A New Lagrangian Problem Crossover—A Systematic Review and Meta-Analysis of Crossover Standards
<p>Simple deterministic processes in metaheuristic algorithms.</p> "> Figure 2
<p>Significant probability in the real-coded crossover.</p> "> Figure 3
<p>Generate new offspring with single-point crossover.</p> "> Figure 4
<p>Double-points crossover for generating two new children.</p> "> Figure 5
<p>Producing two fresh offspring by uniform crossover.</p> "> Figure 6
<p>Pseudocode and example of uniform crossover deliberation from crossover mask.</p> "> Figure 7
<p>SHX random occurrence.</p> "> Figure 8
<p>Pseudocode and example to explain TPX deliberation.</p> "> Figure 9
<p>Explain swapping RSPX.</p> "> Figure 10
<p>Target example for SAX.</p> "> Figure 11
<p>Generation of offspring by LX when <math display="inline"><semantics> <mrow> <mi>k</mi> </mrow> </semantics></math> = 1.</p> "> Figure 12
<p>BX for second genes by the range calculation.</p> "> Figure 13
<p>BX for second genes depending on <math display="inline"><semantics> <mrow> <mrow> <mi mathvariant="sans-serif">γ</mi> </mrow> </mrow> </semantics></math> parameter.</p> "> Figure 14
<p>SBX for the second Genes.</p> "> Figure 15
<p>Probability distributions of genes out of range at SBX.</p> "> Figure 16
<p>PMX development steps.</p> "> Figure 17
<p>CX operator progressive.</p> "> Figure 18
<p>The Lagrange multiplier shows the contour lines of the tangent function when gradient vectors are parallel.</p> "> Figure 19
<p>Create two new offspring depending on LPX.</p> "> Figure 20
<p>TF1(α = 0.2).</p> "> Figure 21
<p>TF1(α = 0.5).</p> "> Figure 22
<p>TF1(α = 0.7).</p> "> Figure 23
<p>TF3(α = 0.2).</p> "> Figure 24
<p>TF3 (α = 0.5).</p> "> Figure 25
<p>TF3(α = 0.7).</p> "> Figure 26
<p>TF7 (α = 0.2).</p> "> Figure 27
<p>TF7 (α = 0.5).</p> "> Figure 28
<p>TF7 (α = 0.7).</p> ">
Abstract
:1. Introduction
- There are several standard operators used to illustrate how the implementation was conducted and illustrate the mathematical crossover form using small examples and technique operations;
- As a systematic development of previous standards, it has enabled the use of binary form, real-coded form, and ordered-coded form methods;
- Based on LDF, a crossover operator has been proposed that can provide a novel optimum solution for population metaheuristic algorithms that use original metaheuristic optimization;
- The new anticipated LPX is evaluated by comparing it with selected previous tuning methods, a variation on the traditional GA, as discussed in the next sections;
- LPX is compared with other well performing crossover operators using the LPB algorithm as a single objective population-based algorithm and the affected random values and elapsed time are measured;
- The proposed standard operator is statistically analyzed and compared, using nonparametric statistical tests.
2. Crossover Standards Overview
3. Mathematical Crossover Standards
3.1. Binary Form Crossover
3.2. Real-Coded (Floating Point) Form Crossover
3.3. Order-Coded Problem Methods Crossover
4. Lagrangian Problem Crossover
- ▪
- ▪
- The main goal is to find locations where the contour lines of the multivariable function and the input space are adjacent to one another [76];
- ▪
- ▪
- Optimization with the Lagrangian method explores the application of Lagrange multiplier methods to find local and global convergence for Lagrangian methods under constraint minimization and maximization [79];
- ▪
- Based on LDF, LPX attempts to calculate the most appropriate offspring, which often involves taking a fairly significant step away from each parent.
