Bisindole Compounds—Synthesis and Medicinal Properties
"> Figure 1
<p>Material applications of indole and bisindole compounds with medicinal properties reported in the literature [<a href="#B24-antibiotics-13-01212" class="html-bibr">24</a>,<a href="#B25-antibiotics-13-01212" class="html-bibr">25</a>,<a href="#B26-antibiotics-13-01212" class="html-bibr">26</a>,<a href="#B27-antibiotics-13-01212" class="html-bibr">27</a>,<a href="#B28-antibiotics-13-01212" class="html-bibr">28</a>,<a href="#B29-antibiotics-13-01212" class="html-bibr">29</a>,<a href="#B30-antibiotics-13-01212" class="html-bibr">30</a>,<a href="#B31-antibiotics-13-01212" class="html-bibr">31</a>,<a href="#B32-antibiotics-13-01212" class="html-bibr">32</a>,<a href="#B33-antibiotics-13-01212" class="html-bibr">33</a>,<a href="#B34-antibiotics-13-01212" class="html-bibr">34</a>,<a href="#B35-antibiotics-13-01212" class="html-bibr">35</a>,<a href="#B36-antibiotics-13-01212" class="html-bibr">36</a>,<a href="#B37-antibiotics-13-01212" class="html-bibr">37</a>,<a href="#B38-antibiotics-13-01212" class="html-bibr">38</a>].</p> "> Figure 2
<p>Natural bisindolic compounds with various therapeutic properties.</p> "> Figure 3
<p>Medicinal properties of bisindolic compounds.</p> "> Figure 4
<p>The structures of <span class="html-italic">bis</span>(indolyl)methanes <b>62</b>–<b>67</b> with antimicrobial properties.</p> "> Figure 5
<p>The structures of <span class="html-italic">bis</span>(indolyl)methanes <b>68</b>–<b>70</b> with antimicrobial properties.</p> "> Figure 6
<p>The structures of bisindoles <b>76</b>–<b>84</b> with antimicrobial properties.</p> "> Figure 7
<p>The structures of bisindoles <b>86</b>–<b>87</b> with antimicrobial properties.</p> "> Figure 8
<p>The structures of bisindole compounds <b>94</b>–<b>98</b> with antimicrobial properties.</p> "> Figure 9
<p>Binding mode of compound <b>100e</b> and active site residue in isoform 1 of Bcl-2. Adapted from [<a href="#B149-antibiotics-13-01212" class="html-bibr">149</a>].</p> "> Figure 10
<p>The structures of bisindole compounds <b>102</b>–<b>105</b> with antitubercular properties.</p> "> Figure 11
<p>The structures of bisindole compounds <b>106</b>–<b>111</b> with antimalarial properties.</p> "> Figure 12
<p>The structures of bisindole compounds <b>112</b>–1<b>38</b> with antileishmanial properties.</p> "> Figure 13
<p>(<b>a</b>) Binding mode of the most active compounds in pteridine reductase active site. (<b>b</b>) Binding mode of compound <b>119</b> (green color) in comparison with pentamidine (blue color). Adapted from [<a href="#B161-antibiotics-13-01212" class="html-bibr">161</a>].</p> "> Figure 14
<p>Bisindoles with antiviral properties.</p> "> Figure 15
<p>Docked pose of <b>142</b> in the hydrophobic pocket of gp41 (PDB 2xra), allowing movement of side chains of Gln 575 and Trp 571. A salt bridge from one carbonyl oxygen on the ligand to Lys574-εNH<sub>2</sub> is shown as an orange dotted line, and a hydrogen bond is predicted from the second carbonyl oxygen to the lysine eNH<sub>2</sub>. Adapted from [<a href="#B167-antibiotics-13-01212" class="html-bibr">167</a>].</p> "> Figure 16
<p>Bisindoles with anticancer properties.</p> "> Figure 17
<p>Possible binding mode of the most potent compounds and target proteins. Binding modes of the cocrystallized ligand Ibrutinib (orange), compound <b>152</b> (green), and <b>153</b> (magenta) against the anticancer target EGFR (PDB ID: 5YU9). Adapted from [<a href="#B178-antibiotics-13-01212" class="html-bibr">178</a>].</p> "> Figure 18
<p>Dock pose of indole derivatives <b>154</b> and <b>155</b> with Bcr-Abl and GSK-3β proteins. Adapted from [<a href="#B179-antibiotics-13-01212" class="html-bibr">179</a>].</p> "> Figure 19
<p>Bisindoles <b>157</b>–<b>162</b> with anticancer properties.</p> "> Figure 20
<p>Molecular orbital energy-generated 2D interaction plot of bisindoles (<b>a</b>) <b>161</b>; (<b>b</b>) <b>162</b>. Adapted from [<a href="#B160-antibiotics-13-01212" class="html-bibr">160</a>].</p> "> Figure 21
<p>Bisindoles <b>168</b>–<b>179</b> as MARK4 inhibitors.</p> "> Figure 22
<p>Bisindoles <b>182</b>–<b>193</b> with anti-inflammatory properties.</p> "> Figure 23
<p>Bisindoles <b>194</b>–<b>197</b> with anti-inflammatory activity.</p> "> Figure 24
<p>Bisindoles <b>200</b>–<b>197</b> with anti-Alzheimer properties.</p> "> Figure 25
<p>(<b>a</b>) A 2D interaction diagram of compound <b>205</b> within the binding site of MAO-A (PDB ID = 2Z5X); (<b>b</b>) 2D interaction diagram of compound <b>205</b> within the binding site of MAO-B (PDB ID = 2V5Z). Adapted from [<a href="#B195-antibiotics-13-01212" class="html-bibr">195</a>].</p> "> Figure 26
<p>Bisindole <b>209</b> with antioxidant properties.</p> "> Figure 27
<p>Bisindoles <b>212</b>–<b>219</b> with antidiabetic properties.</p> "> Figure 28
<p>Bisindoles <b>221a</b> and <b>221b</b> as carbonic anhydrase II inhibitors.</p> "> Scheme 1
<p>Synthesis of bis(indolyl)methanes <b>3</b> using different catalysts.</p> "> Scheme 2
<p>Synthesis of bis(indolyl)methanes <b>6</b> by LiO<span class="html-italic">t</span>-Bu-promoted alkylation of indoles <b>4</b>.</p> "> Scheme 3
<p>Synthesis of bis(indolyl)methane phosphonates <b>9</b> using In(OTf)<sub>3</sub> as catalyst.</p> "> Scheme 4
<p>Synthesis of 3,3-bis(indol-3-yl)propanoates <b>12</b> FeCl<sub>3</sub>/AgOTf as catalyst.</p> "> Scheme 5
<p>Synthesis of bis(indolyl)methanes <b>14</b> from indole <b>1</b> and ketones [<a href="#B107-antibiotics-13-01212" class="html-bibr">107</a>,<a href="#B108-antibiotics-13-01212" class="html-bibr">108</a>,<a href="#B109-antibiotics-13-01212" class="html-bibr">109</a>].</p> "> Scheme 6
<p>Synthesis of bis(indolyl)methanes <b>16</b> from indole <b>1</b> and electron-deficient alkenes <b>15</b>.</p> "> Scheme 7
<p>Synthesis of bis(indolyl)methanes <b>19</b> using a domino reaction.</p> "> Scheme 8
<p>Synthesis of <span class="html-italic">homo</span>-bisindolylmethanes <b>22</b> using RMgX <b>21</b> as reactant.</p> "> Scheme 9
<p>Synthesis of <span class="html-italic">homo</span>-bis(indolyl)methanes <b>25</b> using RLi <b>24</b> as reactant.</p> "> Scheme 10
<p>Synthesis of <span class="html-italic">homo</span>-bis(indolylmethanes) <b>28</b> using alkynyl lithium reagents <b>27</b> as reactants.</p> "> Scheme 11
<p>Synthesis of bis(indolyl) oximes <b>31</b> via hetero-Diels-Alder reaction.</p> "> Scheme 12
<p>Synthesis of bis(indolyl) hydrazones <b>34</b> via hetero-Diels-Alder reaction.</p> "> Scheme 13
<p>Synthesis of bisindoles <b>37</b> using a multicomponent reaction.</p> "> Scheme 14
<p>Synthesis of 3,3-bis(1<span class="html-italic">H</span>-indol-3-yl)indolin-2-ones <b>40</b>.</p> "> Scheme 15
<p>Synthesis of isatin bisindoles <b>43</b>.</p> "> Scheme 16
<p>Synthesis of acenaphthene bisindoles <b>46</b>.</p> "> Scheme 17
<p>Synthesis of acenaphthene bisindoles <b>48</b>.</p> "> Scheme 18
<p>Synthesis of acenaphthene bisindoles <b>51</b>.</p> "> Scheme 19
<p>Synthesis of amide bisindoles <b>54</b>, <b>55</b>, and <b>57</b>.</p> "> Scheme 20
<p>Synthesis of O,O′-dimethyl scalaridine A <b>62</b>.</p> "> Scheme 21
<p>Synthesis of bisindoles <b>74</b> and <b>75</b>.</p> "> Scheme 22
<p>Synthesis of antimicrobial bisindoles <b>93</b>.</p> "> Scheme 23
<p>Synthesis of antileishmanial bisindoles <b>112</b>–<b>138</b>.</p> "> Scheme 24
<p>Synthesis of antileishmanial seleno-bisindole <b>139</b>.</p> "> Scheme 25
<p>Synthesis of anti-HIV-1 bisindoles <b>140a</b>–<b>140m</b>.</p> "> Scheme 26
<p>Synthesis of anticancer bisindoles <b>148</b> and <b>149</b>.</p> "> Scheme 27
<p>Synthesis of anticancer bisindoles <b>154</b>–<b>156</b>.</p> "> Scheme 28
<p>Synthesis of anticancer bisindoles <b>180</b>–<b>181</b>.</p> "> Scheme 29
<p>Synthesis of anti-Alzheimer bisindole <b>204</b>.</p> "> Scheme 30
<p>Synthesis of antioxidant bisindole <b>210</b>.</p> "> Scheme 31
<p>Synthesis of antidiabetic bisindole <b>211</b>.</p> "> Scheme 32
<p>Synthesis of antidiabetic bisindole <b>213</b>.</p> "> Scheme 33
<p>Synthesis of analgesic bisindoles <b>220a</b> and <b>220b</b>.</p> ">
Abstract
:1. Introduction
2. Synthetic Strategies for Bisindolic Compounds
2.1. Synthesis of Bisindolic Compounds by Electrophilic Substitution at 3-Position of Indole with Various Aryl/Heteroaryl Aldehydes
2.2. Synthesis of Bisindole Compounds by Alkylation of Indoles with Alcohols Under Air
2.3. Synthesis of Bis(indolyl)methane Phosphonates by Coupling of Indoles with Acyl Phosphonates
2.4. Regioselective Synthesis of 3,3-Bis(indolyl)propanoic Acid Derivatives by Iron(III)-Catalyzed Hydroarylation Reaction of Electron-Deficient Propynoic Acid Derivatives with Indoles
2.5. Synthesis of Bis(indolyl)methanes by Electrophilic Substitution in the 3-Position of Indoles with Ketones
2.6. Synthesis of Bisindole Derivatives by Reaction of Indoles with Electron-Deficient Alkenes in Aqueous Media
2.7. Synthesis of Bis(2-phenyl-1H-indol-3-yl)methanes Through a Domino Gold (I) Chloride Catalyzed Cycloisomerization of 1-Methyl-2-(phenylethynyl)benzene
2.8. Synthesis of Homo-bis(indolyl)methanes via Indole-3-alkoxides In Situ Generated Indole-3-alkoxides
