A Critical Review on microRNAs as Prognostic Biomarkers in Laryngeal Carcinoma
Abstract
:1. Introduction
- -
- Tumor suppressor miRNAs, which negatively regulate the expression of oncogenes or genes that induce apoptosis. When downregulated, their suppressive function is decreased.
- -
- Oncogenic miRNAs, which activate oncogenes or silence tumor suppressor genes. Their overexpression facilitates oncogenesis [5].
2. Methods
3. MiRNAs as Prognostic Biomarkers in Laryngeal Carcinoma
3.1. MiR-19a (Cluster 17-92), Chromosome 13
3.2. X-Chromosome-Located MiRs: miR-20b (Cluster 106a-363) and miR-766-5p
3.3. MiR-21—The Classic miR Oncogene
3.4. MiR-23a, Cluster 23a-24-2, Chromosome 19, and miRs-26a/26b
3.5. MiR-31 and miR-34
3.6. MiR-93, miR-210, and miR-144b
3.7. Chromosome-1-Located miRs: miR-9, miR-29c, miR-101, miR-200a, and miR-137
3.8. Chromosome-2-Located miRs: miR-1246, miR-149, and miR-375
3.9. Chromosome-5-Located miRs: miR-146a, miR-143, miR-145, and miR-449a
3.10. Chromosome-9-Located miRs: miR-126 and miR-181a
3.11. Chromosome-14-Located miRs: miR-203 and miR-300
3.12. Chromosome-17-Located miRs: miR-301a, miR-632, miR-10a, and miR-195
3.13. Chromosome-19-Located miRs: miR-196b and miR-519a
3.14. MiR-1205 Chr8, miR-378c-5p Chr10, miR-125b-5p Chr11, miR-296-5p Chr20, and miR-155 Chr 21
3.15. MiRNAs in Plasma
4. Systematic Classification of miRs Exhibiting Prognostic Significance Based on Their Association with Pivotal Altered Pathways and Oncogenes in Laryngeal Carcinoma
4.1. MiRs Demonstrating Prognostic Significance and Their Association with Oncogenes and Pathways Connected with the Cell Cycle: p53, CCND1, CDKN2A/p16, and E2F1
4.2. MicroRNAs Demonstrating Prognostic Significance and Their Association with Oncogenes and Pathways Connected with the RTK/RAS/PI3K Cascades: EGFR, PI3K, and PTEN
4.3. MiRs Demonstrating Prognostic Significance and Their Association with Oncogenes and Pathways Connected with Cell Differentiation: NOTCH, p63, and FAT1
4.4. MiRs Demonstrating Prognostic Significance and Their Association with Oncogenes and Pathways Connected with Cell Death: FADD and TRAF3
5. Critical Remarks on Publications Reporting Prognostic Biomarkers
Regarding Other Reviews and Meta-Analyses on the Current Topic
6. Conclusions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
mRNA | Messenger RNA |
miRNA | MicroRNA |
miR | MicroRNA (often used as a prefix for specific miRNAs) |
LSCC | Laryngeal Squamous Cell Carcinoma |
DFS | Disease-Free Survival |
OS | Overall Survival |
FFPE | Formalin-Fixed Paraffin-Embedded (FFPE) |
qPCR | Quantitative Polymerase Chain Reaction |
HNSCC | Head and Neck Squamous Cell Carcinoma |
sEV | Small Extracellular Vesicles |
FADD | Fas-Associated Death Domain |
EMT | Epithelial–Mesenchymal Transition |
HR | Hazard Ratio |
TNM | Tumor, Node, Metastasis (staging system) |
p53 | Tumor Protein p53 (a tumor suppressor) |
PTEN | Phosphatase and Tensin Homolog |
PI3K | Phosphoinositide 3-kinase |
CCND1 | Cyclin D1 |
CDKN2A | Cyclin-Dependent Kinase Inhibitor 2A |
/p16 | A specific protein encoded by CDKN2A, often referred to as p16INK4a |
EGFR | Epidermal Growth Factor Receptor |
NOTCH | A family of genes that encodes transmembrane receptors |
P63 | Tumor Protein p63 |
FAT1 | FAT Tumor Suppressor Protein |
TRAF3 | TNF Receptor-Associated Factor 3 |
E2F1 | E2F Transcription Factor 1 |
circSHKBP1 | Circular RNA SHKBP1 |
ETS-1 | E26 Transformation-Specific Sequence 1 |
CDK8 | Cyclin-Dependent Kinase 8 |
CCNG2 | Cyclin G2 |
AKT | Protein Kinase B |
References
- Wu, H.H.; Leng, S.; Sergi, C.; Leng, R. How MicroRNAs Command the Battle against Cancer. Int. J. Mol. Sci. 2024, 25, 5865. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Huang, C.; Azizi, P.; Vazirzadeh, M.; Aghaei-Zarch, S.M.; Aghaei-Zarch, F.; Ghanavi, J.; Farnia, P. Non-coding RNAs/DNMT3B axis in human cancers: From pathogenesis to clinical significance. J. Transl. Med. 2023, 21, 621. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hibner, G.; Kimsa-Furdzik, M.; Francuz, T. Relevance of MicroRNAs as Potential Diagnostic and Prognostic Markers in Colorectal Cancer. Int. J. Mol. Sci. 2018, 19, 2944. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo, F. Sempere Celebrating 25 Years of MicroRNA Research: From Discovery to Clinical Application. Int. J. Mol. Sci. 2019, 20, 1987. [Google Scholar] [CrossRef]
- Drobna, M.; Szarzynska-Zawadzka, B.; Daca-Roszak, P.; Kosmalska, M.; Jaksik, R.; Witt, M.; Dawidowska, M. Identification of Endogenous Control miRNAs for RT-qPCR in T-Cell Acute Lymphoblastic Leukemia. Int. J. Mol. Sci. 2018, 19, 2858. [Google Scholar] [CrossRef]
- Konstantinell, A.; Coucheron, D.H.; Sveinbjørnsson, B.; Moens, U. MicroRNAs as Potential Biomarkers in Merkel Cell Carcinoma. Int. J. Mol. Sci. 2018, 19, 1873. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Jia, S.; Xu, P. MicroRNA-9 as a novel prognostic biomarker in human laryngeal squamous cell carcinoma. Int. J. Clin. Exp. Med. 2014, 7, 5523–5528. [Google Scholar] [PubMed] [PubMed Central]
- Wu, T.Y.; Zhang, T.H.; Qu, L.M.; Feng, J.P.; Tian, L.L.; Zhang, B.H.; Li, D.D.; Sun, Y.N.; Liu, M. MiR-19a is correlated with prognosis and apoptosis of laryngeal squamous cell carcinoma by regulating TIMP-2 expression. Int. J. Clin. Exp. Pathol. 2013, 7, 56–63. [Google Scholar] [PubMed] [PubMed Central]
- Pantazis, T.L.; Giotakis, A.I.; Karamagkiolas, S.; Giotakis, I.; Konstantoulakis, M.; Liakea, A.; Misiakos, E.P. Low expression of miR-20b-5p indicates favorable prognosis in laryngeal squamous cell carcinoma, especially in patients with non-infiltrated regional lymph nodes. Am. J. Otolaryngol. 2020, 41, 102563. [Google Scholar] [CrossRef] [PubMed]
- Hu, A.; Huang, J.J.; Xu, W.H.; Jin, X.J.; Li, J.P.; Tang, Y.J.; Huang, X.F.; Cui, H.J.; Sun, G.B. miR-21 and miR-375 microRNAs as candidate diagnostic biomarkers in squamous cell carcinoma of the larynx: Association with patient survival. Am. J. Transl. Res. 2014, 6, 604–613. [Google Scholar] [PubMed] [PubMed Central]
- Hu, A.; Huang, J.J.; Xu, W.H.; Jin, X.J.; Li, J.P.; Tang, Y.J.; Huang, X.F.; Cui, H.J.; Sun, G.B.; Li, R.L.; et al. MiR-21/miR-375 ratio is an independent prognostic factor in patients with laryngeal squamous cell carcinoma. Am. J. Cancer Res. 2015, 5, 1775–1785. [Google Scholar] [PubMed] [PubMed Central]
- Gao, S.; Xu, Q.; Zhou, Y.; Yi, Q. Serum levels of microRNA-21 and microRNA-10a can predict long-term prognosis in laryngeal cancer patients: A multicenter study. Transl. Cancer Res. 2020, 9, 3680–3690. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, X.W.; Liu, N.; Chen, S.; Wang, Y.; Zhang, Z.X.; Sun, Y.Y.; Qiu, G.B.; Fu, W.N. High microRNA-23a expression in laryngeal squamous cell carcinoma is associated with poor patient prognosis. Diagn. Pathol. 2015, 10, 22. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, D.; Wan, L.; Gong, H.; Chen, S.; Kong, Y.; Xiao, B. Sevoflurane promotes the apoptosis of laryngeal squamous cell carcinoma in-vitro and inhibits its malignant progression via miR-26a/FOXO1 axis. Bioengineered 2021, 12, 6364–6376. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Guo, D.; Li, C. Downregulation of miRNA-26b inhibits cancer proliferation of laryngeal carcinoma through autophagy by targeting ULK2 and inactivation of the PTEN/AKT pathway. Oncol. Rep. 2017, 38, 1679–1687. [Google Scholar] [CrossRef] [PubMed]
- Qiang, H.; Zhan, X.; Wang, W.; Cheng, Z.; Ma, S.; Jiang, C. A Study on the Correlations of the miR-31 Expression with the Pathogenesis and Prognosis of Head and Neck Squamous Cell Carcinoma. Cancer Biother. Radiopharm. 2019, 34, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Re, M.; Çeka, A.; Rubini, C.; Ferrante, L.; Zizzi, A.; Gioacchini, F.M.; Tulli, M.; Spazzafumo, L.; Sellari-Franceschini, S.; Procopio, A.D.; et al. MicroRNA-34c-5p is related to recurrence in laryngeal squamous cell carcinoma. Laryngoscope 2015, 125, E306–E312. [Google Scholar] [CrossRef] [PubMed]
- Re, M.; Magliulo, G.; Gioacchini, F.M.; Bajraktari, A.; Bertini, A.; Çeka, A.; Rubini, C.; Ferrante, L.; Procopio, A.D.; Olivieri, F. Expression Levels and Clinical Significance of miR-21-5p, miR-let-7a, and miR-34c-5p in Laryngeal Squamous Cell Carcinoma. Biomed. Res. Int. 2017, 2017, 3921258. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shen, Z.; Zhan, G.; Ye, D.; Ren, Y.; Cheng, L.; Wu, Z.; Guo, J. MicroRNA-34a affects the occurrence of laryngeal squamous cell carcinoma by targeting the antiapoptotic gene survivin. Med. Oncol. 2012, 29, 2473–2480. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.; Zhou, C.; Li, J.; Ye, D.; Li, Q.; Wang, J.; Cui, X.; Chen, X.; Bao, T.; Duan, S. Promoter hypermethylation of miR-34a contributes to the risk, progression, metastasis and poor survival of laryngeal squamous cell carcinoma. Gene 2016, 593, 272–276. [Google Scholar] [CrossRef] [PubMed]
- Piotrowski, I.; Zhu, X.; Saccon, T.D.; Ashiqueali, S.; Schneider, A.; de Carvalho Nunes, A.D.; Noureddine, S.; Sobecka, A.; Barczak, W.; Szewczyk, M.; et al. miRNAs as Biomarkers for Diagnosing and Predicting Survival of Head and Neck Squamous Cell Carcinoma Patients. Cancers 2021, 13, 3980. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Popov, T.M.; Stancheva, G.; Kyurkchiyan, S.G.; Petkova, V.; Panova, S.; Kaneva, R.P.; Popova, D.P. Global microRNA expression profile in laryngeal carcinoma unveils new prognostic biomarkers and novel insights into field cancerization. Sci. Rep. 2022, 12, 17051. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.; Sun, G.; Sun, J.W. MiR-196b affects the progression and prognosis of human LSCC through targeting PCDH-17. Auris Nasus Larynx. 2019, 46, 583–592. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Zhang, W.; Ji, W. miR-196b is a prognostic factor of human laryngeal squamous cell carcinoma and promotes tumor progression by targeting SOCS2. Biochem. Biophys. Res. Commun. 2018, 501, 584–592. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Gao, W.; Zhang, C.; Wen, S.; Huangfu, H.; Kang, J.; Wang, B. Hsa-miR-301a-3p Acts as an Oncogene in Laryngeal Squamous Cell Carcinoma via Target Regulation of Smad4. J. Cancer 2015, 6, 1260–1275. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Xu, Y.; Lin, Y.P.; Yang, D.; Zhang, G.; Zhou, H.F. Expression of serum microRNA-378 and its clinical significance in laryngeal squamous cell carcinoma. Eur. Rev. Med. Pharmacol. Sci. 2016, 20, 5137–5142. [Google Scholar] [PubMed]
- Huang, Q.; Hsueh, C.Y.; Guo, Y.; Wu, X.F.; Li, J.Y.; Zhou, L. Lack of miR-1246 in small extracellular vesicle blunts tumorigenesis of laryngeal carcinoma cells by regulating Cyclin G2. IUBMB Life 2020, 72, 1491–1503. [Google Scholar] [CrossRef] [PubMed]