5. Results and Discussion
5.1. Heuristic Evaluation Results
5.2. Exploitation and Convergence Evaluation Results
5.3. Statistical Evaluation Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Osaba, E.; Diaz, F.; Onieva, E.; Carballedo, R.; Perallos, A. AMCPA: A population metaheuristic with adaptive crossover probability and multi-crossover mechanism for solving combinatorial optimization problems. Int. J. Artif. Intell. 2014, 12, 1–23. [Google Scholar]
- Potra, F.A.; Wright, S.J. Interior-point methods. J. Comput. Appl. Math. 2000, 124, 281–302. [Google Scholar] [CrossRef] [Green Version]
- Goldberg, D.E.; Holland, J.H. Genetic algorithms and Machine Learning. Mach Learn. 1988, 3, 95–99. [Google Scholar] [CrossRef]
- Karaboga, D.; Basturk, B. On the performance of artificial bee colony (ABC) algorithm. Appl. Soft Comput. 2008, 8, 687–697. [Google Scholar] [CrossRef]
- Price, K.V. Differential Evolution. In Handbook of Optimization; Springer: Berlin/Heidelberg, Germany, 2013; pp. 187–214. [Google Scholar]
- Rahman, C.M.; Rashid, T.A. A new evolutionary algorithm: Learner performance based behavior algorithm. Egypt. Inform. J. 2021, 22, 213–223. [Google Scholar] [CrossRef]
- Yang, X.S. Social algorithms. arXiv 2018, arXiv:1805.05855. [Google Scholar]
- Beyer, H.G.; Deb, K. On self-adaptive features in real-parameter evolutionary algorithms. IEEE Trans. Evol. Comput. 2001, 5, 250–270. [Google Scholar] [CrossRef] [Green Version]
- Mirjalili, S.; Gandomi, A.H.; Mirjalili, S.Z.; Saremi, S.; Faris, H.; Mirjalili, S.M. Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 2017, 114, 163–191. [Google Scholar] [CrossRef]
- De Jong, K. Learning with genetic algorithms: An overview. Mach. Learn. 1988, 3, 121–138. [Google Scholar] [CrossRef] [Green Version]
- Sivanandam, S.N.; Deepa, S.N. Genetic Algorithms. In Introduction to Genetic Algorithms; Springer: Berlin/Heidelberg, Germany, 2008; pp. 15–37. [Google Scholar]
- Hassanat, A.B.; Alkafaween, E.A. On enhancing genetic algorithms using new crossovers. Int. J. Comput. Appl. Technol. 2017, 55, 202–212. [Google Scholar] [CrossRef]
- Ouattara, A.; Aswani, A. Duality approach to bilevel programs with a convex lower level. In Proceedings of the 2018 Annual American Control Conference (ACC), Milwaukee, WI, USA, 27–29 June 2018; IEEE: New York, NY, USA, 2016; pp. 1388–1395. [Google Scholar]
- Karimi-Mamaghan, M.; Mohammadi, M.; Meyer, P.; Karimi-Mamaghan, A.M.; Talbi, E.G. Machine Learning at the service of Meta-heuristics for solving Combinatorial Optimization Problems: A State-of-the-Art. Eur. J. Oper. Res. 2022, 296, 393–422. [Google Scholar] [CrossRef]
- Bäck, T.; Fogel, D.B.; Michalewicz, Z. (Eds.) Evolutionary Computation 1: Basic Algorithms and Operators; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Blum, C.; Roli, A. Metaheuristics in combinatorial optimization: Overview and conceptual comparison. ACM Comput. Surv. 2003, 35, 268–308. [Google Scholar] [CrossRef]
- Hussain, A.; Muhammad, Y.S.; Nauman Sajid, M.; Hussain, I.; Mohamd Shoukry, A.; Gani, S. Genetic algorithm for traveling salesman problem with modified cycle crossover operator. Comput. Intell. Neurosci. 2017, 7430125. [Google Scholar] [CrossRef]
- Ahmed, Z.H. Genetic algorithm for the traveling salesman problem using sequential constructive crossover operator. Int. J. Biom. Bioinform. 2010, 3, 96. [Google Scholar]
- Kaya, Y.; Uyar, M. A novel crossover operator for genetic algorithms: Ring crossover. arXiv 2011, arXiv:1105.0355. [Google Scholar]
- Dey, N. (Ed.) Advancements in Applied Metaheuristic Computing; IGI Global: Hershey, PA, USA, 2013. [Google Scholar]
- Puljić, K.; Manger, R. Comparison of eight evolutionary crossover operators for the vehicle routing problem. Math. Commun. 2013, 18, 359–375. [Google Scholar]
