Indole Compounds in Oncology: Therapeutic Potential and Mechanistic Insights
"> Figure 1
<p>Clinically approved indole-containing drugs <b>13</b>–<b>18</b> as anticancer agents.</p> "> Figure 2
<p>Chemical structure of vinca alkaloids (vinblastine <b>19</b>, vincristine <b>20</b>, vinorelbine <b>21</b>, and vinflunine <b>22</b>).</p> "> Figure 3
<p>Chemical structure of indole alkaloids <b>23</b>–<b>25</b> with antiproliferation properties against breast cancer.</p> "> Figure 4
<p>Chemical structure of indole alkaloids <b>26</b>–<b>28</b> with antiproliferation properties against lung cancer.</p> "> Figure 5
<p>Chemical structure of indole alkaloids <b>29</b> and <b>30</b> with antiproliferation properties against gastric cancer.</p> "> Figure 6
<p>Chemical structure of indole alkaloids <b>31</b>–<b>33</b> with antiproliferation properties against colorectal cancer.</p> "> Figure 7
<p>Chemical structure of indole alkaloids <b>34</b> and <b>35</b> with antiproliferation properties against pancreatic cancer.</p> "> Figure 8
<p>Chemical structure of indole alkaloids <b>36</b> and <b>37</b> with antiproliferation properties against liver cancer.</p> "> Figure 9
<p>Chemical structure of indole alkaloids <b>38</b>–<b>41</b> with antiproliferation properties against cervical cancer.</p> "> Figure 10
<p>Chemical structure of 9-hydroxycanthin-6-one <b>42</b> with antiproliferation properties against ovarian cancer.</p> "> Figure 11
<p>Chemical structure of indole alkaloids <b>43</b>–<b>46</b> with antiproliferation properties against leukemia.</p> "> Figure 12
<p>Promising antiproliferative indole–benzimidazole conjugates <b>58</b>.</p> "> Figure 13
<p>Chemical structure of olaparib (standard drug against PARP-1).</p> "> Figure 14
<p>Chemical structure of nocodazole, an antineoplastic agent that exerts its activity by interfering with the polymerization of microtubules.</p> "> Figure 15
<p>Tamoxifen (an approved drug for breast cancer).</p> "> Figure 16
<p>Most potent spiroxindole <b>121</b> aganist the MCF7 cell line.</p> "> Figure 17
<p>Chemical strucure of piperlongumine <b>149</b>.</p> "> Figure 18
<p>Clinically approved quinazoline-containing compounds with EGFR inhibitory properties.</p> "> Figure 19
<p>The promising agents of <b>173</b> observed against the MGC-803 (gasteric) cancer cell line.</p> "> Figure 20
<p>Chemical strucure of the synthesized spiroindoles <b>187</b>.</p> "> Figure 21
<p>Chemical strucure of 2-methylindole <b>188</b>.</p> "> Figure 22
<p>Antiproliferation properties of the promising spiroindoles <b>229a</b>–<b>c</b> against ovarian cancer cell lines.</p> "> Scheme 1
<p>Synthetic route towards pyridyl-indole-based chalcones incorporated in sulfonamide group <b>50</b>.</p> "> Scheme 2
<p>Synthetic route towards harmine–chalcone conjugates <b>54</b> and <b>55</b>.</p> "> Scheme 3
<p>Synthetic route towards indole–benzimidazole derivatives <b>58</b>.</p> "> Scheme 4
<p>Synthetic route towards indole-2-carbohydrazides <b>60</b> and thiazolidines <b>61</b>.</p> "> Scheme 5
<p>Synthetic route towards indolyl sulfonohydrazones <b>66</b>.</p> "> Scheme 6
<p>Synthetic route towards thiazolyl hydrazones linked to indolyl scaffold <b>71</b>.</p> "> Scheme 7
<p>Synthetic route towards indole-triazol congugates <b>74</b> and <b>75</b>.</p> "> Scheme 8
<p>Synthetic route towards 3-amidoindoles <b>80</b>.</p> "> Scheme 9
<p>Synthetic route towards 3-arylthio- <b>83</b> and 3-aroyl-1<span class="html-italic">H</span>-indoles <b>85</b>.</p> "> Scheme 10
<p>Synthesitic route towards 6-aryl-3-aroyl-indoles <b>89</b>.</p> "> Scheme 11
<p>Synthetic route towards indolyl-arylaminopropenone conjugates <b>93</b>.</p> "> Scheme 12
<p>Synthetic route towards 1,3,4-oxadiazole-indole <b>98</b> and 1,3,4-triazole-indole conjugates <b>99</b>.</p> "> Scheme 13
<p>Synthetic route towards 3-pyrrolylisatin-triazole conjugates <b>104</b>.</p> "> Scheme 14
<p>Synthetic route towards spirochromenocarbazols linked to 1,2,3-triazole <b>106</b>.</p> "> Scheme 15
<p>Synthetic route towards 1<span class="html-italic">H</span>-1,2,3-triazole connecting tetrahydro-β-carboline and isatin scaffolds <b>109</b>.</p> "> Scheme 16
<p>Synthetic route towards ospemifene-isatin/ospemfene-spiroisatin <b>116</b>/<b>117</b>, linked through 1<span class="html-italic">H</span>-1,2,3-triazole, respectively.</p> "> Scheme 17
<p>Synthetic route towards spirooxindoles <b>121</b>.</p> "> Scheme 18