- Maia, D.; de Carvalho, A.C.; Horst, M.A.; Carvalho, A.L.; Scapulatempo-Neto, C.; Vettore, A.L. Expression of miR-296-5p as predictive marker for radiotherapy resistance in early-stage laryngeal carcinoma. J. Transl. Med. 2015, 13, 262. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhao, X.; Zhang, W.; Ji, W. YB-1 promotes laryngeal squamous cell carcinoma progression by inducing miR-155 expression via c-Myb. Future Oncol. 2018, 14, 1579–1589. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.C.; Song, L.Q.; Xu, W.W.; Qi, J.J.; Wang, X.Y.; Su, Y. Serum miR-632 is a potential marker for the diagnosis and prognosis in laryngeal squamous cell carcinoma. Acta Otolaryngol. 2020, 140, 418–421. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Tian, L.; Ren, H.; Chen, X.; Wang, Y.; Ge, J.; Wu, S.; Sun, Y.; Liu, M.; Xiao, H. MicroRNA-101 is a potential prognostic indicator of laryngeal squamous cell carcinoma and modulates CDK8. J. Transl. Med. 2015, 13, 271. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, F.; Lao, Z.; Zhang, H.Y.; Wang, J.; Wang, S.Z. Elevation of miR-125b-5p is related to improved prognosis in laryngeal squamous cell carcinoma and inhibits the malignancy and glycometabolic disorder by targeting MAP3K9. Neoplasma 2022, 69, 550–559. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Tang, M.; Xu, X.; Jiang, B.; Wei, Y.; Qian, H.; Lu, X. MiR-143-3p suppresses cell proliferation, migration, and invasion by targeting Melanoma-Associated Antigen A9 in laryngeal squamous cell carcinoma. J. Cell Biochem. 2019, 120, 1245–1257. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Cao, H. MicroRNA 143 3p suppresses cell growth and invasion in laryngeal squamous cell carcinoma via targeting the k Ras/Raf/MEK/ERK signaling pathway. Int. J. Oncol. 2019, 54, 689–701. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.Y.; Lu, Z.M.; Lin, Y.F.; Chen, L.S.; Luo, X.N.; Song, X.H.; Chen, S.H.; Wu, Y.L. miR-144-3p, a tumor suppressive microRNA targeting ETS-1 in laryngeal squamous cell carcinoma. Oncotarget 2016, 7, 11637–11650. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gao, W.; Zhang, C.; Li, W.; Li, H.; Sang, J.; Zhao, Q.; Bo, Y.; Luo, H.; Zheng, X.; Lu, Y.; et al. Promoter Methylation-Regulated miR-145-5p Inhibits Laryngeal Squamous Cell Carcinoma Progression by Targeting FSCN1. Mol. Ther. 2019, 27, 365–379. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Xu, Y.; Lin, Y.P.; Yang, D.; Zhang, G.; Zhou, H.F. Clinical Significance of miR-149 in the Survival of Patients with Laryngeal Squamous Cell Carcinoma. Biomed. Res. Int. 2016, 2016, 8561251. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shuang, Y.; Li, C.; Zhou, X.; Huang, Y.; Zhang, L. MicroRNA-195 inhibits growth and invasion of laryngeal carcinoma cells by directly targeting DCUN1D1. Oncol. Rep. 2017, 38, 2155–2165. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shuang, Y.; Li, C.; Zhou, X.; Huang, Y.W.; Zhang, L. Expression of miR-195 in laryngeal squamous cell carcinoma and its effect on proliferation and apoptosis of Hep-2. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 3232–3238. [Google Scholar] [PubMed]
- Tian, L.; Li, M.; Ge, J.; Guo, Y.; Sun, Y.; Liu, M.; Xiao, H. MiR-203 is downregulated in laryngeal squamous cell carcinoma and can suppress proliferation and induce apoptosis of tumours. Tumour Biol. 2014, 35, 5953–5963. [Google Scholar] [CrossRef] [PubMed]
- He, F.Y.; Liu, H.J.; Guo, Q.; Sheng, J.L. Reduced miR-300 expression predicts poor prognosis in patients with laryngeal squamous cell carcinoma. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 760–764. [Google Scholar] [PubMed]
- Dai, F.; Xie, Z.; Yang, Q.; Zhong, Z.; Zhong, C.; Qiu, Y. MicroRNA-375 inhibits laryngeal squamous cell carcinoma progression via targeting CST1. Braz. J. Otorhinolaryngol. 2022, 88 (Suppl. S4), S108–S116. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shen, Z.; Zhan, G.; Deng, H.; Ren, Y.; Ye, D.; Xiao, B.; Guo, J. MicroRNA-519a demonstrates significant tumour suppressive activity in laryngeal squamous cells by targeting anti-carcinoma HuR gene. J. Laryngol. Otol. 2013, 127, 1194–1202. [Google Scholar] [CrossRef] [PubMed]
- Fang, R.; Huang, Y.; Xie, J.; Zhang, J.; Ji, X. Downregulation of miR-29c-3p is associated with a poor prognosis in patients with laryngeal squamous cell carcinoma. Diagn. Pathol. 2019, 14, 109. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cappellesso, R.; Marioni, G.; Crescenzi, M.; Giacomelli, L.; Guzzardo, V.; Mussato, A.; Staffieri, A.; Martini, A.; Blandamura, S.; Fassina, A. The prognostic role of the epithelial-mesenchymal transition markers E-cadherin and Slug in laryngeal squamous cell carcinoma. Histopathology 2015, 67, 491–500. [Google Scholar] [CrossRef] [PubMed]
- Langevin, S.M.; Stone, R.A.; Bunker, C.H.; Lyons-Weiler, M.A.; LaFramboise, W.A.; Kelly, L.; Seethala, R.R.; Grandis, J.R.; Sobol, R.W.; Taioli, E. MicroRNA-137 promoter methylation is associated with poorer overall survival in patients with squamous cell carcinoma of the head and neck. Cancer 2011, 117, 1454–1462. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhao, X.; Zhang, W.; Ji, W. miR-181a targets GATA6 to inhibit the progression of human laryngeal squamous cell carcinoma. Future Oncol. 2018, 14, 1741–1753. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Zhang, H.; Wang, J. Circular RNA CircSHKBP1 accelerates the proliferation, invasion, angiogenesis, and stem cell-like properties via modulation of microR-766-5p/high mobility group AT-hook 2 axis in laryngeal squamous cell carcinoma. Bioengineered 2022, 13, 11551–11563. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, P.; Lin, X.J.; Yang, Y.; Yang, A.K.; Di, J.M.; Jiang, Q.W.; Huang, J.R.; Yuan, M.L.; Xing, Z.H.; Wei, M.N.; et al. Reciprocal regulation of miR-1205 and E2F1 modulates progression of laryngeal squamous cell carcinoma. Cell Death Dis. 2019, 10, 916. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sun, X.; Wang, Z.M.; Song, Y.; Tai, X.H.; Ji, W.Y.; Gu, H. MicroRNA-126 modulates the tumor microenvironment by targeting calmodulin-regulated spectrin-associated protein 1 (Camsap1). Int. J. Oncol. 2014, 44, 1678–1684. [Google Scholar] [CrossRef] [PubMed]
- Crimi, S.; Falzone, L.; Gattuso, G.; Grillo, C.M.; Candido, S.; Bianchi, A.; Libra, M. Droplet Digital PCR Analysis of Liquid Biopsy Samples Unveils the Diagnostic Role of hsa-miR-133a-3p and hsa-miR-375-3p in Oral Cancer. Biology 2020, 9, 379. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tu, H.F.; Lin, L.H.; Chang, K.W.; Cheng, H.W.; Liu, C.J. Exploiting salivary miR-375 as a clinical biomarker of oral potentially malignant disorder. J. Dent. Sci. 2022, 17, 659–665. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Senousy, M.A.; Shaker, O.G.; Ayeldeen, G.; Radwan, A.F. Association of lncRNA MEG3 rs941576 polymorphism, expression profile, and its related targets with the risk of obesity-related colorectal cancer: Potential clinical insights. Sci. Rep. 2024, 14, 10271. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yu, X.M.; Liu, Y.; Jin, T.; Liu, J.; Wang, J.; Ma, C.; Pan, X.L. The Expression of SIRT1 and DBC1 in Laryngeal and Hypopharyngeal Carcinomas. PLoS ONE 2013, 8, e66975. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gattuso, G.; Crimi, S.; Lavoro, A.; Rizzo, R.; Musumarra, G.; Gallo, S.; Facciponte, F.; Paratore, S.; Russo, A.; Bordonaro, R.; et al. Liquid Biopsy and Circulating Biomarkers for the Diagnosis of Precancerous and Cancerous Oral Lesions. Noncoding RNA 2022, 8, 60. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kabzinski, J.; Kucharska-Lusina, A.; Majsterek, I. RNA-Based Liquid Biopsy in Head and Neck Cancer. Cells 2023, 12, 1916. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dharmawardana, N.; Ooi, E.H.; Woods, C.; Hussey, D. Circulating microRNAs in head and neck cancer: A scoping review of methods. Clin. Exp. Metastasis 2019, 36, 291–302. [Google Scholar] [CrossRef] [PubMed]
- Cancer Genome Atlas Network. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature 2015, 517, 576–582. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, W.; Gao, G.; Hu, X.; Wang, Y.; Schwarz, J.K.; Chen, J.J.; Grigsby, P.W.; Wang, X. Activation of miR-9 by human papillomavirus in cervical cancer. Oncotarget 2014, 5, 11620–11630. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhu, W.J.; Huang, H.H.; Feng, Y.F.; Zhan, L.; Yang, J.; Zhu, L.; Wang, Q.Y.; Wei, B.; Wang, W.Y. Hypoxia-induced miR-9 expression promotes ovarian cancer progression via activating PI3K/AKT/mTOR/GSK3β signaling pathway. Neoplasma 2023, 70, 216–228. [Google Scholar] [CrossRef] [PubMed]
- Yao, P.; Ni, Y.; Liu, C. Long Non-Coding RNA 691 Regulated PTEN/PI3K/AKT Signaling Pathway in Osteosarcoma Through miRNA-9-5p. Onco Targets Ther. 2020, 13, 4597–4606. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Park, Y.R.; Lee, S.T.; Kim, S.L.; Zhu, S.M.; Lee, M.R.; Kim, S.H.; Kim, I.H.; Lee, S.O.; Seo, S.Y.; Kim, S.W. Down-regulation of miR-9 promotes epithelial mesenchymal transition via regulating anoctamin-1 (ANO1) in CRC cells. Cancer Genet. 2019, 231–232, 22–31. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Wang, J.; Tian, S.; Luo, J. miR-9 depletion suppresses the proliferation of osteosarcoma cells by targeting p16. Int. J. Oncol. 2019, 54, 1921–1932. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gomez, G.G.; Volinia, S.; Croce, C.M.; Zanca, C.; Li, M.; Emnett, R.; Gutmann, D.H.; Brennan, C.W.; Furnari, F.B.; Cavenee, W.K. Suppression of microRNA-9 by mutant EGFR signaling upregulates FOXP1 to enhance glioblastoma tumorigenicity. Cancer Res. 2014, 74, 1429–1439. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mohammadi-Yeganeh, S.; Mansouri, A.; Paryan, M. Targeting of miR9/NOTCH1 interaction reduces metastatic behavior in triple-negative breast cancer. Chem. Biol. Drug Des. 2015, 86, 1185–1191. [Google Scholar] [CrossRef] [PubMed]
- Zou, Z.; Chen, J.; Liu, A.; Zhou, X.; Song, Q.; Jia, C.; Chen, Z.; Lin, J.; Yang, C.; Li, M.; et al. mTORC2 promotes cell survival through c-Myc-dependent up-regulation of E2F1. J. Cell Biol. 2015, 211, 105–122. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, X.; Wang, L.; Mo, Q.; Jia, A.; Dong, Y.; Wang, G. A positive feedback loop of p53/miR-19/TP53INP1 modulates pancreatic cancer cell proliferation and apoptosis. Oncol. Rep. 2016, 35, 518–523. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.F.; Zhong, J.M.; Lin, L.; Liu, Z.H. MiR-19 enhances pancreatic cancer progression by targeting PTEN through PI3K/AKT signaling pathway. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 1098–1107. [Google Scholar] [CrossRef] [PubMed]
- Mavrakis, K.; Wolfe, A.; Oricchio, E.; Palomero, T.; De Keersmaecker, K.; McJunkin, K.; Zuber, J.; James, T.; Khan, A.A.; Leslie, C.S.; et al. Genome-wide RNA-mediated interference screen identifies miR-19 targets in Notch-induced T-cell acute lymphoblastic leukaemia. Nat. Cell Biol. 2010, 12, 372–379. [Google Scholar] [CrossRef]
- Mogilyansky, E.; Rigoutsos, I. The miR-17/92 cluster: A comprehensive update on its genomics, genetics, functions and increasingly important and numerous roles in health and disease. Cell Death Differ. 2013, 20, 1603–1614. [Google Scholar] [CrossRef] [PubMed]
- Tai, L.; Huang, C.J.; Choo, K.B.; Cheong, S.K.; Kamarul, T. Oxidative Stress Down-Regulates MiR-20b-5p, MiR-106a-5p and E2F1 Expression to Suppress the G1/S Transition of the Cell Cycle in Multipotent Stromal Cells. Int. J. Med. Sci. 2020, 17, 457–470. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Damodaran, M.; Chinambedu Dandapani, M.; SimonDuraiRaj; SandhyaSundaram; VenkatRamanan, S.; Ramachandran, I.; Venkatesan, V. Differentially expressed miR-20, miR-21, miR-100, miR-125a and miR-146a as a potential biomarker for prostate cancer. Mol. Biol. Rep. 2021, 48, 3349–3356. [Google Scholar] [CrossRef] [PubMed]
- Kim, S. Computational Model for Predicting the Relationship Between Micro-RNAs and Their Target Messenger RNAs in Breast and Colon Cancers. Cancer Inform. 2018, 17, 1176935118785145. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wu, Z.H.; Zhou, J.; Hu, G.H.; Liu, J.; Li, W.C.; Lai, X.H.; Liu, M. LncRNA CASC2 inhibits lung adenocarcinoma progression through forming feedback loop with miR-21/p53 axis. Kaohsiung J. Med. Sci. 2021, 37, 675–685. [Google Scholar] [CrossRef] [PubMed]
- da Silva, J.; da Costa, C.C.; de Farias Ramos, I.; Laus, A.C.; Sussuchi, L.; Reis, R.M.; Khayat, A.S.; Cavalli, L.R.; Pereira, S.R. Upregulated miRNAs on the TP53 and RB1 Binding Seedless Regions in High-Risk HPV-Associated Penile Cancer. Front. Genet. 2022, 13, 875939. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gao, L.; Ren, W.; Zhang, L.; Li, S.; Kong, X.; Zhang, H.; Dong, J.; Cai, G.; Jin, C.; Zheng, D.; et al. PTENp1, a natural sponge of miR-21, mediates PTEN expression to inhibit the proliferation of oral squamous cell carcinoma. Mol. Carcinog. 2017, 56, 1322–1334. [Google Scholar] [CrossRef] [PubMed]