2.9. Synthesis of 1-Hydroxyiminomethyl-bis(indolyl) Methanes via Bis-hetero-Diels-Alder Reactions
2.10. Synthesis of Bisindoles via Multicomponent Reactions
2.11. Synthesis of Isatin Bisindoles
2.12. Synthesis of Acenaphthen Bisindoles
2.13. The Reaction Between Amino-Indoles and Acid Chlorides of Dicarboxylic Acids
2.14. Synthesis of Bisindoles via One-Pot Masuda Borylation–Suzuki Coupling Sequence
3. Medicinal Properties of Bisindole Compounds
3.1. Bisindolic Compounds with Antimicrobial Properties
3.2. Bisindolic Compounds with Antitubercular Properties
3.3. Bisindolic Compounds with Antimalarial Properties
3.4. Bisindolic Compounds with Antileishmanial Properties
3.5. Bisindolic Compounds with Antiviral Properties
3.6. Bisindole Compounds with Anticancer Properties
3.7. Bisindolic Compounds with Anti-Inflammatory Properties
3.8. Bisindolic Compounds with Anti-Alzheimer Properties
3.9. Bisindolic Compounds with Antioxidant Properties
3.10. Bisindole Compounds with Antidiabetic Properties
3.11. Bisindolic Compounds with Analgesic Properties
3.12. Bisindolic Compounds as Carbonic Anhydraze II Inhibitors
4. Conclusions and Perspectives
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thanikachalam, P.V.; Maurya, R.K.; Garg, V.; Monga, V. An insight into the medicinal perspective of synthetic analogs of indole: A review. Eur. J. Med. Chem. 2019, 180, 562–612. [Google Scholar] [CrossRef]
- Kumar, S.; Ritika. A brief review of the biological potential of indole derivatives. Future J. Pharm. Sci. 2020, 6, 121. [Google Scholar] [CrossRef]
- Kazemi, Z.; Rudbari, H.A.; Moini, N.; Momenbeik, F.; Carnamucio, F.; Micale, N. Indole-Containing Metal Complexes and Their Medicinal Applications. Molecules 2024, 29, 484. [Google Scholar] [CrossRef]
- Hareeri, R.H.; Aldurdunji, M.M.; Abdallah, H.M.; Alqarni, A.A.; Mohamed, S.G.A.; Mohamed, G.A.; Ibrahim, S.R.M. Aspergillus ochraceus: Metabolites, Bioactivities, Biosynthesis, and Biotechnological Potential. Molecules 2022, 27, 6759. [Google Scholar] [CrossRef]
- Umer, S.M.; Solangi, M.; Khan, K.M.; Saleem, R.S.Z. Indole-Containing Natural Products 2019–2022: Isolations, Reappraisals, Syntheses, and Biological Activities. Molecules 2022, 27, 7586. [Google Scholar] [CrossRef]
- Hu, Y.; Chen, S.; Yang, F.; Dong, S. Marine Indole Alkaloids—Isolation, Structure and Bioactivities. Mar. Drugs 2021, 19, 658. [Google Scholar] [CrossRef] [PubMed]
- Rosales, P.F.; Bordin, G.S.; Gower, A.E.; Moura, S. Indole alkaloids: 2012 until now, highlighting the new chemical structures and biological activities. Fitoterapia 2020, 143, 104558. [Google Scholar] [CrossRef]
- Mathada, B.S.; Somappa, S.B. An insight into the recent developments in anti-infective potential of indole and associated hybrids. J. Mol. Struct. 2022, 1261, 132808. [Google Scholar] [CrossRef]
- Dhuguru, J.; Skouta, R. Role of Indole Scaffolds as Pharmacophores in the Development of Anti-Lung Cancer Agents. Molecules 2020, 25, 1615. [Google Scholar] [CrossRef]
- Dhiman, A.; Sharma, R.; Singh, R.K. Target-based anticancer indole derivatives and insight into structure–activity relationship: A mechanistic review update (2018–2021). Acta Pharm. Sin. B 2022, 12, 3006–3027. [Google Scholar] [CrossRef]
- Singh, A.K.; Kumar, A.; Singh, H.; Sonawane, P.; Paliwal, H.; Thareja, S.; Pathak, P.; Grishina, M.; Jaremko, M.; Emwas, A.-H.; et al. Concept of Hybrid Drugs and Recent Advancements in Anticancer Hybrids. Pharmaceuticals 2022, 15, 1071. [Google Scholar] [CrossRef] [PubMed]
- Salerno, S.; Barresi, E.; Baglini, E.; Poggetti, V.; Da Settimo, F.; Taliani, S. Target-Based Anticancer Indole Derivatives for the Development of Anti-Glioblastoma Agents. Molecules 2023, 28, 2587. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.; Yang, S.-J.; Zhao, D.-H.; Li, J.; Yin, L.-Q. Antihypertensive activity of indole and indazole analogues: A review. Arab. J. Chem. 2022, 15, 103756. [Google Scholar] [CrossRef]
- Ramarajan, R.; Ramalingam, A.; Duraisamy, C.; Sambandam, S.; Issaoui, N.; Al-Dossary, O.M.; Bousiakoug, L.G. Catalytic multicomponent synthesis, biological evaluation, molecular docking and in silico ADMET studies of some novel 3-alkyl indoles. J. King Saud Univ. Sci. 2023, 35, 102475. [Google Scholar] [CrossRef]
- Kesteleyn, B.; Bardiot, D.; Bonfanti, J.-F.; De Boeck, B.; Goethals, O.; Kaptein, S.J.F.; Stoops, B.; Coesemans, E.; Fortin, J.; Muller, P.; et al. Discovery of Acyl-Indole Derivatives as Pan-Serotype Dengue Virus NS4B Inhibitors. J. Med. Chem. 2023, 66, 8808–8821. [Google Scholar] [CrossRef] [PubMed]
- Mendogralo, E.Y.; Nesterova, L.Y.; Nasibullina, E.R.; Shcherbakov, R.O.; Myasnikov, D.A.; Tkachenko, A.G.; Sidorov, R.Y.; Uchuskin, M.G. Synthesis, Antimicrobial and Antibiofilm Activities, and Molecular Docking Investigations of 2-(1H-Indol-3-yl)-1H-benzo[d]imidazole Derivatives. Molecules 2023, 28, 7095. [Google Scholar] [CrossRef] [PubMed]
- Al-Wabli, R.I.; Alsulami, M.A.; Bukhari, S.I.; Moubayed, N.M.S.; Al-Mutairi, M.S.; Attia, M.I. Design, Synthesis, and Antimicrobial Activity of Certain New Indole-1,2,4 Triazole Conjugates. Molecules 2021, 26, 2292. [Google Scholar] [CrossRef]
- Gogisetti, G.; Allaka, T.R.; Kanna, U.; Basireddy, S.; Ganta, R.K.; Sharma, V.; Tadiboina, B.R. Synthesis, Anticancer Activity and Computational Docking Techniques of Some Novel Derivatives Based on Indole Bearing Oxadiazole–Triazole Moieties. Russ. J. Bioorg. Chem. 2023, 49, 629–644. [Google Scholar] [CrossRef]
- Mushtaq, I.; Ahmed, A. Synthesis of biologically active sulfonamide-based indole analogs: A review. Future J. Phrm. Sci. 2023, 9, 46. [Google Scholar] [CrossRef]
- Demir-Yazıcı, K.; Güzel-Akdemir, Ö.; Angeli, A.; Supuran, C.T.; Akdemir, A. Novel Indole-Based Hydrazones as Potent Inhibitors of the α-class Carbonic Anhydrase from Pathogenic Bacterium Vibrio cholerae. Int. J. Mol. Sci. 2020, 21, 3131. [Google Scholar] [CrossRef]
- Yeye, E.A.; AkintundeAdeniyi-Akee, M.; Ahmed, A.S.; Aboaba, S.A. In silico studies and antimicrobial investigation of synthesised novel N-acylhydrazone derivatives of indole. Sci. Afr. 2023, 19, e01463. [Google Scholar] [CrossRef]
- Mo, X.; Rao, D.P.; Kaur, K.; Hassan, R.; Abdel-Samea, A.S.; Farhan, S.M.; Bräse, S.; Hashem, H. Indole Derivatives: A Versatile Scaffold in Modern Drug Discovery—An Updated Review on Their Multifaceted Therapeutic Applications (2020–2024). Molecules 2024, 29, 4770. [Google Scholar] [CrossRef]
- Kudličková, Z.; Michalková, R.; Salayová, A.; Ksiažek, M.; Vilková, M.; Bekešová, S.; Mojžiš, J. Design, Synthesis, and Evaluation of Novel Indole Hybrid Chalcones and Their Antiproliferative and Antioxidant Activity. Molecules 2023, 28, 6583. [Google Scholar] [CrossRef] [PubMed]
- Dang, X.; Yu, Z.; Wang, X.; Li, N. Eco-Friendly Cellulose-Based Nonionic Antimicrobial Polymers with Excellent Biocompatibility, Nonleachability, and Polymer Miscibility. ACS Appl. Mater. Interfaces 2023, 15, 50344–50359. [Google Scholar] [CrossRef]
- Dang, X.; Yu, Z.; Wang, X.; Du, Y.; Wang, C. Sustainable one-pot synthesis of novel soluble cellulose-based nonionic biopolymers for natural antimicrobial materials. Chem. Eng. J. 2023, 468, 143810. [Google Scholar] [CrossRef]
- Russo, E.; Grondona, C.; Brullo, C.; Spallarossa, A.; Villa, C.; Tasso, B. Indole Antitumor Agents in Nanotechnology Formulations: An Overview. Pharmaceutics 2023, 15, 1815. [Google Scholar] [CrossRef] [PubMed]
- Butova, V.V.; Baurer, T.V.; Polyakov, V.A.; Minkina, T.M. Advances in nanoparticle and organic formulations for prolonged controlled release of auxins. Plant Physiol. Biochem. 2023, 201, 107808. [Google Scholar] [CrossRef] [PubMed]
- Olikkavi, K.; Vennila, L.; Subashchandrabose, S.; Sutharsan, P.; Sindhu, G.; Dhandapani, A. Synthesis and characterization of poly indole-iron oxide nanoparticles for biomedical applications. Inorg. Chem. Commun. 2024, 61, 112121. [Google Scholar] [CrossRef]
- Bomzan, P.; Roy, N.; Sharma, A.; Rai, V.; Ghosh, S.; Kumar, A.; Roy, M.N. Molecular encapsulation study of indole-3-methanol in cyclodextrins: Effect on antimicrobial activity and cytotoxicity. J. Mol. Struct. 2021, 1225, 129093. [Google Scholar] [CrossRef]
- Tan, Q.; Li, Y.; Li, T.; Huang, Y.; Xing, E.; Bi, Y.; Zhang, X.; Chen, Q.; Li, W. Zeolite beta in situ encapsulation of indole and its derivatives as controlled release formulations for antibacterial. Microporous Mesoporous Mater. 2021, 325, 111342. [Google Scholar] [CrossRef]
- Ebaston, T.M.; Nakonechny, F.; Talalai, E.; Gellerman, G.; Patsenker, L. Iodinated xanthene-cyanine NIR dyes as potential photosensitizers for antimicrobial photodynamic therapy. Dye. Pigment. 2021, 184, 108854. [Google Scholar] [CrossRef]
- Liu, R.; Qian, Y. NIR ditriphenylamine Indole-BODIPY photosensitizer: Synthesis, photodynamic therapy in A549 cells and two-photon fluorescence imaging in zebrafish. Spectrochim. Acta A Mol. Biomol. 2024, 304, 123387. [Google Scholar] [CrossRef]
- Chaubisa, P.; Dharmendra, D.; Vyas, Y.; Chundawat, P.; Jangid, N.K.; Ameta, C. Synthesis and characterization of PANI and PANI-indole copolymer and study of their antimalarial and antituberculosis activity. Polym. Bull. 2024, 81, 3333–3353. [Google Scholar] [CrossRef] [PubMed]
