[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

a posteriori stabilized sixth-order finite volume scheme for one-dimensional steady-state hyperbolic equations

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

An Erratum to this article was published on 07 October 2017

This article has been updated

Abstract

We propose a new family of high order accurate finite volume schemes devoted to solve one-dimensional steady-state hyperbolic systems. High-accuracy (up to the sixth-order presently) is achieved thanks to polynomial reconstructions while stability is provided with an a posteriori MOOD method which controls the cell polynomial degree for eliminating non-physical oscillations in the vicinity of discontinuities. Such a procedure demands the determination of a detector chain to discriminate between troubled and valid cells, a cascade of polynomial degrees to be successively tested when oscillations are detected, and a parachute scheme corresponding to the last, viscous, and robust scheme of the cascade. Experimented on linear, Burgers’, and Euler equations, we demonstrate that the schemes manage to retrieve smooth solutions with optimal order of accuracy but also irregular solutions without spurious oscillations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 07 October 2017

    During typesetting, Figs. 8 and 21 got corrupted and the images shown in the online published version are not correct. The original publication was updated.

References

  1. Abgrall, R.: On essentially non-oscillatory schemes on unstructured meshes: analysis and implementation. J. Comput. Phys. 144, 45–58 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abgrall, R., Shu, C.: Development of residual distribution schemes for discontinuous galerkin method: the scalar case with linear elements. Commun. Comput. Phys. 5, 376–390 (2009)

    MathSciNet  MATH  Google Scholar 

  3. Barth, T.J.: Recent developments in high order k-exact reconstruction on unstructured meshes. AIAA Paper 93-0668 (1993)

  4. Barth, T., Frederickson, P.: High order solution of the Euler equations on unstructured grids quadratic reconstruction. AIAA paper 90-0013 (1990)

  5. Barth, T., Jespersen, D.: The design and application of upwind schemes on unstructured meshes. AIAA paper 89-0366 (1989)

  6. Bassi, F., Rebay, S.: A high-order accurate discontinuous finite element method for the numerical solution of the compressible navier-stokes equations. J. Comput. Phys. 131, 267–279 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bassi, F., Rebay, S.: High-order accurate discontinuous finite element solution of the 2D Euler equations. J. Comput. Phys. 138, 251–285 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Beam, R., Warming, R.: An implicit finite-difference algorithm for hyperbolic systems in conservation law form. J. Comput. Phys. 22(1), 87–110 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  9. Beam, R., Warming, R.: Upwind second-order difference schemes and applications in aerodynamic flows. AIAA J. 14(9), 1241–1249 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  10. Breviglieri, C., Azevedo, J., Basso, E., Souza, M.: Implicit high-order spectral finite volume method for inviscid compressible flows. AIAA J. 48(10), 2365–2376 (2010)

    Article  Google Scholar 

  11. Chen, W., Chou, C., Kao, C.: Fast sweeping methods for steady state problems for hyperbolic conservation laws. J. Comput. Phys. 234, 452–471 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chou, C., Shu, C.: High order residual distribution conservative finite difference weno schemes for steady state problems on non-smooth meshes. J. Comput. Phys. 214, 698–724 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Clain, S., Diot, S., Loubère, R.: A high-order finite volume method for systems of conservation laws—multi-dimensional optimal order detection (MOOD). J. Comput. Phys. 230(10), 4028–4050 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Clain, S., Figueiredo, J.: The mood method for the non-conservative shallow-water system. Comput. Fluids 145, 99–128 (2017)

    Article  MathSciNet  Google Scholar 

  15. Davis, S.: Simplified second-order gudonov-type methods. SIAM J. Sci. Stat. Comput. 9, 445–473 (1988)

    Article  MATH  Google Scholar 

  16. Dervieux, A.: Steady Euler simulation using unstructured meshes. von Karman Institut for Fluid Dynamic. Lect. Ser. 1(4), 1985–04 (1985)

    Google Scholar 

  17. Diot, S., Clain, S., Loubère, R.: Improved detection criteria for the multi-dimensional optimal order detection (MOOD) on unstructured meshes with very high-order polynomials. Comput. Fluids 64, 43–63 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Diot, S., Loubère, R., Clain, S.: The MOOD method in the three-dimensional case: very-high-order finite volume method for hyperbolic systems. Int. J. Numer. Methods Fluids 73, 362–392 (2013)

