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Abstract. Genetic algorithms represent a class of adaptive search techniques that
have been intensively studied in recent years. Much of the interest in genetic al-
gorithms is due to the fact that they provide a set of efficient domain-independent
search heuristics which are a significant improvement over traditional “weak meth-
ods” without the need for incorporating highly domain-specific knowledge. There
is now considerable evidence that genetic algorithms are useful for global function
optimization and NP-hard problems. Recently, there has been a good deal of interest
in using genetic algorithms for machine learning problems. This paper provides a
brief overview of how one might use genetic algorithms as a key element in learning
systems.

1. Introduction

The variety and complexity of learning systems makes it difficult to formulate
a universally accepted definition of learning. However, a common denominator
of most learning systems is their capability for making structural changes to
themselves over time with the intent of improving performance on tasks de-
fined by their environment, discovering and subsequently exploiting interesting
concepts, or improving the consistency and generality of internal knowledge
structures.

Given this perspective, one of the most important means for understanding
the strengths and limitations of a particular learning system is a precise char-
acterization of the structural changes that are permitted and how such changes
are made. In classical terms, this corresponds to a clear understanding of the
space of possible structural changes and the legal operators for selecting and
making changes.

This perspective also lets one more precisely state the goal of the research
in applying genetic algorithms to machine learning, namely, to understand
when and how genetic algorithms can be used to explore spaces of legal struc-
tural changes in a goal-directed manner. This paper summarizes our current
understanding of these issues.
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2. Exploiting the power of genetic algorithms

Genetic algorithms (GAs) are a family of adaptive search procedures that
have been described and extensively analyzed in the literature (De Jong, 1980;
Grefenstette, 1986; Holland, 1975). GAs derive their name from the fact that
they are loosely based on models of genetic change in a population of individ-
uals. These models consist of three basic elements: (1) a Darwinian notion of
“fitness,” which governs the extent to which an individual can influence future
generations; (2) a “mating operator,” which produces offspring for the next
generation; and (3) “genetic operators,” which determine the genetic makeup
of offspring from the genetic material of the parents.

A key point of these models is that adaptation proceeds, not by making
incremental changes to a single structure (e.g., Winston, 1975; Fisher, 1987),
but by maintaining a population {or database) of structures from which new
structures are created using genetic operators such as crossover and mutation.
Each structure in the population has an associated fitness (goal-oriented evalu-
ation), and these scores are used in a competition to determine which structures
are used to form new ones.

There is a large body of both theoretical and empirical evidence showing
that, even for very large and complex search spaces, GAs can rapidly locate
structures with high fitness ratings using a database of 50-100 structures. Fig-
ure 1 gives an abstract example of how the fitness of individuals in a population
improves over time. Readers interested in a more detailed discussion of GAs
should see Holland (1975), De Jong (1980), and Grefenstette (1986).

The purpose of this paper is to understand when and how GAs can lead to
goal-directed structural changes in learning systems. We are now in a position
to make some general observations, which we will explore in more detail in
subsequent sections.

The key feature of GAs is their ability to exploit accumulating information
about an initially unknown search space in order to bias subsequent search
into useful subspaces. Clearly, if one has a strong domain theory to guide
the process of structural change, one would be foolish not to use it. However,
for many practical domains of application, it is very difficult to construct such
theories. If the space of legal structural changes is not too large, one can usually
develop an enumerative search strategy with appropriate heuristic cutoffs to
keep the computation time under control. If the search space is large, however,
a good deal of time and effort can be spent in developing domain-specific
heuristics with sufficient cutoff power. It is precisely in these circumstances
(large, complex, poorly understood search spaces) that one should consider
exploiting the power of genetic algorithms.

At the same time, one must understand the price to be paid for search-
ing poorly understood spaces. Tt typically requires 500--1000 samples before
genetic algorithms have sufficient information to strongly bias subsequent sam-
ples into useful subspaces. This means that GAs will not be appropriate search
procedures for learning domains in which the evaluation of 500-1000 alterna-
tive structural changes is infeasible. The variety of current activity in using
GAs for machine learning suggests that many interesting learning problems
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Figure 1. An abstract example of adaptive search using genetic algorithms.

fall into this category; i.e., involving large. complex, poorly understood search
spaces in contexts that permit sampling rates sufficient to support GAs.