- Umbarkar, A.J.; Sheth, P.D. Crossover operators in genetic algorithms: A review. ICTACT J. Soft Comput. 2015, 6, 1083–1092. [Google Scholar]
- Pongcharoen, P.; Stewardson, D.J.; Hicks, C.; Braiden, P.M. Applying designed experiments to optimize the performance of genetic algorithms used for scheduling complex products in the capital goods industry. J. Appl. Stat. 2001, 28, 441–455. [Google Scholar] [CrossRef]
- Hameed, W.M.; Kanbar, A.B. A comparative study of crossover operators for genetic algorithms to solve travelling salesman problem. Int. J.Res. –Granthaalayah 2017, 5, 284–291. [Google Scholar] [CrossRef]
- Gain, A.; Dey, P. Adaptive Position–Based Crossover in the Genetic Algorithm for Data Clustering. Recent Adv. Hybrid Metaheuristics Data Clust. 2020, 39–59. [Google Scholar]
- Larranaga, P.; Kuijpers, C.M.H.; Murga, R.H.; Inza, I.; Dizdarevic, S. Genetic algorithms for the travelling salesman problem: A review of representations and operators. Artif. Intell. Rev. 1999, 13, 129–170. [Google Scholar] [CrossRef]
- Hilding, F.G.; Ward, K. Automated Operator Selection on Genetic Algorithms. In International Conference on Knowledge-Based and Intelligent Information and Engineering Systems; Springer: Berlin/Heidelberg, Germany, 2005; pp. 903–909. [Google Scholar]
- Katayama, K.; Sakamoto, H.; Narihisa, H. The efficiency of hybrid mutation genetic algorithm for the travelling salesman problem. Math. Comput. Model. 2000, 31, 197–203. [Google Scholar] [CrossRef]
- Patel, R.; Collins, D.; Bullock, S.; Swaminathan, R.; Blake, G.M.; Fogelman, I. The effect of season and vitamin D supplementation on bone mineral density in healthy women: A double-masked crossover study. Osteoporos. Int. 2001, 12, 319–325. [Google Scholar] [CrossRef]
- Thapatsuwan, P.; Chainate, W.; Pongcharoen, P. Investigation of genetic algorithm parameters and comparison of heuristic arrangements for container packing problem. Curr. Appl. Sci. Technol. 2006, 6, 274–284. [Google Scholar]
- Herrera, F.; Lozano, M.; Verdegay, J.L. Fuzzy connectives based crossover operators to model genetic algorithms population diversity. Fuzzy Sets Syst. 1997, 92, 21–30. [Google Scholar] [CrossRef]
- Ono, I. Real-coded genetic algorithm for function optimization using unimodal normal distribution crossover. In Proceedings of the 7th ICGA, East Lansing, MI, USA, 19–23 July 1997; pp. 246–253. [Google Scholar]
- Kita, H.; Ono, I.; Kobayashi, S. Theoretical analysis of the unimodal normal distribution crossover for real-coded genetic algorithms. Trans. Soc. Instrum. Control Eng. 1999, 35, 1333–1339. [Google Scholar] [CrossRef]
- Bosch, W. Discrete Crossover Analysis. In Dynamic Planet; Springer: Berlin/Heidelberg, Germany, 2007; Volume 35, pp. 131–136. [Google Scholar]
- Tawhid, M.A.; Ali, A.F. Simplex particle swarm optimization with arithmetical crossover for solving global optimization problems. Opsearch 2016, 53, 705–740. [Google Scholar] [CrossRef]
- Ling, S.H.; Leung, F.H. An improved genetic algorithm with average-bound crossover and wavelet mutation operations. Soft Comput. 2007, 11, 7–31. [Google Scholar] [CrossRef] [Green Version]
- Ackora-Prah, J.; Gyamerah, S.A.; Andam, P.S. A heuristic crossover for portfolio selection. Appl. Math. Sci. 2014, 8, 3215–3227. [Google Scholar] [CrossRef]
- García-Martínez, C.; Lozano, M.; Herrera, F.; Molina, D.; Sánchez, A.M. Global and local real-coded genetic algorithms based on parent-centric crossover operators. Eur. J. Oper. Res. 2008, 185, 1088–1113. [Google Scholar] [CrossRef]
- Hogue, R.W.; Singh, S.; Brooker, S. Spin crossover in discrete polynuclear iron (II) complexes. Chem. Soc. Rev. 2018, 47, 7303–7338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.; Chen, H.; Wang, M.; Heidari, A.A.; Mirjalili, S. Slime mould algorithm: A new method for stochastic optimization. Future Gener. Comput. Syst. 2020, 111, 300–323. [Google Scholar] [CrossRef]
