[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Simplex particle swarm optimization with arithmetical crossover for solving global optimization problems

  • Application Article
  • Published:
OPSEARCH Aims and scope Submit manuscript

Abstract

In this paper, we propose a new hybrid algorithm by combining the particle swarm optimization with a genetic arithmetical crossover operator after applying a modification on it in order to avoid the problem of stagnation and premature convergence of the population. In the final stage of the algorithm, we applied the Nelder-Mead method as a local search method in order to accelerate the convergence and avoid running the algorithm without any improvements in the results. We call the new proposed algorithm by simplex particle swarm optimization with a modified arithmetical crossover (SPSOAC). We test SPSOAC on 7 integer programming optimization benchmark functions, 10 minimax problems and 10 CEC05 functions. We present the general performance of the proposed algorithm by comparing SPSOAC against 13 benchmark algorithms. The Experiments results show the proposed algorithm is a promising algorithm and has a powerful performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bacanin, N., Tuba, M.: Artificial Bee Colony (ABC) Algorithm for constrained optimization improved with genetic operators, studies in informatics and control 21 (2), 137–146 (2012)

  2. Bera, A., Sychel, D.: Hybrids of Two-Subpopulation PSO Algorithm with Local Search Methods for Continuous Optimization. In: Artificial Intelligence and Soft Computing, pp. 307–18. Springer International Publishing (2015)

  3. Chang, W.D.: PID Control for chaotic synchronization using particle swarm optimization. Chaos, Solitons & Fractals 39(2), 910–917 (2009)

    Article  Google Scholar 

  4. Bacanin, N., Brajevic, I., Tuba, M.: Firefly algorithm applied to integer programming problems Recent Advances in Mathematics (2013)

  5. Bandler, J.W., Charalambous, C.: Nonlinear programming using minimax techniques. J. Optim. Theory Appl. 13, 607–619 (1974)

    Article  Google Scholar 

  6. Borchers, B., Mitchell, J.E.: Using an interior point method In a branch and bound algorithm for integer programming”, Technical Report, Rensselaer Polytechnic Institute (1992)

  7. Coello, C.A.C., Pulido, G.T., Lechuga, M.S.: Handling multiple objectives with particle swarm optimization. IEEE Trans. Evol. Comput. 8(3), 256–279 (2004)

    Article  Google Scholar 

  8. Chen, Z., Yu, L.: An Improved PSO-NM Algorithm for Structural Damage Detection. In: Advances in Swarm and Computational Intelligence, pp. 124–132. Springer International Publishing (2015)

  9. De Jong, K.A.: Genetic algorithms: A 10 year perspective. In: International Conference on Genetic Algorithms, pp. 169–177 (1985)

  10. Du, D.Z., Pardalose, P.M.: Minimax and applications, Kluwer (1995)

  11. Esmin, A.A., Lambert-Torres, G., Alvarenga, G.B.: Hybrid evolutionary algorithm based on PSO and GA mutation. In: Proceedings of 6th International Conference on Hybrid Intelligent Systems, pp. 57–62 (2006)

  12. Evers, G., Ben Ghalia, M.: Regrouping particle swarm optimization: a new global optimization algorithm with improved performance consistency across benchmarks. In: IEEE International Conference on Systems, Man and Cybernetics, pp. 3901–3908 (2009)

  13. Fletcher, R.: Practical method of optimization , Vol. 1 & 2 John Wiley and Sons (1980)

  14. Gandelli, E.A., Grimaccia, F., Mussetta, M., Pirinoli, P., Zich, R.E.: Genetical swarm optimization: a new hybrid evolutionary algorithm for electromagnetic application. In: Proceedings of the 18th International Conference on Applied Electromagnetics. 18th International Conference on ICECcom 2005, ICECom 2005, pp. 1–4 (2005)

  15. Gandelli, E.A., Grimaccia, F., Mussetta, M., Pirinoli, P., Zich, R.E.: Genetical swarm optimization: an evolutionary algorithm for antenna design. Journal of AUTOMATIKA 47(3–4), 105–112 (2006)

    Google Scholar 

  16. Gandelli, E.A., Grimaccia, F., Mussetta, M., Pirinoli, P., Zich, R.E.: Development and validation of different hybridization strategies between GA and PSO. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp. 2782–2787 (2007)

  17. Garcia, S., Fernandez, A., Luengo J., Herrera, F.: A study of statistical techniques and performance measures for genetics-based machine learning, accuracy and interpretability. Soft. Comput. 13, 959–96977 (2009)

    Article  Google Scholar 

  18. Gill, P.E., Murray, W., Wright, M.H.: Practical Optimzization. Academic Press, London (1981)

    Google Scholar 

  19. Glankwahmdee, A., Liebman, J.S., Hogg, G.L.: Unconstrained discrete nonlinear programming. Eng. Optim. 4, 95–107 (1979)

