[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

MiR-145 promotes TNF-α-induced apoptosis by facilitating the formation of RIP1-FADDcaspase-8 complex in triple-negative breast cancer

  • Original Article
  • Published:
Tumor Biology

Abstract

Researches indicate that the dysregulation of microRNA (miRNA) is involved in tumorigenesis. Among such dysregulated miRNAs in cancer, miR-145 is reported to be downregulated in multiple cancers. In this study, we demonstrated the downregulation of miR-145 in triple-negative breast cancer (TNBC) tissues and TNBC cell lines by quantitative reverse-transcription polymerase chain reaction (RT-PCR) analysis. Furthermore, we found that the tumor necrosis factor-alpha (TNF-α)-induced apoptosis was expanded by the transfection of miR-145 in MDA-MB-231 which belongs to the TNBC cell lines. We then indicated that the mechanism by which miR-145 promotes the TNF-α-induced apoptosis is dependent on the formation of RIP1-FADD-caspase-8 complex. The cellular inhibitor of apoptosis (cIAP1), which is the inhibitor of apoptosis protein, was found to be a target of miR-145 in MDA-MB-231 cells. As a result of cIAP1 overexpression, the promotion of miR-145 on TNF-α-induced apoptosis was inhibited in MDA-MB-231 cells. Therefore, our results indicate that miR-145 acts as a tumor suppressor in TNBC, suggesting that the miR-145-cIAP1 axis might be a potential therapeutic target for TNBC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.

    Article  PubMed  Google Scholar 

  2. Arnedos M, Bihan C, Delaloge S, Andre F. Triple-negative breast cancer: are we making headway at least? Ther Adv Med Oncol. 2012;4:195–210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Foulkes WD, Smith IE, Reis-Filho JS. Triple-negative breast cancer. N Engl J Med. 2010;363:1938–48.

    Article  CAS  PubMed  Google Scholar 

  4. Crown J, O’Shaughnessy J, Gullo G. Emerging targeted therapies in triple-negative breast cancer. Ann Oncol. 2012;23:vi56–65.

    Article  PubMed  Google Scholar 

  5. Van Herreweghe F, Festjens N, Declercq W, Vandenabeele P. Tumor necrosis factor-mediated cell death: to break or to burst, that’s the question. Cell Mol Life Sci. 2010;67:1567–79.

    Article  CAS  PubMed  Google Scholar 

  6. Balkwill F. Tumour necrosis factor and cancer. Nat Rev Cancer. 2009;9:361–71.

    Article  CAS  PubMed  Google Scholar 

  7. O’Donnell MA, Legarda-Addison D, Skountzos P, Yeh WC, Ting AT. Ubiquitination of RIP1 regulates an NF-kappaB-independent cell-death switch in TNF signaling. Curr Biol. 2007;17:418–24.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Festjens N, Vanden Berghe T, Cornelis S, Vandenabeele P. RIP1, a kinase on the crossroads of a cell’s decision to live or die. Cell Death Differ. 2007;14:400–10.

    Article  CAS  PubMed  Google Scholar 

  9. Wu P, Shi KJ, An JJ, Ci YL, Li F, Hui KY, et al. The LEF1/CYLD axis and cIAPs regulate RIP1 deubiquitination and trigger apoptosis in selenite-treated colorectal cancer cells. Cell Death Dis. 2014;5, e1085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mahul-Mellier AL, Pazarentzos E, Datler C, Iwasawa R, AbuAli G, Lin B, et al. De-ubiquitinating protease USP2a targets RIP1 and TRAF2 to mediate cell death by TNF. Cell Death Differ. 2012;19:891–9.

    Article  CAS  PubMed  Google Scholar 

  11. Ameres SL, Zamore PD. Diversifying microRNA sequence and function. Nat Rev Mol Cell Biol. 2013;14:475–88.

    Article  CAS  PubMed  Google Scholar 

  12. Croce CM. Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet. 2009;10:704–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jansson MD, Lund AH. MicroRNA and cancer. Mol Oncol. 2012;6:590–610.

    Article  CAS  PubMed  Google Scholar 

  14. Mishra S, Yadav T, Rani V. Exploring miRNA based approaches in cancer diagnostics and therapeutics. Crit Rev Oncol Hematol. 2015.

  15. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25:402–8.

    Article  CAS  PubMed  Google Scholar 

  16. Chang CF, Ke CY, Wu YC, Chuang TH. Structure-activity relationship of synthetic 2-phenylnaphthalenes with hydroxyl groups that inhibit proliferation and induce apoptosis of MCF-7 cancer cells. PLoS One. 2015;10, e0141184.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Micheau O, Tschopp J. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell. 2003;114:181–90.

    Article  CAS  PubMed  Google Scholar 

  18. Abhari BA, Cristofanon S, Kappler R, von Schweinitz D, Humphreys R, Fulda S. RIP1 is required for IAP inhibitor-mediated sensitization for TRAIL-induced apoptosis via a RIP1/FADD/caspase-8 cell death complex. Oncogene. 2013;32:3263–73.

