Abstract
This paper presents an asymptotic preserving (AP) all Mach number finite volume shock capturing method for the numerical solution of compressible Euler equations of gas dynamics. Both isentropic and full Euler equations are considered. The equations are discretized on a staggered grid. This simplifies flux computation and guarantees a natural central discretization in the low Mach limit, thus dramatically reducing the excessive numerical diffusion of upwind discretizations. Furthermore, second order accuracy in space is automatically guaranteed. For the time discretization we adopt an Semi-IMplicit/EXplicit (S-IMEX) discretization getting an elliptic equation for the pressure in the isentropic case and for the energy in the full Euler case. Such equations can be solved linearly so that we do not need any iterative solver thus reducing computational cost. Second order in time is obtained by a suitable S-IMEX strategy taken from Boscarino et al. (J Sci Comput 68:975–1001, 2016). Moreover, the CFL stability condition is independent of the Mach number and depends essentially on the fluid velocity. Numerical tests are displayed in one and two dimensions to demonstrate performance of our scheme in both compressible and incompressible regimes.
Similar content being viewed by others
Notes
It is possible to derive the acoustic wave equation from (2.3). Indeed, if we differentiate with respect time the density equation and subtract it from the divergence of the momentum equation, we obtain
$$\begin{aligned} \partial _{tt} \rho - \frac{\nabla ^2 p(\rho )}{\varepsilon ^2} = \nabla ^2:(\rho \mathbf u \otimes \mathbf u ), \end{aligned}$$and to \(\mathcal {O}(\varepsilon ^{0})\), we get (2.9).
Note that this definition is different from the one used in Eq. (3.4) in 1D.
References
Arminjon, P., Viallon, M.-C., Madrane, A.: A finite volume extension of the Lax–Friedrichs and Nessyahu–Tadmor schemes for conservation laws on unstructured grids. Int. J. Comput. Fluid Dyn. 9(1), 1–22 (1998)
Ascher, U.M., Ruuth, S.J., Spiteri, R.J.: Implicit–explicit Runge–Kutta methods for time-dependent partial differential equations. Appl. Numer. Math. 25(2), 151–167 (1997)
Bernard, F., Iollo, A., Russo, G.: Linearly implicit all Mach number shock capturing schemes (in preparation)
Boscarino, S., Bürger, R., Mulet, P., Russo, G., Villada, L.M.: Linearly implicit IMEX Runge–Kutta methods for a class of degenerate convection–diffusion problems. SIAM J. Sci. Comput. 37(2), B305–B331 (2015)
Boscarino, S., Bürger, R., Mulet, P., Russo, G., Villada, L.M.: On linearly implicit IMEX Runge–Kutta methods for degenerate convection–diffusion problems modeling polydisperse sedimentation. Bull. Braz. Math. Soc. New Ser. 47(1), 171–185 (2016)
Boscarino, S., Filbet, F., Russo, G.: High order semi-implicit schemes for time dependent partial differential equations. J. Sci. Comput. 3, 975–1001 (2016)
Boscarino, S., LeFloch, P.G., Russo, G.: High-order asymptotic-preserving methods for fully nonlinear relaxation problems. SIAM J. Sci. Comput. 36(2), A377–A395 (2014)
Boscarino, S., Pareschi, L., Russo, G.: Implicit-explicit Runge–Kutta schemes for hyperbolic systems and kinetic equations in the diffusion limit. SIAM J. Sci. Comput. 35(1), A22–A51 (2013)
Boscarino, S., Qiu, J., Russo, G.: Implicit-explicit integral deferred correction methods for stiff problems. SIAM J. Sci. Comput. 40(2), A787–A816 (2018)
Boscarino, S., Qiu, J., Russo, G., Xiong, T.: High order semi-implicit IMEX scheme for isentropic Euler system with all-Mach number (in preparation)