    Article  Google Scholar 

  20. Goldberg, D.E.: Genetic algorithms in search, Optimization, and Machine Learning Addison-Wesley (1989)

  21. Grimaldi, E.A., Grimacia, F., Mussetta, M., Pirinoli, P., Zich, R.E.: A new hybrid genetical-swarm algorithm for electromagnetic optimization. In: Proceedings of Interna- tional Conference on Computational Electromagnetics and its Applications, Beijing, China, pp. 157–160 (2004)

  22. Guedria, N.B.: Improved accelerated PSO algorithm for mechanical engineering optimization problems. Appl. Soft Comput. 40, 455–467 (2016)

    Article  Google Scholar 

  23. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor, MI (1975)

    Google Scholar 

  24. Horst, R., Tuy, H.: Global Optimization, Deterministic Approaches. Springer (1996)

  25. Isabel, A.C.P., Santo, E., Fernandes, E.: Heuristics pattern search for bound constrained minimax problems. Computational Science and Its Applications - ICCSA 2011 Lecture Notes in Computer Science 6784(2011), 174–184 (2011)

    Google Scholar 

  26. Jian, M., Chen, Y.: Introducing recombination with dynamic linkage discovery to particle swarm optimization. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 85–86 (2006)

  27. Jovanovic, R., Tuba, M.: An ant colony optimization algorithm with improved pheromone correction strategy for the minimum weight vertex cover problem. Appl. Soft Comput. 11(8), 5360–5366 (2011)

    Article  Google Scholar 

  28. Jovanovic, R., Tuba, M.: Ant colony optimization algorithm with pheromone correction Strategy for minimum connected dominating set problem. Computer Science and Information Systems (comSIS) Issue 9, 4 (2012). doi:10.2298/CSIS110927038J

    Google Scholar 

  29. Juang, C.F.: A hybrid of genetic algorithm and particle swarm optimization for recurrent network design. IEEE Transactions On Systems, Man, And cybernetics-Part B: Cybernetics 34, 997–1006 (2004)

    Article  Google Scholar 

  30. Kennedy, J., Eberhart, R.C.: Swarm Intelligence. Morgan Kaufmann, San Mateo (2001)

    Google Scholar 

  31. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. Proceedings of the IEEE International Conference on Neural Networks 4, 1942–1948 (1995)

    Article  Google Scholar 

  32. Kim, H.: Improvement of genetic algorithm using PSO and Euclidean data distance. Int. J. Inf. Technol. 12, 142–148 (2006)

    Google Scholar 

  33. Krink, T., Lvbjerg, M.: The lifecycle model: combining particle swarm optimization, genetic algorithms and hill climbers. In: Proceedings of the Parallel Problem Solving From Nature, pp. 621–630 (2002)

  34. Laskari, E.C., Parsopoulos, K.E., Vrahatis, M.N.: Particle swarm optimization for integer programming. In: Proceedings of the IEEE 2002 congress on evolutionary computation Honolulu (HI), pp. 1582–1587 (2002)

  35. Lawler, E.L., Wood, D.W.: Branch and bound methods: a survey. Oper. Res. 14, 699–719 (1966)

    Article  Google Scholar 

  36. Lei, M.D.: A Pareto archive particle swarm optimization for multiobjective job shop scheduling. Comput. Ind. Eng. 54(4), 960–971 (2008)

    Article  Google Scholar 

  37. Liang, J.J., Suganthan, P.N., Deb, K.: Novel Composition Test Functions for Numerical Global Optimization. In: Proceedings of 2005 IEEE Swarm Intelligence Symposium, pp. 68-75 (2005)

  38. Liuzzi, G., Lucidi, S., Sciandrone, M.: A derivative-free algorithm for linearly constrained finite minimax problems. SIAM J. Optim. 16, 1054–1075 (2006)

    Article  Google Scholar 

  39. Lukan, L., Vlcek, J.: Test Problems for Nonsmooth Unconstrained and Linearly Constrained Optimization Technical Report 798. Institute of Computer Science, Academy of Sciences of the Czech Republic, Prague, Czech Republic (2000)

    Google Scholar 

  40. Manquinho, V.M., Marques Silva, J.P., Oliveira, A.L., Sakallah, K.A.: Branch and Bound Algorithms for Highly Constrained Integer Programs, Technical Report. Cadence European Laboratories, Portugal (1997)

    Google Scholar 

  41. Mesbahi, T., Khenfri, F., Rizoug, N., Chaaban, K., Bartholomes, P., Le, P.: Moigne, Dynamical modeling of Li-ion batteries for electric vehicle applications based on hybrid Particle Swarm-Nelder-Mead (PSO-NM) optimization algorithm. Electr. Power Syst. Res. 131, 195–204 (2016)

    Article  Google Scholar 

  42. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. Springer, Berlin (1996)

    Book  Google Scholar 

  43. Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014)

    Article  Google Scholar 

  44. Mohammadi, A., Jazaeri, M.: A hybrid particle swarm optimization-genetic algorithm for optimal location of SVC devices in power system planning. In: Proceedings of 42nd International Universities Power Engineering Conference, pp. 1175–1181 (2007)