In discussing these activities, it will help to have a more concrete model
of the architecture of a learning system that uses genetic algorithms. The
simplest GA-based learning systems to describe are those whose goals are per-
formance oriented. In this framework, the environment defines one or more
tasks to be performed, and the learning problem involves both skill acquisi-
tion and skill refinement. It is generally useful to separate such systems (at
least conceptually) into two subsystems as illustrated in Figure 2: a GA-based
learning component charged with making appropriate stiuctural changes, and
a task component! whose performance-oriented behavior is to be improved.

!Within the machine learning literature, this is often called the performance component.
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Figure 2. A performance-oriented learning system.

We are now in a position to describe how one might exploit the power of
genetic algorithms in a learning system of the type depicted in Figure 2. The
key idea is to define a space of admissible structures to be explored via GAs.
Each point in this space represents the “genetic material” of a task subsystem
in the sense that, when injected with this structure, its task performance is now
well defined and can be measured. The learning strategy involves maintaining
a population of tested structures and using GAs to generate new structures
with better performance expectations.

In considering the kinds of structural changes that might be made to the task
subsystem, there are a variety of approaches of increasing sophistication and
complexity. The simplest and most straightforward approach is for the GAs to
alter a set of parameters that control the behavior of a predeveloped, param-
eterized performance program. A second, more interesting, approach involves
changing more complex data structures, such as “agendas,” that control the
behavior of the task subsystem. A third and even more intriguing approach
involves changing the task program itself. The following sections explore each
of these possibilities in more detail.

3. Using genetic algorithms to change parameters

A simple and intuitive approach to effecting behavioral changes in a perfor-
mance system is to identify a key set of parameters that control the system’s
behavior, and to develop a strategy for changing those parameters’ values to
improve performance. The primary advantage of this approach is that it imme-
diately places us on the familiar terrain of parameter optimization problems,
for which there is considerable understanding and guidance, and for which the
simplest forms of GAs can be used. It is easy at first glance to discard this
approach as trivial and not at all representative of what is meant by “learn-
ing.” But note that significant behavioral changes can be achieved within this
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simple framework. Samuel’s (1959, 1967) checker player is a striking example
of the power of such an approach. If one views the adjustable weights and
thresholds as parameters of a structurally-fixed neural network, then much of
the research on neural net learning also falls into this category.

How can one use genetic algorithms to quickly and efficiently search for
combinations of parameters that improve performance? The simplest and most
intuitive approach views the parameters as genes and the genetic material of
individuals as a fixed-length string of genes, one for each parameter. The
crossover operator then generates new parameter combinations from existing
good combinations in the current database (population) and mutation provides
new parameter values.

There is considerable evidence, both experimental and theoretical, that GAs
can home in on high-performance parameter combinations at a surprising rate
(De Jong, 1975; Brindle, 1980; Grefenstette, 1986). Typically, even for large
search spaces (e.g., 1030 points), acceptable combinations are found after only
ten simulated generations. To be fair, however, there are several issues that
can catch a GA practitioner off guard when attacking a particular problem in
parameter modification.

The first issue involves the number of distinct values that genes (parameters)
can take on. With population sizes generally in the 50-100 range, a given
population can usually represent only a small fraction of the possible gene
values. Since the only way of generating new gene values is via mutation, one
can be faced with the following dilemma. If the mutation rate is too low, there
can be insufficient global sampling to prevent premature convergence to local
peaks. However, significantly increasing the rate of mutation can lead to a
form of random search that decreases the probability that new individuals will
have high performance. Fortunately, this problem has both a theoretical and
a practical solution, although it is not obvious to the casual reader.

Holland (1975) provides an analysis of GAs which suggests that they are
most effective when each gene takes on a small number of values, and that
binary (two-valued) genes are in some sense optimal for GA-style adaptive
search. This theoretical result translates rather naturally into what has now
become standard practice in the GA community. Rather than representing a
20-parameter problem internally as strings of 20 genes (with each gene tak-
ing on many values), one uses a binary string representation that represents
parameters as groups of binary-valued genes. Although the two spaces are
equivalent in that both represent the same parameter space, GAs perform sig-
nificantly better on the binary representation. This effect occurs because, in
addition to mutation, crossover now generates new parameter values each time
it combines part of a parameter’s bits from one parent with those of another.