- Cadelis, M.M.; Liu, T.; Sue, K.; Rouvier, F.; Bourguet-Kondracki, M.-L.; Brunel, J.M.; Copp, B.R. Structure–Activity Relationship Studies of Indolglyoxyl-Polyamine Conjugates as Antimicrobials and Antibiotic Potentiators. Pharmaceuticals 2023, 16, 823. [Google Scholar] [CrossRef]
- Tang, Q.; Yuan, L.; Kang, M.; Huang, Y.; Yang, L.; Yin, Q.; Chang, G. A toughening indole-based epoxy film with efficient anti-counterfeiting properties driven by cation–π interaction. Polym. Int. 2024, 73, 319–325. [Google Scholar] [CrossRef]
- Du, M.; Houck, H.A.; Yin, Q.; Xu, Y.; Huang, Y.; Lan, Y.; Yang, L.; Du Prez, F.E.; Chang, G. Force–reversible chemical reaction at ambient temperature for designing toughened dynamic covalent polymer networks. Nat. Commun. 2022, 13, 3231. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, X.; Subramaniyan, S.; Liu, Y.; Rao, J.; Zhang, B. Hyperbranched Polyesters Based on Indole- and Lignin-Derived Monomeric Aromatic Aldehydes as Effective Nonionic Antimicrobial Coatings with Excellent Biocompatibility. Biomacromolecules 2022, 23, 150–162. [Google Scholar] [CrossRef] [PubMed]
- Pradeep, H.; Bindu, M.; Suresh, S.; Thadathil, A.; Periyat, P. Recent trends and advances in polyindole-based nanocomposites as potential antimicrobial agents: A mini review. RSC Adv. 2022, 12, 8211–8227. [Google Scholar] [CrossRef]
- Dhavale, D.D.; Matin, M.M.; Sharma, T.; Sabharwal, S.G. Synthesis and evaluation of glycosidase inhibitory activity of octahydro-2H-pyrido [1,2-a] pyrimidine and octahydro-imidazo [1,2-a] pyridine bicyclic diazasugars. Bioorg. Med. Chem. 2004, 12, 4039–4044. [Google Scholar] [CrossRef] [PubMed]
- Omar, F.; Tareq, A.M.; Alqahtani, A.M.; Dhama, K.; Sayeed, M.A.; Emran, T.B.; Simal-Gandara, J. Plant-Based Indole Alkaloids: A Comprehensive Overview from a Pharmacological Perspective. Molecules 2021, 26, 2297. [Google Scholar] [CrossRef] [PubMed]
- Plazas, E.; Faraone, N. Indole Alkaloids from Psychoactive Mushrooms: Chemical and Pharmacological Potential as Psychotherapeutic Agents. Biomedicines 2023, 11, 461. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.-H.; Du, H.-F.; Liu, Y.-F.; Cao, F.; Luo, D.-Q.; Wang, C.-Y. Novel anti-inflammatory diketopiperazine alkaloids from the marine-derived fungus Penicillium brasilianum. Appl. Microbiol. Biotechnol. 2024, 108, 194. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Sun, K.; Sun, J. Recent Advances of Marine Natural Indole Products in Chemical and Biological Aspects. Molecules 2023, 28, 2204. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Li, S.; Fan, M.; Zhao, C. The Novel Compounds with Biological Activity Derived from Soil Fungi in the Past Decade. Drug Des. Dev. Ther. 2022, 16, 3493–3555. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, Y.; He, H.; Peng, M.; Zeng, M.; Sun, H. The role of the indoles in microbiota-gut-brain axis and potential therapeutic targets: A focus on human neurological and neuropsychiatric diseases. Neuropharmacology 2023, 239, 109690. [Google Scholar] [CrossRef]
- Liu, Y.; Pei, Z.; Pan, T.; Wang, H.; Chen, W.; Lu, W. Indole metabolites and colorectal cancer: Gut microbial tryptophan metabolism, host gut microbiome biomarkers, and potential intervention mechanisms. Microbiol. Res. 2023, 272, 127392. [Google Scholar] [CrossRef]
- Ferrer, L.; Mindt, M.; Wendisch, V.F.; Cankar, K. Indoles and the advances in their biotechnological production for industrial applications. Syst. Microbiol. Biomanuf. 2023, 4, 511–527. [Google Scholar] [CrossRef]
- Salama, E.E.; Youssef, M.F.; Aboelmagd, A.; Boraei, A.T.A.; Nafie, M.S.; Haukka, M.; Barakat, A.; Sarhan, A.A.M. Discovery of Potent Indolyl-Hydrazones as Kinase Inhibitors for Breast Cancer: Synthesis, X-ray Single-Crystal Analysis, and In Vitro and In Vivo Anti-Cancer Activity Evaluation. Pharmaceuticals 2023, 16, 1724. [Google Scholar] [CrossRef] [PubMed]
- Al-Wahaibi, L.H.; Mohammed, A.F.; Abdelrahman, M.H.; Trembleau, L.; Youssif, B.G.M. Design, Synthesis, and Antiproliferative Activity of New 5-Chloro-indole-2-carboxylate and Pyrrolo[3,4-b]indol-3-one Derivatives as Potent Inhibitors of EGFRT790M/BRAFV600E Pathways. Molecules 2023, 28, 1269. [Google Scholar] [CrossRef]
- Taha, M.; Alrashedy, A.S.; Almandil, N.B.; Iqbal, N.; Anouar, E.A.; Nawaz, M.; Uddin, N.; Chigurupati, S.; Wadood, A.; Rahim, F.; et al. Synthesis of indole derivatives as diabetics II inhibitors and enzymatic kinetics study of α-glucosidase and α-amylase along with their in-silico study. Int. J. Biol. Macromol. 2021, 190, 301–318. [Google Scholar] [CrossRef]
- Arumugam, N.; Al-Shemaimari, K.I.; Altaf, M.; Ponmurugan, K.; Premnath, D.; Djearamane, S.; Wong, L.S.; Kayarohanam, S. Antimicrobial evaluation of spirooxindolopyrrolidine engrafted indoles against multidrug resistant ESKAPE clinical pathogens. J. King Saud Univ. Sci. 2024, 36, 102996. [Google Scholar] [CrossRef]
- Lavekar, A.G.; Thakare, R.; Saima; Equbal, D.; Chopra, S.; Sinha, A.K. Indole-based aryl sulfides target the cell wall of Staphylococcus aureus without detectable resistance. Drug. Dev. Res. 2024, 58, e22123. [Google Scholar] [CrossRef]
- Bhattarai, P.; Hegde, P.; Li, W.; Prathipati, P.K.; Stevens, C.M.; Yang, L.; Zhou, H.; Pandya, A.; Cunningham, K.; Grissom, J.; et al. Structural Determinants of Indole-2-carboxamides: Identification of Lead Acetamides with Pan Antimycobacterial Activity. J. Med. Chem. 2023, 66, 170–187. [Google Scholar] [CrossRef] [PubMed]
- Yamali, C.; Sevin, S.; Nenni, M.; Sakarya, M.T.; Uyar, R.; Aygul, A.; Ulger, M.; Ilhan, R.; Levent, S.; Gul, H.I. Design, synthesis, and assessment of pharmacological properties of indole-based fluorinated chalcones and their benzenesulfonamide analogs. Chem. Pap. 2023, 77, 7903–7918. [Google Scholar] [CrossRef]
- Agrawal, K.; Patel, T.; Patel, R. Synthesis, biological activity of newly designed sulfonamide based indole derivative as antimicrobial agent. Future J. Phar. Sci. 2023, 9, 17. [Google Scholar] [CrossRef]
- Kornicka, A.; Gzella, K.; Garbacz, K.; Jarosiewicz, M.; Gdaniec, M.; Fedorowicz, J.; Balewski, Ł.; Kokoszka, J.; Ordyszewska, A. Indole-Acrylonitrile Derivatives as Potential Antitumor and Antimicrobial Agents—Synthesis, In Vitro and In Silico Studies. Pharmaceuticals 2023, 16, 918. [Google Scholar] [CrossRef]
- Dorobabu, A. Indole–a promising pharmacophore in recent antiviral drug discovery. RSC Med. Chem. 2020, 11, 1335–1353. [Google Scholar] [CrossRef]
- Arumugam, G.S.; Damodharan, K.; Doble, M.; Thennarasu, S. Significant perspectives on various viral infections targeted antiviral drugs and vaccines including COVID-19 pandemicity. Mol. Biomed. 2022, 3, 21. [Google Scholar] [CrossRef] [PubMed]
- Verzola, M.M.S.A.; de Almeida Marques, D.P.; da Silva, E.B.; Serafim, M.S.M.; Ferreira, R.S.; Fajtová, P.; Kohlhoff, M.; O’Donoghue, A.J.; Maltarollo, V.G.; Coelho-dos-Reis, J.G.A.; et al. Synthesis of indole-based ferulic acid derivatives and in vitro evaluation of antiviral activity against SARS-CoV-2. Med. Chem. Res. 2023, 32, 2256–2267. [Google Scholar] [CrossRef]
- Upadhyay, D.P.; Mokariya, J.A.; Patel, P.J.; Patel, S.G.; Das, A.; Nandi, A.; Nogales, J.; More, N.; Kumar, A.; Rajani, D.P.; et al. Indole clubbed 2,4-thiazolidinedione linked 1,2,3-triazole as a potent antimalarial and antibacterial agent against drug-resistant strain and molecular modeling studies. Arch. Der Pharm. 2024, 257, e2300673. [Google Scholar] [CrossRef] [PubMed]
- Pacheco, P.A.F.; Santos, M.M.M. Recent Progress in the Development of Indole-Based Compounds Active against Malaria, Trypanosomiasis and Leishmaniasis. Molecules 2022, 27, 319. [Google Scholar] [CrossRef]
- Bajad, N.G.; Singh, S.K.; Singh, S.K.; Singh, T.D.; Singh, M. Indole: A promising scaffold for the discovery and development of potential anti-tubercular agents. Curr. Res. Pharm. Drug Discov. 2022, 3, 100119. [Google Scholar] [CrossRef] [PubMed]
- Konas, D.W.; Cho, S.; Thomas, O.D.; Bhatti, M.M.; Hernandez, K.L.; Moran, C.; Booter, H.; Candela, T.; Lacap, J.; McFadden, P.; et al. Investigating the Roles of Active Site Residues in Mycobacterium tuberculosis Indole-3-glycerol Phosphate Synthase, a Potential Target for Antitubercular Agents. ACS Bio Med Chem Au 2023, 3, 438–447. [Google Scholar] [CrossRef]
- Hashemi, S.M.; Emami, S.; Masihi, P.H.; Shakiba, A.; Dehestani, L.; Ahangar, N. Synthesis of 2-aryl-3-triazolyl-indoles from phenacyltriazole-derived hydrazones: Exploring new scaffolds for anticonvulsant activity. J. Mol. Struct. 2023, 1276, 134704. [Google Scholar] [CrossRef]
- Zohny, Y.M.; Awad, S.M.; Rabie, M.A.; Alsaidan, O.A. Design, Synthesis, Molecular Modeling, and Biological Evaluation of Novel Pyrimidine Derivatives as Potential Calcium Channel Blockers. Molecules 2023, 28, 4869. [Google Scholar] [CrossRef]
- Romero, F.; Palacios, J.; Jofré, I.; Paz, C.; Nwokocha, C.R.; Paredes, A.; Cifuentes, F. Aristoteline, an Indole-Alkaloid, Induces Relaxation by Activating Potassium Channels and Blocking Calcium Channels in Isolated Rat Aorta. Molecules 2019, 24, 2748. [Google Scholar] [CrossRef] [PubMed]