Boscarino, S., Russo, G.: Flux-explicit IMEX Runge–Kutta schemes for hyperbolic to parabolic relaxation problems. SIAM J. Numer. Anal. 51(1), 163–190 (2013)
Chen, G.Q., Levermore, C.D., Liu, T.-P.: Hyperbolic conservation laws with stiff relaxation terms and entropy. Commun. Pure Appl. Math. 47(6), 787–830 (1994)
Coquel, F., Nguyen, Q.-L., Postel, M., Tran, Q.-H.: Large time step positivity-preserving method for multiphase flows. Hyperbolic Problems: Theory, Numerics, Applications, pp. 849–856. Springer, Berlin (2008)
Coquel, F., Nguyen, Q., Postel, M., Tran, Q.: Entropy-satisfying relaxation method with large time-steps for Euler IBVPs. Math. Comput. 79(271), 1493–1533 (2010)
Coquel, F., Nguyen, Q.L., Postel, M., Tran, Q.H.: Local time stepping with adaptive time step control for a two-phase fluid system. In: ESAIM: Proceedings, vol. 29, pp. 73–88. EDP Sciences (2009)
Coquel, F., Nguyen, Q.L., Postel, M., Tran, Q.H.: Local time stepping applied to implicit–explicit methods for hyperbolic systems. Multisc. Model. Simul. 8(2), 540–570 (2010)
Coquel, F., Postel, M., Poussineau, N., Tran, Q.-H.: Multiresolution technique and explicit–implicit scheme for multicomponent flows. J. Numer. Math. 14(3), 187–216 (2006)
Cordier, F., Degond, P., Kumbaro, A.: An asymptotic-preserving all-speed scheme for the Euler and Navier–Stokes equations. J. Comput. Phys. 231(17), 5685–5704 (2012)
Costigan, G., Whalley, P.B.: Measurements of the speed of sound in air–water flows. Chem. Eng. J. 66(2), 131–135 (1997)
Degond, P., Jin, S., Liu, J.-G.: Mach-number uniform asymptotic-preserving gauge schemes for compressible flows. Bull. Inst. Math. Acad. Sin 2(4), 851–892 (2007)
Degond, P., Tang, M.: All speed scheme for the low Mach number limit of the Isentropic Euler equation. arXiv preprint arXiv:0908.1929 (2009)
Dellacherie, S.: Analysis of Godunov type schemes applied to the compressible Euler system at low Mach number. J. Comput. Phys. 229(4), 978–1016 (2010)
Godlewski, E., Raviart, P.-A.: Numerical Approximation of Hyperbolic Systems of Conservation Laws. Springer, Berlin (2014)
Gresho, P.M., Chan, S.T.: On the theory of semi-implicit projection methods for viscous incompressible flow and its implementation via a finite element method that also introduces a nearly consistent mass matrix. Part 2: Implementation. Int. J. Numer. Methods Fluids 11(5), 621–659 (1990)
Haack, J., Jin, S., Liu, J.-G.: An all-speed asymptotic-preserving method for the isentropic Euler and Navier–Stokes equations. Commun. Comput. Phys. 12(04), 955–980 (2012)
Hairer, E., Wanner, G.: Solving ordinary differential equations II. In: Stiff and Differential-Algebraic Problems. (2nd Revised. ed.), volume 14 of Springer Series in Computational Mathematics. Springer, New York (1996)
Jiang, G.-S., Tadmor, E.: Nonoscillatory central schemes for multidimensional hyperbolic conservation laws. SIAM J. Sci. Comput. 19(6), 1892–1917 (1998)
Jin, S.: Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations. SIAM J. Sci. Comput. 21(2), 441–454 (1999)
Jin, S.: Asymptotic preserving (AP) schemes for multiscale kinetic and hyperbolic equations: a review. Riv. Mat. Univ. Parma. 3(2), 177–216 (2010)
Klainerman, S., Majda, A.: Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids. Commun. Pure Appl. Math. 34(4), 481–524 (1981)
Klainerman, S., Majda, A.: Compressible and incompressible fluids. Commun. Pure Appl. Math. 35(5), 629–651 (1982)