The simplest way to illustrate this point is to imagine the extreme case of
a domain in which one must adjust a single parameter that can take on 230
distinct values. Representing this problem internally as a one-gene problem
renders crossover useless and leaves mutation as the only mechanism for gener-
ating new individuals. However, a 30-gene binary representation lets crossover
play an active and crucial role in generating new parameter values with high
performance expectations.
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A second issue that arises in this context is that of convergence to a global
optimum. Can we guarantee or expect with high probability that GAs will
find the undisputed best combination of parameter settings for a particular
problem? The answer is both “yes” and “no.” Theoretically, every point in
the search space has a nonzero probability of being sampled. However, for
most problems of interest, the search space is so large that it is impractical
to wait long enough for guaranteed global optimums. A better view is that
GAs constitute powerful sampling heuristics that can rapidly find high-quality
solutions in complex spaces.

In summary, one simple but effective approach is to restrict structural change
to parameter modification and to use GAs to quickly locate useful combinations
of parameter values. De Jong (1980) and Grefenstette (1986) provide more
detailed examples of this approach.

4. Using genetic algorithms to change data structures

There are many problems for which the simple parameter modification ap-
proach is inappropriate, in the sense that more significant structural changes
to task programs seem to be required. Frequently in these situations, a more
complex data structure is intimately involved in controlling the behavior of the
task, and so the most natural approach uses GAs to alter these key structures.
For instance, such problems occur when the task system whose behavior is to
be modified is designed with a top-level “agenda” control mechanism. Systems
for traveling-salesman, bin-packing, and scheduling problems are frequently or-
ganized in this manner, as are systems driven by decision trees. In this confext
G As must select data structures to be tested, evaluated, and subsequently used
to fabricate better ones.

At first glance, this approach may not seem to introduce any difficulties
for genetic algorithms, since it is usually not hard to “linearize” these data
structures, map them into a string representation that a GA can manipulate,
and then reverse the process to produce new data structures for evaluation.
However, again there are some subtle issues, and the designer must be familiar
with them in order to make effective use of GA-based learning systems.

As in the previous section on parameter spaces, these issues center around
the way in which the space (in this case, a space of data structures) to be
searched is represented internally for manipulation by GAs. One can eas-
ily invent internal string representations for agendas and other complex data
structures, but for many of these schemes, almost every new structure pro-
duced by the standard crossover and mutation operators represents an illegal
data structure!

An excellent example of this problem arises in using GAs to find good agen-
das (tours) for a traveling salesman who needs to visit N cities exactly once
while minimizing the distance traveled. The most straightforward approach
would internally represent a tour as N genes, with the value of each gene indi-
cating the name of the next city to be visited. However, notice that GAs using
the standard crossover and mutation operators will explore the space of all
N-tuples of city names (most of which are illegal tours) when, in fact, it is the
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space of all permutations of the N city names that is of interest. The obvious
problem is that, as N increases, the space of permutations becomes a vanish-
ingly small subset of the space of N-tuples, and the powerful GA sampling
heuristic has been rendered impotent by a poor choice of representation.

Fortunately, sensitivity to this issue is usually sufficient to avoid it in one of
several ways. One approach is to design an alternative representation of the
same space for which the traditional genetic operators are appropriate. GA
researchers have taken this approach on a variety of such problems, including
the traveling-salesman problem (e.g., see Grefenstette, Gopal, Rosmaita, &
Van Gucht, 1985).

An equally useful alternative is to select different genetic operators that
are more appropriate to “natural representations.” For example, in the case
of traveling salesman problems, a genetic-like inversion operator (which can
be viewed as a particular kind of permutation operator) is clearly a more
natural operator. Similarly, one can define representation-sensitive crossover
and mutation operators to assure that offspring represent legal points in the
solution space (e.g., see Goldberg & Lingle, 1985; Davis, 1985).

The key point here is that there is nothing sacred about the traditional
string-oriented genetic operators. The mathematical analysis of GAs indicates
that they work best when the internal representation encourages the emergence
of useful building blocks that can subsequently be combined with each other
to improve performance. String representations are just one of many ways of
achieving this goal.