- Bampi, S.R.; Casaril, A.M.; Fronza, M.G.; Domingues, M.; Vieira, B.; Begnini, K.R.; Seixas, F.K.; Collares, T.V.; Lenardão, E.J.; Savegnago, L. The selenocompound 1-methyl-3-(phenylselanyl)-1H-indole attenuates depression-like behavior, oxidative stress, and neuroinflammation in streptozotocin-treated mice. Brain Res. Bull. 2020, 161, 158–165. [Google Scholar] [CrossRef] [PubMed]
- Pan, S.; Ma, Y.; Yang, R.; Lu, X.; You, Q.; Ye, T.; Huang, C. Indole-3-Carbinol Selectively Prevents Chronic Stress- Induced Depression-but not Anxiety-Like Behaviors via Suppressing Pro-Inflammatory Cytokine Production and Oxido-Nitrosative Stress in the Brain. Front. Pharmacol. 2022, 13, 829966. [Google Scholar] [CrossRef]
- Zvozilova, A.; Reichova, A.; Mach, M.; Bakos, J.; Koprdova, R. Effect of a New Substance with Pyridoindole Structure on Adult Neurogenesis, Shape of Neurons, and Behavioral Outcomes in a Chronic Mild Stress Model in Rats. Int. J. Mol. Sci. 2024, 25, 845. [Google Scholar] [CrossRef] [PubMed]
- Gondal, H.Y.; Tariq, S.; Akhter, S.; Raza, A.R.; ur Rehman, M.F.; Rubab, S.L. Synthesis, characterization, and in vitro anticholinesterase screening of novel indole amines. RSC Adv. 2023, 13, 1203–1215. [Google Scholar] [CrossRef]
- Bon, L.; Banaś, A.; Dias, I.; Melo-Marques, I.; Cardoso, S.M.; Chaves, S.; Santos, M.A. New Multitarget Rivastigmine–Indole Hybrids as Potential Drug Candidates for Alzheimer’s Disease. Pharmaceutics 2024, 16, 281. [Google Scholar] [CrossRef] [PubMed]
- Li, J. Indole-3-acetic acid, a potential therapeutic target in Alzheimer’s disease. Sci. Bull. 2024, 69, 146–147. [Google Scholar] [CrossRef]
- Philoppes, J.N.; Abdelgawad, M.A.; Abourehab, M.A.S.; Sebak, M.; Darwish, M.A.; Lamie, P.F. Novel N-methylsulfonyl-indole derivatives: Biological activity and COX-2/5-LOX inhibitory effect with improved gastro protective profile and reduced cardio vascular risks. J. Enzyme Inhib. Med. Chem. 2023, 38, 246–266. [Google Scholar] [CrossRef] [PubMed]
- Kandemir, H.; Izgi, S.; Cınar, R.; Cebeci, F.; Dirican, E.; Saglam, M.F.; Sengul, I.F. Methoxy-activated indole-7-carbohydrazides; synthesis, antioxidant, and anticancer properties. J. Heterocycl. Chem. 2023, 60, 74–85. [Google Scholar] [CrossRef]
- Siddique, S.; Ahmad, K.R.; Nawaz, S.K.; Ahmad, S.N.; Ali, R.; Inayat, I.; Suleman, S.; Kanwal, M.A.; Usman, M. Evaluation of the anti-inflammatory, analgesic, anti-pyretic and anti-ulcerogenic potentials of synthetic indole derivatives. Sci. Rep. 2023, 13, 8639. [Google Scholar] [CrossRef]
- Mohsin, N.A.; Irfan, M. Selective cyclooxygenase-2 inhibitors: A review of recent chemical scaffolds with promising anti-inflammatory and COX-2 inhibitory activities. Med. Chem. Res. 2020, 29, 809–830. [Google Scholar] [CrossRef]
- Cetin, A.; Toptas, M.; Türkan, F. Synthesis, biological evaluation, and bioinformatics analysis of indole analogs on AChE and GST activities. Med. Chem. Res. 2022, 31, 2119–2131. [Google Scholar] [CrossRef]
- Baran, A.; Kuzmins, J.; Kuznecovs, J.; Farley, A.J.M.; Panduwawala, T.; Parkova, A.; Donets, P.A.; Brem, J.; Suna, E.; Schofield, C.J.; et al. Optimized Synthesis of Indole Carboxylate Metallo-β-Lactamase Inhibitor EBL-3183. Org. Process Res. Dev. 2023, 27, 692–706. [Google Scholar] [CrossRef]
- Hattori, S.-I.; Higashi-Kuwata, N.; Hayashi, H.; Allu, S.R.; Raghavaiah, J.; Bulut, H.; Das, D.; Anson, B.J.; Lendy, E.K.; Takamatsu, Y.; et al. A small molecule compound with an indole moiety inhibits the main protease of SARS-CoV-2 and blocks virus replication. Nat. Commun. 2021, 12, 668. [Google Scholar] [CrossRef] [PubMed]
- Ansari, M.A.; Taha, M.; Uddin, N.; Rahim, F.; Jamal, Q.M.S.; Alomary, M.N.; Alshabrmi, F.M.; Almatroudi, A.; Atwah, B.; Alhindi, Z.; et al. Synthesis of indole-based oxadiazoles and their interaction with bacterial peptidoglycan and SARS-CoV-2 main protease: In vitro, molecular docking and in silico ADME/Tox study. J. Saudi Chem. Soc. 2022, 26, 101474. [Google Scholar] [CrossRef]
- Centofanti, F.; Alonzi, T.; Latini, A.; Spitalieri, P.; Murdocca, M.; Chen, X.; Cui, W.; Shang, Q.; Goletti, D.; Shi, Y.; et al. Indole-3-carbinol in vitro antiviral activity against SARS-Cov-2 virus and in vivo toxicity. Cell Death Discov. 2022, 8, 491. [Google Scholar] [CrossRef]
- Mohammadi Ziarany, G.; Khademi, M.; Mohajer, F.; Badiei, A.; Varma, R.S. The Synthesis of 2,2-bis(1-indol-3-yl)acenaphthylene-1(2)-ones using nanocatalysis: Fluorescent sensing for Cu2+ ions. Ecol. Chem. Eng. S 2022, 29, 463–475. [Google Scholar] [CrossRef]
- Ullrich, R.; Poraj-Kobielska, M.; Herold-Majumdar, O.M.; Vind, J.; Hofrichter, M. Synthesis of Indigo-Dyes from Indole Derivatives by Unspecific Peroxygenases and Their Application for In-Situ Dyeing. Catalysts 2021, 11, 1495. [Google Scholar] [CrossRef]
- Kamal, C.; Sethuraman, M.G. Caulerpin-A bis-Indole Alkaloid As a Green Inhibitor for the Corrosion of Mild Steel in 1 M HCl Solution from the Marine Alga Caulerpa racemosa. Ind. Eng. Chem. Res. 2012, 51, 10399–10407. [Google Scholar] [CrossRef]
- Hu, W.; Yan, G.; Ding, Q.; Cai, J.; Zhang, Z.; Zhao, Z.; Lei, H.; Zhu, Y.Z. Update of Indoles: Promising molecules for ameliorating metabolic diseases. Biomed. Pharmacother. 2022, 150, 112957. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, R.C.R.; Peñalver, P.; Costa, S.P.G.; Morales, J.C.; Raposo, M.M.M. Polyaromatic Bis(indolyl)methane Derivatives with Antiproliferative and Antiparasitic Activity. Molecules 2023, 28, 7728. [Google Scholar] [CrossRef] [PubMed]
- Lafzi, F.; Kilic, H.; Ertugrul, B.; Arik, M.; Saracoglu, N. Bis(indolyl)methane substituted tetraphenylethylene derivatives as AIE active materials. J. Luminiscence 2019, 208, 174–182. [Google Scholar] [CrossRef]
- Kamble, V.T.; Kadam, K.R.; Joshi, N.S.; Muley, D.B. HClO4–SiO2 as a novel and recyclable catalyst for the synthesis of bis-indolylmethanes and bis-indolylglycoconjugates. Catal. Commun. 2007, 8, 498–502. [Google Scholar] [CrossRef]
- Chen, D.; Yu, L.; Wang, P.G. Lewis Acid-Catalyzed Reactions in Protic Media. Lanthanide-Catalyzed Reactions of Indoles with Aldehydes or Ketones. Tetrahedron Lett. 1996, 37, 4467–4470. [Google Scholar] [CrossRef]
- Khatab, T.K.; Abdelghany, A.M.; Shaker, N.; Osama, Y.; Kandil, E.M. Evaluation of the Optical and Structural Properties of Constructed Bis-indole Derivatives Using (Sm2O3/SiO2) Catalyst. Silicon 2018, 10, 2173–2179. [Google Scholar] [CrossRef]
- Olyaei, A.; Vaziri, M.; Razeghi, R.; Shams, B.; Bagheri, H. A novel approach to bis(indolyl)methanes using nickel nanoparticles as a reusable catalyst under solvent-free conditions. J. Serb. Chem. Soc. 2013, 78, 463–468. [Google Scholar] [CrossRef]
- Taha, M.; Rashid, U.; Imran, S.; Ali, M. Rational design of bis-indolylmethane-oxadiazole hybrids as inhibitors of thymidine phosphorylase. Bioorg. Med. Chem. 2018, 26, 3654–3663. [Google Scholar] [CrossRef] [PubMed]
- Chavan, K.A.; Shukla, M.; Chauhan, A.N.S.; Maji, S.; Mali, G.; Bhattacharyya, S.; Erande, R.D. Effective Synthesis and Biological Evaluation of Natural and Designed Bis(indolyl)methanes via Taurine-Catalyzed Green Approach. ACS Omega 2022, 7, 10438–10446. [Google Scholar] [CrossRef]
- Naidu, K.R.M.; Khalivulla, S.I.; Rasheed, S.; Fakurazi, S.; Arulselvan, P.; Lasekan, O.; Abas, F. Synthesis of Bisindolylmethanes and Their Cytotoxicity Properties. Int. J. Mol. Sci. 2013, 14, 1843–1853. [Google Scholar] [CrossRef]
- Kalla, R.M.N.; John, J.V.; Park, H.; Kim, I. Tetramethyl guanidinium chlorosulfonate as a highly efficient and recyclable organocatalyst for the preparation of bis(indolyl)methane derivatives. Catal. Commun. 2014, 57, 55–59. [Google Scholar] [CrossRef]
- Khaksar, S.; Ostad, S.M. Pentafluorophenylammonium triflate as an efficient, environmentally friendly and novel organocatalyst for synthesis of bis-indolyl methane derivatives. J. Fluor. Chem. 2011, 132, 937–939. [Google Scholar] [CrossRef]
- Firouzabadi, H.; Iranpoor, N.; Jafari, A.A. Aluminumdodecatungstophosphate (AlPW12O40), a versatile and a highly water tolerant green Lewis acid catalyzes efficient preparation of indole derivatives. J. Mol. Cat. A Chem. 2006, 244, 168–172. [Google Scholar] [CrossRef]
- Yadav, J.S.; Reddy, B.V.S.; Sunitha, S. Efficient and Eco-Friendly Process for the Synthesis of Bis(1H-indol-3-yl)methanes using Ionic Liquids. Adv. Synth. Catal. 2003, 345, 349–352. [Google Scholar] [CrossRef]
- Rad-Moghadam, K.; Sharifi-Kiasaraie, M. Indole 3-alkylation/vinylation under catalysis of the guanidinium ionic liquids. Tetrahedron 2009, 65, 8816–8820. [Google Scholar] [CrossRef]
- Das, P.J.; Das, J. Synthesis of aryl/alkyl(2,2′-bis-3-methylindolyl) methanes and aryl(3,3′-bisindolyl)methanes promoted by secondary amine based ionic liquids and microwave irradiation. Tetrahedron 2012, 53, 4718–4720. [Google Scholar] [CrossRef]
- Kalla, R.M.N.; Hong, S.C.; KIm, I. Synthesis of Bis(indolyl) methanes Using Hyper-Cross-Linked Polyaromatic Spheres Decorated with Bromomethyl Groups as Efficient and Recyclable Catalysts. ACS Omega 2018, 3, 2242–2253. [Google Scholar] [CrossRef] [PubMed]
- Patil, R.C.; Damate, S.A.; Zambare, D.N.; Patil, S.S. Chickpea leaf exudates: A green Brønsted acid type biosurfactant for bis(indole)methane and bis(pyrazolyl)methane synthesis. New J. Chem. 2021, 45, 9152–9162. [Google Scholar] [CrossRef]