- Wang, G.G. Moth search algorithm: A bio-inspired metaheuristic algorithm for global optimization problems. Memetic Comput. 2018, 10, 151–164. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, H.; Heidari, A.A.; Gandomi, A.H. Hunger games search: Visions, conception, implementation, deep analysis, perspectives, and towards performance shifts. Expert Syst. Appl. 2021, 177, 114864. [Google Scholar] [CrossRef]
- Heidari, A.A.; Mirjalili, S.; Faris, H.; Aljarah, I.; Mafarja, M.; Chen, H. Harris hawks optimization: Algorithm and applications. Future Gener. Comput. Syst. 2019, 97, 849–872. [Google Scholar] [CrossRef]
- Tu, J.; Chen, H.; Wang, M.; Gandomi, A.H. The colony predation algorithm. J. Bionic Eng. 2021, 18, 674–710. [Google Scholar] [CrossRef]
- Zamani, H.; Nadimi-Shahraki, M.H.; Gandomi, A.H. QANA: Quantum-based avian navigation optimizer algorithm. Eng. Appl. Artif. Intell. 2021, 104, 104314. [Google Scholar] [CrossRef]
- Albrechtsen, S.; Rasmussen, S.; Thoresen, S.; Irgens, L.M.; Iversen, O.E. Pregnancy Outcome in Women before and after Cervical Conisation: Population Based Cohort Study; BMJ: London, UK, 2008; p. 337. [Google Scholar]
- Hassanat, A.; Almohammadi, K.; Alkafaween, E.A.; Abunawas, E.; Hammouri, A.; Prasath, V.S. Choosing mutation and crossover ratios for genetic algorithms—A review with a new dynamic approach. Information 2019, 10, 390. [Google Scholar] [CrossRef] [Green Version]
- Katoch, S.; Chauhan, S.S.; Kumar, V. A review on genetic algorithm: Past, present, and future. Multimed. Tools Appl. 2021, 80, 8091–8126. [Google Scholar] [CrossRef]
- Sumathi, S.; Hamsapriya, T.; Surekha, P. Evolutionary Intelligence: An Introduction to Theory and Applications with Matlab; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Takahashi, M.; Kita, H. A crossover operator using independent component analysis for real-coded genetic algorithms. In Proceedings of the 2001 Congress on Evolutionary Computation, Seoul, Korea, 27–30 May 2001; IEEE Cat. No. 01TH8546. IEEE: New York, NY, USA, 2002; Volume 1, pp. 643–649. [Google Scholar]
- Herrera, F.; Lozano, M.; Sánchez, A.M. Hybrid crossover operators for real-coded genetic algorithms: An experimental study. Soft Comput. 2005, 9, 280–298. [Google Scholar] [CrossRef]
- Picek, S.; Golub, M. Comparison of a crossover operator in binary-coded genetic algorithms. WSEAS Trans. Comput. 2010, 9, 1064–1073. [Google Scholar]
- Magalhaes-Mendes, J. A comparative study of crossover operators for genetic algorithms to solve the job shop scheduling problem. WSEAS Trans. Comput. 2013, 12, 164–173. [Google Scholar]
- Hu, X.B.; Paolo, E.D. An Efficient Genetic Algorithm with Uniform Crossover for the Multi-Objective Airport Gate Assignment Problem. In Multi-Objective Memetic Algorithms; Springer: Berlin/Heidelberg, Germany, 2009; pp. 71–89. [Google Scholar]
- Singh, D.; Singh, V.; Ansari, U. Binary particle swarm optimization with crossover operation for discrete optimization. Int. J. Comput. Appl. 2011, 28, 15–20. [Google Scholar] [CrossRef]
- Kötzing, T.; Sudholt, D.; Theile, M. How crossover helps in pseudo-Boolean optimization. In Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, Dublin, Ireland, 12–16 July 2011; pp. 989–996. [Google Scholar]
- Zhang, X.; Zhang, Q.; Zhang, X. Nonuniform antenna array design by parallelizing three-parent crossover genetic algorithm. EURASIP J. Wirel. Commun. Netw. 2017, 1, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Devaraj, D.; Selvabala, B. Real-coded genetic algorithm and fuzzy logic approach for real-time tuning of proportional–integral–derivative controller in automatic voltage regulator system. IETGener. Transm. Distrib. 2009, 3, 641–649. [Google Scholar] [CrossRef]