- Bergez-Hernández, F.; Irigoyen-Arredondo, M.; Martínez-Camberos, A. A systematic review of mechanisms of PTEN gene down-regulation mediated by miRNA in prostate cancer. Heliyon 2024, 10, e34950. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, G.; Yang, Y.; Xu, S.; He, M.; Zhang, Z. mir-21-5p inhibits the progression of human chondrosarcoma by regulating CCR7/STAT3/NF-κB pathway. Connect. Tissue Res. 2021, 62, 313–324. [Google Scholar] [CrossRef] [PubMed]
- Silva, G.; Aboussekhra, A. p16(INK4A) inhibits the pro-metastatic potentials of osteosarcoma cells through targeting the ERK pathway and TGF-β1. Mol. Carcinog. 2016, 55, 525–536. [Google Scholar] [CrossRef] [PubMed]
- Marin, I.; Ofek, E.; Bar, J.; Prisant, N.; Perelman, M.; Avivi, C.; Lavy-Shahaf, G.; Onn, A.; Katz, R.; Barshack, I. MiR-21, EGFR and PTEN in non-small cell lung cancer: An in situ hybridisation and immunohistochemistry study. J. Clin. Pathol. 2020, 73, 636–641. [Google Scholar] [CrossRef]
- Xiong, Y.; Zhang, Y.Y.; Wu, Y.Y.; Wang, X.D.; Wan, L.H.; Li, L.; Zhou, L.M. Correlation of over-expressions of miR-21 and Notch-1 in human colorectal cancer with clinical stages. Life Sci. 2014, 106, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Dong, Z.; Ren, L.; Lin, L.; Li, J.; Huang, Y.; Li, J. Effect of microRNA-21 on multidrug resistance reversal in A549/DDP human lung cancer cells. Mol. Med. Rep. 2015, 11, 682–690. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Tao, C.; Huang, X.; He, H.; Shi, H.; Zhang, Q.; Wu, H. Metformin induces apoptosis of human hepatocellular carcinoma HepG2 cells by activating an AMPK/p53/miR-23a/FOXA1 pathway. Onco Targets Ther. 2016, 9, 2845–2853. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ye, Y.; Wang, G.; Wang, G.; Zhuang, J.; He, S.; Song, Y.; Ni, J.; Xia, W.; Wang, J. The Oncogenic Role of Tribbles 1 in Hepatocellular Carcinoma Is Mediated by a Feedback Loop Involving microRNA-23a and p53. Front. Physiol. 2017, 8, 789. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, X.; Wu, W.; Jeong, J.H.; Rokavec, M.; Wei, R.; Feng, S.; Schroth, W.; Brauch, H.; Zhong, S.; Luo, J.-L. Cytokines-activated nuclear IKKα-FAT10 pathway induces breast cancer tamoxifen-resistance. Sci. China Life Sci. 2024, 67, 1413–1426. [Google Scholar] [CrossRef] [PubMed]
- Xing, Y.; Zha, W.J.; Li, X.M.; Li, H.; Gao, F.; Ye, T.; Du, W.Q.; Liu, Y.C. Circular RNA circ-Foxo3 inhibits esophageal squamous cell cancer progression via the miR-23a/PTEN axis. J. Cell Biochem. 2020, 121, 2595–2605. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Gao, J.; Guo, H. miR-23a-3p Regulates Runx2 to Inhibit the Proliferation and Metastasis of Oral Squamous Cell Carcinoma. J. Oncol. 2022, 2022, 8719542. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Farhadi, E.; Zaker, F.; Safa, M.; Rezvani, M.R. miR-101 sensitizes K562 cell line to imatinib through Jak2 downregulation and inhibition of NF-κB target genes. Tumour Biol. 2016, 37, 14117–14128. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Tao, S.; Li, Q.; Deng, B.; Tan, Q.Y.; Jin, H. The miR-23a/27a/24-2 cluster promotes postoperative progression of early-stage non-small cell lung cancer. Mol. Ther. Oncolytics. 2021, 24, 205–217. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ito, S.; Kamoto, Y.; Sakai, A.; Sasai, K.; Hayashi, T.; Toyooka, S.; Katayama, H. Unique circulating microRNAs in relation to EGFR mutation status in Japanese smoker male with lung adenocarcinoma. Oncotarget 2017, 8, 114685–114697. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Guo, Y.; Tian, Y. MiR-26a inhibits proliferation and apoptosis of uveal melanoma cells via regulating p53/MDM2 pathway. J. BUON 2020, 25, 2476–2481. [Google Scholar] [PubMed]
- Jiang, F.Z.; He, Y.Y.; Wang, H.H.; Zhang, H.L.; Zhang, J.; Yan, X.F.; Wang, X.J.; Che, Q.; Ke, J.Q.; Chen, Z.; et al. Mutant p53 induces EZH2 expression and promotes epithelial-mesenchymal transition by disrupting p68-Drosha complex assembly and attenuating miR-26a processing. Oncotarget 2015, 6, 44660–44674. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Batchu, R.B.; Gruzdyn, O.V.; Qazi, A.M.; Kaur, J.; Mahmud, E.M.; Weaver, D.W.; Gruber, S.A. Enhanced phosphorylation of p53 by microRNA-26a leading to growth inhibition of pancreatic cancer. Surgery 2015, 158, 981–986, discussion 986–987. [Google Scholar] [CrossRef] [PubMed]
- Coronel-Hernández, J.; López-Urrutia, E.; Contreras-Romero, C.; Delgado-Waldo, I.; Figueroa-González, G.; Campos-Parra, A.D.; Salgado-García, R.; Martínez-Gutierrez, A.; Rodríguez-Morales, M.; Jacobo-Herrera, N.; et al. Cell migration and proliferation are regulated by miR-26a in colorectal cancer via the PTEN-AKT axis. Cancer Cell Int. 2019, 19, 80. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhao, W.T.; Lin, X.L.; Liu, Y.; Han, L.X.; Li, J.; Lin, T.Y.; Shi, J.W.; Wang, S.C.; Lian, M.; Chen, H.W.; et al. miR-26a promotes hepatocellular carcinoma invasion and metastasis by inhibiting PTEN and inhibits cell growth by repressing EZH2. Lab. Investig. 2019, 99, 1484–1500. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Wang, T.; Yang, Z.; Li, Y.; Li, W.; Wang, T.; Wang, S.; Jia, L.; Zhang, S.; Li, S. miR-26a desensitizes non-small cell lung cancer cells to tyrosine kinase inhibitors by targeting PTPN13. Oncotarget 2016, 7, 45687–45701. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lu, J.; Song, G.; Tang, Q.; Yin, J.; Zou, C.; Zhao, Z.; Xie, X.; Xu, H.; Huang, G.; Wang, J.; et al. MiR-26a inhibits stem cell-like phenotype and tumor growth of osteosarcoma by targeting Jagged1. Oncogene 2017, 36, 231–241. [Google Scholar] [CrossRef]
- Yao, L.; Han, C.; Song, K.; Zhang, J.; Lim, K.; Wu, T. Omega-3 Polyunsaturated Fatty Acids Upregulate 15-PGDH Expression in Cholangiocarcinoma Cells by Inhibiting miR-26a/b Expression. Cancer Res. 2015, 75, 1388–1398. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, Y.F.; Zhang, A.R.; Zhang, B.C.; Rao, Z.G.; Gao, J.F.; Lv, M.H.; Wu, Y.Y.; Wang, S.M.; Wang, R.Q.; Fang, D.C. MiR-26a regulates cell cycle and anoikis of human esophageal adenocarcinoma cells through Rb1-E2F1 signaling pathway. Mol. Biol. Rep. 2013, 40, 1711–1720. [Google Scholar] [CrossRef] [PubMed]
- Tang, G.; Zhao, H.; Xie, Z.; Wei, S.; Chen, G. Long non-coding RNA HAGLROS facilitates tumorigenesis and progression in hepatocellular carcinoma by sponging miR-26b-5p to up-regulate karyopherin α2 (KPNA2) and inactivate p53 signaling. Bioengineered 2022, 13, 7829–7846. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, E.; Li, E.; Liu, H.; Zhou, Y.; Wen, L.; Wang, J.; Wang, Y.; Ye, L.; Liang, T. miR-26b enhances the sensitivity of hepatocellular carcinoma to Doxorubicin via USP9X-dependent degradation of p53 and regulation of autophagy. Int. J. Biol. Sci. 2021, 17, 781–795. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gao, Z.; Ye, X.; Bordeaux, A.; Hettich, S.; Lin, S.; Han, F.; Jia, Y. miR-26b regulates cell proliferation and apoptosis of CD117+CD44+ ovarian cancer stem cells by targeting PTEN. Eur. J. Histochem. 2021, 65, 3186. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liang, S.; Guo, H.; Ma, K.; Li, X.; Wu, D.; Wang, Y.; Wang, W.; Zhang, S.; Cui, Y.; Liu, Y.; et al. A PLCB1-PI3K-AKT Signaling Axis Activates EMT to Promote Cholangiocarcinoma Progression. Cancer Res. 2021, 81, 5889–5903. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- De Robertis, M.; Loiacono, L.; Fusilli, C.; Poeta, M.L.; Mazza, T.; Sanchez, M.; Marchionni, L.; Signori, E.; Lamorte, G.; Vescovi, A.L.; et al. Dysregulation of EGFR Pathway in EphA2 Cell Subpopulation Significantly Associates with Poor Prognosis in Colorectal Cancer. Clin. Cancer Res. 2017, 23, 159–170. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, K.; Zhang, B.; Bai, Y.; Dai, L. E2F1 promotes cancer cell sensitivity to cisplatin by regulating the cellular DNA damage response through miR-26b in esophageal squamous cell carcinoma. J. Cancer 2020, 11, 301–310. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Creighton, C.J.; Fountain, M.D.; Yu, Z.; Nagaraja, A.K.; Zhu, H.; Khan, M.; Olokpa, E.; Zariff, A.; Gunaratne, P.H.; Matzuk, M.M.; et al. Molecular profiling uncovers a p53-associated role for microRNA-31 in inhibiting the proliferation of serous ovarian carcinomas and other cancers. Cancer Res. 2010, 70, 1906–1915. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhu, C.; Wang, S.; Zheng, M.; Chen, Z.; Wang, G.; Ma, J.; Zhang, B.; Huang, W.; Sun, X.; Wang, C. miR-31-5p modulates cell progression in lung adenocarcinoma through TNS1/p53 axis. Strahlenther. Onkol. 2022, 198, 304–314. [Google Scholar] [CrossRef] [PubMed]
- Yan, G.; Lei, W. Role of ELK1 in regulating colorectal cancer progression: miR-31-5p/CDIP1 axis in CRC pathogenesis. PeerJ 2023, 11, e15602. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tian, T.; Hong, F.; Wang, Z.; Hu, J.; Chen, N.; Lv, L.; Yi, Q. HSD17B6 downregulation predicts poor prognosis and drives tumor progression via activating Akt signaling pathway in lung adenocarcinoma. Cell Death Discov. 2021, 7, 341. [Google Scholar] [CrossRef] [PubMed]
- Hou, C.; Sun, B.; Jiang, Y.; Zheng, J.; Yang, N.; Ji, C.; Liang, Z.; Shi, J.; Zhang, R.; Liu, Y.; et al. MicroRNA-31 inhibits lung adenocarcinoma stem-like cells via down-regulation of MET-PI3K-Akt signaling pathway. Anticancer Agents Med. Chem. 2016, 16, 501–518. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Jia, X.; Wang, M.; Deng, Y. Long noncoding RNA MIR31HG abrogates the availability of tumor suppressor microRNA-361 for the growth of osteosarcoma. Cancer Manag. Res. 2019, 11, 8055–8064. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rajbhandari, R.; McFarland, B.C.; Patel, A.; Gerigk, M.; Gray, G.K.; Fehling, S.C.; Bredel, M.; Berbari, N.F.; Kim, H.; Marks, M.P.; et al. Loss of tumor suppressive microRNA-31 enhances TRADD/NF-κB signaling in glioblastoma. Oncotarget 2015, 6, 17805–17816. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lu, W.C.; Kao, S.Y.; Yang, C.C.; Tu, H.F.; Wu, C.H.; Chang, K.W.; Lin, S.C. EGF up-regulates miR-31 through the C/EBPβ signal cascade in oral carcinoma. PLoS ONE 2014, 9, e108049. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- He, Z.; Zhong, Y.; Regmi, P.; Lv, T.; Ma, W.; Wang, J.; Liu, F.; Yang, S.; Zhong, Y.; Zhou, R.; et al. Exosomal long non-coding RNA TRPM2-AS promotes angiogenesis in gallbladder cancer through interacting with PABPC1 to activate NOTCH1 signaling pathway. Mol. Cancer 2024, 23, 65. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lin, P.C.; Chiu, Y.L.; Banerjee, S.; Park, K.; Mosquera, J.M.; Giannopoulou, E.; Alves, P.; Tewari, A.K.; Gerstein, M.B.; Beltran, H.; et al. Epigenetic repression of miR-31 disrupts androgen receptor homeostasis and contributes to prostate cancer progression. Cancer Res. 2013, 73, 1232–1244. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pan, W.; Chai, B.; Li, L.; Lu, Z.; Ma, Z. p53/MicroRNA-34 axis in cancer and beyond. Heliyon 2023, 9, e15155. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wu, X.; Cheng, Y.L.; Matthen, M.; Yoon, A.; Schwartz, G.K.; Bala, S.; Taylor, A.M.; Momen-Heravi, F. Down-regulation of the tumor suppressor miR-34a contributes to head and neck cancer by up-regulating the MET oncogene and modulating tumor immune evasion. J. Exp. Clin. Cancer Res. 2021, 40, 70. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, Y.; Jin, L.; Rong, W.; Meng, F.; Wang, X.; Wang, S.; Yu, X. Expression and significance of miR-34 with PI3K.; AKT and mTOR proteins in colorectal adenocarcinoma tissues. Cell. Mol. Biol. 2022, 68, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Lin, C.; Liu, Y. Molecular mechanism of miR-34b-5p and RNA binding protein HuR binding to lncRNA OIP5-AS1 in colon cancer cells. Cancer Gene Ther. 2022, 29, 612–624. [Google Scholar] [CrossRef] [PubMed]