    Article  Google Scholar 

  19. Einfeldt, B., Munz, C.D., Roe, P.L., Sjögreen, B.: On godunov-type methods near low densities. J. Comput. Phys. 92, 273–295 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  20. Haga, T., Sawada, K., Wang, Z.: An implicit lu-sgs scheme for the spectral volume method on unstructured tetrahedral grids. Commun. Comput. Phys. 6(5), 978–996 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Harten, A., Lax, P., van Leer, B.: On upstream differencing and godunov-type schemes for hyperbolic conservation laws. SIAM Rev. 25(1), 35–61 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hu, C., Shu, C.: Weighted essentially non-oscillatory schemes on triangular meshes. J. Comput. Phys. 150, 97–127 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hu, G.: An adaptive finite volume method for 2d steady Euler equations with weno reconstruction. J. Comput. Phys. 252, 591–605 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hu, G., Li, R., Tang, T.: A robust high-order residual distribution type scheme for steady Euler equations on unstructured grids. J. Comput. Phys. 229, 1681–1697 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hu, G., Li, R., Tang, T.: A robust weno type finite volume solver for steady Euler equations on unstructured grids. Commun. Comput. Phys. 9(3), 627–648 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Jameson, A., Mavriplis, D.: Finite volume solution of the two-dimensional Euler equations on a regular triangular mesh. AIAA J. 24(4), 611–618 (1986)

    Article  MATH  Google Scholar 

  27. Jameson, A., Schmidt, W., Turkel, E.: Numerical solution of Euler equations by finite volume methods using runge-Kutta time-stepping schemes. AIAA paper 81-1259 (1981)

  28. Jiang, G., Shu, C.: Efficient implementation of weighted eno. J. Comput. Phys. 126, 202–228 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  29. Knoll, D., Keyes, D.: Jacobian-free newton-krylov methods: a survey of approaches and applications. J. Comput. Phys. 193, 357–397 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  30. Li, R., Wang, X., Zhao, W.: A multigrid block lower-upper symmetric gauss-seidel algorithm for steady Euler equation on unstructured grids. Numer. Math. Theor., Meth. Appl. 1, 92–112 (2008)

    Google Scholar 

  31. LiJian, G., Qiu, X.: Hybrid weno schemes with different indicators on curvilinear grids. Adv. Comput. Math. 40, 747–772 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Loubère, R., Dumbser, M., Diot, S.: A new family of high order unstructured mood and ader finite volume schemes for multidimensional systems of hyperbolic conservation laws. Commun. Comput. Phys. 16, 718–763 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Maciel, E.: Explicit and implicit tvd high resolution schemes in 2d. J WSEAS Trans. Appl. Theor. Mech. 7(3), 182–209 (2012)

    Google Scholar 

  34. Mavriplis, D.: Multigrid solution of the two-dimensional Euler equations on unstructured triangular meshes. AIAA J. 26(7), 824–831 (1988)

    Article  MATH  Google Scholar 

  35. Michalak, K., Ollivier-Gooch, C.: Matrix-explicit gmres for a higher-order accurate inviscid compressible flow solver. AIAA paper 2007–3943 (2007)

  36. Michalak, K., Ollivier-Gooch, C.: Limiters for unstructured higher-order accurate solutions of the euler equations. AIAA paper, 2008–776 (2008)

  37. Mitchell, C., Walters, R.: K-exact reconstruction for the navier-stokes equation on arbitrary grids. AIAA Paper 93-0536 (1993)

  38. Nejat, A., Ollivier-Gooch, C.: Effect of discretization order on preconditioning and convergence of a high-order unstructured newton-gmres solver for the Euler equations. J. Comp. Phys. 227(4), 2366–2386 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  39. Nejat, A., Ollivier-Gooch, C.: A high-order accurate unstructured finite volume newton-krylov algorithm for inviscid compressible flows. J. Comp. Phys. 227(4), 2592–2609 (2008)

    MathSciNet  MATH  Google Scholar 

  40. Nielsen, E., Anderson, W., Walters, R., Keyes, D.: Application of newton-krylov methodology to a three-dimensional unstructured Euler code. AIAA paper 95-1733 (1995)