- Lee, K.Y.; Mohamed, P.S. A real-coded genetic algorithm involving a hybrid crossover method for power plant control system design. In Proceedings of the 2002 Congress on Evolutionary Computation, Honolulu, HI, USA, 12–17 May 2002; CEC’02 (Cat. No. 02TH8600). IEEE: New York, NY, USA, 2002; Volume 2, pp. 1069–1074. [Google Scholar]
- Ankudinov, A.L.; Bouldin, C.E.; Rehr, J.J.; Sims, J.; Hung, H. Parallel calculation of electron multiple scattering using Lanczos algorithms. Phys. Rev. B 2002, 65, 104107. [Google Scholar] [CrossRef] [Green Version]
- Picek, S.; Jakobovic, D.; Golub, M. On the recombination operator in the real-coded genetic algorithms. In Proceedings of the 2013 IEEE Congress on Evolutionary Computation, Cancun, Mexico, 20–23 June 2013; IEEE: New York, NY, USA, 2013; pp. 3103–3110. [Google Scholar]
- Lim, S.M.; Sultan, A.B.M.; Sulaiman, M.N.; Mustapha, A.; Leong, K.Y. Crossover and mutation operators of genetic algorithms. Int. J. Mach. Learn. Comput. 2017, 7, 9–12. [Google Scholar] [CrossRef] [Green Version]
- Hamid, Z.A.; Musirin, I.; Othman, M.M.; Rahim, N.A. Efficient power scheduling via stability index-based tracing technique and blended crossover continuous ant colony optimization. Aust. J. Basic Appl. Sci. 2011, 5, 1335–1347. [Google Scholar]
- Zou, D.; Liu, H.; Gao, L.; Li, S. A novel modified differential evolution algorithm for constrained optimization problems. Comput. Math. Appl. 2011, 61, 1608–1623. [Google Scholar] [CrossRef] [Green Version]
- Deep, K.; Thakur, M. A new crossover operator for real coded genetic algorithms. Appl. Math. Comput. 2007, 188, 895–911. [Google Scholar] [CrossRef]
- Azevedo, C.R.B. Geração de Diversidade Na Otimização Dinâmica Multiobjetivo Evolucionária Por Paisagens de Não-Dominância. Master’s Thesis, Universidade Federal de Pernambuco, Recife, Brazil, 2011. [Google Scholar]
- Chacón, J.; Segura, C. Analysis and enhancement of simulated binary crossover. In Proceedings of the 2018 IEEE Congress on Evolutionary Computation (CEC), Rio de Janeiro, Brazil, 8–13 July 2018; IEEE: New York, NY, USA, 2018; pp. 1–8. [Google Scholar]
- Deb, K.; Beyer, H.G. Self-adaptive genetic algorithms with simulated binary crossover. Evol. Comput. 2001, 9, 197–221. [Google Scholar] [CrossRef] [PubMed]
- Liao, C.C.; Ting, C.K. A novel integer-coded memetic algorithm for the set $ k $-cover problem in wireless sensor networks. IEEE Trans. Cybern. 2017, 48, 2245–2258. [Google Scholar] [CrossRef] [PubMed]
- Desjardins, B.; Falcon, R.; Abielmona, R.; Petriu, E. Planning Robust Sensor Relocation Trajectories for a Mobile Robot with Evolutionary Multi-Objective Optimization. In Computational Intelligence in Wireless Sensor Networks; Springer: Cham, Switzerland, 2017; pp. 179–210. [Google Scholar]
- Koohestani, B. A crossover operator for improving the efficiency of permutation-based genetic algorithms. Expert Syst. Appl. 2020, 151, 113381. [Google Scholar] [CrossRef]
- Yoon, H.S.; Moon, B.R. An empirical study on the synergy of multiple crossover operators. IEEE Trans. Evol. Comput. 2002, 6, 212–223. [Google Scholar] [CrossRef] [Green Version]
- Mudaliar, D.N.; Modi, N.K. Unraveling travelling salesman problem by genetic algorithm using m-crossover operator. In Proceedings of the 2013 International Conference on Signal Processing, Image Processing & Pattern Recognition, Coimbatore, India, 7–8 February 2013; IEEE: New York, NY, USA, 2013; pp. 127–130. [Google Scholar]
- Viana, M.S.; Morandin Junior, O.; Contreras, R.C. A modified genetic algorithm with local search strategies and multi-crossover operator for job shop scheduling problem. Sensors 2020, 20, 5440. [Google Scholar] [CrossRef]
- Ahmadi, A.; El Bouanani, F.; Ben-Azza, H.; Benghabrit, Y. A Novel Decoder Based on Parallel Genetic Algorithms for Linear Block Codes. Int. J. Commun. Netw. Syst. Sci. 2013, 6, 27468. [Google Scholar] [CrossRef] [Green Version]