- Achari, C.; Winslow, S.; Ceder, Y.; Larsson, C. Expression of miR-34c induces G2/M cell cycle arrest in breast cancer cells. BMC Cancer 2014, 14, 538. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hanafi, A.R.; Jayusman, A.M.; Alfasunu, S.; Sadewa, A.H.; Pramono, D.; Heriyanto, D.S.; Haryana, S.M. Serum MiRNA as Predictive and Prognosis Biomarker in Advanced Stage Non-small Cell Lung Cancer in Indonesia. Zhongguo Fei Ai Za Zhi 2020, 23, 321–332. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yu, X.; Zhang, W.; Ning, Q.; Luo, X. MicroRNA-34a inhibits human brain glioma cell growth by down-regulation of Notch1. J. Huazhong Univ. Sci.Technol. Med. Sci. 2012, 32, 370–374. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Li, Z.; Chen, C.; Luo, X.; Xiao, J.; Dong, D.; Lu, Y.; Yang, B.; Wang, Z. Transcriptional and post-transcriptional mechanisms for oncogenic overexpression of ether à go-go K+ channel. PLoS ONE 2011, 6, e20362, Erratum in PLoS ONE 2011, 6. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, X.; Chen, S.; Xiu, Y.L.; Sun, K.X.; Zong, Z.H.; Zhao, Y. RhoC is a major target of microRNA-93-5P in epithelial ovarian carcinoma tumorigenesis and progression. Mol. Cancer 2015, 14, 31. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- de Conti, A.; Festa Ortega, J.; Tryndyak, V.; Dreval, K.; Salvador Moreno, F.; Rusyn, I.; Beland, F.A.; Pogribny, I.P. MicroRNA deregulation in nonalcoholic steatohepatitis-associated liver carcinogenesis. Oncotarget 2017, 8, 88517–88528. [Google Scholar] [CrossRef]
- Liu, M.X.; Liao, J.; Xie, M.; Gao, Z.K.; Wang, X.H.; Zhang, Y.; Shang, M.H.; Yin, L.H.; Pu, Y.P.; Liu, R. miR-93-5p Transferred by Exosomes Promotes the Proliferation of Esophageal Cancer Cells via Intercellular Communication by Targeting PTEN. Biomed. Environ. Sci. 2018, 31, 171–185. [Google Scholar] [CrossRef] [PubMed]
- Bao, C.; Chen, J.; Chen, D.; Lu, Y.; Lou, W.; Ding, B.; Xu, L.; Fan, W. MiR-93 suppresses tumorigenesis and enhances chemosensitivity of breast cancer via dual targeting E2F1 and CCND1. Cell Death Dis. 2020, 11, 618. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, Y.; Wu, B.; Sun, R.; Zhao, M.; Li, N. miR-93-5p knockdown repressed hepatocellular carcinoma progression via increasing ERBB4 and TETs-dependent DNA demethylation. Autoimmunity 2021, 54, 547–560. [Google Scholar] [CrossRef] [PubMed]
- Noorolyai, S.; Baghbani, E.; Aghebati Maleki, L.; Baghbanzadeh Kojabad, A.; Shanehbansdi, D.; Khaze Shahgoli, V.; Mokhtarzadeh, A.; Baradaran, B. Restoration of miR-193a-5p and miR-146 a-5p Expression Induces G1 Arrest in Colorectal Cancer through Targeting of MDM2/p53. Adv. Pharm. Bull. 2020, 10, 130–134. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sathyanarayanan, A.; Chandrasekaran, K.S.; Karunagaran, D. microRNA-146a inhibits proliferation, migration and invasion of human cervical and colorectal cancer cells. Biochem. Biophys. Res. Commun. 2016, 480, 528–533. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Zhao, X.; Liang, L.; Wang, G.; Li, Y.; Miao, X.; Zhao, Y. miR-146a and miR-146b promote proliferation, migration and invasion of follicular thyroid carcinoma via inhibition of ST8SIA4. Oncotarget 2017, 8, 28028–28041. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Qiu, L.; Wang, J.; Chen, M.; Chen, F.; Tu, W. Exosomal microRNA-146a derived from mesenchymal stem cells increases the sensitivity of ovarian cancer cells to docetaxel and taxane via a LAMC2-mediated PI3K/Akt axis. Int. J. Mol. Med. 2020, 46, 609–620. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, Y.; Ding, S.; Yang, J.; Chen, X.; Huang, W. Identification of miR-146a is Associated with the Aggressiveness and Suppresses Proliferation via Targeting CDKN2A in Breast Cancer. Pathol. Oncol. Res. 2020, 26, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Afshar-Khamseh, R.; Javeri, A.; Taha, M.F. MiR-146a suppresses the expression of CXCR4 and alters survival, proliferation and migration rate in colorectal cancer cells. Tissue Cell 2021, 73, 101654. [Google Scholar] [CrossRef] [PubMed]
- Forloni, M.; Dogra, S.K.; Dong, Y.; Conte, D., Jr.; Ou, J.; Zhu, L.J.; Deng, A.; Mahalingam, M.; Green, M.R.; Wajapeyee, N. miR-146a promotes the initiation and progression of melanoma by activating Notch signaling. Elife 2014, 3, e01460. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sandhu, R.; Rein, J.; D’Arcy, M.; Herschkowitz, J.I.; Hoadley, K.A.; Troester, M.A. Overexpression of miR-146a in basal-like breast cancer cells confers enhanced tumorigenic potential in association with altered p53 status. Carcinogenesis 2014, 35, 2567–2575. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yan, Z.; Wen, J.X.; Cao, X.S.; Zhao, W.; Han, Y.L.; Wen, X.H.; Yan, L.; Zhang, M.; Wang, Y.F.; Hai, L.; et al. Tumor cell-derived exosomal microRNA-146a promotes non-small cell lung cancer cell invasion and proliferation by inhibiting M1 macrophage polarization. Ann. Transl. Med. 2022, 10, 1307. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Neilsen, P.M.; Noll, J.E.; Mattiske, S.; Bracken, C.P.; Gregory, P.A.; Schulz, R.B.; Lim, S.P.; Kumar, R.; Suetani, R.J.; Goodall, G.J.; et al. Mutant p53 drives invasion in breast tumors through up-regulation of miR-155. Oncogene 2013, 32, 2992–3000. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Cui, T.; Guo, W.; Wang, D.; Mao, L. MiR-155-5p accelerates the metastasis of cervical cancer cell via targeting TP53INP1. Onco Targets Ther. 2019, 12, 3181–3196. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Van Roosbroeck, K.; Fanini, F.; Setoyama, T.; Ivan, C.; Rodriguez-Aguayo, C.; Fuentes-Mattei, E.; Xiao, L.; Vannini, I.; Redis, R.S.; D’Abundo, L.; et al. Combining Anti-Mir-155 with Chemotherapy for the Treatment of Lung Cancers. Clin. Cancer Res. 2017, 23, 2891–2904. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zuo, W.N.; Zhu, H.; Li, L.P.; Jin, A.Y.; Wang, H.Q. MiR-155 promotes proliferation and inhibits apoptosis of nasopharyngeal carcinoma cells through targeting PTEN-PI3K/AKT pathway. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 7935–7942. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.F.; Zhang, D.; Gao, C.J.; Zhang, Y.W.; Dai, Q.S. Exosome-Mediated MiR-155 Transfer Contributes to Hepatocellular Carcinoma Cell Proliferation by Targeting PTEN. Med. Sci. Monit. Basic. Res. 2019, 25, 218–228. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gao, Y.; Xu, J.; Li, H.; Hu, Y.; Yu, G. Identification of Metastasis-Associated MicroRNAs in Metastatic Melanoma by miRNA Expression Profile and Experimental Validation. Front. Genet. 2021, 12, 663110. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kravets, O.; Burtyn, O.; Borikun, T.; Rossylna, O. The Study of Prognostic Value of microRNAs (miR-10b AND -155) and CDKN2A/P16INK4A in Oral Squamous Cell Carcinoma. Exp. Oncol. 2023, 45, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.S.; Roundtree, I.A.; He, C. Post-transcriptional gene regulation by mRNA modifications. Nat. Rev. Mol. Cell Biol. 2017, 18, 31–42, Erratum in Nat. Rev. Mol. Cell Biol. 2018, 19, 808. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, L.; Yang, X.; Zhao, J.; Xiong, M.; Almaraihah, R.; Chen, Z.; Hou, T. Circ_0008532 promotes bladder cancer progression by regulation of the miR-155-5p/miR-330-5p/MTGR1 axis. J. Exp. Clin. Cancer Res. 2020, 39, 94. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, K.; Yao, H.; Lei, S.; Xiong, L.; Qi, H.; Qian, K.; Liu, J.; Wang, P.; Zhao, H. The miR-124-p63 feedback loop modulates colorectal cancer growth. Oncotarget 2017, 8, 29101–29115. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jiang, D.; Aguiar, R.C. MicroRNA-155 controls RB phosphorylation in normal and malignant B lymphocytes via the noncanonical TGF-β1/SMAD5 signaling module. Blood 2014, 123, 86–93. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, N.A.; Wang, W.; Xu, B.; Gong, H. miR-196b regulates gastric cancer cell proliferation and invasion via PI3K/AKT/mTOR signaling pathway. Oncol. Lett. 2016, 11, 1745–1749. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bai, X.; Meng, L.; Sun, H.; Li, Z.; Zhang, X.; Hua, S. MicroRNA-196b Inhibits Cell Growth and Metastasis of Lung Cancer Cells by Targeting Runx2. Cell Physiol. Biochem. 2017, 43, 757–767. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Wei, N.; Ma, R.; Jiang, S.; Song, D. A miR-210-3p regulon that controls the Warburg effect by modulating HIF-1α and p53 activity in triple-negative breast cancer. Cell Death Dis. 2020, 11, 731. [Google Scholar] [CrossRef]
- Islam, S.U.; Ahmed, M.B.; Sonn, J.K.; Jin, E.J.; Lee, Y.S. PRP4 Induces Epithelial-Mesenchymal Transition and Drug Resistance in Colon Cancer Cells via Activation of p53. Int. J. Mol. Sci. 2022, 23, 3092. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yang, F.; Yan, Y.; Yang, Y.; Hong, X.; Wang, M.; Yang, Z.; Liu, B.; Ye, L. MiR-210 in exosomes derived from CAFs promotes non-small cell lung cancer migration and invasion through PTEN/PI3K/AKT pathway. Cell. Signal. 2020, 73, 109675. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Song, Y.; Wang, H.; Liu, K.; Shao, Z.; Shang, Z. MiR-210-3p-EphrinA3-PI3K/AKT axis regulates the progression of oral cancer. J. Cell. Mol. Med. 2020, 24, 4011–4022. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Evangelista, A.F.; Oliveira, R.J.; Silva, V.A.O.; Vieira, R.A.D.C.; Reis, R.M.; Marques, M.M.C. Integrated analysis of mRNA and miRNA profiles revealed the role of miR-193 and miR-210 as potential regulatory biomarkers in different molecular subtypes of breast cancer. BMC Cancer 2021, 21, 76. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tabibkhooei, A.; Izadpanahi, M.; Arab, A.; Zare-Mirzaei, A.; Minaeian, S.; Rostami, A.; Mohsenian, A. Profiling of novel circulating microRNAs as a non-invasive biomarker in diagnosis and follow-up of high and low-grade gliomas. Clin. Neurol. Neurosurg. 2020, 190, 105652. [Google Scholar] [CrossRef] [PubMed]
- Yoon, A.R.; Gao, R.; Kaul, Z.; Choi, I.K.; Ryu, J.; Noble, J.R.; Kato, Y.; Saito, S.; Hirano, T.; Ishii, T.; et al. MicroRNA-296 is enriched in cancer cells and downregulates p21WAF1 mRNA expression via interaction with its 3′ untranslated region. Nucleic Acids Res. 2011, 39, 8078–8091. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cheng, X.; Huang, Z.; Pan, A.; Long, D. ORLNC1 Suppresses Cell Growth in HER2-Positive Breast Cancer via miRNA-296 Sponging. Curr. Mol. Med. 2023, 23, 289–299. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Du, G.; Fu, H. miR-296-3p promotes the proliferation of glioblastoma cells by targeting ICA. T. Mol Med Rep. 2020, 21, 2151–2161. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, F.; Sang, Y.; Chen, D.; Wu, X.; Wang, X.; Yang, W.; Chen, Y. M2 macrophage-derived exosomal long non-coding RNA AGAP2-AS1 enhances radiotherapy immunity in lung cancer by reducing microRNA-296 and elevating NOTCH2. Cell Death Dis. 2021, 12, 467. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.N.; Shi, W.T.; Feng, H.R.; Wei, C.Y.; Yin, Q.N. Effect of miR-301a/PTEN pathway on the proliferation and apoptosis of cervical cancer. Innate Immun. 2019, 25, 217–223. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Granda-Díaz, R.; Manterola, L.; Hermida-Prado, F.; Rodríguez, R.; Santos, L.; García-de-la-Fuente, V.; Fernández, M.T.; Corte-Torres, M.D.; Rodrigo, J.P.; Álvarez-Teijeiro, S.; et al. Targeting oncogenic functions of miR-301a in head and neck squamous cell carcinoma by PI3K/PTEN and MEK/ERK pathways. Biomed. Pharmacother. 2023, 161, 114512. [Google Scholar] [CrossRef] [PubMed]
- Su, H.; Wu, Y.; Fang, Y.; Shen, L.; Fei, Z.; Xie, C.; Chen, M. MicroRNA-301a targets WNT1 to suppress cell proliferation and migration and enhance radiosensitivity in esophageal cancer cells. Oncol. Rep. 2019, 41, 599–607. [Google Scholar] [CrossRef] [PubMed]
