Abstract
Endocrine therapy that blocks estrogen signaling is the most effective treatment for patients with estrogen receptor positive (ER+) breast cancer. However, the efficacy of agents such as tamoxifen (Tam) is often compromised by the development of resistance. Here we report that cytokines-activated nuclear IKKα confers Tam resistance to ER+ breast cancer by inducing the expression of FAT10, and that the expression of FAT10 and nuclear IKKα in primary ER+ human breast cancer was correlated with lymphotoxin β (LTB) expression and significantly associated with relapse and metastasis in patients treated with adjuvant mono-Tam. IKKα activation or enforced FAT10 expression promotes Tam-resistance while loss of IKKα or FAT10 augments Tam sensitivity. The induction of FAT10 by IKKα is mediated by the transcription factor Pax5, and coordinated via an IKKα-p53-miR-23a circuit in which activation of IKKα attenuates p53-directed repression of FAT10. Thus, our findings establish IKKα-to-FAT10 pathway as a new therapeutic target for the treatment of Tam-resistant ER+ breast cancer.
Similar content being viewed by others
References
Ahmad, S.M., Bhat, S.S., Shafi, S., Dar, M.A., Saleem, A., Haq, Z., Farooq, N., Nazir, J., and Bhat, B. (2023). Identification of key transcription factors and their functional role involved in Salmonella typhimurium infection in chicken using integrated transcriptome analysis and bioinformatics approach. BMC Genomics 24, 214.
Aichem, A., and Groettrup, M. (2016). The ubiquitin-like modifier FAT10 in cancer development. Int J Biochem Cell Biol 79, 451–461.
Aichem, A., and Groettrup, M. (2020). The ubiquitin-like modifier FAT10-much more than a proteasome-targeting signal. J Cell Sci 133, jcs246041.
Ammirante, M., Luo, J.L., Grivennikov, S., Nedospasov, S., and Karin, M. (2010). B-cell-derived lymphotoxin promotes castration-resistant prostate cancer. Nature 464, 302–305.
Arshad, M., Abdul Hamid, N., Chan, M.C., Ismail, F., Tan, G.C., Pezzella, F., and Tan, K.L. (2021). NUB1 and FAT10 proteins as potential novel biomarkers in cancer: a translational perspective. Cells 10, 2176.
Berns, E.M., Foekens, J.A., Vossen, R., Look, M.P., Devilee, P., Henzen-Logmans, S.C., van Staveren, I.L., van Putten, W.L., Inganas, M., Meijer-van Gelder, M.E., and Cornelisse, C. (2000). Complete sequencing of TP53 predicts poor response to systemic therapy of advanced breast cancer. Cancer Res 60, 2155–2162.
Bykov, V.J.N., Eriksson, S.E., Bianchi, J., and Wiman, K.G. (2018). Targeting mutant p53 for efficient cancer therapy. Nat Rev Cancer 18, 89–102.
Cai, Z., Wang, J., Li, Y., Shi, Q., Jin, L., Li, S., Zhu, M., Wang, Q., Wong, L.L., Yang, W., et al. (2023). Overexpressed cyclin D1 and CDK4 proteins are responsible for the resistance to CDK4/6 inhibitor in breast cancer that can be reversed by PI3K/mTOR inhibitors. Sci China Life Sci 66, 94–109.
Cao, Y., Luo, J., and Karin, M. (2007). IκB kinase a kinase activity is required for self-renewal of ErbB2/Her2-transformed mammary tumor-initiating cells. Proc Natl Acad Sci USA 104, 15852–15857.
Chao, C.C.K. (2015). Mechanisms of p53 degradation. Clinica Chim Acta 438, 139–147.
Ellsworth, R.E., Seebach, J., Field, L.A., Heckman, C., Kane, J., Hooke, J.A., Love, B., and Shriver, C.D. (2009). A gene expression signature that defines breast cancer metastases. Clin Exp Metastas 26, 205–213.
Fernandez-Cuesta, L., Anaganti, S., Hainaut, P., and Olivier, M. (2011). p53 status influences response to tamoxifen but not to fulvestrant in breast cancer cell lines. Intl J Cancer 128, 1813–1821.
Gong, C., Cheng, Z., Yang, Y., Shen, J., Zhu, Y., Ling, L., Lin, W., Yu, Z., Li, Z., Tan, W., et al. (2022). A 10-miRNA risk score-based prediction model for pathological complete response to neoadjuvant chemotherapy in hormone receptor-positive breast cancer. Sci China Life Sci 65, 2205–2217.
Hanker, A.B., Sudhan, D.R., and Arteaga, C.L. (2020). Overcoming endocrine resistance in breast cancer. Cancer Cell 37, 496–513.
Hany, D., Vafeiadou, V., and Picard, D. (2023). CRISPR-Cas9 screen reveals a role of purine synthesis for estrogen receptor a activity and tamoxifen resistance of breast cancer cells. Sci Adv 9, eadd3685.