5. Using genetic algorithms to change executable code

So far we have explored two approaches to using GAs to effect structural
changes to task subsystems: (1) by changing critical parameter values, and
(2) by changing key data structures. In this section we discuss a third possi-
bility: effecting behavioral changes in a task subsystem by changing the task
program itself. Although there is nothing fundamentally different between a
task program that interprets an agenda data structure and one that executes
a LISP program, generally the space of structural changes to executable code
is considerably larger and very complex. In any case, there is a good deal of
interest in systems that learn at this level, and the remainder of the paper will
discuss how GAs can be used in such systems.

5.1 Choosing a programining language

Since our goal is to use genetic algorithms to evolve entire task programs,
it 1s important to choose a task programming language that is well suited to
manipulation by genetic operators. At first glance, this does not seem to be
much of an issue, since programs written in conventional languages like FOR-
TRAN and PASCAL (or even less conventional ones like LISP and PROLOG)
can be viewed as linear strings of symbols. This is certainly the way they
are treated by editors and compilers in current program development environ-
ments. However, it is also clear that this “natural” representation is disastrous
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for traditional GAs, since standard operators like crossover and mutation pro-
duce few syntactically correct programs and even fewer that are semantically
correct.

One alternative is to devise new language-specific genetic operators that
preserve at least the syntactic (and hopefully, the semantic) integrity of the
programs being manipulated. Unfortunately, the syntactic and semantic com-
plexity of traditional languages makes it difficult to develop such operators.
An obvious next step would be to focus on less traditional languages with sim-
pler syntax and semantics (e.g., “pure” LISP), thus having the potential for
reasonable genetic operators with the required properties. There have been a
number of activities in this area (e.g., see Fujiki & Dickinson, 1987).

However, pure LISP shares an important feature with more traditional lan-
guages: it is procedural in nature, and procedural representations have prop-
erties that cause difficulty for GA applications. One obvious problem involves
order dependencies; interchanging two lines of code can render a program
meaningless. Another is the occurrence of context-sensitive interpretations;
minor changes to a section of code, such as the insertion or deletion of a punc-
tuation symbol, can change the entire meaning of the succeeding code. De Jong
(1985) presents a more detailed discussion of these representation problems.

These representational issues are not new. Holland (1975) anticipated them
and proposed a family of languages (called broadcast languages) that were de-
signed to overcome the problems described above. It is now clear that broad-
cast languages are a subset of a more general class of languages known as
production systems (Newell, 1973; Neches, Langley, & Klahr, 1987). Produc-
tion systems (PSs) continue to reassert their usefulness across a wide range of
activities, from compiler design to expert systems; thus, a good deal of time
and effort has gone into studying their use in evolving task programs with
genetic algorithms.

5.2 Learning production-system programs

One reason that production systems have emerged as a favorite programming
paradigm in both the expert system and machine learning communities is that
they provide a representation of knowledge that can simultaneously support
two kinds of activities: (1) treating knowledge as data to be manipulated
as part of a knowledge-acquisition and refinement process, and (2) treating
knowledge as an executable entity to be used in performing a particular task
(Buchanan & Mitchell, 1978; Hedrick, 1976). This is particularly true of data-
driven PSs such as OPS5 (Forgy, 1981), in which the production rules making
up a program are treated as an unordered set of rules whose left-hand sides
independently and in parallel monitor changes in the environment.

1t should be obvious that this same programming paradigm offers significant
advantages for GA applications. In fact, it has precisely the same character-
istics as Holland’s early broadcast languages. As a consequence, we will focus
on PSs whose programs consist of unordered rules, and describe how GAs can
be used to search the space of PS programs for useful rule sets.
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To anyone who has read Holland (1975), a natural way to proceed is to
represent an entire rule set as a string (an individual), maintain a population
of candidate rule sets, and use selection and genetic operators to produce new
generations of rule sets. Historically, this was the approach taken by De Jong
and his students while at the University of Pittsburgh (e.g., see Smith, 1980,
1983), which gave rise to the phrase “the Pitt approach.”

However, during the same time period, Holland developed a model of cogni-
tion (classifier systems) in which the members of the population are individual
rules and a rule set is represented by the entire population (e.g., see Holland
& Reitman, 1978; Booker, 1982). This quickly became known as “the Michi-
gan approach” and initiated a friendly but provocative series of discussions
concerning the strengths and weaknesses of the two approaches. Below we
consider each framework in more detail.

