Abstract
Simulating the flow of water in district heating networks requires numerical methods which are independent of the CFL condition. We develop a high order scheme for networks of advection equations allowing large time steps. With the MOOD technique, unphysical oscillations of nonsmooth solutions are avoided. In numerical tests, the applicability to real networks is shown.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
Arbogast, T., Huang, CS, Zhao, X: Von neumann stable, implicit, high order, finite volume weno schemes (2019)
Borsche, R, Eimer, M, Siedow, N: A local time stepping method for thermal energy transport in district heating networks. Appl Math Comput 353(C), 215–229 (2019). https://doi.org/10.1016/j.amc.2019.01.072. https://ideas.repec.org/a/eee/apmaco/v353y2019icp215-229.html
Boscarino, S., Russo, G., Scandurra, L.: All mach number second order semi-implicit scheme for the euler equations of gas dynamics. J. Sci. Comput. 77(2), 850–884 (2018). https://doi.org/10.1007/s10915-018-0731-9
Cabrera E, Garcia-Serra, J, Iglesias, PL: Modelling water distribution networks: from steady flow to water hammer, pp 3–32. Springer, Dordrecht (1995)
Clain, S, Diot, S, Loubère, R: A high-order finite volume method for hyperbolic systems: multi-dimensional Optimal Order Detection (MOOD). Journal of Computational Physics, pp 0–0. https://doi.org/10.1016/j.jcp.2011.02.026, https://hal.archives-ouvertes.fr/hal-00518478 (2011)
Clain, S, Loubère, R, Machado, GJ: A posteriori stabilized sixth-order finite volume scheme for one-dimensional steady-state hyperbolic equations. Adv Comput Math 44(2), 571–607 (2018). https://doi.org/10.1007/s10444-017-9556-6
Davis, P: Circulant matrices. Wiley, New York (1979)
Diot, S, Clain, S, Loubère, R: Improved detection criteria for the multi-dimensional optimal order detection (mood) on unstructured meshes with very high-order polynomials. Comput Fluids 64, 43–63 (2012). https://doi.org/10.1016/j.compfluid.2012.05.004, http://www.sciencedirect.com/science/article/pii/S0045793012001909
Grosswindhager, S., Voigt, A., Kozek, M.: Linear finite-difference schemes for energy transport in district heating networks. In: Proceedings of the 2nd international con-ference on computer modelling and simulation, pp 5–7 (2011)
Iske, A., Käser, M: Conservative semi-lagrangian advection on adaptive unstructured meshes. Numer Methods Partial Diff Equa 20(3), 388–411 (2004). https://doi.org/10.1002/num.10100
Jansen, L, Pade, J: Global unique solvability for a quasi-stationary water network model. Preprint series: Institut für Mathematik, Humboldt-Universität zu Berlin 2013-11. https://www.mathematik.hu-berlin.de/de/forschung/pub/P-13-11 (2013)
Jiang, G.S., Shu, C.W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126(1), 202–228 (1996). https://doi.org/10.1006/jcph.1996.0130
Köcher, R: Beitrag zur berechnung und auslegung von fernwärmenetzen. PhD thesis, Technische Universität Berlin (2000)
Kreiss, H.O.: Über die stabilitätsdefinition für differenzengleichungen die partielle differentialgleichungen approximieren. BIT 2(3), 153–181 (1962). https://doi.org/10.1007/bf01957330
Kuzmin, D., Löhner, R, Turek, S: Flux-corrected transport. Springer, Netherlands (2012)
LeVeque, RJ: Numerical Methods for Conservation Laws. Birkhäuser, Basel (1992)
Mohring, J, Linn, D, Eimer, M, Rein, M, Siedow, N: District heating networks – dynamic simulation and optimal operation, pp 303–325. Springer International Publishing, Cham (2021)
Qiu, J.M., Shu, C.W.: Conservative high order semi-lagrangian finite difference WENO methods for advection in incompressible flow. J. Comput. Phys. 230(4), 863–889 (2011). https://doi.org/10.1016/j.jcp.2010.04.037
Sousa, E.: On the edge of stability analysis. Appl. Numer. Math. 59(6), 1322–1336 (2009). https://doi.org/10.1016/j.apnum.2008.08.001
Steinle, P., Morrow, R.: An implicit flux-corrected transport algorithm. J. Comput. Phys. 80(1), 61–71 (1989). https://doi.org/10.1016/0021-9991(89)90090-9
Steinle, PJ: Finite difference methods for the advection equation (1993)
Toro, EF: Riemann solvers and numerical methods for fluid dynamics. Springer, Berlin (2009)
UBA: German environment agency: Erneuerbare Energien in Deutschland (2020)
Wagner, L.: Second-order implicit methods for conservation laws with applications in water supply networks PhD thesis. Darmstadt. , Technische Universität (2018). http://tuprints.ulb.tu-darmstadt.de/7252/
Zeifang, J, Schütz, J, Kaiser, K, Beck, A, Lukáčová-Medvid’ová, M, Noelle, S: A novel full-euler low mach number imex splitting. Commun Comput Phys 27(1), 292–320 (2019). https://doi.org/10.4208/cicp.OA-2018-0270
Funding
Open Access funding enabled and organized by Projekt DEAL. The authors acknowledge the financial support by the Federal Ministry of Education and Research of Germany in the framework of the project EiFer: Energieeffizienz durch intelligente Fernwärmenetze (grant number 05M18AMB).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no competing interests.
Additional information
Communicated by: Anna-Karin Tornberg
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Eimer, M., Borsche, R. & Siedow, N. Implicit finite volume method with a posteriori limiting for transport networks. Adv Comput Math 48, 21 (2022). https://doi.org/10.1007/s10444-022-09939-1
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10444-022-09939-1