Hipp, M.S., Kalveram, B., Raasi, S., Groettrup, M., and Schmidtke, G. (2005). FAT10, a ubiquitin-independent signal for proteasomal degradation. Mol Cell Biol 25, 3483–3491.
Inuzuka, H., Tseng, A., Gao, D., Zhai, B., Zhang, Q., Shaik, S., Wan, L., Ang, X.L., Mock, C., Yin, H., et al. (2010). Phosphorylation by casein kinase I promotes the turnover of the Mdm2 oncoprotein via the SCFβ-TRCP ubiquitin ligase. Cancer Cell 18, 147–159.
Jeong, J.H., Park, S.J., Dickinson, S.I., and Luo, J.L. (2017). A constitutive intrinsic inflammatory signaling circuit composed of miR-196b, Meis2, PPP3CC, and p65 drives prostate cancer castration resistance. Mol Cell 65, 154–167.
Jeong, J.H., Zhong, S., Li, F., Huang, C., Chen, X., Liu, Q., Peng, S., Park, H.J., Lee, Y. M., Dhillon, J., et al. (2023). Tumor-derived OBP2A promotes prostate cancer castration resistance. J Exp Med 220, e20211546.
Khorsandi, L., and Farasat, M. (2020). Zinc oxide nanoparticles enhance expression of maspin in human breast cancer cells. Environ Sci Pollut Res 27, 38300–38310.
Lee, C.G., Ren, J., Cheong, I.S., Ban, K.H., Ooi, L.L., Yong Tan, S., Kan, A., Nuchprayoon, I., Jin, R., Lee, K.H., et al. (2003). Expression of the FAT10 gene is highly upregulated in hepatocellular carcinoma and other gastrointestinal and gynecological cancers. Oncogene 22, 2592–2603.
Li, Y., Moriyama, T., Yoshimura, S., Zhao, X., Li, Z., Yang, X., Paietta, E., Litzow, M.R., Konopleva, M., Yu, J., et al. (2022). PAX5 epigenetically orchestrates CD58 transcription and modulates blinatumomab response in acute lymphoblastic leukemia. Sci Adv 8, eadd6403.
Liu, B., Xia, X., Zhu, F., Park, E., Carbajal, S., Kiguchi, K., DiGiovanni, J., Fischer, S.M., and Hu, Y. (2008). IKKα is required to maintain skin homeostasis and prevent skin cancer. Cancer Cell 14, 212–225.
Luo, J.L., Kamata, H., and Karin, M. (2005). IKK/NF-B signaling: balancing life and death-a new approach to cancer therapy. J Clin Invest 115, 2625–2632.
Luo, J.L., Maeda, S., Hsu, L.C., Yagita, H., and Karin, M. (2004). Inhibition of NF-κB in cancer cells converts inflammation-induced tumor growth mediated by TNFα to TRAIL-mediated tumor regression. Cancer Cell 6, 297–305.
Luo, J.L., Tan, W., Ricono, J.M., Korchynskyi, O., Zhang, M., Gonias, S.L., Cheresh, D. A., and Karin, M. (2007). Nuclear cytokine-activated IKKα controls prostate cancer metastasis by repressing Maspin. Nature 446, 690–694.
Mah, M.M., Basler, M., and Groettrup, M. (2019). The ubiquitin-like modifier FAT10 is required for normal IFN-γ production by activated CD8+ T cells. Mol Immunol 108, 111–120.
Medvedovic, J., Ebert, A., Tagoh, H., and Busslinger, M. (2011). Pax5: a master regulator of B cell development and leukemogenesis. Adv Immunol 111, 179–206.
Mills, J.N., Rutkovsky, A.C., and Giordano, A. (2018). Mechanisms of resistance in estrogen receptor positive breast cancer: overcoming resistance to tamoxifen/aromatase inhibitors. Curr Opin Pharmacol 41, 59–65.
Mishra, A., Srivastava, A., Pateriya, A., Tomar, M.S., Mishra, A.K., and Shrivastava, A. (2021). Metabolic reprograming confers tamoxifen resistance in breast cancer. Chem Biol Interact 347, 109602.
Mullighan, C.G., Goorha, S., Radtke, I., Miller, C.B., Coustan-Smith, E., Dalton, J.D., Girtman, K., Mathew, S., Ma, J., Pounds, S.B., et al. (2007). Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature 446, 758–764.
Nasri Nasrabadi, P., Martin, D., Gharib, E., and Robichaud, G.A. (2022). The pleiotropy of PAX5 gene products and function. Int J Mol Sci 23, 10095.
Olivier, M., Langer, A., Carrieri, P., Bergh, J., Klaar, S., Eyfjord, J., Theillet, C., Rodriguez, C., Lidereau, R., Bièche, I., et al. (2006). The clinical value of somatic TP53 gene mutations in 1,794 patients with breast cancer. Clin Cancer Res 12, 1157–1167.
Park, K.J., Krishnan, V., O’Malley, B.W., Yamamoto, Y., and Gaynor, R.B. (2005). Formation of an IKKα-dependent transcription complex is required for estrogen receptor-mediated gene activation. Mol Cell 18, 71–82.