5.2.1 The Pitt approach

If we adopt the view that each individual in a GA population represents
an entire PS program, there are several issues that must be addressed. The
first is the (by now familiar) choice of representation. The most immediate
representation that comes to mind is to regard individual rules as genes and to
view entire programs as strings of these genes. Crossover then serves to provide
new combinations of rules and mutation provides new rules. However, notice
that we have chosen a representation in which genes can take on many values.
As discussed in the previous section on parameter modification, this can result
in premature convergence when population sizes are typically 50-100. Since
individuals represent entire PS programs, it is unlikely that one can afford to
significantly increase the size of the population. Nor, as we have seen, does
it help to increase the rate of mutation. Rather, we need to move toward an
internal binary representation of the space of PS programs so that crossover is
also involved in constructing new rules from parts of existing rules.

If we go directly to a binary representation, we must now exercise care that
crossover and mutation are appropriate operators in the sense in that they
produce new high-potential individuals from existing ones. The simplest way
to guarantee this is to assume that all rules have a fixed-length, fixed-field
format. Although this may seem restrictive in comparison with the flexibility
and variability of OPS5 (Forgy, 1981) or MYCIN (Buchanan & Shortliffe, 1984)
rules, it has proven to be quite adequate when working at a lower sensory level.
At this level, one typically has a fixed number of detectors and effectors, so
that condition-action rules quite naturally take the form of a fixed number of
detector patterns to be matched, together with an action appropriate for those

conditions. Many of the successful classifier systems rely on this assumption
(Wilson, 1985; Goldberg, 1985).

However, it is not difficult to relax this assumption and allow more flexible
rule sets without subverting the power of the genetic operators. One can
achieve this by making the operators “representation sensitive,” in the sense
that they no longer make arbitrary changes to linear bit strings. Rather, one
extends the internal representation to provide punctuation marks so that only
meaningful changes occur. For example, if the crossover operator chooses to
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break one parent on a rule boundary, it also breaks the other parent on a
rule boundary. Smith (1983) and Schaffer (1985) have used this approach
successfully in their LS systems.

A second representation-related issue that arises in the Pitt approach in-
volves the number of rules in each set. If we think of rule sets as programs or
knowledge bases, it seems rather artificial to demand that all rule sets be the
same size. Historically, however, all of the analytical results and most of the
experimental work has assumed GAs that maintain populations of fixed-length
strings.

One can adopt the same view using the Pitt approach and require all rule
sets (strings) to have the same fixed length. This can be justified in terms
of the advantages of having redundant copies of rules and having workspace
within a rule set for new experimental building blocks without necessarily hav-
ing to replace existing ones. However, Smith (1980) has extended many of the
formal results on genetic algorithms to variable-length strings. He comple-
mented these results with a GA implementation that maintained a population
of variable-length strings and that efficiently generated variable-length rule sets
for a variety of tasks. One interesting contribution of this work was a method
for keeping down the size of the rule sets, based on a bonus for achieving the
same level of performance with a shorter string.

With these issues resolved, GAs have been shown to be surprisingly effective
in producing nontrivial rule sets for such diverse tasks as solving maze prob-
lems, playing poker, and classifying gaits. We direct the interested reader to
Smith (1983) and Schaffer (1985) for more details.

5.2.2 The Michigan approach

Holland and his colleagues developed a quite different approach to learning
production-system programs while working on computational models of cogni-
tion. In this context, it seemed natural to view the knowledge (experience) of
a particular person (cognitive entity) as a collection of rules that are modified
over time via interaction with the environment. Unlike genetic material, this
kind of knowledge does not evolve over generations via selection and mating.
Rather, it accumulates in real time as the individual struggles to cope with his
environment. Out of this perspective came a family of cognitive models called
classifier systems, in which rules rather than rules sets are the internal entities
manipulated by genetic algorithms.