  45. Nelder, J.A., Mead, R.: A simplex method for function minimization. Comput. J. 7, 308–313 (1965)

    Article  Google Scholar 

  46. Nemhauser, G.L., Rinnooy Kan, A.H.G., Todd, M.J.: Editor, Handbooks in OR & MS, volume 1 Elsevier (1989)

  47. Parsopoulos, K.E., Vrahatis, M.N.: Unified particle swarm optimization for tackling operations research problems. In: Proceeding of IEEE 2005 swarm Intelligence Symposium, Pasadena, USA, pp. 53–59 (2005)

  48. Petalas, Y.G., Parsopoulos, K.E., Vrahatis, M.N.: Memetic particle swarm optimization. Ann. Oper. Res. 156, 99–127 (2007)

    Article  Google Scholar 

  49. Polak, E., Royset, J.O., Womersley, R.S.: Algorithms with adaptive smoothing for finite minimax problems. J. Optim. Theory Appl. 119, 459–484 (2003)

    Article  Google Scholar 

  50. Rao, S.S.: Engineering Optimization-Theory and Practice. Wiley, New Delhi (1994)

    Google Scholar 

  51. Robinson, J., Sinton, S., Samii, Y.R.: Particle swarm, genetic algorithm, and their hybrids: optimization of a profiled corrugated horn antenna. In: Proceedings of the IEEE International Symposium in Antennas and Propagation Society, pp. 314–317 (2002)

  52. Rudolph, G.: An Evolutionary Algorithm for Integer Programming. In: Davidor Y, Schwefel H-P, Manner R (Eds), pp. 139–148, Parallel Problem Solving from Nature 3 (1994)

  53. Schwefel, H.P.: Evolution and Optimum Seeking. Wiley, New York (1995)

    Google Scholar 

  54. Settles, M., Soule, T.: Breeding swarms, a GA/PSO hybrid. In: Proceedings of Genetic and Evolutionary Computation Conference, pp. 161–168 (2005)

  55. Sheskin, D.J.: Handbook of Parametric and Nonparametric Statistical Procedures. CRC Press, Boca Raton (2003)

    Book  Google Scholar 

  56. Tuba, M., Bacanin, N., Stanarevic, N.: Adjusted artificial bee colony (ABC) algorithm for engineering problems. WSEAS Trans. Comput. 11(4), 111–120 (2012)

    Google Scholar 

  57. Tuba, M., Subotic, M., Stanarevic, N.: Performance of a modified cuckoo search algorithm for unconstrained optimization problems. WSEAS Transactions on Systems 11(2), 62–74 (2012)

    Google Scholar 

  58. Wilson, B.: A Simplicial Algorithm for Concave Programming. Harvard University, PhD thesis (1963)

    Google Scholar 

  59. Xu, S.: Smoothing method for minimax problems. Comput. Optim. Appl. 20, 267–279 (2001)

    Article  Google Scholar 

  60. Yang, Y., Chen, Z., Zhao, Z.: A hybrid evolutionary algorithm by combination of PSO and GA for unconstrained and constrained optimization problems. In: Proceedings of the IEEE International Conference on Control and Automation, pp. 166–170 (2007)

  61. Yang, X.S., Deb, S.: Cuckoo search via levy ights. In: 2009 World Congress on Nature and Biologically Inspired Computing, NaBIC, pp. 210-214. IEEE (2009)

  62. Yang, X.S.: Firefly algorithm, stochastic test functions and design optimization. International Journal of Bio-Inspired Computation 2(2), 78–84 (2010)

    Article  Google Scholar 

  63. Zahara, E., Kao, Y.T.: Hybrid NelderMead simplex search and particle swarm optimization for constrained engineering design problems. Expert Syst. Appl. 36(2), 3880–3886 (2009)

    Article  Google Scholar 

  64. Zar, J.H.: Biostatistical Analysis. Prentice Hall, Englewood Cliffs (1999)

    Google Scholar 

  65. Zhang, J.D., Jia, D.L., Li, K.: FIR Digital filters design based on Chaotic mutation particle swarm optimization. In: Proceedings of the IEEE International Conference on Audio, Language and Image Processing, pp. 418–422 (2008)

  66. Zielinski, K., Weitkemper, P., Laur, R.: Optimization of power allocation for interference cancellation with particle swarm optimization. IEEE Trans. Evol. Comput. 13(1), 128–150 (2009)

    Article  Google Scholar 

  67. Zuhe, S., Neumaier, A., Eiermann, M.C.: Solving minimax problems by interval methods. BIT 30, 742–751 (1990)

    Article  Google Scholar 

Download references

Acknowledgments

We thank the reviewers for their thorough review and highly appreciate the comments and suggestions, which significantly contributed to improving the quality of the paper. The research of the 1st author is supported in part by the Natural Sciences and Engineering Research Council of Canada (NSERC). The postdoctoral fellowship of the 2nd author is supported by NSERC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed A. Tawhid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tawhid, M.A., Ali, A.F. Simplex particle swarm optimization with arithmetical crossover for solving global optimization problems. OPSEARCH 53, 705–740 (2016). https://doi.org/10.1007/s12597-016-0256-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12597-016-0256-7

Keywords

Navigation