- Tornquist, B.L.; de Paula Bueno, G.; Manzano Willig, J.C.; de Oliveira, I.M.; Stefani, H.A.; Rafique, J.; Saba, S.; Iglesias, B.A.; Botteselle, G.V.; Manarin, F. Ytterbium (III) triflate/Sodium Dodecyl Sulfate: A Versatile Recyclable and Water-Tolerant Catalyst for the Synthesis of Bis(indolyl)methanes (BIMs). Chem. Sel. 2018, 3, 6358–6363. [Google Scholar] [CrossRef]
- Nguyen, H.Y.; Tran, T.H.; Do, H.N.; Do, D.V.; Ngo, Q.-A.; Tien, N.Q.; Nga, T.T.T.; Nguyen, H.; Hung, T.Q.; Dang, T.T. LiOtBu-promoted synthesis of bis (3-indolyl) methanes by the alkylation of indoles with alcohols under air. RSC Adv. 2024, 14, 2341–2345. [Google Scholar] [CrossRef]
- Dasbasi, T.; Polat-Cakir, S.; Abdullah, M.; Demir, A.S. Indium triflate-catalyzed coupling of indoles with acyl phosphonates: Synthesis of bis(indolyl)methane phosphonates. Tetrahedron 2011, 67, 3355–3359. [Google Scholar] [CrossRef]
- Kutubi, M.S.; Kitamura, T. Regioselective synthesis of 3,3-bis(indolyl)propanoic acid derivatives by iron(III)-catalyzed hydroarylation of propynoic acid derivatives with indoles. Tetrahedron 2011, 67, 8140–8145. [Google Scholar] [CrossRef]
- Yuan, X.; Wu, L.; Xu, C.; Pan, Z.; Shi, L.; Yang, G.; Wang, C.; Fan, S. A consecutive one-pot two-step approach to novel trifluoromethylsubstituted bis(indolyl)methane derivatives promoted by Sc(OTf)3 and p-TSA. Tetrahedron Lett. 2019, 60, 151329. [Google Scholar] [CrossRef]
- Feng, X.-L.; Guan, C.-J.; Zhao, C.-X. Ion exchange resin catalyzed condensation of indole and carbonyl compounds—Synthesis of bis-indolylmethanes. Synth. Commun. 2004, 34, 487–492. [Google Scholar] [CrossRef]
- Soliman, H.A.; Mubarak, A.Y.; Elmorsy, S.S. An efficient synthesis of bis(indolyl) methanes and N,N0-alkylidene bisamides by Silzic under solvent free conditions. Chin. Chem. Lett. 2016, 27, 353–356. [Google Scholar] [CrossRef]
- Rahimi, S.; Amrollahi, M.A.; Kheilkordi, Z. An efficient ultrasound-promoted method for the synthesis of bis(indole) derivatives. Comptes Rendus. Chim. 2015, 18, 558–563. [Google Scholar] [CrossRef]
- Praveen, C.; Karthikeyan, K.; Perumal, P.T. Efficient synthesis of 3-substituted indoles through a domino gold(I) chloride catalyzed cycloisomerization/C3-functionalization of 2-(alkynyl)anilines. Tetrahedron 2009, 65, 9244–9255. [Google Scholar] [CrossRef]
- Chinta, B.S.; Baire, B. Reactivity of indole-3-alkoxides in the absence of acids: Rapid synthesis of homo-bisindolylmethanes. Tetrahedron 2016, 72, 8106–8116. [Google Scholar] [CrossRef]
- Grosso, C.; Cardoso, A.L.; Rodrigues, M.J.; Marques, C.; Barreira, L.; Lemos, A.; Pinho e Melo, T.M.D.V. Hetero-Diels-Alder approach to Bis(indolyl)methanes. Bioorg. Med. Chem. 2017, 25, 1122–1131. [Google Scholar] [CrossRef] [PubMed]
- Harichandran, G.; Amalraj, S.D.; Shanmugam, P. Amberlite IRA-400 Cl resin catalyzed synthesis of secondary amines and transformation into N-((1H-indol-3-yl)(heteroaryl) methyl)-N-heteroaryl benzenamines and bis-Indoles via Multicomponent Reaction. J. Saudi Chem. Soc. 2018, 22, 208–217. [Google Scholar] [CrossRef]
- Yu, J.; Shen, T.; Lin, Y.; Zhou, Y.; Song, Q. Rapid and Efficient Synthesis of 3,3-Di(1H-indol-3-yl)indolin-2-ones and 2,2-Di(1H-indol-3-yl)-2Hacenaphthen-1-ones Catalyzed by p-TSA. Synth. Commun. 2014, 44, 2029–2036. [Google Scholar] [CrossRef]
- Bonvicini, F.; Locatelli, A.; Morigi, R.; Leoni, A.; Gentilomi, G.A. Isatin Bis-Indole and Bis-Imidazothiazole Hybrids: Synthesis and Antimicrobial Activity. Molecules 2022, 27, 5781. [Google Scholar] [CrossRef] [PubMed]
- Ziarani, G.M.; Hajiabbasi, P.; Badiei, A. Application of SBA-Pr-NH2 as a nanoporous base silica catalyst in the development of 2,2-Bis(1H-indol-3-yl)acenaphthen-1(2H)-ones syntheses. J. Iran. Chem. Soc. 2015, 12, 1649–1654. [Google Scholar] [CrossRef]
- Feng, G.-L. Facile synthesis of 2,2-bis(1H-indol-3-yl)acenaphthen-1(2H)-one derivatives catalysed by ceric ammonium nitrate. J. Chem. Res. 2010, 2010, 203–205. [Google Scholar] [CrossRef]
- Halawa, A.H.; Abd El-Gilil, S.M.; Bedair, A.H.; Eliwa, E.M.; Frese, M.; Sewald, N.; Shaaban, M.; El-Agrody, A.M. Synthesis of diverse amide linked bis-indoles and indole derivatives bearing coumarin-based moiety: Cytotoxicity and molecular docking investigations. Med. Chem. Res. 2018, 27, 796–806. [Google Scholar] [CrossRef]
- Kruppa, M.; Sommer, G.A.; Müller, T.J.J. Concise Syntheses of Marine (Bis)indole Alkaloids Meridianin C, D, F, and G and Scalaridine A via One-Pot Masuda Borylation-Suzuki Coupling Sequence. Molecules 2022, 27, 2233. [Google Scholar] [CrossRef] [PubMed]
- Kumar, H.; Aggarwal, N.; Marwaha, M.G.; Deep, A.; Chopra, H.; Matin, M.M.; Roy, A.; Emran, T.B.; Mohanta, Y.K.; Ahmed, R.; et al. Thiazolidin-2,4-Dione Scaffold: An Insight into Recent Advances as Antimicrobial, Antioxidant, and Hypoglycemic Agents. Molecules 2022, 27, 6763. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.K.; Hussein, S.; Qurbani, K.; Ibrahim, R.H.; Fareeq, A.; Mahmood, K.A.; Mohamed, M.G. Antimicrobial resistance: Impacts, challenges, and future prospects. J. Med. Surg. Public Health 2024, 2, 100081. [Google Scholar] [CrossRef]
- Potmischil, F.; Marinescu, M.; Nicolescu, A.; Deleanu, C.; Hillebrand, M. Hydroacridines: Part 29. 15N NMR chemical shifts of 9-substituted 1,2,3,4,5,6,7,8-octahydroacridines and their N-oxides-Taft, Swain-Lupton, and other types of linear correlations. Mag. Res. Chem. 2008, 46, 1141–1147. [Google Scholar] [CrossRef] [PubMed]
- Rehman, S. A parallel and silent emerging pandemic: Antimicrobial resistance (AMR) amid COVID-19 pandemic. J. Infect. Public Health 2023, 16, 611–617. [Google Scholar] [CrossRef] [PubMed]
- Ion, V.; Matei, A.; Constantinescu, C.; Mitu, B.; Ionita, I.; Marinescu, M.; Dinescu, M.; Emandi, A. Octahydroacridine thin films grown by matrix-assisted pulsed laser evaporation for non linear optical applications. Mat. Sci. Semicond. Proc. 2015, 36, 78–83. [Google Scholar] [CrossRef]
- Kamal, A.; Khan, M.N.A.; Reddy, S.; Srikanth, Y.V.V.; Ahmed, S.K.; Kumar, K.P.; Murthy, U.S.N. An efficient synthesis of bis(indolyl)methanes and evaluation of their antimicrobial activities. J. Enzym. Inhib. Med. Chem. 2009, 24, 559–565. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Gajbhiye, R.; Mandal, M.; Pal, C.; Meyyapan, A.; Mukherjee, J.; Jaisankar, P. Synthesis and antibacterial evaluation of 3,3′-diindolylmethane derivatives. Med. Chem. Res. 2014, 23, 1371–1377. [Google Scholar] [CrossRef]
- Sarva, S.; Harinath, J.S.; Sthanikam, S.P.; Ethiraj, S.; Vaithiyalingam, M.; Cirandur, S.R. Synthesis, antibacterial and anti-inflammatory activity of bis(indolyl)methanes. Chin. Chem. Lett. 2016, 27, 16–20. [Google Scholar] [CrossRef]
- Bahe, A.K.; Das, R.; Naikoo, G.A.; Kosti, P.; Kashaw, S. Antibacterial Activity of Bis(Indolyl) Methane Derivatives against Staphylococcus aureus. Adv. J. Chem. A 2020, 3, S722–S729. [Google Scholar] [CrossRef]
- Campana, R.; Mangiaterra, G.; Tiboni, M.; Frangipani, E.; Biavasco, F.; Lucarini, S.; Citterio, B. A Fluorinated Analogue of Marine Bisindole Alkaloid 2,2-Bis(6-bromo-1H-indol-3-yl)ethanamine as Potential Anti-Biofilm Agent and Antibiotic Adjuvant Against Staphylococcus aureus. Pharm. 2020, 13, 210. [Google Scholar] [CrossRef]
- Reddy, B.V.S.; Rajeswari, N.; Sarangapani, M.; Reddy, G.R.; Madan, C.; Kumar, K.P.; Rao, M.S. Iodine-catalyzed conjugate addition of indoles onto en-1,4-dione: A novel synthesis of 3-(1-(1H-indol-3-yl)-2-oxo-2-phenylethyl)indolin-2-ones as antibacterial and antifungal agents. Bioorg. Med. Chem. Lett. 2011, 21, 6510–6514. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Verma, P.; Yadav, B.; Komath, S. Synthesis and evaluation of indole-based new scaffolds for antimicrobial activities—Identification of promising candidates. Bioorg. Med. Chem. Lett. 2011, 21, 3367–3372. [Google Scholar] [CrossRef]
- Karuvalam, R.P.; Pakkath, R.; Haridas, K.R.; Rishikesan, R.; Kumari, N.S. Synthesis, characterization, and SAR studies of new (1H-indol-3-yl)alkyl-3-(1H-indol-3-yl)propanamide derivatives as possible antimicrobial and antitubercular agents. Med. Chem. Res. 2013, 22, 4437–4454. [Google Scholar] [CrossRef]
- Kumari, G.; Singh, R.K. Synthesis and in vitro antibacterial activity of schiff bases of N-substituted isatins as effective scaffolds. Med. Chem. Res. 2013, 22, 927–933. [Google Scholar] [CrossRef]
- Caspar, Y.; Sutera, V.; Boisset, S.; Denis, J.-N.; Maurin, M. Bis-indolic compounds as potentialnew therapeutic alternatives for tularaemia. Front. Cell. Infect. Microbiol. 2014, 4, 24. [Google Scholar] [CrossRef]
- Imran, S.; Taha, M.; Ismail, N.H.; Khan, K.M.; Naz, F.; Hussain, M.; Tauseef, S. Synthesis of Novel Bisindolylmethane Schiff bases and Their Antibacterial Activity. Molecules 2014, 19, 11722–11740. [Google Scholar] [CrossRef] [PubMed]
- Sharma, D.K.; Tripathi, A.K.; Sharma, R.; Chib, R.; ur Rasool, R.; Hussain, A.; Singh, B.; Goswami, A.; Khan, I.A.; Mukherjee, D. A new class of bactericidal agents against S. aureus, MRSA and VRE derived from bisindolylmethane. Med. Chem. Res. 2014, 23, 1643–1653. [Google Scholar] [CrossRef]