Classifier systems consist of a set of rules (classifiers) that manipulate an
internal message list. The left-hand side of each classifier consists of a pattern
that matches messages on the message list. The right-hand side of each clas-
sifier specifies a message to be posted on the message list if that classifier is
allowed to fire. Interaction with the environment is achieved via a task-specific
set of detectors that post detector messages on the message list, along with
a set of task-specific effectors that generate external actions in response to
posted messages. A classifier system is “perturbed” by the arrival of one or
more detector messages indicating a change in the environment. This results
in a sequence of rule firings as the contents of the message list changes, and it
may result in one or more responses in the form of effector actions.
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Learning in classifier systems is achieved by requiring that the environment
provide intelligent feedback to the classifier system in the form of reward (pun-
ishment) whenever favorable (unfavorable) states are reached. Since an arbi-
trary number of rules can fire during the interval between two successive pay-
offs, a significant credit assignment problem arises in determining how payoff
should be distributed. Holland (1986) has developed a “bucket brigade” mech-
anism for solving this problem. Based on a strong “service economy” metaphor,
the bucket brigade distributes payoff (wealth) to those rules actively involved
in sequences that result in rewards. Over time, wealthier rules become more
likely to fire, since they are favored by the conflict-resolution mechanism.

As described, classifier systems are able to select useful subsets of rules
from an existing rule set. However, additional behavioral improvements can
be obtained by making changes to the rules as well. As the reader may have
guessed, this is achieved by interpreting the wealth of individual rules as a
measure of “fitness,” and using genetic algorithms to select, recombine, and
replace rules on the basis of their fitness.

There are a number of impressive examples of classifier systems that regulate
gas flow through pipelines (Goldberg, 1985), control vision systems (Wilson,
1985), and infer Boolean functions (Wilson, 1987). Which approach is better,
the Pitt or Michigan approach, in the sense of being more effective in evolving
task programs? It is too early to answer this question or even to determine if
the question is valid. The current popular view is that the classifier approach
will prove to be most useful in an on-line, real-time environment in which
radical changes in behavior cannot be tolerated, whereas the Pitt approach
will be more useful for off-line environments in which more leisurely exploration
and more radical behavioral changes are acceptable.

5.3 Architectural issues for production systems

So far we have focused on representation issues in an attempt to under-
stand how GAs can be used to learn PS programs. The only constraint on
production-system architectures that has emerged is that GAs are much more
effective on PS programs that consist of unordered rules. In this section we
summarize some additional implications that the use of GAs might have on
the design of PS architectures.

5.3.1 The left-hand side of rules

Many of the rule-based expert system paradigms (e.g., MycCIN-like shells)
and most traditional programming languages provide an IF-THEN format in
which the left-hand side is a Boolean expression to be evaluated. This Boolean
sublanguage can itself become quite syntactically complex and can raise many
of the representational issues discussed earlier. In particular, variable-length
expressions, varying types of operators and operands, and function invocations
make it difficult to choose a representation and/or a set of genetic operators
that produce useful offspring easily and efficiently.

Languages like OPS5 and SNOBOL take an alternative approach, assuming
the left-hand side is a pattern to be matched. Unfortunately, the pattern
language can be as complex as Boolean expressions and in some cases is even
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more complex, due to the additional need to save matched objects for later
use in the pattern or in the right-hand side.

Consequently, the GA implementor must temper the style and complexity
of the left-hand side with the need for an effective internal representation. As
a consequence, many implementations have followed Holland’s lead and have
chosen the simple {0, 1, #} fixed-length pattern language, permitting a direct
application of traditional genetic operators, which were designed to manipulate
fixed-length binary strings. When combined with internal working memory,
such languages can be shown to be computationally complete. However, this
choice is not without problems. The rigid fixed-length nature of the patterns
can require complex and creative representations of the objects to be matched.
Simple relationships like “speed > 200” may require multiple rule firings and
the use of internal memory to ensure correct evaluation. As discussed earlier,
some of this rigidity can be alleviated by the use of context-sensitive genetic
operators (Smith 1983). However, finding a better compromise between sim-
plicity and expressive power of the left-hand sides is an active area of research.

A favorite psychological motivation for preferring pattern matching rather
than Boolean expressions is the intuition that humans use the powerful mech-
anism of partial matching to deal with the enormous variety of every day life.
Seldom are humans in precisely the same situation twice, but they manage to
function reasonably well by noting the current situation’s similarity to previous
experience.

