[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

All Mach Number Second Order Semi-implicit Scheme for the Euler Equations of Gas Dynamics

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This paper presents an asymptotic preserving (AP) all Mach number finite volume shock capturing method for the numerical solution of compressible Euler equations of gas dynamics. Both isentropic and full Euler equations are considered. The equations are discretized on a staggered grid. This simplifies flux computation and guarantees a natural central discretization in the low Mach limit, thus dramatically reducing the excessive numerical diffusion of upwind discretizations. Furthermore, second order accuracy in space is automatically guaranteed. For the time discretization we adopt an Semi-IMplicit/EXplicit (S-IMEX) discretization getting an elliptic equation for the pressure in the isentropic case and for the energy in the full Euler case. Such equations can be solved linearly so that we do not need any iterative solver thus reducing computational cost. Second order in time is obtained by a suitable S-IMEX strategy taken from Boscarino et al. (J Sci Comput 68:975–1001, 2016). Moreover, the CFL stability condition is independent of the Mach number and depends essentially on the fluid velocity. Numerical tests are displayed in one and two dimensions to demonstrate performance of our scheme in both compressible and incompressible regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. It is possible to derive the acoustic wave equation from (2.3). Indeed, if we differentiate with respect time the density equation and subtract it from the divergence of the momentum equation, we obtain

    $$\begin{aligned} \partial _{tt} \rho - \frac{\nabla ^2 p(\rho )}{\varepsilon ^2} = \nabla ^2:(\rho \mathbf u \otimes \mathbf u ), \end{aligned}$$

    and to \(\mathcal {O}(\varepsilon ^{0})\), we get (2.9).

  2. Note that this definition is different from the one used in Eq. (3.4) in 1D.

References

  1. Arminjon, P., Viallon, M.-C., Madrane, A.: A finite volume extension of the Lax–Friedrichs and Nessyahu–Tadmor schemes for conservation laws on unstructured grids. Int. J. Comput. Fluid Dyn. 9(1), 1–22 (1998)

    Article  MathSciNet  Google Scholar 

  2. Ascher, U.M., Ruuth, S.J., Spiteri, R.J.: Implicit–explicit Runge–Kutta methods for time-dependent partial differential equations. Appl. Numer. Math. 25(2), 151–167 (1997)

    Article  MathSciNet  Google Scholar 

  3. Bernard, F., Iollo, A., Russo, G.: Linearly implicit all Mach number shock capturing schemes (in preparation)

  4. Boscarino, S., Bürger, R., Mulet, P., Russo, G., Villada, L.M.: Linearly implicit IMEX Runge–Kutta methods for a class of degenerate convection–diffusion problems. SIAM J. Sci. Comput. 37(2), B305–B331 (2015)

    Article  MathSciNet  Google Scholar 

  5. Boscarino, S., Bürger, R., Mulet, P., Russo, G., Villada, L.M.: On linearly implicit IMEX Runge–Kutta methods for degenerate convection–diffusion problems modeling polydisperse sedimentation. Bull. Braz. Math. Soc. New Ser. 47(1), 171–185 (2016)

    Article  MathSciNet  Google Scholar 

  6. Boscarino, S., Filbet, F., Russo, G.: High order semi-implicit schemes for time dependent partial differential equations. J. Sci. Comput. 3, 975–1001 (2016)

    Article  MathSciNet  Google Scholar 

  7. Boscarino, S., LeFloch, P.G., Russo, G.: High-order asymptotic-preserving methods for fully nonlinear relaxation problems. SIAM J. Sci. Comput. 36(2), A377–A395 (2014)

    Article  MathSciNet  Google Scholar 

  8. Boscarino, S., Pareschi, L., Russo, G.: Implicit-explicit Runge–Kutta schemes for hyperbolic systems and kinetic equations in the diffusion limit. SIAM J. Sci. Comput. 35(1), A22–A51 (2013)

    Article  MathSciNet  Google Scholar 

  9. Boscarino, S., Qiu, J., Russo, G.: Implicit-explicit integral deferred correction methods for stiff problems. SIAM J. Sci. Comput. 40(2), A787–A816 (2018)

    Article  MathSciNet  Google Scholar 

  10. Boscarino, S., Qiu, J., Russo, G., Xiong, T.: High order semi-implicit IMEX scheme for isentropic Euler system with all-Mach number (in preparation)

  11. Boscarino, S., Russo, G.: Flux-explicit IMEX Runge–Kutta schemes for hyperbolic to parabolic relaxation problems. SIAM J. Numer. Anal. 51(1), 163–190 (2013)

    Article  MathSciNet  Google Scholar 

  12. Chen, G.Q., Levermore, C.D., Liu, T.-P.: Hyperbolic conservation laws with stiff relaxation terms and entropy. Commun. Pure Appl. Math. 47(6), 787–830 (1994)

