[重要なお知らせ (2023/8/12)] 現在,スライドの p.10 に不十分な記述があります.ルートの答えは 0 以上の数に限定することに注意してください (たとえば -3 を 2 乗しても 9 ですが,ルート 9 は -3 ではありません).なお,現在筆者のパソコンが修理中でデータがないので,修…
[重要なお知らせ (2023/8/12)] 現在,スライドの p.10 に不十分な記述があります.ルートの答えは 0 以上の数に限定することに注意してください (たとえば -3 を 2 乗しても 9 ですが,ルート 9 は -3 ではありません).なお,現在筆者のパソコンが修理中でデータがないので,修…
この記事は、線形代数において重要な「行列式」の概念だけを、予備知識ゼロから最短距離で理解したい人のための都合のいい記事です。 そのため、わかっている人から見れば「大雑把すぎじゃね?」「アレの話するんだったらアレの話もしないとおかしくね?」という部分が少なくないかもですが、趣旨をご理解いただいた上でお付き合いください。明らかな間違いに関しては、ご指摘いただけますと助かります。 線形変換 ↑座標です。 座標を変形することを考えます。つまり、座標変換です。 座標変換にもいろいろあって、以下のようにグニュッと曲げたやつ も座標変換には違いありませんが、今回ここで考えるのは線形変換だけにします。線形変換とは大雑把に言えば「すべての直線を直線に保つ」「原点を動かさない」という条件を満たす変換です。 そういう変換には例として、伸ばしたり縮めたりの拡大・縮小(scale)、原点中心に回す回転(rotate
Q.なぜ分散は、単純な差(偏差の絶対値)ではなく、差の2乗を計算するのか? A.分散を最も小さくする点が平均値だから。(単純な差を最も小さくする点は中央値となる。) “分散”というキーワードは統計学の基礎中の基礎であり、どんな教科書にも“平均”の次くらいに載っていることがらです。 しかしながら、いきなり登場する“分散”の意味が分からず、統計学の入り口で挫折する人は少なくありません。 偏差の2乗の平均、つまり、各値と平均との差の2乗の平均を分散といい、 分散の平方根の正の方を標準偏差という。 統計で、ちらばりを表すものとして、標準偏差や分散が多く用いられる。 -- 高校の教科書(啓林館)より. 教科書にはこのように書かれているのですが、これで分かった気になるでしょうか。 ・なぜ、差の2乗を計算するのか? ・差そのものであってはいけないのか? ・なぜ、分散と標準偏差の2種類があるのか? 最後の
About Project Euler What is Project Euler? Project Euler is a series of challenging mathematical/computer programming problems that will require more than just mathematical insights to solve. Although mathematics will help you arrive at elegant and efficient methods, the use of a computer and programming skills will be required to solve most problems. The motivation for starting Project Euler, and
The document describes various probability distributions that can arise from combining Bernoulli random variables. It shows how a binomial distribution emerges from summing Bernoulli random variables, and how Poisson, normal, chi-squared, exponential, gamma, and inverse gamma distributions can approximate the binomial as the number of Bernoulli trials increases. Code examples in R are provided to
統計学とか機械学習周りの本を読んでいると,何の説明もなくややこしい数学記号が出てきて,そういえばこれはなんだっただろう? と途方に暮れてしまうことが少なくないので,自分用にまとめなおしてみました,というのが今回のエントリ.あくまで自分用なので,全部の数学記号を扱ってるわけではありません*1. 代数学 記号 意味 用例 用例の意味 備考 総和 要するに足し算 総乗 要するにかけ算 クロネッカーのデルタ i=jなら1,それ以外なら0 要するにブーリアン条件 ナブラ *2 3次元ベクトルの微分 要するに各要素の微分 ラプラシアン 3次元ベクトルの2階微分 要するに各要素の2階微分 下限 のとき与式は0になる との違いは,は当該値を含む必要があるが,はないこと 上限 との違いは,は当該値を含む必要があるが,はないこと 関数値が最大となるような定義域の元の集合 を最大にするような がの下にくる場合も
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く