- Nikol’skii, S.M. Approximation of Functions of Several Variables and Imbedding Theorems; Springer Science & Business Media: Berlin, Germany, 2012; Volume 205. [Google Scholar]
- Rao, D.K.; Khan, M.G.; Khan, S. Mathematical programming on multivariate calibration estimation in stratified sampling. Int. J. Math. Comput. Phys. Electr. Comput. Eng. 2012, 6, 58–62. [Google Scholar]
- Avriel, M. Nonlinear Programming: Analysis and Methods; Courier Corporation: North Chelmsford, MA, USA, 2003. [Google Scholar]
- Bertsekas, D.P. Constrained Optimization and Lagrange Multiplier Methods; Academic Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Lin, Z.; Chen, M.; Ma, Y. The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices. arXiv 2010, arXiv:1009.5055. [Google Scholar]
- Liang, S.; Zeng, X.; Hong, Y. Distributed nonsmooth optimization with coupled inequality constraints via modified Lagrangian function. IEEE Trans. Autom. Control 2017, 63, 1753–1759. [Google Scholar] [CrossRef] [Green Version]
- Gerstmayr, J.; Sugiyama, H.; Mikkola, A. Review on the absolute nodal coordinate formulation for large deformation analysis of multibody systems. J. Comput. Nonlinear Dyn. 2013, 8, 031016. [Google Scholar] [CrossRef]
- Han, W.; Jung, D.W.; Lee, J.; Yu, C. Determination of eigenvectors with Lagrange multipliers. J. Korean Phys. Soc. 2021, 78, 1018–1022. [Google Scholar] [CrossRef]
- Ito, K.; Kunisch, K. Lagrange Multiplier Approach to Variational Problems and Applications; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2008. [Google Scholar]
- Breusch, T.S.; Pagan, A.R. The Lagrange multiplier test and its applications to model specification in econometrics. Rev. Econ. Stud. 1980, 47, 239–253. [Google Scholar] [CrossRef]
- Ehrgott, M. A discussion of scalarization techniques for multiple objective integer programming. Ann. Oper. Res. 2006, 147, 343–360. [Google Scholar] [CrossRef]
- Bazaraa, M.S.; Sherali, H.D.; Shetty, C.M. Lagrangian duality and saddle point optimality conditions. Nonlinear Program Theory Algorithms 2013, 199–242. [Google Scholar]
- Mahmudov, E.N. Approximation and Optimization of Discrete and Differential Inclusions; Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Arora, K.; Kumar, A.; Kamboj, V.K.; Prashar, D.; Jha, S.; Shrestha, B.; Joshi, G.P. Optimization methodologies and testing on standard benchmark functions of load frequency control for interconnected multi area power system in smart grids. Mathematics 2020, 8, 980. [Google Scholar] [CrossRef]
- Nadimi-Shahraki, M.H.; Fatahi, A.; Zamani, H.; Mirjalili, S. Binary Approaches of Quantum-Based Avian Navigation Optimizer to Select Effective Features from High-Dimensional Medical Data. Mathematics 2022, 10, 2770. [Google Scholar] [CrossRef]
- Vanneschi, L.; Castelli, M.; Silva, S. A survey of semantic methods in genetic programming. Genet. Program. Evolvable Mach. 2014, 15, 195–214. [Google Scholar] [CrossRef]
- Picek, S.; Golub, M.; Jakobovic, D. Evaluation of Crossover Operator Performance in Genetic Algorithms with Binary Representation. In International Conference on Intelligent Computing; Springer: Berlin/Heidelberg, Germany, 2011; pp. 223–230. [Google Scholar]
- Hakimi, D.; Oyewola, D.O.; Yahaya, Y.; Bolarin, G. Comparative analysis of genetic crossover operators in knapsack problem. J. Appl. Sci. Environ. Manag. 2016, 20, 593–596. [Google Scholar] [CrossRef] [Green Version]
- Malik, S.; Wadhwa, S. Preventing premature convergence in genetic algorithm using DGCA and elitist technique. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 2014, 4, 410–418. [Google Scholar]
- Abdullah, J.M.; Ahmed, T. Fitness dependent optimizer: Inspired by the bee swarming reproductive process. IEEE Access 2019, 7, 43473–43486. [Google Scholar] [CrossRef]