    Article  CAS  PubMed  Google Scholar 

  19. Roberge S, Roussel J, Andersson DC, Meli AC, Vidal B, Blandel F, et al. TNF-α-mediated caspase-8 activation induces ROS production and TRPM2 activation in adult ventricular myocytes. Cardiovasc Res. 2014;103:90–9.

    Article  CAS  PubMed  Google Scholar 

  20. Leibowitz B, Qiu W, Buchanan ME, Zou F, Vernon P, Moyer MP, et al. BID mediates selective killing of APC-deficient cells in intestinal tumor suppression by nonsteroidal antiinflammatory drugs. Proc Natl Acad Sci U S A. 2014;111:16520–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bertrand MJ, Milutinovic S, Dickson KM, et al. cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination. Mol Cell. 2008;30:689–700.

    Article  CAS  PubMed  Google Scholar 

  22. Jiang C, Long J, Liu B, Xie X, Kuang M. Mcl-1 is a novel target of miR-26b that is associated with the apoptosis induced by TRAIL in HCC cells. Biomed Res Int. 2015;2015:572738.

    PubMed  PubMed Central  Google Scholar 

  23. Okamoto K, Miyoshi K, Murawaki Y. miR-29b, miR-205 and miR-221 enhance chemosensitivity to gemcitabine in HuH28 human cholangiocarcinoma cells. PLoS One. 2013;8:e77623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zheng Y, Lv X, Wang X, Wang B, Shao X, Huang Y, Shi L, Chen Z, Huang J, Huang P. miR-181b promotes chemoresistance in breast cancer by regulating Bim expression. Oncol Rep. 2015.

  25. Shen H, Shen J, Wang L, Shi Z, Wang M, Jiang BH, et al. Low miR-145 expression level is associated with poor pathological differentiation and poor prognosis in non-small cell lung cancer. Biomed Pharmacother. 2015;69:301–5.

    Article  CAS  PubMed  Google Scholar 

  26. Chang S, Gao L, Yang Y, Tong D, Guo B, Liu L, et al. miR-145 mediates the antiproliferative and gene regulatory effects of vitamin D3 by directly targeting E2F3 in gastric cancer cells. Oncotarget. 2015;6:7675–785.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Liu RL, Dong Y, Deng YZ, Wang WJ, Li WD. Tumor suppressor miR-145 reverses drug resistance by directly targeting DNA damage-related gene RAD18 in colorectal cancer. Tumour Biol. 2015;36:5011–9.

    Article  CAS  PubMed  Google Scholar 

  28. Larne O, Hagman Z, Lilja H, Bjartell A, Edsjö A, Ceder Y. miR-145 suppress the androgen receptor in prostate cancer cells and correlates to prostate cancer prognosis. Carcinogenesis. 2015;36:858–66.

    Article  CAS  PubMed  Google Scholar 

  29. Ma Y, Zhao S, Shen S, Fang S, Ye Z, Shi Z, et al. A novel recombinant slow-release TNF α-derived peptide effectively inhibits tumor growth and angiogensis. Sci Rep. 2015;5:13595.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Varfolomeev E, Blankenship JW, Wayson SM, et al. IAP antagonists induce autoubiquitination of c-IAPs, NFkB activation, and TNFα-dependent apoptosis. Cell. 2007;131:669–81.

    Article  CAS  PubMed  Google Scholar 

  31. McEleny K, Coffey R, Morrissey C, Williamson K, Zangemeister-Wittke U, Fitzpatrick JM, et al. An antisense oligonucleotide to cIAP-1 sensitizes prostate cancer cells to fas and TNFalpha mediated apoptosis. Prostate. 2004;59:419–25.

    Article  CAS  PubMed  Google Scholar 

  32. Lanuti P, Bertagnolo V, Pierdomenico L, Bascelli A, Santavenere E, Alinari L, et al. Enhancement of TRAIL cytotoxicity by AG-490 in human ALL cells is characterized by downregulation of cIAP-1 and cIAP-2 through inhibition of Jak2/Stat3. Cell Res. 2009;19:1079–89.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study is supported by the Central Laboratory of The Second Affiliated Hospital & Yuying Children’s Hospital of Wenzhou Medical University and the School of Laboratory Medicine and Life Science affiliated to Wenzhou Medical University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohong Xie.

Ethics declarations

All samples were collected with patients’ informed consent, and this project was approved by the Ethics Committee of The Second Affiliated Hospital & Yuying Children’s Hospital of Wenzhou Medical University.

Conflicts of interest

None

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, M., Wu, Z., Wu, A. et al. MiR-145 promotes TNF-α-induced apoptosis by facilitating the formation of RIP1-FADDcaspase-8 complex in triple-negative breast cancer. Tumor Biol. 37, 8599–8607 (2016). https://doi.org/10.1007/s13277-015-4631-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-4631-4

Keywords

Navigation