- Nam, R.K.; Benatar, T.; Wallis, C.J.; Amemiya, Y.; Yang, W.; Garbens, A.; Naeim, M.; Sherman, C.; Sugar, L.; Seth, A. MiR-301a regulates E-cadherin expression and is predictive of prostate cancer recurrence. Prostate 2016, 76, 869–884. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Chen, D.; Luo, K.; Lu, M.; Gu, Y.; Zeng, S.; Chen, X.; Song, Y.; Zhang, Z.; Zheng, G.; et al. Cip2a/miR-301a feedback loop promotes cell proliferation and invasion of triple-negative breast cancer. J. Cancer 2019, 10, 5964–5974. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, J.; Li, Y.; Ma, Q.; Huang, J. miR-378 in combination with ultrasonic irradiation and SonoVue microbubbles transfection inhibits hepatoma cell growth. Mol. Med. Rep. 2020, 21, 2493–2501. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Skrzypek, K.; Tertil, M.; Golda, S.; Ciesla, M.; Weglarczyk, K.; Collet, G.; Guichard, A.; Kozakowska, M.; Boczkowski, J.; Was, H.; et al. Interplay between heme oxygenase-1 and miR-378 affects non-small cell lung carcinoma growth, vascularization, and metastasis. Antioxid. Redox Signal. 2013, 19, 644–660. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cui, Z.; Bao, X.; Liu, Q.; Li, Q.; Huang, L.; Wang, H.; Jiao, K. MicroRNA-378-3p/5p represses proliferation and induces apoptosis of oral squamous carcinoma cells via targeting KLK4. Clin. Exp. Pharmacol. Physiol. 2020, 47, 713–724. [Google Scholar] [CrossRef] [PubMed]
- Weng, W.H.; Leung, W.H.; Pang, Y.J.; Hsu, H.H. Lauric acid can improve the sensitization of Cetuximab in KRAS/BRAF mutated colorectal cancer cells by retrievable microRNA-378 expression. Oncol. Rep. 2016, 35, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.X.; Zhang, Z.P.; Tao, Z.Z.; Tan, T.Z. miR-632 Promotes Laryngeal Carcinoma Cell Proliferation, Migration, and Invasion Through Negative Regulation of GSK3β. Oncol. Res. 2020, 28, 21–31. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liao, J.M.; Zhou, X.; Zhang, Y.; Lu, H. MiR-1246: A new link of the p53 family with cancer and Down syndrome. Cell Cycle 2012, 11, 2624–2630. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, Q.; Cao, L.Y.; Cheng, S.J.; Zhang, A.M.; Jin, X.S.; Li, Y. p53-induced microRNA-1246 inhibits the cell growth of human hepatocellular carcinoma cells by targeting NFI.B. Oncol. Rep. 2015, 33, 1335–1341. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhang, Z.; Hu, J.; Wan, X.; Huang, W.; Zhang, H.; Jiang, N. MiR-1246 regulates the PI3K/AKT signaling pathway by targeting PIK3AP1 and inhibits thyroid cancer cell proliferation and tumor growth. Mol. Cell. Biochem. 2022, 477, 649–661. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, Y.; Chen, L.; Zhu, S.; Yang, H.; Ye, Z.; Wang, H.; Wu, H.; Wu, Y.; Sun, Q.; Liu, X.; et al. Exosomal derived miR-1246 from hydroquinone-transformed cells drives S phase accumulation arrest by targeting cyclin G2 in TK6 cells. Chem. Biol. Interact. 2024, 387, 110809. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.Y.; Jiao, D.M.; Zhu, Y.; Hu, H.; Wang, J.; Tang, X.; Chen, J.; Yan, L. Identification of carcinogenic potential-associated molecular mechanisms in CD133(+) A549 cells based on microRNA profiles. Tumour Biol. 2016, 37, 521–530. [Google Scholar] [CrossRef] [PubMed]
- Vu, T.T.; Stölzel, F.; Wang, K.W.; Röllig, C.; Tursky, M.L.; Molloy, T.J.; Ma, D.D. miR-10a as a therapeutic target and predictive biomarker for MDM2 inhibition in acute myeloid leukemia. Leukemia 2021, 35, 1933–1948. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Meng, X.; Peng, J.; Xie, X.; Yu, F.; Wang, W.; Pan, Q.; Jin, H.; Huang, X.; Yu, H.; Li, S.; et al. Roles of lncRNA LVBU in regulating urea cycle/polyamine synthesis axis to promote colorectal carcinoma progression. Oncogene 2022, 41, 4231–4243. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yu, T.; Liu, L.; Li, J.; Yan, M.; Lin, H.; Liu, Y.; Chu, D.; Tu, H.; Gu, A.; Yao, M. MiRNA-10a is upregulated in NSCLC and may promote cancer by targeting PTEN. Oncotarget 2015, 6, 30239–30250. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zeng, T.; Li, G. MicroRNA-10a enhances the metastatic potential of cervical cancer cells by targeting phosphatase and tensin homologue. Mol. Med. Rep. 2014, 10, 1377–1382. [Google Scholar] [CrossRef] [PubMed]
- Ashmawy, A.M.; Elgeshy, K.M.; Abdel Salam, E.T.; Ghareeb, M.; Kobaisi, M.H.; Amin, H.A.A.; Sharawy, S.K.; Abdel Wahab, A.H.A. Crosstalk between liver-related microRNAs and Wnt/β-catenin pathway in hepatocellular carcinoma patients. Arab. J. Gastroenterol. 2017, 18, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Fu, L.; Wei, D.; Wang, B.; Zhang, C.; Zhu, T.; Ma, Z.; Li, Z.; Wu, Y.; Yu, G. MiR-29c-3p Suppresses the Migration, Invasion and Cell Cycle in Esophageal Carcinoma via CCNA2/p53 Axis. Front. Bioeng. Biotechnol. 2020, 8, 75. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, G.; Zhou, T.; Li, Y.; Yu, Z.; Sun, L. p53 target miR-29c-3p suppresses colon cancer cell invasion and migration through inhibition of PHLDB2. Biochem. Biophys. Res. Commun. 2017, 487, 90–95. [Google Scholar] [CrossRef] [PubMed]
- Zhan, S.; Wang, C.; Yin, F. MicroRNA-29c inhibits proliferation and promotes apoptosis in non-small cell lung cancer cells by targeting VEGFA. Mol. Med. Rep. 2018, 17, 6705–6710. [Google Scholar] [CrossRef] [PubMed]
- Wardana, T.; Oktriani, R.; Murjayanto, C.H.; Putri, D.U.; Anwar, S.L.; Aryandono, T.; Haryana, S.M. MicroRNA Gene Signature for Predicting Mechanisms in Nasopharyngeal Carcinoma: A Case Study on the Potential Application of Circulating Biomarkers. Microrna 2023, 12, 29–44. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.C.; Mei, P.J.; Chen, C.; Miao, F.A.; Zhang, H.; Li, Z.L. MiR-29c inhibits glioma cell proliferation, migration, invasion and angiogenesis. J. Neurooncol. 2013, 115, 179–188. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Yang, S.; Niu, M.; Zhong, Y.; Dan, G.; Zhang, Y.; Ma, H.; Xiong, W.; Zhou, M.; Zhou, Y.; et al. HMG-box transcription factor 1: A positive regulator of the G1/S transition through the Cyclin-CDK-CDKI molecular network in nasopharyngeal carcinoma. Cell Death Dis. 2018, 9, 100. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, L.; Yu, T.; Li, W.; Li, M.; Zuo, Q.; Zou, Q.; Xiao, B. The miR-29c-KIAA1199 axis regulates gastric cancer migration by binding with WBP11 and PTP4A3. Oncogene 2019, 38, 3134–3150. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Zhu, T.; Wang, H.; Wang, B.; Fu, L.; Yu, G. E2F1 Reduces Sorafenib’s Sensitivity of Esophageal Carcinoma Cells via Modulating the miR-29c-3p/COL11A1 Signaling Axis. Curr. Mol. Pharmacol. 2024, 17, 36876834. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.W.; Jiang, Y.H.; Ye, W.; Shao, C.F.; Xie, J.J.; Li, X. SIRT1 promotes the progression and chemoresistance of colorectal cancer through the p53/miR-101/KPNA3 axis. Cancer Biol. Ther. 2023, 24, 2235770. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Park, J.; Cho, M.; Cho, J.; Kim, E.E.; Song, E.J. MicroRNA-101-3p Suppresses Cancer Cell Growth by Inhibiting the USP47-Induced Deubiquitination of RPL11. Cancers 2022, 14, 964. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lv, X.; Li, J.; Yang, B. Clinical effects of miR-101 on prognosis of hepatocellular carcinoma and carcinogenic mechanism of anti-miR-101. Oncol. Rep. 2016, 36, 2184–2192. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Yao, J.; Sun, H.; He, K.; Tong, D.; Song, T.; Huang, C. MicroRNA-101 suppresses progression of lung cancer through the PTEN/AKT signaling pathway by targeting DNA methyltransferase 3A. Oncol. Lett. 2017, 13, 329–338. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhou, X.; Xia, Y.; Li, L.; Zhang, G. MiR-101 inhibits cell growth and tumorigenesis of Helicobacter pylori related gastric cancer by repression of SOCS2. Cancer Biol. Ther. 2015, 16, 160–169. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, X.; Gao, D.; Fang, K.; Guo, Z.; Li, L. Med19 is targeted by miR-101-3p/miR-422a and promotes breast cancer progression by regulating the EGFR/MEK/ERK signaling pathway. Cancer Lett. 2019, 444, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.B.; Huang, S.S.; Lu, C.G.; Tian, S.D.; Chen, M. CircAPLP2 regulates the proliferation and metastasis of colorectal cancer by targeting miR-101-3p to activate the Notch signalling pathway. Am. J. Transl. Res. 2020, 12, 2554–2569. [Google Scholar] [PubMed] [PubMed Central]
- Ratovitski, E.A. Phospho-ΔNp63α-responsive microRNAs contribute to the regulation of necroptosis in squamous cell carcinoma upon cisplatin exposure. FEBS Lett. 2015, 589, 1352–1358. [Google Scholar] [CrossRef] [PubMed]
- Tao, L.; Xu, C.; Shen, W.; Tan, J.; Li, L.; Fan, M.; Sun, D.; Lai, Y.; Cheng, H. HIPK3 Inhibition by Exosomal hsa-miR-101-3p Is Related to Metabolic Reprogramming in Colorectal Cancer. Front. Oncol. 2022, 11, 758336. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, J.J.; Liu, S.X.; Chen, M.Z.; Zhao, Z.Y. Has-miR-125a and 125b are induced by treatment with cisplatin in nasopharyngeal carcinoma and inhibit apoptosis in a p53-dependent manner by targeting p53 mRNA. Mol. Med. Rep. 2015, 12, 3569–3574. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.B.; Xue, L.; Ma, A.H.; Tepper, C.G.; Kung, H.J.; White, R.W. miR-125b promotes growth of prostate cancer xenograft tumor through targeting pro-apoptotic genes. Prostate 2011, 71, 538–549. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, H.M.; Fan, T.T.; Li, W.; Li, X.X. Expressions and significances of TTF-1 and PTEN in early endometrial cancer. Eur. Rev. Med. Pharmacol. Sci. 2017, 21 (Suppl. S3), 20–26. [Google Scholar] [PubMed]
- Bu, Q.; You, F.; Pan, G.; Yuan, Q.; Cui, T.; Hao, L.; Zhang, J. MiR-125b inhibits anaplastic thyroid cancer cell migration and invasion by targeting PIK3CD. Biomed. Pharmacother. 2017, 88, 443–448. [Google Scholar] [CrossRef] [PubMed]
- Mei, L.L.; Wang, W.J.; Qiu, Y.T.; Xie, X.F.; Bai, J.; Shi, Z.Z. miR-125b-5p functions as a tumor suppressor gene partially by regulating HMGA2 in esophageal squamous cell carcinoma. PLoS ONE 2017, 12, e0185636. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wu, Q.; Liu, P.; Lao, G.; Liu, Y.; Zhang, W.; Ma, C. Comprehensive Analysis of circRNA-miRNA-mRNA Network in Cervical Squamous Cell Carcinoma by Integrated Analysis. Onco Targets Ther. 2020, 13, 8641–8650. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, L.; Ge, Y.; Fuchs, E. miR-125b can enhance skin tumor initiation and promote malignant progression by repressing differentiation and prolonging cell survival. Genes. Dev. 2014, 28, 2532–2546. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gao, D.; Xiao, Z.; Li, H.P.; Han, D.H.; Zhang, Y.P. The mechanism study of miR-125b in occurrence and progression of multiple myeloma. Cancer Med. 2018, 7, 134–145. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Boldrup, L.; Coates, P.J.; Wahlgren, M.; Laurell, G.; Nylander, K. Subsite-based alterations in miR-21, miR-125b, and miR-203 in squamous cell carcinoma of the oral cavity and correlation to important target proteins. J. Carcinog. 2012, 11, 18. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tomasetti, M.; Gaetani, S.; Monaco, F.; Neuzil, J.; Santarelli, L. Epigenetic Regulation of miRNA Expression in Malignant Mesothelioma: miRNAs as Biomarkers of Early Diagnosis and Therapy. Front. Oncol. 2019, 9, 1293. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bi, X.; Lv, X.; Liu, D.; Guo, H.; Yao, G.; Wang, L.; Liang, X.; Yang, Y. METTL3-mediated maturation of miR-126-5p promotes ovarian cancer progression via PTEN-mediated PI3K/Akt/mTOR pathway. Cancer Gene Ther. 2021, 28, 335–349. [Google Scholar] [CrossRef] [PubMed]