- Jamil, M.; Yang, X.S. A literature survey of benchmark functions for global optimisation problems. Int. J. Math. Model. Numer. Optim. 2013, 4, 150–194. [Google Scholar] [CrossRef] [Green Version]
- Hassan, B.A.; Rashid, T.A. A multidisciplinary ensemble algorithm for clustering heterogeneous datasets. Neural Comput. Appl. 2021, 33, 10987–11010. [Google Scholar] [CrossRef]
- Lim, R.; Zhou, L.; Gupta, A.; Ong, Y.S.; Zhang, A.N. Solution representation learning in multi-objective transfer evolutionary optimization. IEEE Access 2021, 9, 41844–41860. [Google Scholar] [CrossRef]
- Hong, H.; Ye, K.; Jiang, M.; Cao, D.; Tan, K.C. Solving large-scale multiobjective optimization via the probabilistic prediction model. Memetic Comput. 2022, 14, 165–177. [Google Scholar] [CrossRef]
- Ting, C.K.; Su, C.H.; Lee, C.N. Multi-parent extension of partially mapped crossover for combinatorial optimization problems. Expert Syst. Appl. 2010, 37, 1879–1886. [Google Scholar] [CrossRef]
- Hama Rashid, D.N.; Rashid, T.A.; Mirjalili, S. ANA: Ant Nesting Algorithm for Optimizing Real-World Problems. Mathematics 2021, 9, 3111. [Google Scholar] [CrossRef]
- Abdulhameed, S.; Rashid, T.A. Child drawing development optimization algorithm based on child’s cognitive development. Arab. J. Sci. 2022, 47, 1337–1351. [Google Scholar] [CrossRef]
- Braik, M.; Sheta, A.; Al-Hiary, H. A novel meta-heuristic search algorithm for solving optimization problems: Capuchin search algorithm. Neural Comput. Appl. 2021, 33, 2515–2547. [Google Scholar] [CrossRef]
- Papadrakakis, M.; Lagaros, N.D.; Tsompanakis, Y.; Plevris, V. Large scale structural optimization: Computational methods and optimization algorithms. Arch. Comput. Methods Eng. 2001, 8, 239–301. [Google Scholar] [CrossRef]
- Feng, Y.; Deb, S.; Wang, G.G.; Alavi, A.H. Monarch butterfly optimization: A comprehensive review. Expert Syst. Appl. 2021, 168, 114418. [Google Scholar] [CrossRef]
- Wang, Z.; Zheng, L.; Li, H. Distributed optimization over general directed networks with random sleep scheme. Int. J. Control Autom. Syst. 2020, 18, 2534–2542. [Google Scholar] [CrossRef]
- Hasan, D.O.; Aladdin, A.M.; Talabani, H.S.; Rashid, T.A.; Mirjalili, S. The Fifteen Puzzle—A New Approach through Hybridizing Three Heuristics Methods. Computers 2023, 12, 11. [Google Scholar] [CrossRef]
No. | Standard Crossover Operator Name | Initial Abbreviation | Related Work |
---|---|---|---|
1 | Order Crossover Operator | OX1 | [17,20,21] |
2 | Sequential Constructive crossover | SCX | [18] |
3 | Order-Based Crossover Operator | OX2-OBX | [20,22] |
4 | Maximal Preservation Crossover | MPX | [22,23] |
5 | Alternating Edges Crossover | AEX | [21,23,24] |
6 | Edge Recombination Crossover | ERX | [20,21] |
7 | Position-Based Crossover Operator | POS | [20,22,25] |
8 | Voting Recombination Crossover Operator | VR | [20,22] |
9 | Alternating Position Crossover Operator | AP | [20,26] |
10 | Automated Operator Selection | AOS | [27] |
11 | Complete Sub-tour Exchange Crossover | CSEX | [22,28] |
12 | Double Masked Crossover | BMX | [22,29] |
13 | Fuzzy Connectives Based Crossover | FCB | [30,31] |
14 | Unimodal Normal Distribution Crossover | UNDX | [32,33] |
15 | Discrete Crossover | DC | [34] |
16 | Arithmetical Crossover | AC | [19,31,35] |
17 | Average Bound Crossover | ABX | [36] |
19 | Heuristic Crossover | HC | [17,37] |
20 | Parent Centric Crossover | PCX | [22,38] |
21 | Spin Crossover | SCO | [39] |
Perfection of Crossovers Generation | Shortcomings of Crossovers Generation |
---|---|
|
|
TF | Functions | Range | Dimension |
---|---|---|---|
TF1 | [−100, 100] | 10 | |
TF3 | [−100, 100] | 10 | |
TF7 | [−1.28, 1.28] | 10 |
Standards | BX | SBX | LPX | |||||||
---|---|---|---|---|---|---|---|---|---|---|
α | Test Functions | Sum | Mean | STD | Sum | Mean | STD | Sum | Mean | STD |
0.2 | TF1 | 42.36 | 0.42 | 0.30 | 31.37 | 0.31 | 0.32 | 1737.56 | 17.38 | 17.09 |