Klein, R.: Semi-implicit extension of a Godunov-type scheme based on low Mach number asymptotics. I: One-dimensional flow. J. Comput. Phys. 121(2), 213–237 (1995)
Kwatra, N., Jonathan, S., Grétarsson, J.T., Fedkiw, R.: A method for avoiding the acoustic time step restriction in compressible flow. J. Comput. Phys. 228(11), 4146–4161 (2009)
LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems, vol. 31. Cambridge University Press, Cambridge (2002)
Miczek, F., Röpke, F.K., Edelmann, P.V.F.: A new numerical solver for flows at various Mach numbers. Astron. Astrophys. 576, A50 (2015)
Munz, C.-D., Roller, S., Klein, R., Geratz, K.J.: The extension of incompressible flow solvers to the weakly compressible regime. Comput. Fluids 32(2), 173–196 (2003)
Nessyahu, H., Tadmor, E.: Non-oscillatory central differencing for hyperbolic conservation laws. J. Comput. Phys. 87(2), 408–463 (1990)
Noelle, S., Bispen, G., Arun, K.R., Munz, C.-D., Lukáčová-Medvidová, M.: An asymptotic preserving all Mach number scheme for the Euler equations of gas dynamics. Technical Report 348, IGPM , RWTH-Aachen, Germany (2012)
Nonaka, A., Almgren, A.S., Bell, J.B., Lijewski, M.J., Malone, C.M., Zingale, M.: Maestro: an adaptive low Mach number hydrodynamics algorithm for stellar flows. Astrophys. J. Suppl. Ser. 188(2), 358 (2010)
Pareschi, L., Puppo, G., Russo, G.: Central Runge–Kutta schemes for conservation laws. SIAM J. Sci. Comput. 26(3), 979–999 (2005)
Pareschi, L., Russo, G.: Implicit–explicit Runge–Kutta schemes and applications to hyperbolic systems with relaxation. J. Sci. Comput. 25(1–2), 129–155 (2005)
Park, J.H., Munz, C.-D.: Multiple pressure variables methods for fluid flow at all Mach numbers. Int. J. Numer. Methods Fluids 49(8), 905–931 (2005)
Peyret, R., Taylor, T.D.: Computational Methods for Fluid Flow. Springer Science & Business Media, Berlin (2012)
Pidatella, R.M., Puppo, G., Russo, G., Santagati, P.: Semi-conservative finite volume schemes for conservation laws. SIAM J. Sci. Comput. (submitted)
Qiu, J.-M., Shu, C.-W.: Conservative high order semi-Lagrangian finite difference WENO methods for advection in incompressible flow. J. Comput. Phys. 230(4), 863–889 (2011)
Scandurra, L.: Numerical methods for all Mach number flows for gas dynamics. Ph.D. thesis, Università di Catania (2017)
Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction, 3rd edn. Springer-Verlag Berlin Heidelberg (2009)
Turkel, E.: Preconditioned methods for solving the incompressible and low speed compressible equations. J. Comput. Phys. 72(2), 277–298 (1987)
Viozat, C.: Implicit upwind schemes for low Mach number compressible flows. Ph.D. thesis, Inria (1997)
Acknowledgements
The work has been partially supported by ITN-ETN Horizon 2020 Project ModCompShock, Modeling and Computation on Shocks and Interfaces, Project Reference 642768, by the National Group for Scientific Computing INdAM-GNCS Project 2017: Numerical methods for hyperbolic and kinetic equation and applications, and by the Department of Mathematics and Computer Science, University of Catania Piano triennale della Ricerca 2016–2018.
Author information
Authors and Affiliations
Corresponding author
Additional information
S. Boscarino, G. Russo and L. Scandurra are members of the INdAM Research group GNCS.
Rights and permissions
About this article
Cite this article
Boscarino, S., Russo, G. & Scandurra, L. All Mach Number Second Order Semi-implicit Scheme for the Euler Equations of Gas Dynamics. J Sci Comput 77, 850–884 (2018). https://doi.org/10.1007/s10915-018-0731-9
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-018-0731-9