Article Dans Une Revue
Journal of Computational Physics
Année : 2011
Résumé
In this paper, we investigate an original way to deal with the problems generated by the limitation process of high-order finite volume methods based on polynomial reconstructions. Multi-dimensional Optimal Order Detection (MOOD) breaks away from classical limitations employed in high-order methods. The proposed method consists of detecting problematic situations after each time update of the solution and of reducing the local polynomial degree before recomputing the solution. As multi-dimensional MUSCL methods, the concept is simple and independent of mesh structure. Moreover MOOD is able to take physical constraints such as density and pressure positivity into account through an “a posteriori” detection. Numer- ical results on classical and demanding test cases for advection and Euler system are presented on quadrangular meshes to support the promising potential of this approach.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Steven Diot : Connectez-vous pour contacter le contributeur
https://hal.science/hal-00518478
Soumis le : mardi 15 février 2011-10:39:34
Dernière modification le : samedi 27 avril 2024-03:13:08
Archivage à long terme le : lundi 16 mai 2011-02:57:22
Dates et versions
- HAL Id : hal-00518478 , version 2
- DOI : 10.1016/j.jcp.2011.02.026
Citer
Stéphane Clain, Steven Diot, Raphaël Loubère. A high-order finite volume method for hyperbolic systems: Multi-dimensional Optimal Order Detection (MOOD).. Journal of Computational Physics, 2011, pp.0-0. ⟨10.1016/j.jcp.2011.02.026⟩. ⟨hal-00518478v2⟩
Collections
306
Consultations
1273
Téléchargements