TF3 | 60.00 | 0.60 | 0.66 | 60.00 | 0.60 | 0.66 | 3197.01 | 31.97 | 31.27 | |
TF7 | 779.24 | 7.79 | 10.78 | 487.58 | 4.88 | 9.52 | 1,937,510.53 | 19,375.11 | 33,631.08 | |
0.5 | TF1 | 30.00 | 0.30 | 0.30 | 38.58 | 0.39 | 0.30 | 2776.00 | 27.76 | 26.17 |
TF3 | 60.00 | 0.60 | 0.66 | 60.00 | 0.60 | 0.66 | 5273.89 | 52.74 | 50.06 | |
TF7 | 461.88 | 4.62 | 9.41 | 661.72 | 6.62 | 10.21 | 4,348,187.50 | 43,481.88 | 64,658.48 | |
0.7 | TF1 | 35.49 | 0.35 | 0.31 | 46.82 | 0.47 | 0.30 | 3648.64 | 36.49 | 34.78 |
TF3 | 60.00 | 0.60 | 0.66 | 60.00 | 0.60 | 0.66 | 7019.17 | 70.19 | 67.65 | |
TF7 | 579.02 | 5.79 | 9.88 | 941.45 | 9.41 | 11.81 | 7,300,002.73 | 73,000.03 | 109,185.64 |
Test Fun. | α | LPX | SBX | BX | Qubit-X | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | STD | Time (S.) | Mean | STD | Time (S.) | Mean | STD | Time (S.) | Mean | STD | Time (S.) | ||
TF1 | 0.2 | 0.0635 | 0.0184 | 141.740 | 0.01751 | 0.0236 | 161.423 | 0.04428 | 0.0446 | 150.384 | 0.1758 | 0.0926 | 144.474 |
0.5 | 0.0680 | 0.0281 | 149.798 | 0.04161 | 0.0270 | 162.160 | 0.04178 | 0.0323 | 157.700 | 0.1411 | 0.0510 | 151.992 | |
0.7 | 0.0596 | 0.0279 | 151.112 | 0.02959 | 0.0172 | 188.501 | 0.04150 | 0.0294 | 163.809 | 0.1425 | 0.1045 | 157.042 | |
TF3 | 0.2 | 43.5652 | 24.8093 | 159.289 | 83.37500 | 59.0221 | 178.260 | 41.60497 | 28.4041 | 169.970 | 120.7210 | 73.2963 | 164.986 |
0.5 | 40.4260 | 26.2073 | 165.144 | 78.18210 | 52.1304 | 161.057 | 52.58699 | 37.7840 | 169.130 | 175.6268 | 119.6147 | 165.608 | |
0.7 | 66.7197 | 58.8220 | 164.711 | 85.92191 | 71.4473 | 180.216 | 50.67240 | 49.2447 | 167.669 | 81.3198 | 52.6167 | 164.450 | |
TF7 | 0.2 | 0.0048 | 0.0031 | 143.005 | 0.01351 | 0.0188 | 153.884 | 0.00624 | 0.0045 | 156.457 | 0.0076 | 0.0043 | 160.718 |
0.5 | 0.0049 | 0.0027 | 152.029 | 0.00770 | 0.0066 | 164.322 | 0.00616 | 0.0029 | 162.973 | 0.0094 | 0.0051 | 147.530 | |
0.7 | 0.0052 | 0.0033 | 157.893 | 0.00773 | 0.0056 | 164.504 | 0.00709 | 0.0042 | 163.520 | 0.0123 | 0.0064 | 155.061 |
Test Functions | α | Standards | |
---|---|---|---|
LPX vs. SBX | LPX vs. BX | ||
TF1 | 0.2 | 3.6746 × 10−16 | 5.3124 × 10−16 |
0.5 | 4.7409 × 10−17 | 4.0951 × 10−17 | |
0.7 | 4.7409 × 10−17 | 3.8618 × 10−17 | |
TF3 | 0.2 | 8.5768 × 10−16 | 8.5768 × 10−16 |
0.5 | 9.5355 × 10−17 | 9.5355 × 10−17 | |
0.7 | 8.2482 × 10−17 | 8.2482 × 10−17 | |
TF7 | 0.2 | 1.6983 × 10−16 | 2.6103 × 10−16 |
0.5 | 4.0951 × 10−17 | 3.2378 × 10−17 | |
0.7 | 3.2378 × 10−17 | 2.0802 × 10−17 |
Test Functions | α | Standards | ||
---|---|---|---|---|
LPX vs. SBX | LPX vs. BX | LPX vs. Qubit-X | ||
TF1 | 0.2 | 0.000031 | 0.002415 | 0.000005 |
0.5 | 0.000241 | 0.001965 | 0.000002 | |
0.7 | 0.00042 | 0.015658 | 0.000031 | |
TF3 | 0.2 | 0.002765 | 0.517048 | 0.000002 |
0.5 | 0.006836 | 0.318491 | 0.000002 | |
0.7 | 0.328571 | 0.393334 | 0.271155 | |
TF7 | 0.2 | 0.000716 | 0.298944 | 0.009271 |
0.5 | 0.044919 | 0.085896 | 0.000664 | |
0.7 | 0.071903 | 0.057096 | 0.000058 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aladdin, A.M.; Rashid, T.A. A New Lagrangian Problem Crossover—A Systematic Review and Meta-Analysis of Crossover Standards. Systems 2023, 11, 144. https://doi.org/10.3390/systems11030144
Aladdin AM, Rashid TA. A New Lagrangian Problem Crossover—A Systematic Review and Meta-Analysis of Crossover Standards. Systems. 2023; 11(3):144. https://doi.org/10.3390/systems11030144
Chicago/Turabian StyleAladdin, Aso M., and Tarik A. Rashid. 2023. "A New Lagrangian Problem Crossover—A Systematic Review and Meta-Analysis of Crossover Standards" Systems 11, no. 3: 144. https://doi.org/10.3390/systems11030144
APA StyleAladdin, A. M., & Rashid, T. A. (2023). A New Lagrangian Problem Crossover—A Systematic Review and Meta-Analysis of Crossover Standards. Systems, 11(3), 144. https://doi.org/10.3390/systems11030144