wilkinson, J.M. Bactericidal activity of different honeys against pathogenic bacteria. Arch. Med. Res. 2005, 36, 464–467. [Google Scholar] [CrossRef] [PubMed]
- Mandal, M.D.; Mandal, S. Honey: Its medicinal property and antibacterial activity. Asian Pac. J. Trop Biomed. 2011, 1, 154–160. [Google Scholar] [CrossRef] [Green Version]
- Maruhashi, E.; Braz, B.S.; Nunes, T.; Pomba, C.; Belas, A.; Duarte-Correia, J.H.; Lourenço, A.M. Efficacy of medical grade honey in the management of canine otitis externa—A pilot study. Vet. Dermatol 2016, 27, 93-e27. [Google Scholar] [CrossRef] [PubMed]
- Horinouchi, T.; Suzuki, S.; Kotani, H.; Tanabe, K.; Sakata, N.; Shimizu, H.; Furusawa, C. Prediction of cross-resistance and collateral sensitivity by gene expression profiles and genomic mutations. Sci. Rep. 2017, 7, 14009. [Google Scholar] [CrossRef] [PubMed]
- Lozano-Huntelman, N.A.; Singh, N.; Valencia, A.; Mira, P.; Sakayan, M.; Boucher, I.; Tang, S.; Brennan, K.; Gianvecchio, C.; Fitz-Gibbon, S.; et al. Evolution of antibiotic cross-resistance and collateral sensitivity in Staphylococcus epidermidis using the mutant prevention concentration and the mutant selection window. Evol. Appl. 2020, 13, 808–823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roemhild, R.; Linkevicius, M.; Andersson, D.I. Molecular mechanisms of collateral sensitivity to the antibiotic nitrofurantoin. PLoS Biol. 2020, 18, e3000612. [Google Scholar] [CrossRef] [Green Version]
CWZ ID 1 | Country | Clade | MIC for Different Antifungals (µg/mL) 2 | Log Growth Reduction with L-Mesitran Soft 3 | Sequencing/Melt Curve 4 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AMB | FLC | ITC | VOR | POS | ISA | ANI | MICA | Y132 | K143 | S639 | ||||
10-11-10-19 | Netherlands | I | 1 | 64 | 0.063 | 0.25 | <0.016 | <0.016 | 0.063 | 0.063 | 4.7 | Y132F | WT | WT |
10-11-10-29 | Oman | I | 2 | 16 | <0.016 | 0.063 | <0.016 | <0.016 | 0.031 | 0.031 | 4.4 | WT | K143R | WT |
10-11-10-30 | Oman | I | 1 | >64 | 0.25 | 1 | 0.063 | 0.125 | 0.063 | 0.063 | 5.2 | WT | K143R | WT |
10-11-13-25 | India | I | 1 | 64 | 0.125 | 0.125 | 0.031 | 0.031 | 0.063 | 0.063 | 4.6 | WT | K143R | WT |
10-04-18-46 | India | I | 1 | >64 | 0.25 | 4 | 0.125 | 0.5 | 0.063 | 0.063 | 5.3 | Y132F | WT | WT |
10-12-18-19 | India | I | 1 | >64 | 0.25 | 0.5 | 0.063 | 0.125 | 0.125 | 0.063 | 3.6 | WT | WT | WT |
10-12-12-01 | Germany | I | 1 | 16 | <0.016 | 0.125 | <0.016 | <0.016 | 0.031 | 0.063 | 5.3 | Y132F | WT | WT |
10-12-12-02 | Germany | I | 1 | 8 | 0.063 | 0.125 | <0.016 | <0.016 | 0.125 | 0.125 | 4.2 | Y132F | WT | WT |
10-08-12-39 | England | I | 1 | 4 | <0.016 | 0.031 | <0.016 | <0.016 | 0.031 | 0.031 | 5.1 | Y132F | WT | WT |
10-08-12-40 | England | I | 1 | 16 | <0.016 | 0.125 | <0.016 | <0.016 | 0.125 | 0.063 | 4.8 | Y132F | WT | WT |
10-12-18-16 | Pakistan | I | 0.25 | 1 | <0.016 | <0.016 | <0.016 | <0.016 | 0.063 | 0.063 | 5.2 | WT | WT | WT |
10-12-18-17 | Pakistan | I | 1 | >64 | 0.25 | 1 | 0.063 | 0.125 | 0.063 | 0.063 | 4.0 | WT | K143R | WT |