    Article  MathSciNet  Google Scholar 

  13. Coquel, F., Nguyen, Q.-L., Postel, M., Tran, Q.-H.: Large time step positivity-preserving method for multiphase flows. Hyperbolic Problems: Theory, Numerics, Applications, pp. 849–856. Springer, Berlin (2008)

    Chapter  Google Scholar 

  14. Coquel, F., Nguyen, Q., Postel, M., Tran, Q.: Entropy-satisfying relaxation method with large time-steps for Euler IBVPs. Math. Comput. 79(271), 1493–1533 (2010)

    Article  MathSciNet  Google Scholar 

  15. Coquel, F., Nguyen, Q.L., Postel, M., Tran, Q.H.: Local time stepping with adaptive time step control for a two-phase fluid system. In: ESAIM: Proceedings, vol. 29, pp. 73–88. EDP Sciences (2009)

  16. Coquel, F., Nguyen, Q.L., Postel, M., Tran, Q.H.: Local time stepping applied to implicit–explicit methods for hyperbolic systems. Multisc. Model. Simul. 8(2), 540–570 (2010)

    Article  MathSciNet  Google Scholar 

  17. Coquel, F., Postel, M., Poussineau, N., Tran, Q.-H.: Multiresolution technique and explicit–implicit scheme for multicomponent flows. J. Numer. Math. 14(3), 187–216 (2006)

    Article  MathSciNet  Google Scholar 

  18. Cordier, F., Degond, P., Kumbaro, A.: An asymptotic-preserving all-speed scheme for the Euler and Navier–Stokes equations. J. Comput. Phys. 231(17), 5685–5704 (2012)

    Article  MathSciNet  Google Scholar 

  19. Costigan, G., Whalley, P.B.: Measurements of the speed of sound in air–water flows. Chem. Eng. J. 66(2), 131–135 (1997)

    Article  Google Scholar 

  20. Degond, P., Jin, S., Liu, J.-G.: Mach-number uniform asymptotic-preserving gauge schemes for compressible flows. Bull. Inst. Math. Acad. Sin 2(4), 851–892 (2007)

    MathSciNet  MATH  Google Scholar 

  21. Degond, P., Tang, M.: All speed scheme for the low Mach number limit of the Isentropic Euler equation. arXiv preprint arXiv:0908.1929 (2009)

  22. Dellacherie, S.: Analysis of Godunov type schemes applied to the compressible Euler system at low Mach number. J. Comput. Phys. 229(4), 978–1016 (2010)

    Article  MathSciNet  Google Scholar 

  23. Godlewski, E., Raviart, P.-A.: Numerical Approximation of Hyperbolic Systems of Conservation Laws. Springer, Berlin (2014)

    MATH  Google Scholar 

  24. Gresho, P.M., Chan, S.T.: On the theory of semi-implicit projection methods for viscous incompressible flow and its implementation via a finite element method that also introduces a nearly consistent mass matrix. Part 2: Implementation. Int. J. Numer. Methods Fluids 11(5), 621–659 (1990)

    Article  Google Scholar 

  25. Haack, J., Jin, S., Liu, J.-G.: An all-speed asymptotic-preserving method for the isentropic Euler and Navier–Stokes equations. Commun. Comput. Phys. 12(04), 955–980 (2012)

    Article  MathSciNet  Google Scholar 

  26. Hairer, E., Wanner, G.: Solving ordinary differential equations II. In: Stiff and Differential-Algebraic Problems. (2nd Revised. ed.), volume 14 of Springer Series in Computational Mathematics. Springer, New York (1996)

  27. Jiang, G.-S., Tadmor, E.: Nonoscillatory central schemes for multidimensional hyperbolic conservation laws. SIAM J. Sci. Comput. 19(6), 1892–1917 (1998)

    Article  MathSciNet  Google Scholar 

  28. Jin, S.: Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations. SIAM J. Sci. Comput. 21(2), 441–454 (1999)

    Article  MathSciNet  Google Scholar 

  29. Jin, S.: Asymptotic preserving (AP) schemes for multiscale kinetic and hyperbolic equations: a review. Riv. Mat. Univ. Parma. 3(2), 177–216 (2010)

    MathSciNet  MATH  Google Scholar 

  30. Klainerman, S., Majda, A.: Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids. Commun. Pure Appl. Math. 34(4), 481–524 (1981)

    Article  MathSciNet  Google Scholar 

  31. Klainerman, S., Majda, A.: Compressible and incompressible fluids. Commun. Pure Appl. Math. 35(5), 629–651 (1982)

    Article  MathSciNet  Google Scholar 

  32. Klein, R.: Semi-implicit extension of a Godunov-type scheme based on low Mach number asymptotics. I: One-dimensional flow. J. Comput. Phys. 121(2), 213–237 (1995)