- Di Paolo, D.; Pontis, F.; Moro, M.; Centonze, G.; Bertolini, G.; Milione, M.; Mensah, M.; Segale, M.; Petraroia, I.; Borzi, C.; et al. Cotargeting of miR-126-3p and miR-221-3p inhibits PIK3R2 and PTEN.; reducing lung cancer growth and metastasis by blocking AKT and CXCR4 signalling. Mol. Oncol. 2021, 15, 2969–2988. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Feng, Q.; Wang, D.; Guo, P.; Zhang, Z.; Feng, J. Long non-coding RNA HOTAIR promotes the progression of synovial sarcoma through microRNA-126/stromal cell-derived factor-1 regulation. Oncol. Lett. 2021, 21, 444. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, X.; Lu, H.; Fan, G.; He, M.; Sun, Y.; Xu, K.; Shi, F. A novel interplay between HOTAIR and DNA methylation in osteosarcoma cells indicates a new therapeutic strategy. J. Cancer Res. Clin. Oncol. 2017, 143, 2189–2200. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Gu, J.; Jiang, P.; Zheng, Y.; Liu, X.; Jiang, X.; Huang, E.; Xiong, S.; Xu, F.; Liu, G.; et al. DNMT1-microRNA126 epigenetic circuit contributes to esophageal squamous cell carcinoma growth via ADAM9-EGFR-AKT signaling. Clin. Cancer Res. 2015, 21, 854–863. [Google Scholar] [CrossRef] [PubMed]
- Dong, P.; Xiong, Y.; Hanley, S.J.B.; Yue, J.; Watari, H. Musashi-2, a novel oncoprotein promoting cervical cancer cell growth and invasion, is negatively regulated by p53-induced miR-143 and miR-107 activation. J. Exp. Clin. Cancer Res. 2017, 36, 150. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, J.; Sun, Q.; Zhang, Z.; Ge, S.; Han, Z.-G.; Chen, W.-T. Loss of microRNA-143/145 disturbs cellular growth and apoptosis of human epithelial cancers by impairing the MDM2-p53 feedback loop. Oncogene 2013, 32, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Ng, E.K.; Li, R.; Shin, V.Y.; Siu, J.M.; Ma, E.S.; Kwong, A. MicroRNA-143 is downregulated in breast cancer and regulates DNA methyltransferases 3A in breast cancer cells. Tumour Biol. 2014, 35, 2591–2598. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.H.; Yao, Z.X.; Zheng, Z.; Yang, J.; Wang, R.; Fu, S.J.; Pan, X.F.; Liu, Z.H.; Wu, K. G-MDSCs-Derived Exosomal miRNA-143-3p Promotes Proliferation via Targeting of ITM2B in Lung Cancer. Onco Targets Ther. 2020, 13, 9701–9719. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, Q.; Feng, Y.; Liu, P.; Yang, J. MiR-143 inhibits cell proliferation and invasion by targeting DNMT3A in gastric cancer. Tumour Biol. 2017, 39, 1010428317711312. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.Z.; Hu, T. Effects of miR-143 overexpression on proliferation, apoptosis, EGFR and downstream signaling pathways in PC9/GR cell line. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 1709–1716. [Google Scholar] [CrossRef] [PubMed]
- Ngalame, N.N.; Makia, N.L.; Waalkes, M.P.; Tokar, E.J. Mitigation of arsenic-induced acquired cancer phenotype in prostate cancer stem cells by miR-143 restoration. Toxicol. Appl. Pharmacol. 2016, 312, 11–18. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gao, Z.; Zhang, P.; Xie, M.; Gao, H.; Yin, L.; Liu, R. miR-144/451 cluster plays an oncogenic role in esophageal cancer by inhibiting cell invasion. Cancer Cell Int. 2018, 18, 184. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ma, Y.; Zhang, H.; Li, G.; Hu, J.; Liu, X.; Lin, L. LncRNA ANRIL promotes cell growth, migration and invasion of hepatocellular carcinoma cells via sponging miR-144. Anticancer Drugs 2019, 30, 1013–1021. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.Y.; Ho-Fun Lee, V.; Wong, A.M.; Kwong, D.L.; Zhu, Y.H.; Dong, S.S.; Kong, K.L.; Chen, J.; Tsao, S.W.; Guan, X.Y.; et al. MicroRNA-144 promotes cell proliferation, migration and invasion in nasopharyngeal carcinoma through repression of PTEN. Carcinogenesis 2013, 34, 454–463. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Su, C.; Chen, Y.; Li, G. MiR-144-3p promotes the tumor growth and metastasis of papillary thyroid carcinoma by targeting paired box gene 8. Cancer Cell Int. 2018, 18, 54. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, P.; Yang, Z.; Ye, T.; Shao, F.; Li, J.; Sun, N.; He, J. lncTUG1/miR-144-3p affect the radiosensitivity of esophageal squamous cell carcinoma by competitively regulating c-MET. J. Exp. Clin. Cancer Res. 2020, 39, 7. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sureban, S.M.; May, R.; Mondalek, F.G.; Qu, D.; Ponnurangam, S.; Pantazis, P.; Anant, S.; Ramanujam, R.P.; Houchen, C.W. Nanoparticle-based delivery of siDCAMKL-1 increases microRNA-144 and inhibits colorectal cancer tumor growth via a Notch-1 dependent mechanism. J. Nanobiotechnol. 2011, 9, 40. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, B.; Wu, H.H.; Abuetabh, Y.; Leng, S.; Davidge, S.T.; Flores, E.R.; Eisenstat, D.D.; Leng, R. p63, a key regulator of Ago2, links to the microRNA-144 cluster. Cell Death Dis. 2022, 13, 397. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Qiao, Y.; Wang, B.; Yan, Y.; Niu, L. Long noncoding RNA ST8SIA6-AS1 promotes cell proliferation and metastasis in triple-negative breast cancer by targeting miR-145-5p/CDCA3 to inactivate the p53/p21 signaling pathway. Environ. Toxicol. 2022, 37, 2398–2411. [Google Scholar] [CrossRef] [PubMed]
- Jodeiry Zaer, S.; Aghamaali, M.; Amini, M.; Doustvandi, M.A.; Hosseini, S.S.; Baradaran, B.; Najafi, S.; Baghay Esfandyari, Y.; Mokhtarzadeh, A. Cooperatively inhibition effect of miR-143-5p and miR-145-5p in tumorigenesis of glioblastoma cells through modulating AKT signaling pathway. Bioimpacts 2024, 14, 29913. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Xin, Z.; Tong, Z.; Tan, J.; Liu, C. MicroRNA-145-5p aggravates cell apoptosis and oxidative stress in tongue squamous cell carcinoma. Exp. Ther. Med. 2021, 21, 373. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhou, J.; Jin, S. Circ_0058063 Contributed to Oral Squamous Cell Carcinoma Development by Sponging miR-145 and Regulating PI3K/AKT Pathway. Mol. Biotechnol. 2023, 65, 2049–2060. [Google Scholar] [CrossRef] [PubMed]
- Mei, L.L.; Wang, W.J.; Qiu, Y.T.; Xie, X.F.; Bai, J.; Shi, Z.Z. miR-145-5p Suppresses Tumor Cell Migration, Invasion and Epithelial to Mesenchymal Transition by Regulating the Sp1/NF-κB Signaling Pathway in Esophageal Squamous Cell Carcinoma. Int. J. Mol. Sci. 2017, 18, 1833. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Du, Y.; Li, J.; Xu, T.; Zhou, D.D.; Zhang, L.; Wang, X. MicroRNA-145 induces apoptosis of glioma cells by targeting BNIP3 and Notch signaling. Oncotarget 2017, 8, 61510–61527. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fujii, T.; Shimada, K.; Tatsumi, Y.; Hatakeyama, K.; Obayashi, C.; Fujimoto, K.; Konishi, N. microRNA-145 promotes differentiation in human urothelial carcinoma through down-regulation of syndecan-1. BMC Cancer 2015, 15, 818. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zheng, M.; Wu, Z.; Wu, A.; Huang, Z.; He, N.; Xie, X. MiR-145 promotes TNF-α-induced apoptosis by facilitating the formation of RIP1-FADDcaspase-8 complex in triple-negative breast cancer. Tumour Biol. 2016, 37, 8599–8607. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Hou, L.; Li, L.; Li, L.; Zhu, L.; Wang, Y.; Huang, X.; Hou, Y.; Zhu, D.; Zou, H.; et al. Dichloroacetate restores colorectal cancer chemosensitivity through the p53/miR-149-3p/PDK2-mediated glucose metabolic pathway. Oncogene 2020, 39, 469–485. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jin, L.; Hu, W.L.; Jiang, C.C.; Wang, J.X.; Han, C.C.; Chu, P.; Zhang, L.J.; Thorne, R.F.; Wilmott, J.; Scolyer, R.A.; et al. MicroRNA-149*, a p53-responsive microRNA functions as an oncogenic regulator in human melanoma. Proc. Natl. Acad. Sci. USA 2011, 108, 15840–15845. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhao, L.W.; Yu, A.J.; Zhang, Y.J.; Wang, X.C.; Han, B.; Wang, X.H. MicroRNA-149 suppresses the malignant phenotypes of ovarian cancer via downregulation of MSI2 and inhibition of PI3K/AKT pathway. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Pan, S.J.; Zhan, S.K.; Pei, B.G.; Sun, Q.F.; Bian, L.G.; Sun, B.M. MicroRNA-149 inhibits proliferation and invasion of glioma cells via blockade of AKT1 signaling. Int. J. Immunopathol. Pharmacol. 2012, 25, 871–881. [Google Scholar] [CrossRef] [PubMed]
- Pfeffer, S.R.; Grossmann, K.F.; Cassidy, P.B.; Yang, C.H.; Fan, M.; Kopelovich, L.; Leachman, S.A.; Pfeffer, L.M. Detection of Exosomal miRNAs in the Plasma of Melanoma Patients. J. Clin. Med. 2015, 4, 2012–2027. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Niu, Y.; Zhang, J.; Tong, Y.; Li, J.; Liu, B. miR-145-5p restrained cell growth, invasion, migration and tumorigenesis via modulating RHBDD1 in colorectal cancer via the EGFR-associated signaling pathway. Int. J. Biochem. Cell Biol. 2019, 117, 105641. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Qiu, Z.; Chen, J.; Huang, L.; Zhang, J.; Lin, J. LINC00460 promotes neuroblastoma tumorigenesis and cisplatin resistance by targeting miR-149-5p/DLL1 axis and activating Notch pathway in vitro and in vivo. Drug Deliv. Transl. Res. 2024, 14, 2003–2018. [Google Scholar] [CrossRef] [PubMed]
- Tian, P.; Yan, L. Inhibition of MicroRNA-149-5p Induces Apoptosis of Acute Myeloid Leukemia Cell Line THP-1 by Targeting Fas Ligand (FASLG). Med. Sci. Monit. 2016, 22, 5116–5123. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lin, R.J.; Lin, Y.C.; Yu, A.L. miR-149* induces apoptosis by inhibiting Akt1 and E2F1 in human cancer cells. Mol. Carcinog. 2010, 49, 719–727. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.T.; Ma, Z.L.; Li, Y.L.; Wang, Y.Q.; Zhao, B.T.; Wei, J.L.; Qi, X.; Zhao, X.T.; Jin, Y.X. miR-150, p53 protein and relevant miRNAs consist of a regulatory network in NSCLC tumorigenesis. Oncol. Rep. 2013, 30, 492–498. [Google Scholar] [CrossRef] [PubMed]
- Lei, B.; Huang, Y.; Zhou, Z.; Zhao, Y.; Thapa, A.J.; Li, W.; Cai, W.; Deng, Y. Circular RNA hsa_circ_0076248 promotes oncogenesis of glioma by sponging miR-181a to modulate SIRT1 expression. J. Cell Biochem. 2019, 120, 6698–6708. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, Y.; Liao, W.; Yuan, A.; Xu, H.; Yuan, R.; Cao, J. MiR-181a reduces radiosensitivity of non-small-cell lung cancer via inhibiting PTEN. Panminerva Med. 2022, 64, 374–383. [Google Scholar] [CrossRef] [PubMed]
- Lin, F.; Li, Y.; Yan, S.; Liu, S.; Qian, W.; Shen, D.; Lin, Q.; Mao, W. MicroRNA-181a inhibits tumor proliferation, invasiveness, and metastasis and is downregulated in gastric cancer. Oncol. Res. 2015, 22, 75–84. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yuan, Y.; Long, Z. LncRNA LINC01232 Enhances Proliferation, Angiogenesis, Migration and Invasion of Colon Adenocarcinoma Cells by Downregulating miR-181a-5p. J. Microbiol. Biotechnol. 2023, 33, 398–409. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cai, G.; Wang, Y.; Houda, T.; Yang, C.; Wang, L.; Gu, M.; Mueck, A.; Croteau, S.; Ruan, X.; Hardy, P. MicroRNA-181a suppresses norethisterone-promoted tumorigenesis of breast epithelial MCF10A cells through the PGRMC1/EGFR-PI3K/Akt/mTOR signaling pathway. Transl. Oncol. 2021, 14, 101068. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ranjbar, R.; Karimian, A.; Aghaie Fard, A.; Tourani, M.; Majidinia, M.; Jadidi-Niaragh, F.; Yousefi, B. The importance of miRNAs and epigenetics in acute lymphoblastic leukemia prognosis. J. Cell Physiol. 2019, 234, 3216–3230. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Yang, Y.; Yang, J.; Xiao, L.; Wang, X.; Qin, L.; Gao, J.; Xuan, R.; Wu, X.; Chen, Z.; et al. Screening and identification of miR-181a-5p in oral squamous cell carcinoma and functional verification in vivo and in vitro. BMC Cancer 2023, 23, 162. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Maroof, H.; Irani, S.; Arianna, A.; Vider, J.; Gopalan, V.; Lam, A.K. Interactions of Vascular Endothelial Growth Factor and p53 with miR-195 in Thyroid Carcinoma: Possible Therapeutic Targets in Aggressive Thyroid Cancers. Curr. Cancer Drug Targets 2019, 19, 561–570. [Google Scholar] [CrossRef] [PubMed]