Rokavec, M., and Luo, J.L. (2012). The transient and constitutive inflammatory signaling in tumorigenesis. Cell Cycle 11, 2587–2588.
Rokavec, M., Schroth, W., Amaral, S.M.C., Fritz, P., Antoniadou, L., Glavac, D., Simon, W., Schwab, M., Eichelbaum, M., and Brauch, H. (2008). A polymorphism in the TC21 promoter associates with an unfavorable tamoxifen treatment outcome in breast cancer. Cancer Res 68, 9799–9808.
Rokavec, M., Wu, W., and Luo, J.L. (2012). IL6-mediated suppression of miR-200c directs constitutive activation of inflammatory signaling circuit driving transformation and tumorigenesis. Mol Cell 45, 777–789.
Schregle, R., Mah, M.M., Mueller, S., Aichem, A., Basler, M., and Groettrup, M. (2018). The expression profile of the ubiquitin-like modifier FAT10 in immune cells suggests cell type-specific functions. Immunogenetics 70, 429–438.
Shi, Q., Li, Y., Li, S., Jin, L., Lai, H., Wu, Y., Cai, Z., Zhu, M., Li, Q., Li, Y., et al. (2020). LncRNA DILA1 inhibits cyclin D1 degradation and contributes to tamoxifen resistance in breast cancer. Nat Commun 11, 5513.
Song, A., Wang, Y., Jiang, F., Yan, E., Zhou, J., Ye, J., Zhang, H., Ding, X., Li, G., Wu, Y., et al. (2021). Ubiquitin D promotes progression of oral squamous cell carcinoma via NF-Kappa B signaling. Molecules Cells 44, 468–480.
Su, H., Qin, M., Liu, Q., Jin, B., Shi, X., and Xiang, Z. (2021). Ubiquitin-like protein UBD promotes cell proliferation in colorectal cancer by facilitating p53 degradation. Front Oncol 11, 691347.
Suzuki, H.I., Yamagata, K., Sugimoto, K., Iwamoto, T., Kato, S., and Miyazono, K. (2009). Modulation of microRNA processing by p53. Nature 460, 529–533.
Theng, S.S., Wang, W., Mah, W.C., Chan, C., Zhuo, J., Gao, Y., Qin, H., Lim, L., Chong, S.S., Song, J., et al. (2014). Disruption of FAT10-MAD2 binding inhibits tumor progression. Proc Natl Acad Sci USA 111, E5282–5291.
Truongvan, N., Li, S., Misra, M., Kuhn, M., and Schindelin, H. (2022). Structures of UBA6 explain its dual specificity for ubiquitin and FAT10. Nat Commun 13, 4789.
Xiang, S., Shao, X., Cao, J., Yang, B., He, Q., and Ying, M. (2020). FAT10: function and relationship with cancer. Curr Mol Pharmacol 13, 182–191.
Yu, H., Lin, L., Zhang, Z., Zhang, H., and Hu, H. (2020). Targeting NF-κB pathway for the therapy of diseases: mechanism and clinical study. Sig Transduct Target Ther 5, 209.
Yuan, L., Gao, F., Lv, Z., Nayak, D., Nayak, A., Santos Bury, P., Cano, K.E., Jia, L., Oleinik, N., Atilgan, F.C., et al. (2022). Crystal structures reveal catalytic and regulatory mechanisms of the dual-specificity ubiquitin/FAT10 E1 enzyme Uba6. Nat Commun 13, 4880.
Zhang, K., Chen, L., Zhang, Z., Cao, J., He, L., and Li, L. (2020). Ubiquitin-like protein FAT10: a potential cardioprotective factor and novel therapeutic target in cancer. Clinica Chim Acta 510, 802–811.
Zhong, S., Huang, C., Chen, Z., Chen, Z., and Luo, J.L. (2021). Targeting inflammatory signaling in prostate cancer castration resistance. J Clin Med 10, 5000.
Zou, Y, Ouyang, Q, Wei, W, Yang, S, Zhang, Y, and Yang, W (2018). FAT10 promotes the invasion and migration of breast cancer cell through stabilization of ZEB2. Biochem Biophys Res Commun 506, 563–570.
Acknowledgement
This work was supported by a postdoctoral trainee fellowship from the Frenchman’s Creek Women for Cancer Research, a cancer research fellowship from UICC (ACS-10-003), and the Natural Science Foundation of China (81974469 and 81672635), the Postgraduate Independent Exploration and Innovation Project of Central South University of China (2019zzts899). We thank Wenyi Wei (Harvard Medical School) for kindly providing the MDM2 expression plasmid, Michael Karin (UCSD) for kindly providing IKKα plasmids and knockout mice.
Author information
Authors and Affiliations
Corresponding authors
Rights and permissions
About this article
Cite this article
Chen, X., Wu, W., Jeong, JH. et al. Cytokines-activated nuclear IKKα-FAT10 pathway induces breast cancer tamoxifen-resistance. Sci. China Life Sci. 67, 1413–1426 (2024). https://doi.org/10.1007/s11427-023-2460-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11427-023-2460-0