  41. Pesch, L., Vegt, J.: A discontinuous galerkin finite element discretization of the Euler equations for compressible and incompressible fluids. J. Comput. Phys. 227, 5426–5446 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  42. Pulliam, T.: Early development of implicit methods for computational fluid dynamics at nasa ames. Comput. Fluids 38, 491–495 (2009)

    Article  Google Scholar 

  43. Pulliam, T., Lomax, H.: Simulation of three-dimensional compressible viscous flow on the illiac iv computer. AIAA paper 79-0206 (1979)

  44. Pulliam, T., Steger, J.: Implicit finite-difference simulations of three dimensional compressible flow. AIAA J. 18(2), 159 (1980)

    Article  MATH  Google Scholar 

  45. Steger, J.: Implicit finite difference simulation of flow about arbitrary geometries with application to airfoils. AIAA J. 16(7), 679–686 (1978)

    Article  MATH  Google Scholar 

  46. van Leer, B.: Towards the ultimate conservative difference scheme II: Monotonicity and conservation combined in a second order scheme. J. Comput. Phys. 14, 361–370 (1974)

    Article  MATH  Google Scholar 

  47. van Leer, B.: Towards the ultimate conservative difference scheme V: A second order sequel to Godunov’s method. J. Comput. Phys. 32, 101–136 (1979)

    Article  MATH  Google Scholar 

  48. Venkatakrishnan, V.: On the accuracy of limiters and convergence to steady state solutions. AIAA paper 93-0880 (1993)

  49. Venkatakrishnan, V.: Convergence to steady state solutions of the Euler equations on unstructured grids with limiters. J. Comput. Phys. 118, 120–130 (1995)

    Article  MATH  Google Scholar 

  50. Venkatakrishnan, V., Mavriplis, D.: Implicit solvers for unstructured meshes. J. Comput. Phys. 105(1), 83–91 (1993)

    Article  MATH  Google Scholar 

  51. Liu, X.D., Chan, S.O.T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115, 200–212 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  52. Yee, H., Kutler, P.: Application of second-order-accurate total variation diminishing (tvd) schemes to the Euler equations in general geometries. AIAA paper NASA-TM-85845 (1985)

  53. Yee, H., Warming, R., Harten, A.: Implicit total variation diminishing (tvd) schemes for steady-state calculations. J. Comput. Phys. 57, 327–360 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  54. Zanotti, O., Dumbser, M., Loubère, R., Diot, S.: A posteriori subcell limiting for discontinuous galerkin finite element method for hyperbolic system of conservation laws. J. Comput. Phys. 278, 47–75 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  55. Zeng, S., Vuik, C., Wesseling, P.: Numerical solution of the incompressible navier-stokes equations by krylov subspace and multigrid methods. Adv. Comput. Math. 4, 27–49 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  56. Zhang, S., Shu, C.: A new smoothness indicator for the weno schemes and its effect on the convergence to steady state solution. J. Sci. Comput. 31, 273–305 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  57. Zhu, J., Qiu, J., Shu, C., Dumbser, M.: Runge-Kutta discontinuous galerkin method using WENO limiter II: Unstructured meshes. J. Comput. Phys. 227, 4330–4353 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The material of this research has been partly built during the SHARK workshops taking place in Ofir, Portugal, http://www.math.univ-toulouse.fr/SHARK-FV/. The authors would like to acknowledge the financial support of Campus France through the PHC Pessoa labeled 26922YH and entitled “Investigation on very high-order finite volume numerical schemes for fluid hydrodynamics simulation”. The research was also supported by the Research Center CMAT of the University of Minho, Portugal, with the Portuguese Funds from the ”Fundação para a Ciência e a Tecnologia”, through the Project PEstOE/MAT/UI0013/2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaspar J. Machado.

Additional information

Communicated by: Helge Holden

The original version of this article was revised: During typesetting figures 8 and 21 got corrupted and showed erroneous graph lines. Both figures were updated.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clain, S., Loubère, R. & Machado, G.J. a posteriori stabilized sixth-order finite volume scheme for one-dimensional steady-state hyperbolic equations. Adv Comput Math 44, 571–607 (2018). https://doi.org/10.1007/s10444-017-9556-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-017-9556-6

Keywords

Mathematics Subject Classification (2010)

Navigation