10-08-13-03 | Kuwait | I | 1 | >64 | 0.25 | 1 | 0.063 | 0.25 | 0.125 | 0.063 | 5.2 | WT | K143R | WT |
10-08-13-46 | Kuwait | I | 1 | >64 | 0.25 | 0.5 | 0.063 | 0.125 | 0.063 | 0.063 | 5.3 | WT | K143R | WT |
10-05-12-66 | India | I | 8 | 64 | 0.5 | 2 | 0.25 | 0.5 | 8 | 8 | 5.3 | WT | K143R | S639F |
10-05-12-72 | India | I | 2 | 64 | 0.125 | 16 | 4 | 4 | 0.125 | 0.125 | 5.3 | Y132F | WT | WT |
10-05-12-42 | India | I | 4 | 64 | 0.5 | 8 | 2 | 2 | 0.125 | 0.06 | 5.3 | Y132F | WT | WT |
10-05-12-62 | India | I | 0.5 | 64 | 0.125 | 2 | 0.03 | 0.25 | 8 | 8 | 5.3 | WT | K143R | S639F |
10-11-13-45 | India | I | 1 | 64 | 16 | 16 | 8 | 2 | 0.25 | 0.125 | 5.4 | Y132F | WT | WT |
10-03-10-62 | South Korea | II | 0.5 | 64 | 0.25 | 1 | 0.063 | 0.25 | 0.031 | 0.063 | 5.5 | WT | WT | WT |
10-03-10-63 | South Korea | II | 0.5 | 64 | 0.25 | 1 | 0.063 | 0.5 | 0.063 | 0.063 | 5.4 | WT | WT | WT |
10-12-18-10 | Japan | II | 0.5 | 1 | <0.016 | <0.016 | <0.016 | <0.016 | 0.063 | 0.063 | 5.1 | WT | WT | WT |
10-03-10-64 | Japan | II | 0.5 | 2 | <0.016 | <0.016 | <0.016 | <0.016 | 0.063 | 0.063 | 4.4 | WT | WT | WT |
10-05-15-49 | South Africa | III | 0.5 | 64 | 0.125 | 2 | 0.031 | 0.031 | 0.25 | 0.125 | 4.4 | WT | WT | WT |
10-05-15-50 | South Africa | III | 0.5 | 64 | 0.063 | 1 | 0.031 | 0.031 | 0.125 | 0.063 | 5.3 | WT | WT | WT |
10-08-12-09 | Spain | III | 0.25 | >64 | 0.125 | 0.5 | <0.016 | <0.016 | 0.063 | 0.063 | 4.5 | WT | WT | WT |
10-08-08-21 | Spain | III | 0.5 | 64 | 0.125 | 1 | 0.063 | 0.063 | 0.063 | 0.063 | 5.4 | WT | WT | WT |
10-08-01-01 | Venezuela | IV | 0.5 | >64 | 0.25 | 4 | 0.063 | 0.5 | 0.125 | 0.063 | 4.9 | Y132F | WT | WT |
10-08-01-02 | Venezuela | IV | 0.5 | >64 | 0.25 | 4 | 0.125 | 0.5 | 0.125 | 0.125 | 4.1 | Y132F | WT | WT |
10-11-03-69 | Colombia | IV | 1 | 2 | 0.063 | 0.031 | <0.016 | 0.031 | 0.125 | 0.063 | 5.3 | WT | WT | WT |
10-11-03-87 | Colombia | IV | 0.5 | 4 | 0.031 | 0.031 | <0.016 | 0.031 | 0.063 | 0.063 | 4.0 | WT | WT | WT |
10-11-10-18 | Iran | V | 0.5 | 16 | 0.063 | 0.125 | <0.016 | 0.063 | 0.016 | 0.031 | 5.2 | WT | WT | WT * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Groot, T.; Janssen, T.; Faro, D.; Cremers, N.A.J.; Chowdhary, A.; Meis, J.F. Antifungal Activity of a Medical-Grade Honey Formulation against Candida auris. J. Fungi 2021, 7, 50. https://doi.org/10.3390/jof7010050
de Groot T, Janssen T, Faro D, Cremers NAJ, Chowdhary A, Meis JF. Antifungal Activity of a Medical-Grade Honey Formulation against Candida auris. Journal of Fungi. 2021; 7(1):50. https://doi.org/10.3390/jof7010050
Chicago/Turabian Stylede Groot, Theun, Tom Janssen, Dirk Faro, Niels A. J. Cremers, Anuradha Chowdhary, and Jacques F. Meis. 2021. "Antifungal Activity of a Medical-Grade Honey Formulation against Candida auris" Journal of Fungi 7, no. 1: 50. https://doi.org/10.3390/jof7010050
APA Stylede Groot, T., Janssen, T., Faro, D., Cremers, N. A. J., Chowdhary, A., & Meis, J. F. (2021). Antifungal Activity of a Medical-Grade Honey Formulation against Candida auris. Journal of Fungi, 7(1), 50. https://doi.org/10.3390/jof7010050