- Caspar, Y.; Jeanty, M.; Blu, J.; Burchak, O.; Le Pihive, E.; Maigre, L.; Schneider, D.; Jolivalt, C.; Paris, J.-M.; Hequet, A.; et al. Novel synthetic bis-indolic derivatives with antistaphylococcal activity, including against MRSA and VISA strains. J. Antimicrob. Chemother. 2015, 70, 1727–1737. [Google Scholar] [CrossRef] [PubMed]
- Halawa, A.H.; Bedair, A.H.; El-Agrody, A.M.; Eliwa, E.M.; Sewald, N.; Shaaban, M. Synthesis and biological activities of new bis-indole derivatives via microwave irradiation. Z. Naturforschung B 2017, 72, 639–646. [Google Scholar] [CrossRef]
- Almutairi, M.S.; Zakaria, A.S.; Ignasius, P.P.; Al-Wabli, R.I.; Joe, I.H.; Attia, M.I. Synthesis, spectroscopic investigations, DFT studies, molecular docking and antimicrobial potential of certain new indole-isatin molecular hybrids: Experimental and theoretical approaches. J. Mol. Struct. 2018, 1153, 333–345. [Google Scholar] [CrossRef]
- Choppara, P.; Bethu, M.S.; Prasad, Y.V.; Rao, J.V.; Ranjan, T.J.U.; Prasad, G.V.S.; Doradla, R.; Murthy, Y.L.N. Synthesis, characterization and cytotoxic investigations of novel bis(indole) analogues besides antimicrobial study. Arab. J. Chem. 2019, 12, 2721–2731. [Google Scholar] [CrossRef]
- Holland, D.C.; Hayton, J.B.; Kiefel, M.J.; Carroll, A.R. Synthesis and Cheminformatics-Directed Antibacterial Evaluation of Echinosulfonic Acid-Inspired Bis-Indole Alkaloids. Molecules 2024, 29, 2806. [Google Scholar] [CrossRef] [PubMed]
- Soltani, S.; Montazeri, N.; Zeydi, M.M.; Heravi, M.M. Synthesis of new bis(indolyl)methanes catalyzed by benzylsulfamic acid and evaluation of their antimicrobial activities. Pharm. Chem. J. 2020, 53, 947–952. [Google Scholar] [CrossRef]
- Semenova, O.; Kobzev, D.; Yazbak, F.; Nakonechny, F.; Kolosova, O.; Tatarets, A.; Gellerman, G.; Patsenker, L. Unexpected effect of iodine atoms in heptamethine cyanine dyes on the photodynamic eradication of Gram-positive and Gram-negative pathogens. Dye. Pigment. 2021, 195, 109745. [Google Scholar] [CrossRef]
- Khan, N.A.; Kaur, N.; Owens, P.; Thomas, O.P.; Boyd, A. Bis-Indole Alkaloids Isolated from the Sponge Spongosorites calcicola Disrupt Cell Membranes of MRSA. Int. J. Mol. Sci. 2022, 23, 1991. [Google Scholar] [CrossRef]
- Khan, S.; Rehman, W.; Rahim, F.; Hussain, R.; Obaidullah, A.J.; Alotaibi, H.F.; Alanazi, M.M.; Usman Khan, M.; Khan, Y. Bis-indole based triazine derivatives: Synthesis, characterization, in vitro β-glucuronidase anti-cancer and anti-bacterial evaluation along with in silico molecular docking and ADME analysis. Arab. J. Chem. 2023, 16, 104970. [Google Scholar] [CrossRef]
- Mokariya, J.A.; Patel, R.C.; Rajani, D.P.; Patel, M.P. Synthesis of novel indole-oxindole clubbed 1,2,3-triazole hybrids: Antimicrobial evaluation and molecular docking study. Res. Chem. Intermediat. 2023, 49, 2933–2953. [Google Scholar] [CrossRef]
- Prakash, A.V.; Yazabak, F.; Hovor, I.; Nakonechny, F.; Kulyk, O.; Semenova, O.; Bazylevich, A.; Gellerman, G.; Patsenker, L. Highly efficient near-IR cyclohexene cyanine photosensitizers for antibacterial photodynamic therapy. Dye. Pigment. 2023, 211, 111053. [Google Scholar] [CrossRef]
- Ranjbari, S.; Jarrahpour, A.; Kianpour, S.; Sepehri, S.; Heiran, R.; Ghasemi, Y.; Turos, E. Molecular docking, synthesis and evaluation of the antimicrobial, antiproliferative, and antioxidant properties of β-lactam bisindoles. J. Mol. Struct. 2023, 1294, 136298. [Google Scholar] [CrossRef]
- Sofan, M.A.; El-Ablack, F.Z.; Elsayed, A.I. Antimicrobial Activity of N-Substituted Derivatives of 5-Chloro-2,3- Diphenyl Indole. Chem. Sel. 2023, 8, e202302922. [Google Scholar] [CrossRef]
- Kotha, S.; Meher, P.; Das, P.; Bandi, V.; Bhaumik, P. Design, Synthesis and Molecular Docking Studies of New Indole Scaffolds. As. J. Org. Chem 2024, 13, e202400254. [Google Scholar] [CrossRef]
- Dartois, V.A.; Rubin, E.J. Anti-tuberculosis treatment strategies and drug development: Challenges and priorities. Nat. Rev. Microbiol. 2022, 20, 685–701. [Google Scholar] [CrossRef] [PubMed]
- Walmik, P.; Saundane, A.R. Synthesis of novel indolyl-azetidinone and thiazolidinone derivatives as a potent antioxidant, antimicrobial and antitubercular agents. Der Pharma Chem. 2014, 6, 70–79. [Google Scholar]
- Khadkikar, P.; Goud, N.S.; Mohammed, A.; Ramamoorthy, G.; Ananthathatmula, R.; Doble, M.; Rizvi, A.; Banerjee, S.; Ravi, A.; Alvala, M. An efficient and facile green synthesis of bisindole methanes as potential Mtb FtsZ inhibitors. Chem. Biol. Drug Des. 2018, 92, 1933–1939. [Google Scholar] [CrossRef] [PubMed]
- Marinescu, M. 2-Aminopyridine–A classic and trendy pharmacophore. Int. J. Pharm. Bio. Sci. 2017, 8, 338–355. [Google Scholar] [CrossRef]
- Fernandez, L.S.; Buchanan, M.S.; Carroll, A.R.; Feng, Y.J.; Quinn, R.J.; Avery, V.M. Flinderoles A-C: Antimalarial Bis-indole Alkaloids from Flindersia Species. Org. Lett. 2009, 11, 329–332. [Google Scholar] [CrossRef]
- Vallakati, R.; and May, J.A. Biomimetic Synthesis of the Antimalarial Flindersial Alkaloids. J. Am. Chem. Soc. 2012, 134, 6936–6939. [Google Scholar] [CrossRef] [PubMed]
- Robertson, L.P.; Duffy, S.; Wang, Y.; Wang, D.; Avery, V.M.; Carroll, A.R. Pimentelamines A−C, Indole Alkaloids Isolated from the Leaves of the Australian Tree Flindersia pimenteliana. J. Nat. Prod. 2017, 80, 3211–3217. [Google Scholar] [CrossRef]
- Sheikh, S.Y.; Hassan, F.; Shukla, D.; Bala, S.; Faruqui, T.; Akhter, Y.; Khan, A.R.; Nasibullah, M. A review on potential therapeutic targets for the treatment of leishmaniasis. Parasitol. Int. 2024, 100, 102863. [Google Scholar] [CrossRef]
- Ansari, M.; Fakhar, M.; Sadeghi, F.; Faridnia, R.; Hasani, N.; Abastabar, M.; Montazeri, M.; Emami, S. Synthesis, computational study, and antileishmanial and antifungal evaluation of phenoxyacetophenone hydrazones bearing a 4-arylthiazole moiety. J. Mol. Struct. 2024, 108, 138015. [Google Scholar] [CrossRef]
- Taha, M.; Uddin, I.; Gollapalli, M.; Almandil, N.B.; Rahim, F.; Farooq, R.K.; Nawaz, M.; Ibrahim, M.; Alqahtani, M.A.; Bamarouf, Y.A.; et al. Synthesis, anti-leishmanial and molecular docking study of bis-indole derivatives. BMC Chem. 2019, 13, 102. [Google Scholar] [CrossRef] [PubMed]
- Filho, P.C.S.; da Silva, M.B.; da Silva, B.M.; Fazolo, T.; Dorneles, G.P.; Braun de Azeredo, J.; da Rosa, M.A.; Júnior, L.C.R.; Peres, A.; Santos Canto, R.F.; et al. Seleno-indoles trigger reactive oxygen species and mitochondrial dysfunction in Leishmania amazonensis. Tetrahedron 2023, 135, 133329. [Google Scholar] [CrossRef]
- Ahmad, G.; Sohail, M.; Bilal, M.; Rasool, N.; Qamar, M.U.; Ciurea, C.; Marceanu, L.G.; Misarca, C. N-Heterocycles as Promising Antiviral Agents: A Comprehensive Overview. Molecules 2024, 29, 2232. [Google Scholar] [CrossRef] [PubMed]
- Gudima, G.; Kofiadi, I.; Shilovskiy, I.; Kudlay, D.; Khaitov, M. Antiviral Therapy of COVID-19. Int. J. Mol. Sci. 2023, 24, 8867. [Google Scholar] [CrossRef]
- Zhou, G.; Sofiyev, V.; Kaur, H.; Snyder, B.A.; Mankowski, M.K.; Hogan, P.A.; Ptak, R.G.; Gochin, M. Structure−Activity Relationship Studies of Indole-Based Compounds as Small Molecule HIV-1 Fusion Inhibitors Targeting Glycoprotein 41. J. Med. Chem. 2014, 57, 5270–5281. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.; Chu, S.; Nemati, A.; Huang, C.; Snyder, B.A.; Ptak, R.G.; Gochin, M. Investigation of the molecular characteristics of bisindole inhibitors as HIV-1 glycoprotein-41 fusion inhibitors. Eur. J. Med. Chem. 2019, 161, 533–542. [Google Scholar] [CrossRef]
- Zhou, G.; He, L.; Li, K.H.; Pedroso, C.C.S.; Gochin, M. A targeted covalent small molecule inhibitor of HIV-1 fusion. Chem. Commun. 2021, 57, 4528–4531. [Google Scholar] [CrossRef]
- Gao, Y.; He, X.; Yan, L.; Zhang, H.; Liu, S.; Ma, Q.; Zhang, P.; Zhang, Y.; Zhang, Z.; Wang, Z.; et al. Discovery of Barakacin and Its Derivatives as Novel Antiviral and Fungicidal Agents. Molecules 2023, 28, 3032. [Google Scholar] [CrossRef] [PubMed]
- Yin, L.J.; bin Ahmad Kamar, A.K.D.; Fung, G.T.; Liang, C.T.; Avupati, V.R. Review of anticancer potentials and structure-activity relationships (SAR) of rhodanine derivatives. Biomed. Pharmacother. 2022, 145, 112406. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Hassan, S.M.; Farid, A.; Panda, S.S.; Bekheit, M.S.; Dinkins, H.; Fayad, W.; Girgis, A.S. Indole Compounds in Oncology: Therapeutic Potential and Mechanistic Insights. Pharmaceuticals 2024, 17, 922. [Google Scholar] [CrossRef]
- Janeiro, A.M.; Marques, C.S. Biological Profile of Synthetic and Natural Indole Derivatives: Paving New Paths in Cancer Treatment. Drugs Drug Candidates 2024, 3, 488–511. [Google Scholar] [CrossRef]
- Hegedűs, D.; Szemerédi, N.; Petrinca, K.; Berkecz, R.; Spengler, G.; Szatmári, I. Synthesis of Tumor Selective Indole and 8-Hydroxyquinoline Skeleton Containing Di-, or Triarylmethanes with Improved Cytotoxic Activity. Molecules 2024, 29, 4176. [Google Scholar] [CrossRef]
- Pingaew, R.; Prachayasittikul, S.; Ruchirawat, S.; Prachayasittikul, V. Synthesis and structure–activity relationship of mono-indole-, bis-indole-, and tris-indole-based sulfonamides as potential anticancer agents. Mol. Div. 2013, 17, 595–604. [Google Scholar] [CrossRef]