    Article  MathSciNet  Google Scholar 

  33. Kwatra, N., Jonathan, S., Grétarsson, J.T., Fedkiw, R.: A method for avoiding the acoustic time step restriction in compressible flow. J. Comput. Phys. 228(11), 4146–4161 (2009)

    Article  MathSciNet  Google Scholar 

  34. LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems, vol. 31. Cambridge University Press, Cambridge (2002)

    Book  Google Scholar 

  35. Miczek, F., Röpke, F.K., Edelmann, P.V.F.: A new numerical solver for flows at various Mach numbers. Astron. Astrophys. 576, A50 (2015)

    Article  Google Scholar 

  36. Munz, C.-D., Roller, S., Klein, R., Geratz, K.J.: The extension of incompressible flow solvers to the weakly compressible regime. Comput. Fluids 32(2), 173–196 (2003)

    Article  MathSciNet  Google Scholar 

  37. Nessyahu, H., Tadmor, E.: Non-oscillatory central differencing for hyperbolic conservation laws. J. Comput. Phys. 87(2), 408–463 (1990)

    Article  MathSciNet  Google Scholar 

  38. Noelle, S., Bispen, G., Arun, K.R., Munz, C.-D., Lukáčová-Medvidová, M.: An asymptotic preserving all Mach number scheme for the Euler equations of gas dynamics. Technical Report 348, IGPM , RWTH-Aachen, Germany (2012)

  39. Nonaka, A., Almgren, A.S., Bell, J.B., Lijewski, M.J., Malone, C.M., Zingale, M.: Maestro: an adaptive low Mach number hydrodynamics algorithm for stellar flows. Astrophys. J. Suppl. Ser. 188(2), 358 (2010)

    Article  Google Scholar 

  40. Pareschi, L., Puppo, G., Russo, G.: Central Runge–Kutta schemes for conservation laws. SIAM J. Sci. Comput. 26(3), 979–999 (2005)

    Article  MathSciNet  Google Scholar 

  41. Pareschi, L., Russo, G.: Implicit–explicit Runge–Kutta schemes and applications to hyperbolic systems with relaxation. J. Sci. Comput. 25(1–2), 129–155 (2005)

    MathSciNet  MATH  Google Scholar 

  42. Park, J.H., Munz, C.-D.: Multiple pressure variables methods for fluid flow at all Mach numbers. Int. J. Numer. Methods Fluids 49(8), 905–931 (2005)

    Article  MathSciNet  Google Scholar 

  43. Peyret, R., Taylor, T.D.: Computational Methods for Fluid Flow. Springer Science & Business Media, Berlin (2012)

    MATH  Google Scholar 

  44. Pidatella, R.M., Puppo, G., Russo, G., Santagati, P.: Semi-conservative finite volume schemes for conservation laws. SIAM J. Sci. Comput. (submitted)

  45. Qiu, J.-M., Shu, C.-W.: Conservative high order semi-Lagrangian finite difference WENO methods for advection in incompressible flow. J. Comput. Phys. 230(4), 863–889 (2011)

    Article  MathSciNet  Google Scholar 

  46. Scandurra, L.: Numerical methods for all Mach number flows for gas dynamics. Ph.D. thesis, Università di Catania (2017)

  47. Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction, 3rd edn. Springer-Verlag Berlin Heidelberg (2009)

    Book  Google Scholar 

  48. Turkel, E.: Preconditioned methods for solving the incompressible and low speed compressible equations. J. Comput. Phys. 72(2), 277–298 (1987)

    Article  MathSciNet  Google Scholar 

  49. Viozat, C.: Implicit upwind schemes for low Mach number compressible flows. Ph.D. thesis, Inria (1997)

Download references

Acknowledgements

The work has been partially supported by ITN-ETN Horizon 2020 Project ModCompShock, Modeling and Computation on Shocks and Interfaces, Project Reference 642768, by the National Group for Scientific Computing INdAM-GNCS Project 2017: Numerical methods for hyperbolic and kinetic equation and applications, and by the Department of Mathematics and Computer Science, University of Catania Piano triennale della Ricerca 2016–2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Russo.

Additional information

S. Boscarino, G. Russo and L. Scandurra are members of the INdAM Research group GNCS.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boscarino, S., Russo, G. & Scandurra, L. All Mach Number Second Order Semi-implicit Scheme for the Euler Equations of Gas Dynamics. J Sci Comput 77, 850–884 (2018). https://doi.org/10.1007/s10915-018-0731-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0731-9

Keywords

Navigation