This has led to interesting discussions as to how GAs might capture similar-
ity computationally in a natural and efficient way. Holland and other advocates
of the {0, 1, #} paradigm argue that this is precisely the role that the wild-card
symbol “#” plays as patterns evolve to their appropriate level of generality.
Booker (1982, 1985) and others have suggested that requiring perfect matches
even with the {0, 1, #} pattern language is still too rigid a requirement, par-
ticularly as the length of the left-hand side pattern increases. Rather than
returning simply success or failure, they feel that the pattern matcher should
return a score indicating how close the pattern came to matching. This is
an important issue, and we need more work on methods for computing match
scores in a reasonably general but computationally efficient manner. We direct
the interested reader to Booker (1985) for more details.

5.3.2 Working memory

Another PS architectural issue revolves around the decision about whether
to use “stimulus-response” production systems, in which left-hand sides only
attend to external events and right-hand sides consist only of invocations of
external effectors, or whether to use the more general OPS model, in which
rules can also attend to elements in an internal working memory and make
changes to that memory.

Arguments in favor of the latter approach observe that the addition of
working memory provides a more powerful computational engine, which is
frequently required with fixed-length rule formats. The strength of this argu-
ment can be weakened somewhat by noting that in some cases the external
environment itself can be used as a working memory.
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Arguments against including working memory generally fall along three
lines: (1) the application does not need the additional generality and com-
plexity; (2) concerns about bounding the number of internal actions before
generating the next external action (i.e., the halting problem); or (3) the fact
that most of the more traditional concept-learning work (e.g., Winston, 1975;
Michalski, 1983) has focused on stimulus-response approaches.

Most GA implementations of working memory provide a restricted form
of internal memory, namely, a fixed-format, bounded-capacity message list
(Holland & Reitman, 1978; Booker, 1982). However, it is clear that there are
many uses for both classes of architecture. The important point here is that
this choice is not imposed by GAs themselves.

5.3.8 Parallelism in production systems

Another side benefit of PSs with working memory is that they can be easily
extended to allow parallel rule firings (Thibadeau, Just, & Carpenter, 1982;
Rosenbloom & Newell, 1987). In principle, the only time that serialization
must occur is when an external effector is activated. Hence, permitting par-
allel firing of rules that invoke internal actions is a natural way to extend
PS architectures in order to exploit the power of parallelism. Of course, the
implementor must decide whether this power is appropriate for a particular
application. What should be clear is that GAs can be applied equally well to
parallel PS architectures, leaving the choice to the designer.

5.4 The role of feedback

In attempting to understand how GAs can be used to learn PS programs,
we have discussed how such programs can be represented and what kinds of
architectures can be used to exploit the power of GAs. In this section we focus
on a third issue: the role of feedback.

Recall that one can view GAs as using an adaptive sampling strategy to
search large, complex spaces. This sampling scheme is adaptive in the sense
that feedback from current samples is used to bias subsequent sampling into
regions with high expected performance. This means that, even if one has
chosen a good representation and has selected an appropriate PS architecture,
the effectiveness of GAs in learning PS programs will also depend on the use-
fulness of the information obtained via feedback. Since the designer typically
has a good deal of freedom on this dimension, it is important that he select a
feedback mechanism that facilitates this adaptive search strategy.

Fortunately, there is a family of feedback mechanisms which are both simple
to use and which experience has shown to be very effective: payoff functions.
This form of feedback uses a classical “reward and punishment” scheme, in
which performance evaluation is expressed in terms of a payoff value. GAs can
employ this information (almost) directly to bias the selection of parents used
to produce new samples (offspring). Of course, not all payoff functions are
equally suited for this role. A good function will provide useful information
early in the search process to help focus attention. For example, a payoff
function that is nearly always zero provides almost no information for directing
the search process.
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The Michigan and Pitt approaches differ somewhat in the way they obtain
payoff. In classifier systems, the bucket brigade mechanism stands ready to
distribute payoff to those rules which are deemed responsible for achieving
that payoff. Because payoff is the currency of the bucket brigade economy, a
good feedback mechanism will provide a relatively steady flow of payoff, rather
than having long “dry spells.” Wilson’s (1985) “animat” environment is an
excellent example of this style of payoff.