- El Sayed, M.T.; Ahmed, K.M.; Mahmoud, K.; Hilgeroth, A. Synthesis, cytostatic evaluation and structure activity relationships of novel bis-indolylmethanes and their corresponding tetrahydroindolocarbazole. Eur. J. Med. Chem. 2015, 90, 845–859. [Google Scholar] [CrossRef] [PubMed]
- Szumilak, M.; Galdyszynska, M.; Dominska, K.; Bak-Sypien, I.I.; Merecz-Sadowska, A.; Stanczak, A.; Karwowski, B.T.; Piastowska-Ciesielska, A.W. Synthesis, Biological Activity and Preliminary in Silico ADMET Screening of Polyamine Conjugates with Bicyclic Systems. Molecules 2017, 22, 794. [Google Scholar] [CrossRef] [PubMed]
- Eldehna, W.M.; Hassan, G.S.; Al-Rashood, S.T.; Alkahtani, H.M.; Almehizia, A.; Al-Ansary, G.H. Marine-Inspired Bis-indoles Possessing Antiproliferative Activity against Breast Cancer; Design, Synthesis, and Biological Evaluation. Mar. Drugs 2020, 18, 190. [Google Scholar] [CrossRef]
- Pingaew, R.; Mandi, P.; Prachayasittikul, V.; Thongnum, A.; Prachayasittikul, S.; Ruchirawat, S.; Prachayasittikul, V. Investigations on Anticancer and Antimalarial Activities of Indole-Sulfonamide Derivatives and In Silico Studies. ACS Omega 2021, 6, 31854–31868. [Google Scholar] [CrossRef] [PubMed]
- Parthiban, A.; Sivasankar, R.; Rajdev, B.; Asha, R.N.; Jeyakumar, T.C.; Periakaruppan, R.; Naidu, V.G.M. Synthesis, in vitro, in silico and DFT studies of indole curcumin derivatives as potential anticancer agents. J. Mol. Struct. 2022, 1270, 133885. [Google Scholar] [CrossRef]
- Budovska, M.; Michalkova, R.; Kello, M.; Vaskova, J.; Mojzis, J. Design, Synthesis and Antiproliferative Evaluation of Bis-Indole Derivatives with a Phenyl Linker: Focus on Autophagy. Molecules 2023, 28, 251. [Google Scholar] [CrossRef] [PubMed]
- Jin, T.-Y.; Li, P.-L.; Wang, C.-L.; Tang, X.-L.; Cheng, M.-M.; Zong, Y.; Luo, L.-Z.; Ou, H.-L.; Liu, K.-C.; Li, G.-Q. Racemic Bisindole Alkaloids: Structure, Bioactivity, and Computational Study. Chin. J. Chem. 2021, 39, 2588–2598. [Google Scholar] [CrossRef]
- Voura, M.; Anwar, S.; Thysiadis, S.; Κhan, P.; Dalezis, P.; Trafalis, D.T.; Hassan, M.I.; Sarli, V. Synthesis and biological activity of bisindole derivatives as novel MARK4 inhibitors. Eur. J. Med. Chem. Rep. 2022, 6, 100076. [Google Scholar] [CrossRef]
- Midya, G.C.; Mandal, S.; Paul, R.; Dash, J. Synthesis of a bisindole enyne with anticancer properties. J. Ind. Chem. Soc. 2023, 100, 101028. [Google Scholar] [CrossRef]
- Kabir, E.; Uzzaman, M. A review on biological and medicinal impact of heterocyclic compounds. Res. Chem. 2022, 4, 100606. [Google Scholar] [CrossRef]
- Hemalatha, K.; Madhumitha, G.; Roopan, S.M. Indole as a Core Anti-Inflammatory Agent-A Mini Review. Chem. Sci. Rev. Lett. 2013, 2, 287–292. [Google Scholar]
- Qu, J.; Fang, L.; Ren, X.-D.; Liu, Y.; Yu, S.-S.; Li, L.; Bao, X.-Q.; Zhang, D.; Li, Y.; Ma, S.-G. Bisindole Alkaloids with Neural Anti-inflammatory Activity from Gelsemium elegans. J. Nat. Prod. 2013, 76, 2203–2209. [Google Scholar] [CrossRef] [PubMed]
- Sujatha, K.; Perumal, P.T.; Muralidharan, D.; Rajendran, M. Synthesis, analgesic and anti-inflammatory activities of bis(indole)methanes. Ind. J. Chem. 2009, 48B, 267–272. [Google Scholar]
- Mizobuti, D.S.; da Rocha, G.L.; da Silva, H.N.M.; Covatti, C.; de Lourenço, C.C.; Pereira, E.C.; Salvador, M.J.; Minatel, E. Antioxidant effects of bis-indole alkaloid indigo and related signaling pathways in the experimental model of Duchenne muscular dystrophy. Cell Stress Chap. 2022, 27, 417–429. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Zhao, K.; Tang, T.; Deng, Y.; Zhang, Y.; Feng, S.; Feng, P.; Guo, M.; Li, X.; Cen, J. Bisindole compound 4ae ameliorated cognitive impairment in rats with vascular dementia by anti-inflammation effect via microglia cells. Eur. J. Pharmacol. 2021, 908, 174357. [Google Scholar] [CrossRef] [PubMed]
- Shim, K.-H.; Kim, S.-H.; Hur, J.; Kim, D.-H.; DEmirev, A.V.; Yoon, S.Y. Small-molecule drug screening identifies drug Ro 31–8220 that reduces toxic phosphorylated tau in Drosophila melanogaster. Neurobiol. Dis. 2019, 130, 104519. [Google Scholar] [CrossRef]
- Bharate, S.B.; Manda, S.; Joshi, P.; Singh, B.; Vishwakarma, R.A. Total synthesis and anti-cholinesterase activity of marine-derived bis-indole alkaloid fascaplysin. Med. Chem. Commun. 2012, 3, 1098–1103. [Google Scholar] [CrossRef]
- Sun, Q.; Liu, F.; Sang, J.; Lin, M.; Ma, J.; Xiao, X.; Yan, S.; Naman, C.B.; Wang, N.; He, S.; et al. 9-Methylfascaplysin Is a More Potent Aβ Aggregation Inhibitor than the Marine-Derived Alkaloid, Fascaplysin, and Produces Nanomolar Neuroprotective Effects in SH-SY5Y Cells. Mar. Drugs 2019, 17, 121. [Google Scholar] [CrossRef] [PubMed]
- Pan, H.; Qiu, H.; Zhang, K.; Zhang, P.; Liang, W.; Yang, M.; Mou, C.; Lin, M.; He, M.; Xiao, X.; et al. Fascaplysin Derivatives Are Potent Multitarget Agents against Alzheimer’s Disease: In Vitro and in Vivo Evidence. ACS Chem. Neurosci. 2019, 10, 4741–4756. [Google Scholar] [CrossRef] [PubMed]
- Angelova, V.T.; Georgiev, B.; Pencheva, T.; Pajeva, I.; Rangelov, M.; Todorova, N.; Zheleva-Dimitrova, D.; Kalcheva-Yovkova, E.; Valkova, I.V.; Vassilev, N.; et al. Design, Synthesis, In Silico Studies and In Vitro Evaluation of New Indole- and/or Donepezil-like Hybrids as Multitarget-Directed Agents for Alzheimer’s Disease. Pharmaceuticals 2023, 16, 1194. [Google Scholar] [CrossRef] [PubMed]
- Nadeem, M.S.; Khan, J.A.; Rashid, U. Design, Synthesis, and Bioevaluation of Indole Core Containing 2-Arylidine Derivatives of Thiazolopyrimidine as Multitarget Inhibitors of Cholinesterases and Monoamine Oxidase A/B for the Treatment of Alzheimer Disease. ACS Omega 2022, 7, 9369–9379. [Google Scholar] [CrossRef]
- Barresi, E.; Baglini, E.; Poggetti, V.; Castagnoli, J.; Giorgini, D.; Salerno, S.; Taliani, S.; Da Settimo, F. Indole-Based Compounds in the Development of Anti-Neurodegenerative Agents. Molecules 2024, 29, 2127. [Google Scholar] [CrossRef]
- Jomova, K.; Renata Raptova, R.; Alomar, S.Y.; Alwasel, S.H.; Nepovimova, E.; Kuca, K.; Valko, M. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: Chronic diseases and aging. Arch. Toxicol. 2023, 97, 2499–2574. [Google Scholar] [CrossRef]
- Estevão, M.S.; Carvalho, L.C.; Ribeiro, D.; Couto, D.; Freitas, M.; Gomes, A.; Ferreira, L.M.; Fernandes, E.; Marques, M.M.B. Antioxidant activity of unexplored indole derivatives: Synthesis and screening. Eur. J. Med. Chem. 2010, 45, 4869–4878. [Google Scholar] [CrossRef]
- Silveira, C.C.; Mendes, S.R.; Soares, J.R.; Victoria, F.N.; Martinez, D.M.; Savegnago, L. Synthesis and antioxidant activity of new C-3 sulfenyl indoles. Tetrahedron Lett. 2013, 54, 4926–4929. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhao, J.; Luo, L.; Gao, Y.; Bao, H.; Li, P.; Zhang, H. Research progress of indole compounds with potential antidiabetic activity. Eur. J. Med. Chem. 2021, 223, 113665. [Google Scholar] [CrossRef] [PubMed]
- Ki, J.; Mukherjee, A.; Rangasamy, S.; Purushothaman, B.; Song, J.M. Insulin-mimetic and anti-inflammatory potential of a vanadyl-Schiff base complex for its application against diabetes. RSC Adv. 2016, 6, 57530–57539. [Google Scholar] [CrossRef]
- Taha, M.; Rahim, F.; Imran, S.; Ismail, N.H.; Ullah, H.; Selvaraj, M.; Javid, M.T.; Salar, U.; Ali, M.; Khan, M.K. Synthesis, a-glucosidase inhibitory activity and in silico study of tris-indole hybrid scaffold with oxadiazole ring: As potential leads for the management of type-II diabetes mellitus. Bioorg. Chem. 2017, 74, 30–40. [Google Scholar] [CrossRef] [PubMed]
- Çavdar, H.; Talaz, O.; Ekinci, D. Synthesis of novel mono and bis-indole conduritol derivatives and their a/b-glycosidase inhibitory effects. Bioorg. Med. Chem. Lett. 2012, 22, 7499–7503. [Google Scholar] [CrossRef]
- Wang, G.; Wang, J.; Xie, Z.; Chen, M.; Li, L.; Peng, Y.; Chen, S.; Li, W.; Deng, B. Discovery of 3, 3-di(indolyl)indolin-2-one as a novel scaffold for aglucosidase inhibitors: In silico studies and SAR predictions. Bioorg. Chem. 2017, 72, 228–233. [Google Scholar] [CrossRef]
- Mayati, A.; Bruyere, A.; Moreau, A.; Jouan, E.; Denizot, C.; Parmentier, Y.; Fardel, O. Protein kinase C-independent inhibition of organic cation transporter 1 activity by the bisindolylmaleimide ro 31-8220. PLoS ONE 2015, 10, e0144667. [Google Scholar] [CrossRef]
- Sugai, T.; Hanaya, K.; Higashibayashi, S. Syntheses of indirubins by aldol condensation of isatins with indoxyl anion generated in situ by lipase-catalyzed deacetylation of indoxyl acetate. Heterocycles 2020, 100, 129–136. [Google Scholar] [CrossRef]
- Konno, T.; Sasaki, K.; Kobayashi, K.; Murata, T. Indirubin promotes adipocyte differentiation and reduces lipid accumulation in 3T3L1 cells via peroxisome proliferatoractivated receptor gamma activation. Mol. Med. Rep. 2020, 21, 1552–1560. [Google Scholar] [CrossRef]
- Nisha, C.M.; Kumar, A.; Vimal, A.; Bai, B.M.; Kumar, A. Docking and ADMET prediction of few GSK-3 inhibitors divulges 6-bromoindirubin-3-oxime as a potential inhibitor. J. Mol. Graph. Model. 2016, 65, 100–107. [Google Scholar] [CrossRef]
- Dvorak, K.R.; Tepe, J.J. Advances in the Total Synthesis of Bis- and Tris-Indole Alkaloids Containing N-Heterocyclic Linker Moieties. Nat. Prod. Rep. 2024, 41, 1264–1293. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.-L.; Xu, H.-N.; Gong, C.-M.; Li, Y.-Z.; Li, Y.-M.; Song, X.-M.; Wang, R.; Zhang, D.-D. The Sources, Structures and Cytotoxicity of Animal-Derived Bisindole Compounds. Chem. Biodivers. 2024, 21, e202401165. [Google Scholar] [CrossRef]