- Selvi, R.B.; Swaminathan, A.; Chatterjee, S.; Shanmugam, M.K.; Li, F.; Ramakrishnan, G.B.; Siveen, K.S.; Chinnathambi, A.; Zayed, M.E.; Alharbi, S.A.; et al. Inhibition of p300 lysine acetyltransferase activity by luteolin reduces tumor growth in head and neck squamous cell carcinoma (HNSCC) xenograft mouse model. Oncotarget 2015, 6, 43806–43818. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, Y.; Mu, L.; Huang, M. MicroRNA-195 suppresses rectal cancer growth and metastasis via regulation of the PI3K/AKT signaling pathway. Mol. Med. Rep. 2019, 20, 4449–4458. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lu, H.; Kang, F. Down-regulating NEAT1 inhibited the viability and vasculogenic mimicry formation of sinonasal squamous cell carcinoma cells via miR-195-5p/VEGFA axis. Biosci. Rep. 2020, 40, BSR20201373. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Duan, X.; Shen, N.; Chen, J.; Wang, J.; Zhu, Q.; Zhai, Z. Circular RNA MYLK serves as an oncogene to promote cancer progression via microRNA-195/cyclin D1 axis in laryngeal squamous cell carcinoma. Biosci. Rep. 2019, 39, BSR20190227. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Boldrin, E.; Gaffo, E.; Niedermayer, A.; Boer, J.M.; Zimmermann, M.; Weichenhan, D.; Claus, R.; Münch, V.; Sun, Q.; Enzenmüller, S.; et al. MicroRNA-497/195 is tumor suppressive and cooperates with CDKN2A/B in pediatric acute lymphoblastic leukemia. Blood 2021, 138, 1953–1965. [Google Scholar] [CrossRef] [PubMed]
- Liang, M.; Huang, G.; Liu, Z.; Wang, Q.; Yu, Z.; Liu, Z.; Lin, H.; Li, M.; Zhou, X.; Zheng, Y. Elevated levels of hsa_circ_006100 in gastric cancer promote cell growth and metastasis via miR-195/GPRC5A signalling. Cell Prolif. 2019, 52, e12661. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jin, Y.; Wang, M.; Hu, H.; Huang, Q.; Chen, Y.; Wang, G. Overcoming stemness and chemoresistance in colorectal cancer through miR-195-5p-modulated inhibition of notch signaling. Int. J. Biol. Macromol. 2018, 117, 445–453. [Google Scholar] [CrossRef] [PubMed]
- Bai, E.; Dong, M.; Lin, X.; Sun, D.; Dong, L. Expressional and functional characteristics of checkpoint kinase 1 as a prognostic biomarker in hepatocellular carcinoma. Transl. Cancer Res. 2022, 11, 4272–4288. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tamura, M.; Sasaki, Y.; Kobashi, K.; Takeda, K.; Nakagaki, T.; Idogawa, M.; Tokino, T. CRKL oncogene is downregulated by p53 through miR-200s. Cancer Sci. 2015, 106, 1033–1040. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kim, T.; Veronese, A.; Pichiorri, F.; Lee, T.J.; Jeon, Y.J.; Volinia, S.; Pineau, P.; Marchio, A.; Palatini, J.; Suh, S.S.; et al. p53 regulates epithelial-mesenchymal transition through microRNAs targeting ZEB1 and ZEB2. J. Exp. Med. 2011, 208, 875–883. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lin, H.; Yang, L.; Tian, F.; Nie, S.; Zhou, H.; Liu, J.; Chen, W. Up-regulated LncRNA-ATB regulates the growth and metastasis of cholangiocarcinoma via miR-200c signals. Onco Targets Ther. 2019, 12, 7561–7571. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Qiu, M.; Liang, Z.; Chen, L.; Tan, G.; Liu, L.; Wang, K.; Chen, H.; Liu, J. MicroRNA-200c suppresses cell growth and metastasis by targeting Bmi-1 and E2F3 in renal cancer cells. Exp. Ther. Med. 2017, 13, 1329–1336. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Muñoz-Hidalgo, L.; San-Miguel, T.; Megías, J.; Serna, E.; Calabuig-Fariñas, S.; Monleón, D.; Gil-Benso, R.; Cerdá-Nicolás, M.; López-Ginés, C. The Status of EGFR Modulates the Effect of miRNA-200c on ZEB1 Expression and Cell Migration in Glioblastoma Cells. Int. J. Mol. Sci. 2020, 22, 368. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, P.L.; Liu, W.L.; Chang, J.M.; Chen, Y.H.; Liu, Y.P.; Kuo, H.F.; Hsieh, C.C.; Ding, Y.S.; Chen, W.W.; Chong, I.W. MicroRNA-200c inhibits epithelial-mesenchymal transition, invasion, and migration of lung cancer by targeting HMGB1. PLoS ONE 2017, 12, e0180844. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Boominathan, L. The tumor suppressors p53, p63, and p73 are regulators of microRNA processing complex. PLoS ONE 2010, 5, e10615. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Funamizu, N.; Lacy, C.R.; Kamada, M.; Yanaga, K.; Manome, Y. MicroRNA-203 induces apoptosis by upregulating Puma expression in colon and lung cancer cells. Int. J. Oncol. 2015, 47, 1981–1988. [Google Scholar] [CrossRef] [PubMed]
- Pal, D.; Mukhopadhyay, D.; Ramaiah, M.J.; Sarma, P.; Bhadra, U.; Bhadra, M.P. Regulation of Cell Proliferation and Migration by miR-203 via GAS41/miR-10b Axis in Human Glioblastoma Cells. PLoS ONE 2016, 11, e0159092. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Han, N.; Li, H.; Wang, H. MicroRNA-203 inhibits epithelial-mesenchymal transition, migration, and invasion of renal cell carcinoma cells via the inactivation of the PI3K/AKT signaling pathway by inhibiting CAV1. Cell Adh. Migr. 2020, 14, 227–241. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Siu, M.K.; Abou-Kheir, W.; Yin, J.J.; Chang, Y.S.; Barrett, B.; Suau, F.; Casey, O.; Chen, W.Y.; Fang, L.; Hynes, P.; et al. Correction: Loss of EGFR signaling-regulated miR-203 promotes prostate cancer bone metastasis and tyrosine kinase inhibitors resistance. Oncotarget 2018, 9, 32403, Erratum in Oncotarget 2014, 5, 3770–3784. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Diao, Y.; Guo, X.; Jiang, L.; Wang, G.; Zhang, C.; Wan, J.; Jin, Y.; Wu, Z. miR-203, a tumor suppressor frequently down-regulated by promoter hypermethylation in rhabdomyosarcoma. J. Biol. Chem. 2014, 289, 529–539. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Odar, K.; Boštjančič, E.; Gale, N.; Glavač, D.; Zidar, N. Differential expression of microRNAs miR-21, miR-31, miR-203, miR-125a-5p and miR-125b and proteins PTEN and p63 in verrucous carcinoma of the head and neck. Histopathology 2012, 61, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Dai, L.; Zhang, B.; Xu, X.; Shi, J.; Fu, L.; Chen, X.; Li, J.; Bai, Y. miR-203 is a direct transcriptional target of E2F1 and causes G1 arrest in esophageal cancer cells. J. Cell Physiol. 2015, 230, 903–910. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Feng, X.; Hua, J.; Wei, L.; Lu, Z.; Wei, W.; Cai, H.; Wang, B.; Shi, W.; Ding, N.; et al. miR-300 regulates cellular radiosensitivity through targeting p53 and apaf1 in human lung cancer cells. Cell Cycle 2017, 16, 1943–1953. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Xu, X.H.; Li, D.W.; Feng, H.; Chen, H.M.; Song, Y.Q. MiR-300 regulate the malignancy of breast cancer by targeting p53. Int. J. Clin. Exp. Med. 2015, 8, 6957–6966. [Google Scholar] [PubMed] [PubMed Central]
- Wang, R.; Yu, Z.; Chen, F.; Xu, H.; Shen, S.; Chen, W.; Chen, L.; Su, Q.; Zhang, L.; Bi, J.; et al. miR-300 regulates the epithelial-mesenchymal transition and invasion of hepatocellular carcinoma by targeting the FAK/PI3K/AKT signaling pathway. Biomed. Pharmacother. 2018, 103, 1632–1642. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Fang, C.; Yuan, X.; Liu, M.; Wu, P.; Zhong, L.; Chen, Z. Has-miR-300—GADD45B promotes melanoma growth via cell cycle. Aging 2023, 15, 13920–13943. [Google Scholar] [CrossRef]
- Guan, X.; Shi, A.; Zou, Y.; Sun, M.; Zhan, Y.; Dong, Y.; Fan, Z. EZH2-Mediated microRNA-375 Upregulation Promotes Progression of Breast Cancer via the Inhibition of FOXO1 and the p53 Signaling Pathway. Front. Genet. 2021, 12, 633756. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, Y.; Xing, R.; Zhang, X.; Dong, W.; Zhang, J.; Yan, Z.; Li, W.; Cui, J.; Lu, Y. miR-375 targets the p53 gene to regulate cellular response to ionizing radiation and etoposide in gastric cancer cells. DNA Repair 2013, 12, 741–750. [Google Scholar] [CrossRef] [PubMed]
- Saika, M.; Nakashiro, K.I.; Tokuzen, N.; Shirai, H.; Uchida, D. Possible Role of miR-375-3p in Cervical Lymph Node Metastasis of Oral Squamous Cell Carcinoma. Cancers 2024, 16, 1492. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hu, C.; Lv, L.; Peng, J.; Liu, D.; Wang, X.; Zhou, Y.; Huo, J. MicroRNA-375 suppresses esophageal cancer cell growth and invasion by repressing metadherin expression. Oncol. Lett. 2017, 13, 4769–4775. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yang, M.Y.; Lin, P.M.; Liu, Y.C.; Hsiao, H.H.; Yang, W.C.; Hsu, J.F.; Hsu, C.M.; Lin, S.F. Induction of cellular senescence by doxorubicin is associated with upregulated miR-375 and induction of autophagy in K562 cells. PLoS ONE 2012, 7, e37205. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, L.; Shen, W.; Zhu, Z.; Lin, J.; Fang, Q.; Ruan, Y.; Zhao, H. Combined inhibition of EGFR and c-ABL suppresses the growth of fulvestrant-resistant breast cancer cells through miR-375-autophagy axis. Biochem. Biophys. Res. Commun. 2018, 498, 559–565. [Google Scholar] [CrossRef] [PubMed]
- Gong, G.; Han, Z.; Wang, W.; Xu, Q.; Zhang, J. Silencing hsa_circRNA_0008035 exerted repressive function on osteosarcoma cell growth and migration by upregulating microRNA-375. Cell Cycle 2020, 19, 2139–2147. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, G.; Huang, K.; Jie, Z.; Wu, Y.; Chen, J.; Chen, Z.; Fang, X.; Shen, S. CircFAT1 sponges miR-375 to promote the expression of Yes-associated protein 1 in osteosarcoma cells. Mol. Cancer 2018, 17, 170. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, P.; Lv, H.; Wu, Y.; Xu, K.; Xu, M.; Ma, Y. E2F transcription factor 1 is involved in the phenotypic modulation of esophageal squamous cell carcinoma cells via microRNA-375. Bioengineered 2021, 12, 10047–10062. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Huang, G.; Zhong, X.; Yao, L.; Ma, Q.; Liao, H.; Xu, L.; Zou, J.; Sun, R.; Wang, D.; Guo, X. MicroRNA-449a inhibits cell proliferation and migration by regulating mutant p53 in MDA-MB-468 cells. Exp. Ther. Med. 2021, 22, 1020. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kumar, P.; Sharad, S.; Petrovics, G.; Mohamed, A.; Dobi, A.; Sreenath, T.L.; Srivastava, S.; Biswas, R. Loss of miR-449a in ERG-associated prostate cancer promotes the invasive phenotype by inducing SIRT1. Oncotarget 2016, 7, 22791–22806. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bach, D.H.; Kim, D.; Bae, S.Y.; Kim, W.K.; Hong, J.Y.; Lee, H.J.; Rajasekaran, N.; Kwon, S.; Fan, Y.; Luu, T.T.; et al. Targeting Nicotinamide N-Methyltransferase and miR-449a in EGFR-TKI-Resistant Non-Small-Cell Lung Cancer Cells. Mol. Ther. Nucleic Acids 2018, 11, 455–467. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jiang, T.; Liu, J.; Mu, J. Downregulation of microRNA-449a-5p promotes esophageal squamous cell carcinoma cell proliferation via cyclin D1 regulation. Mol. Med. Rep. 2018, 18, 848–854. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kawasaki, H.; Takeuchi, T.; Ricciardiello, F.; Lombardi, A.; Biganzoli, E.; Fornili, M.; De Bortoli, D.; Mesolella, M.; Cossu, A.M.; Scrima, M.; et al. Definition of miRNA Signatures of Nodal Metastasis in LCa: miR-449a Targets Notch Genes and Suppresses Cell Migration and Invasion. Mol. Ther. Nucleic Acids 2020, 20, 711–724. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, Y.; Xu, H. LncRNA FAL1 Upregulates SOX4 by Downregulating miR-449a to Promote the Migration and Invasion of Cervical Squamous Cell Carcinoma (CSCC) Cells. Reprod. Sci. 2020, 27, 935–939. [Google Scholar] [CrossRef] [PubMed]
- Lizé, M.; Pilarski, S.; Dobbelstein, M. E2F1-inducible microRNA 449a/b suppresses cell proliferation and promotes apoptosis. Cell Death Differ. 2010, 17, 452–458. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.; Zhang, X.; Li, B.; Meng, X. PARP1 Is Targeted by miR-519a-3p and Promotes the Migration, Invasion, and Tube Formation of Ovarian Cancer Cells. Cancer Biother. Radiopharm. 2022, 37, 824–836. [Google Scholar] [CrossRef] [PubMed]