The situation is somewhat different in the Pitt approach, since the usual
view of evaluation consists of injecting an individual PS program into the task
subsystem and evaluating how well that program as a whole performs. This
view leads to some interesting issues, such as whether to reward a program
that performs a task as well as others but uses less space (rules) or time (rule
firings). Smith (1980) found it useful to break up the payoff function into
two components: a task-specific evaluation and a task-independent measure of
the program itself. Although he combined these two components into a single
payoff value, recent work by Schaffer {1985) suggests that it might be more
effective to use a vector-valued payoff function in such situations.

We still have much to learn about the role of feedback, from both an analyt-
ical and an empirical point of view. Bethke (1980) has used Walsh transforms
in formally analyzing the types of feedback information that are best suited for
GA-style adaptive search. Recent experimental work by Grefenstette (1988)
suggests one way to combine aspects of both the Michigan and Pitt approaches,
employing a multilevel credit assignment strategy that assigns payoff to both
rule sets and individual rules. This is an interesting idea that promises to
generate a good deal of discussion, and it merits further attention.

5.5 The use of domain knowledge

Genetic algorithms are conventionally viewed as domain-independent search
methods in that they can be applied with no knowledge of the space being
searched. However, although no domain knowledge is required, there are ample
opportunities to exploit domain knowledge if it is available. We have already
seen some examples of how domain knowledge can be incorporated. A designer
must select the space to be searched and the internal representation to be used
by GAs. As discussed in the previous sections, such decisions require knowledge
about both the problem domain and the characteristics of GAs. The choice of
genetic operators is closely related to representation decisions, and a significant
domain knowledge can also enter into their selection. Grefenstette et al. (1985)
provide an excellent discussion of these issues.

A more direct example of domain knowledge involves the choice of the initial
population used to start the search process. Although we have described the
initial population as randomly selected, there is no reason to start with an
empty slate if one has a priori information available that permits seeding the
initial population with individuals known to have certain performance levels.

A third and more obvious way to exploit domain knowledge is by means of
the feedback mechanism. As we have seen, the effectiveness of GAs depends on
the usefulness of the feedback information provided. Even the simplest form of
feedback (the payoff-only method) can and frequently does incorporate domain
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knowledge into an effective payoff function. More elaborate forms of feedback,
such as the vector-valued strategies and multi-level feedback mechanisms dis-
cussed above, provide additional opportunities to incorporate domain-specific
knowledge. Thus, in practice we see a variety of scenarios, ranging from the
use of “vanilla” GAs with little or no domain-specific modifications to highly
creative applications that incorporate a good deal of domain knowledge.

6. Summary and conclusions

We started this paper with the goal of understanding how genetic algo-
rithms might be applied to machine learning problems. We suggested that a
good way to answer this question was to visualize a system as consisting of two
components: a task subsystem whose behavior is to be modified over time via
learning, and a learning subsystem responsible for observing the task subsys-
tem over time and effecting the desired behavioral changes. This perspective
let us focus on the kinds of structural changes a learning subsystem might make
to a task subsystem in order to effect behavioral changes. We identified three
classes of structural changes of increasing complexity: parameter modification,
data structure manipulation, and changes to executable code.

Having characterized learning in this way, we restated the problem in terms
of searching the space of legal structural changes for instances that achieve
the desired behavioral changes. If one is working in a domain for which there
is a strong theory to guide this search, it would be silly not to exploit such
knowledge. However, there are many domains in which uncertainty and igno-
rance preclude such approaches and require the learning algorithm to discover
(infer) the important characteristics of the search space while the search is
in progress. This is the context in which GAs are most effective. Without
requiring significant amounts of domain knowledge, GAs have been used to
effectively search spaces from each of the categories listed above.

At the same time, it is important to understand the limitations of this
approach. We have seen that in most cases 500-1000 samples must be taken
from the search space before high-quality solutions are found. Clearly, there are
many domains in which such a large number of samples is out of the question.
We have also seen that the difficulty of choosing a good internal representation
for the space increases with the complexity of the search space. Similarly, care
must be taken to provide an effective feedback mechanism.

Thus, genetic algorithms are best viewed as another tool for the designer of
learning systems. Like the more familiar inductive techniques and explanation-
based methods, GA is not the answer to all learning problems, but it provides
an effective strategy for specific types of situations.
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