- Mielczarek, M.; Devakaram, R.V.; Ma, C.; Yang, X.; Kandemir, H.; Purwono, B.; Black, D.S.; Griffith, R.; Lewis, P.J.; Kumar, N. Synthesis and Biological Activity of Novel Bis-Indole Inhibitors of Bacterial Transcription Initiation Complex Formation. Org. Biomol. Chem. 2014, 12, 2882–2894. [Google Scholar] [CrossRef]
- Dethe, D.H.; Erande, R.D.; Ranjan, A. Biomimetic Total Syntheses of Flinderoles B and C. J. Am. Chem. Soc. 2011, 133, 2864–2867. [Google Scholar] [CrossRef]
- Tsuruda, S.; Sato, T.; Aoyama, H.; Sirimangkalakitti, N.; Fujimura, S.; Arisawa, M.; Murai, K. Total Synthesis and Antibacterial Activity of Marine Tris-Indole Alkaloid Tulongicin A. J. Nat. Prod. 2024, 87, 1556–1562. [Google Scholar] [CrossRef] [PubMed]
- Pacureanu, L.; Avram, S.; Bora, A.; Kurunczi, L.; Crisan, L. Portraying the selectivity of GSK-3 inhibitors towards CDK-2 by 3D similarity and molecular docking. Struct. Chem. 2019, 30, 911–923. [Google Scholar] [CrossRef]
- Alorfi, N.M. Pharmacological Methods of Pain Management: Narrative Review of Medication Used. Int. J. Gen. Med. 2023, 16, 3247–3256. [Google Scholar] [CrossRef]
- Li, F.; Yin, C.; Chen, J.; Liu, J.; Xie, X.; Zhang, A. Synthesis and SAR Study of Opioid Receptor Ligands: Mono- and Bis-Indolomorphinans. Chem. Biol. Drug Des. 2009, 74, 335–342. [Google Scholar] [CrossRef]
- Badger, M.R.; Price, G.D. The role of carbonic anhydrase in photosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1994, 45, 369–392. [Google Scholar] [CrossRef]
- Bonardi, A.; Nocentini, A.; de Luca, V.; Capasso, C.; Elkaeed, E.B.; Eldehna, W.M.; Supuran, C.T. Hydrogen Sulfide-Releasing Carbonic Anhydrase Inhibitors Effectively Suppress Cancer Cell Growth. Int. J. Mol. Sci. 2024, 25, 10006. [Google Scholar] [CrossRef] [PubMed]
- Imran, S.; Taha, M.; Ismail, N.H.; Fayyaz, S.; Khan, K.M.; Choudhary, M.I. Synthesis of novel bisindolylmethanes: New carbonic anhydrase II inhibitors, docking, and 3D pharmacophore studies. Bioorg. Chem. 2016, 68, 90–104. [Google Scholar] [CrossRef] [PubMed]
Entry | Catalyst | Reaction Conditions | Yield | Reference |
---|---|---|---|---|
1 | KHSO4 | MeOH, rt, 7 h | 37–80% | [86] |
2 | Bi(NO3)3∙5H2O | CH2Cl2, rt, 20 min | 98% | [87] |
3 | HClO4–SiO2 | MeOH, rt, 1–60 min | 88–95% | [88] |
4 | Ln(OTf)3 | EtOH, H2O, rt, 12–36 h | 64–93% | [89] |
5 | Sm2O3/SiO2 | Solvent free, 60–70 °C, 5–60 min | 70–96% | [90] |
6 | Ni nanoparticles | Solvent free, 80 °C, 60–90 min | 85–95% | [91] |
7 | Glacial acetic acid | Reflux, 8 h | 88% | [92] |
8 | Taurine | H2O, sonication, 1–24 h | 59–90% | [93] |
9 | Poly(ethylene glycol) (PEG) supported dichlorophosphate (PEG-OP(O)Cl2) | rt, 2–10 min | 92–95% | [94] |
10 | Tetramethyl guanidinium chlorosulfonate | CH2Cl2, rt, 40 min | 90–96% | [95] |
11 | Pentafluorophenylammonium triflate (PFPAT) | CH3CN, rt, 5–60 min | 60–98% | [96] |
12 | Aluminumdodecatungstophosphate (AlPW12O40) | CH3CN, rt, 1–25 min | 71–98% | [97] |
13 | 1-butyl-3-methylimidazolium tetra-fluoroborate ([bmim]BF4) | rt, 3–7.5 h | 85–93% | [98] |
14 | 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim]PF6) | rt, 4–8 h | 78–90% | [98] |
15 | N,N,N,N-tetramethylguanidinium trifluoroacetate (TMGT) | 100 °C, 25–60 min | 93–98% | [99] |
16 | N,N,N,N-tetramethylguanidinium triflate (TMGTf) | 100 °C, 3.5–5 h | 86–92% | [99] |
17 | [(n-propyl)2NH2][HSO4] | MW, 3–5 min | 85–99% | [100] |
18 | Highly uniform and hyper-cross-linked polyphenanthrene and poly-pyrene microspheres | Neat, 25–100 °C, 1 h | 20–96% | [101] |
19 | Bio-surfactant, chickpea leaf exudates | i-Pr-OH, 80 °C, 30 min | 96% | [102] |
20 | Ytterbium(III) triflate/sodium dodecyl sulfate (Yb(OTf)3/SDS) | H2O, rt, 1.5 h | 84% | [103] |
Compound | MIC (µg mL−1) | Hemolysis (%) | |
---|---|---|---|
S. aureus CH 10850 (MRSA) | S. aureus ATCC 29213 | ||
66 | 2 | 2 | 2.96 ± 0.02 |
67 | 32 | 16 | 2.32 ± 0.06 |
Compounds | MIC in µg/mL | ||||
---|---|---|---|---|---|
S. aureus ATCC 25923 | E. coli ATCC 24922 | P. aeruginosa ATCC 27853 | K. pneumoniae Recultured | S. pyogenes | |
74a | 6.25 | 6.25 | 6.25 | 6.25 | 12.5 |
74b | 6.25 | 12.5 | 6.25 | 25 | 6.25 |
74c | 6.25 | 12.5 | 6.25 | 25 | 25 |
74d | 12.5 | 12.5 | 25 | 12.5 | 6.25 |
74e | 6.25 | 6.25 | 6.25 | 6.25 | 6.25 |
74f | 12.5 | 12.5 | 25 | 12.5 | 25 |
74g | 25 | 12.5 | 12.5 | 12.5 | 25 |
74h | 6.25 | 6.25 | 6.25 | 6.25 | 12.5 |
74i | 25 | 6.25 | 25 | 6.25 | 12.5 |
74j | 6.25 | 6.25 | 25 | 6.25 | 6.25 |
75a | 12.5 | 25 | 25 | 25 | 25 |
75b | 6.25 | 6.25 | 6.25 | 6.25 | 6.25 |
75c | 25 | 25 | 25 | 25 | 6.25 |
75d | 12.5 | 12.5 | 25 | 12.5 | 6.25 |
75e | 6.25 | 12.5 | 12.5 | 12.5 | 6.25 |
75f | 6.25 | 6.25 | 6.25 | 6.25 | 12.5 |
75g | 12.5 | 12.5 | 25 | 12.5 | 25 |
75h | 25 | 12.5 | 12.5 | 12.5 | 25 |
75i | 6.25 | 6.25 | 6.25 | 6.25 | 12.5 |
75j | 6.25 | 6.25 | 6.25 | 6.25 | 6.25 |
Ciprofloxacin | 6.25 | 6.25 | 6.25 | 1.56 | 6.25 |
Compound | R | IC50 (µM ± SE) | Compound | R | IC50 (µM ± SE) |
---|---|---|---|---|---|
112 | 4-OCH3 | 5.3 ± 0.3 | 126 | 2-F | 0.95 ± 0.05 |
113 | 3-OCH3 | 6.4 ± 0.2 | 127 | 3-OH-4-OCH3 | 2.30 ± 0.1 |
114 | 3-NO2 | 4.3 ± 0.2 | 128 | 3-Cl | 9.10 ± 0.3 |
115 | 3,4-di(OH)2 | 0.80 ± 0.01 | 129 | 2-OH-5-OCH3 | 2.25 ± 0.20 |
116 | 4-CH3 | 6.70 ± 0.20 | 130 | 2-NO2 | 3.30 ± 0.20 |
117 | 2-CH3 | 5.20 ± 0.2 | 131 | 2.4-di(OH)2 | 3.30 ± 0.10 |
118 | 2.5-di(OH)2 | 3.50 ± 0.20 | 132 | 3-CH3 | 13.30 ± 0.50 |
119 | 2.3-di(OH)2 | 0.7 ± 0.01 | 133 | 4-Cl | 6.9 ± 0.30 |
120 | 4-F | 1.50 ± 0.05 | 134 | 2-Cl | 3.20 ± 0.1 |
121 | 2-OH-4-OCH3 | 4.20 ± 0.2 | 135 | 3-F | 6.80 ± 0.2 |
122 | 3-OH | 2.65 ± 0.10 | 136 | 3-OH | 5.8 ± 0.20 |
123 | 4-NO2 | 6.8 ± 0.20 | 137 | 2-Pyridyl | 1.60 ± 0.1 |
124 | 3.5-di(OH)2 | 5.80 ± 0.30 | 138 | 3-Pyridyl | 7.60 ± 0.20 |
125 | 4-OH | 3.60 ± 0.20 | |||
Pentamidine | – | 7.20 ± 0.20 |
Compound | IC50 (µM) | ||
---|---|---|---|
PC-3 | DU-145 | MCF-7 | |
148 | 27.59 | 16.46 | 0.44 |
149 | 35.72 | 15.86 | 1.28 |
Doxorubicin | 1.22 | 0.58 | 1.51 |
No | Compounds | In Vitro Studies | |||
---|---|---|---|---|---|
Anti-Cancer (IC50) | Antioxidant | ||||
Hep-2 (μM) | A549 (μM) | HeLa (μM) | Reduction Level of DPPH (%) | ||
1 | 154 | 25 ± 0.9 | 20 ± 1.6 | 8 ± 0.7 | 73.41 |
2 | 155 | 18 ± 1.3 | 28 ± 30 | 6 ± 0.52 | 81.95 |
3 | 156 | 12 ± 0.8 | 15 ± 1.2 | 4 ± 0.5 | 90.50 |
4 | Doxorubicin | 10 ± 0.8 | 0.65 ± 0.04 | 1 ± 0.09 | – |
5 | Ascorbic acid | – | – | – | 99.91 |
Compound | R | GOLD Score | IC50 Value (μM) ± SEM |
---|---|---|---|
159 | 2,4-dihydroxyphenyl | 73.51 | 3.50 ± 0.01 |
160 | 2,5-dihydroxyphenyl | 73.10 | 6.10 ± 0.01 |
161 | 2,3-dihydroxyphenyl | 72.56 | 9.30 ± 0.10 |
162 | 3,4-dihydroxyphenyl | 70.97 | 12.16 ± 0.15 |
7-Deazaxanthine | - | 60.65 | 38.68 ± 1.12 |
No | Compound | Hela Cells (µM) | HT-29 (µM) | MCF-7 (µM) |
---|---|---|---|---|
1 | 163 | 86.3 | 62.3 | 138 |
2 | 164 | 95.4 | 128.3 | 145.8 |
3 | 165 | 129.5 | 98.4 | >150 |
4 | 166 | 139.3 | 89.7 | >150 |
No | Compound | Cell Line | |||
---|---|---|---|---|---|
EL4 | THP-1 | U-937 | S17 | ||
1 | 31a | 7.65 | 12.2 | 18.6 | ND |
2 | 31b | 9.29 | 22.6 | 18.1 | 17.7 |
3 | 31c | 3.23 | 6.34 | 9.79 | 11.5 |
4 | 31d | 15.6 | 15.5 | 12.8 | 21.9 |
5 | 34a | 9.99 | 25.3 | 14.2 | ND |
6 | 34b | 5.56 | 38.8 | NA | 7.65 |
7 | 34c | 15.3 | 30.0 | 25.0 | 50.0 |
8 | 34d | 15.4 | 28.6 | 156.9 | NA |
9 | 34e | 22.5 | 36.2 | 28.3 | 41.3 |
10 | Etoposide | 4.90 | 1.82 | 1.10 | 10.4 |
Compound | Enzyme Inhibition | Compound | Enzyme Inhibition |
---|---|---|---|
168 | 2.88 | 169 | 3.99 |
170 | 4.32 | 171 | 0.47 |
172 | 1.86 | 173 | 5.67 |
174 | 4.83 | 175 | 0.69 |
176 | 1.87 | 177 | 4.97 |
178 | 3.99 | 179 | 0.56 |
Compound | % Hemolysis | % Protection | % Hemolysis | % Protection |
---|---|---|---|---|
50 a | 100 a | 50 a | 100 a | |
182 | 69.44 | 58.33 | 30.60 | 41.67 |
183 | 47.22 | 30.55 | 52.78 | 69.45 |
184 | 52.77 | 38.80 | 47.30 | 61.20 |
185 | 55.83 | 45.55 | 44.17 | 54.45 |
186 | 79.72 | 67.50 | 20.28 | 32.50 |
187 | 63.88 | 55.55 | 36.12 | 44.45 |
188 | 3.33 | 27.77 | 66.67 | 72.23 |
189 | 66.66 | 52.77 | 33.34 | 47.23 |
190 | 41.60 | 25.02 | 58.40 | 75.00 |
191 | 30.55 | 22.22 | 69.45 | 77.78 |
192 | 44.44 | 27.70 | 55.56 | 72.30 |
193 | 72.22 | 52.77 | 27.78 | 47.23 |
Diclofenac | 75.00 | 66.60 | 25.00 | 33.40 |
Compound | IC50 (µg mL−1) |
---|---|
100a | 211 |
100b | 184 |
100c | 223 |
100d | 197 |
100e | 179 |
Vitamin C | 195 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marinescu, M. Bisindole Compounds—Synthesis and Medicinal Properties. Antibiotics 2024, 13, 1212. https://doi.org/10.3390/antibiotics13121212
Marinescu M. Bisindole Compounds—Synthesis and Medicinal Properties. Antibiotics. 2024; 13(12):1212. https://doi.org/10.3390/antibiotics13121212
Chicago/Turabian StyleMarinescu, Maria. 2024. "Bisindole Compounds—Synthesis and Medicinal Properties" Antibiotics 13, no. 12: 1212. https://doi.org/10.3390/antibiotics13121212
APA StyleMarinescu, M. (2024). Bisindole Compounds—Synthesis and Medicinal Properties. Antibiotics, 13(12), 1212. https://doi.org/10.3390/antibiotics13121212