- Tu, K.; Liu, Z.; Yao, B.; Han, S.; Yang, W. MicroRNA-519a promotes tumor growth by targeting PTEN/PI3K/AKT signaling in hepatocellular carcinoma. Int. J. Oncol. 2016, 48, 965–974. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yu, G.; Zhang, T.; Jing, Y.; Bao, Q.; Tang, Q.; Zhang, Y. miR-519 suppresses nasopharyngeal carcinoma cell proliferation by targeting oncogene URG4/URGCP. Life Sci. 2017, 175, 47–51. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Guerrero-Preston, R.; Ratovitski, E.A. Phospho-ΔNp63α-dependent regulation of autophagic signaling through transcription and micro-RNA modulation. Cell Cycle 2012, 11, 1247–1259. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, Q.; Selth, L.A.; Callen, D.F. MiR-766 induces p53 accumulation and G2/M arrest by directly targeting MDM4. Oncotarget 2017, 8, 29914–29924. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ding, Y.; Zhang, M.; Hu, S.; Zhang, C.; Zhou, Y.; Han, M.; Li, J.; Li, F.; Ni, H.; Fang, S.; et al. MiRNA-766-3p inhibits gastric cancer via targeting COL1A1 and regulating PI3K/AKT signaling pathway. J. Cancer 2024, 15, 990–998. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, Y.C.; Li, C.F.; Chen, L.B.; Li, D.D.; Yang, L.; Jin, J.P.; Zhang, B. MicroRNA-766 targeting regulation of SOX6 expression promoted cell proliferation of human colorectal cancer. Onco Targets Ther. 2015, 8, 2981–2988. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yan, H.; Chen, X.; Li, Y.; Fan, L.; Tai, Y.; Zhou, Y.; Chen, Y.; Qi, X.; Huang, R.; Ren, J. MiR-1205 functions as a tumor suppressor by disconnecting the synergy between KRAS and MDM4/E2F1 in non-small cell lung cancer. Am. J. Cancer Res. 2019, 9, 312–329. [Google Scholar] [PubMed] [PubMed Central]
- Zhao, X.; Cui, D.; Yan, F.; Yang, L.; Zhang, M.; Huang, B. Circ_0006174 promotes the malignancy of colorectal cancer cell via the miR-1205/CCBE1/Wnt pathway. Mol. Med. Rep. 2022, 26, 251. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Qin, Y.; Zhang, S.; Deng, S.; An, G.; Qin, X.; Li, F.; Xu, Y.; Hao, M.; Yang, Y.; Zhou, W.; et al. Epigenetic silencing of miR-137 induces drug resistance and chromosomal instability by targeting AURKA in multiple myeloma. Leukemia 2017, 31, 1123–1135. [Google Scholar] [CrossRef] [PubMed]
- Neault, M.; Mallette, F.A.; Richard, S. miR-137 Modulates a Tumor Suppressor Network-Inducing Senescence in Pancreatic Cancer Cells. Cell Rep. 2016, 14, 1966–1978. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, Z.; Yuan, J.; Wang, Q.; Shen, X. Upregulation of miR-137 Expression Suppresses Tumor Growth and Progression via Interacting with DNMT3a Through Inhibiting the PTEN/Akt Signaling in HCC. Onco Targets Ther. 2021, 14, 165–176. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zeng, X.; Xu, Z.; Gu, J.; Huang, H.; Gao, G.; Zhang, X.; Li, J.; Jin, H.; Jiang, G.; Sun, H.; et al. Induction of miR-137 by Isorhapontigenin (ISO) Directly Targets Sp1 Protein Translation and Mediates Its Anticancer Activity Both In Vitro and In Vivo. Mol. Cancer Ther. 2016, 15, 512–522. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Luo, Y.; Li, X.; Dong, J.; Sun, W. microRNA-137 is downregulated in thyroid cancer and inhibits proliferation and invasion by targeting EGFR. Tumour Biol. 2016, 37, 7749–7755. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, G.; Cheng, Z.; Dai, L.; Jia, L.; Jing, X.; Wang, H.; Zhang, R.; Liu, M.; Jiang, T.; et al. Knockdown of LncRNA-XIST Suppresses Proliferation and TGF-β1-Induced EMT in NSCLC Through the Notch-1 Pathway by Regulation of miR-137. Genet. Test. Mol. Biomark. 2018, 22, 333–342. [Google Scholar] [CrossRef] [PubMed]
- Yao, F.; Zhang, C.; Du, W.; Liu, C.; Xu, Y. Identification of Gene-Expression Signatures and Protein Markers for Breast Cancer Grading and Staging. PLoS ONE 2015, 10, e0138213. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Huang, Y.; Gu, M.; Tang, Y.; Sun, Z.; Luo, J.; Li, Z. Systematic review and meta-analysis of prognostic microRNA biomarkers for survival outcome in laryngeal squamous cell cancer. Cancer Cell Int. 2021, 21, 316. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zou, W.; Hu, X.; Wang, D.; Jiang, L. Prognostic Value of MiRNAs in Patients with Laryngeal Cancer: A Systematic Review and Meta-Analysis. Curr. Cancer Drug Targets 2020, 20, 802–810. [Google Scholar] [CrossRef] [PubMed]
- Hegazy, M.; Elkady, M.A.; Yehia, A.M.; Elsakka, E.G.E.; Abulsoud, A.I.; Abdelmaksoud, N.M.; Elshafei, A.; Abdelghany, T.M.; Elkhawaga, S.Y.; Ismail, A.; et al. The role of miRNAs in laryngeal cancer pathogenesis and therapeutic resistance—A focus on signaling pathways interplay. Pathol. Res. Pract. 2023, 246, 154510. [Google Scholar] [CrossRef] [PubMed]
The Search Strategy Summary | |
---|---|
Items | Specification |
Databases and other sources searched | PubMed/MEDLINE |
Search terms used | “laryngeal carcinoma” OR “laryngeal cancer” AND “microRNA” OR “miRNA” AND “prognostic marker” OR “prognosis” |
Timeframe | 2002–2024 |
Inclusion and exclusion criteria | Inclusion criteria: without predefined restriction as to the study type Exclusion criteria: restricted to articles published in English |
Selection process | K.K. and T.P. independently screened data sources. Data analysis was conducted by K.K. and T.P. |
Ref. | MicroRNA | Stage | Method | Sample Material | Poor Prognosis | Endpoint Measurement |
---|---|---|---|---|---|---|
[7] | miR-9 | T1–T4 | qRT-PCR | Fresh frozen | Upregulated | OS |
[8] | miR-19a | T1–T4 | qPCR | Fresh frozen | Upregulated | OS |
[9] | miR-20b-5p | T1–T4 | RT-qPCR | Fresh frozen | Upregulated | OS; DFS: RFS |
[10,11,12] | miR-21 | T1–T4 | Microarray qRT-PCR | Fresh frozen Blood sample | Upregulated | OS |
[13] | miR-23a | T1–T4 | qRT-PCR | Fresh frozen | Upregulated | OS |
[14,15] | miR-26a/b | T1–T4 I–IV | RT-qPCR | Fresh frozen Blood sample | Upregulated | OS OS; DFS |
[16] | miR-31 | I–IV | qRT-PCR | Fresh frozen | Upregulated | OS |
[17,18,19,20,21] | miR-34 | T1–T4 I–IV T3–T4 T3–T4 T1–T4 | RT-qPCR Bisulfite pyrosequencing | Fresh frozen FFPE | Upregulated Downregulated Hypermethylation | OS; DFS |
[22] | miR-93-5p | T3–T4 | Microarray RT-qPCR | Fresh frozen | Upregulated | RFS |
[21] | miR-146a-5p | T1–T4 | RT-qPCR | Fresh frozen | Upregulated | OS |
[23,24] | miR-196b | T1–T4 T2–T4 | qRT-PCR | Fresh frozen | Upregulated | OS |
[22] | miR-210-3p | T3–T4 | Microarray RT-qPCR | Fresh frozen | Upregulated | RFS |
[25] | miR-301a-3p | T1–T2 (6 patients) T1–T4 | qRT-PCR | Fresh frozen FFPE | Upregulated | OS |
[21,26] | miR-378c-5p | T1–T4 I–IV | RT-qPCR | Fresh frozen Blood sample | Upregulated | OS; RFS |
[27] | miR-1246 | T1–T4 | qRT-PCR | Fresh frozen FFPE Blood sample | Upregulated | OS |
[28] | miR-296-5p | T1–T2 | TLDA qRT- PCR | FFPE | Upregulated | DFS |
[29] | miR-155 | T2–T4 | qRT-PCR | Tissue samples (not specified) | Upregulated | OS |
[30] | miR-632 | I–IV | RT-PCR qRT-LSCCR assay | Serum samples | Upregulated | OS; DFS |
[31] | miR-101 | T1–T4 | qRT-PCR | Fresh frozen FFPE | Downregulated | OS |
[32] | miR-125b-5p | Not specified | qRT-PCR | Fresh frozen | Downregulated | OS |
[33,34] | miR-143-3p | I–IV | Microarray RT-qPCR | Fresh frozen | Downregulated | OS |
[22,35] | miR-144-3p | T3–T4 | Microarray RT-qPCR | Fresh frozen FFPE | Downregulated Upregulated | OS; RFS |
[36] | miR-145-5p | I–IV | qRT-PCR | Fresh frozen | Downregulated Hypermethylated | OS |
[37] | miR-149 | I–IV | qRT-PCR | Fresh frozen | Downregulated | OS |
[38,39] | miR-195 | T1–T4 I–IV | qRT-PCR | Fresh frozen | Downregulated | OS |
[40] | miR-203 | T1–T4 | qRT-PCR | Fresh frozen | Downregulated | OS |
[41] | miR-300 | T1–T2 | qRT-PCR | Fresh frozen | Downregulated | OS |
[42] | miR-375 | T1–T4 | qRT-PCR | Fresh frozen | Downregulated | OS |
[21] | miR-449a-5p | T1–T4 | RT-qPCR | Fresh frozen | Downregulated | OS |
[43] | miR-519a | I–IV | qRT-PCR | Fresh frozen | Downregulated | DFS |
[44] | miR-29c-3p | T1–T4 | qRT-PCR | FFPE | Downregulated | OS |
[45] | miR-200a/c | T1–T4 | qRT-PCR | FFPE | Downregulated | RFS |
[46] | miR-137 | T1–T4 | Methylation-specific PCR qRT-PCR | FFPE | Hypermethylated | OS |
[47] | miR-181a | T2–T4 | qRT-PCR | Tissue samples (not specified) | Downregulated | OS |
[48] | miR-766-5p | I–IV | qRT-PCR | Tissue samples (not specified) | Downregulated | OS |
[49] | miR-1205 | T1–T4 | qRT-PCR | Tissue samples (not specified) | Downregulated | OS; DFS |
[50] | miR-126 | T1–T4 | qRT-PCR | Tissue samples (not specified) Blood samples | Downregulated | OS |
[12] | miR-10a-5p | T1–T4 | Microarray qRT-PCR | Blood sample | Downregulated | OS |
MicroRNA | p53 | PTEN/PI3K | CCND1 | CDKN2A /p16 | EGFR | NOTCH | P63 | FAT1 | FADD | TRAF3 | E2F1 |
---|---|---|---|---|---|---|---|---|---|---|---|
miR-9 | [59] | [60,61] | [62] | [63] | [64] | [65] | [66] | ||||
miR-19a | [67] | [68] | [69] | [70] | |||||||
miR-20b-5p | [71] | [72] | [73] | ||||||||
miR-21 | [74,75] | [76,77] | [78] | [79] | [80] | [81] | [82] | ||||
miR-23a | [83,84,85] | [86,87] | [88] | [89] | [90] | ||||||
miR-26a | [91,92,93] | [94,95] | [96] | [97] | [98] | [99] | |||||
miR-26b | [100,101] | [102,103] | [104] | [98] | [105] | ||||||
miR-31 | [106,107,108] | [109,110] | [111] | [112] | [113] | [114] | [115] | ||||
miR-34 | [116,117] | [118,119] | [120] | [121] | [122] | [123] | |||||
miR-93-5p | [124] | [125,126] | [127] | [128] | [127] | ||||||
miR-146a-5p | [129,130] | [131,132] | [130] | [133] | [134] | [135] | [136] | [137] | |||
miR-155 | [138,139,140] | [141,142] | [143] | [144] | [145] | [146] | [147] | [148] | |||
miR-196b | [149,150] | ||||||||||
miR-210-3p | [151,152] | [153,154] | [155] | [156] | |||||||
miR-296-5p | [157] | [158] | [159] | [160] | |||||||
miR-301a-3p | [161,162] | [163] | [164] | [165] | |||||||
miR-378c-5p | [166,167] | [168] | [166] | [169] | |||||||
miR-632 | [170] | ||||||||||
miR-1246 | [171,172] | [173] | [174] | [175] | [171] | [174] | |||||
miR-10a-5p | [176,177] | [178,179] | [180] | ||||||||
miR-29c-3p | [181,182] | [183,184] | [185] | [186] | [187] | [188] | |||||
miR-101 | [189,190] | [191,192] | [26] | [193] | [194] | [195] | [196] | [197] | |||
miR-125b-5p | [198,199] | [200,201] | [202] | [203] | [204] | [205] | [206] | ||||
miR-126 | [207] | [208,209] | [210] | [211] | [212] | ||||||
miR-143-3p | [213,214] | [215,216] | [217] | [218] | [219] | ||||||
miR-144-3p | [220] | [221,222] | [223] | [224] | [225] | [226] | |||||
miR-145-5p | [227,228] | [229,230] | [231] | [232] | [233] | [234] | |||||
miR-149 | [235,236] | [237] | [238] | [239] | [240] | [241] | [242] | [243] | |||
miR-181a | [244,245] | [246] | [247] | [248] | [249] | [250] | [251] | ||||
miR-195 | [252,253] | [254,255] | [256] | [257] | [258] | [259] | [260] | ||||
miR-200a | [261,262] | [263] | [264] | [265] | [266] | [267] | |||||
miR-203 | [268,269] | [270] | [271] | [272] | [273] | [274] | |||||
miR-300 | [275,276] | [277] | [278] | ||||||||
miR-375 | [279,280] | [281] | [282] | [283] | [284] | [285] | [286] | [287] | |||
miR-449a-5p | [288,289] | [290] | [291] | [292] | [267] | [293] | [294] | ||||
miR-519a | [295] | [296] | [297] | [298] | |||||||
miR-766-5p | [299] | [300] | [301] | ||||||||
miR-1205 | [302] | [303] | [50] | ||||||||
miR-137 | [304,305] | [306] | [307] | [28] | [308] | [309] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Komitova, K.S.; Dimitrov, L.D.; Stancheva, G.S.; Kyurkchiyan, S.G.; Petkova, V.; Dimitrov, S.I.; Skelina, S.P.; Kaneva, R.P.; Popov, T.M. A Critical Review on microRNAs as Prognostic Biomarkers in Laryngeal Carcinoma. Int. J. Mol. Sci. 2024, 25, 13468. https://doi.org/10.3390/ijms252413468
Komitova KS, Dimitrov LD, Stancheva GS, Kyurkchiyan SG, Petkova V, Dimitrov SI, Skelina SP, Kaneva RP, Popov TM. A Critical Review on microRNAs as Prognostic Biomarkers in Laryngeal Carcinoma. International Journal of Molecular Sciences. 2024; 25(24):13468. https://doi.org/10.3390/ijms252413468
Chicago/Turabian StyleKomitova, Kristina S., Lyuben D. Dimitrov, Gergana S. Stancheva, Silva G. Kyurkchiyan, Veronika Petkova, Stoyan I. Dimitrov, Silviya P. Skelina, Radka P. Kaneva, and Todor M. Popov. 2024. "A Critical Review on microRNAs as Prognostic Biomarkers in Laryngeal Carcinoma" International Journal of Molecular Sciences 25, no. 24: 13468. https://doi.org/10.3390/ijms252413468
APA StyleKomitova, K. S., Dimitrov, L. D., Stancheva, G. S., Kyurkchiyan, S. G., Petkova, V., Dimitrov, S. I., Skelina, S. P., Kaneva, R. P., & Popov, T. M. (2024). A Critical Review on microRNAs as Prognostic Biomarkers in Laryngeal Carcinoma. International Journal of Molecular Sciences, 25(24), 13468. https://doi.org/10.3390/ijms252413468