<p>Synthetic route towards spiroxindoles <b>124</b>.</p> "> Scheme 19
<p>Synthetic route towards <span class="html-italic">N</span>-(1<span class="html-italic">H</span>-indole-6-yl)benzamides/benzene sulfonamides <b>127</b> and <b>128</b>.</p> "> Scheme 20
<p>Synthetic route towards 4<span class="html-italic">H</span>-[1,3]thiazino[3,2-<span class="html-italic">a</span>]indol-4-ones <b>131</b>.</p> "> Scheme 21
<p>Synthetic route towards indole-podophyllotoxin conjugates <b>133</b>.</p> "> Scheme 22
<p>Synthetic route towards indolylthiosemicarbazones <b>139</b>.</p> "> Scheme 23
<p>Synthetic route towards bis(indolyl)hydrazide-hydrazones <b>142</b>.</p> "> Scheme 24
<p>Synthetic route towards indole-based tambjamine analogs <b>144</b>.</p> "> Scheme 25
<p>Synthetic route towards indirubin-piperidine conjugate <b>146</b> and its HCl salt <b>147</b>.</p> "> Scheme 26
<p>Synthetic route towards indole-piperlongumine conjugates <b>152</b>.</p> "> Scheme 27
<p>Synthetic route towards indoleyl analogs linked to urea function <b>156</b>.</p> "> Scheme 28
<p>Synthetic route towards quinazoline-indole conjugates <b>159</b>–<b>161</b>.</p> "> Scheme 29
<p>Synthetic route towards coumarin-indole conjugates <b>168</b>.</p> "> Scheme 30
<p>Synthetic route towards thiochromeno[4,3-<span class="html-italic">c</span>]pyrazole-indole conjugates <b>173</b>.</p> "> Scheme 31
<p>Synthetic route towards <span class="html-italic">N</span>-arylsulfonylindoles <b>175</b>.</p> "> Scheme 32
<p>Synthetic route towards isatin–indole conjugates <b>179</b>.</p> "> Scheme 33
<p>Synthetic route towards 1-(indole-2-carbonyl)thiosemicarbazides <b>182</b>.</p> "> Scheme 34
<p>Synthetic route towards thiazolidinone-indole hybrids <b>184</b>.</p> "> Scheme 35
<p>Synthetic route towards spiro[indoline-3,3′-pyrrolizin]-2-ones <b>186</b>.</p> "> Scheme 36
<p>Synthetic routes towards spiroindoles <b>192</b>.</p> "> Scheme 37
<p>Synthetic route towards 3-alkenyl-2-oxindoles <b>196</b>.</p> "> Scheme 38
<p>Synthetic route towards 3-alkenyl-2-oxindoles <b>200</b>.</p> "> Scheme 39
<p>Synthetic route towards indole linked to imidazo[2,1-<span class="html-italic">b</span>][1,3,4]thiadiazoles <b>203</b>.</p> "> Scheme 40
<p>Synthetic route towards 5-(morpholinosulfonyl)-2-indolinones <b>206</b> and ylidenes <b>208</b>.</p> "> Scheme 41
<p>Synthetic route towards sophoridine-indole conjugates <b>210</b>.</p> "> Scheme 42
<p>Synthesis of spirooxindoles <b>213</b>.</p> "> Scheme 43
<p>Synthetic route towards 1,2,3-triazole-indole-3-glyoxamides <b>216</b> and <b>218</b>.</p> "> Scheme 44
<p>Synthetic route towards 3-[(indeno[1,2-<span class="html-italic">c</span>]pyrazole-3-yl)methylene]indolin-2-ones <b>221</b>.</p> "> Scheme 45
<p>Synthetic route towards nicotinoyl pyrazolines bearing <span class="html-italic">N</span>-methyl indolyl heterocycle <b>223</b>.</p> "> Scheme 46
<p>Synthetic route towards indoles <b>225</b> and pyranoindoles <b>226</b>.</p> "> Scheme 47
<p>Synthesitic route towards spiroindoles <b>229</b>.</p> "> Scheme 48
<p>Synthetic route towards indole-isoxazole conjugates <b>235</b>.</p> "> Scheme 49
<p>Synthetic route towards 2-carbomethoxy-3-arylindoles <b>241</b>.</p> ">
Abstract
:1. Introduction
2. Natural Indoles with Potential Antiproliferation Properties
2.1. Breast Cancer
2.2. Lung Cancer
2.3. Gastric Cancer
2.4. Colorectal Cancer
2.5. Pancreatic Cancer
2.6. Liver Cancer
2.7. Cervical Cancer
2.8. Ovarian Cancer
2.9. Leukemia
3. Synthesized Indoles with Potential Antiproliferation Properties
3.1. Breast Cancer
3.2. Lung Cancer
3.3. Gastric Cancer
3.4. Colorectal Cancer
3.5. Pancreatic Cancer
3.6. Liver Cancer
3.7. Prostate Cancer
3.8. Cervical Cancer
3.9. Ovarian Cancer
3.10. Leukemia
4. Conclusions
Supplementary Materials
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
5-LOX | 5-Lipoxygenase |
AAZ | Acetazolamide |
ACD | Accidental cell death |
BAX | Bcl-2-associated X protein |
Bcl-2 | B-cell lymphoma 2 |
BRD | Bromodomain-containing protein |
BTG1 | B cell translocation gene 1 |
CA-4 | Combretastatin A-4 |
cdc-2 | Cyclin-dependent kinase 1 |
Cell-CuI NPs | Cellulose-supported CuI nanoparticles |
COX | Cyclooxygenase |
CPT | Camptothecin |
DDR | Discoidin domain receptors |
DIPEA | N,N-Diisopropylethylamine |
DME | Dimethoxyethane) |
EDC | N-Ethyl-N-(3-dimethylaminopropyl)carbodiimide |
EGF | Epidermal growth factor |
ER-α | Estrogen receptor-α |
FGFR | Fibroblast growth factor receptor |
hCA | Human carbonic anhydrases |
HDAC | Histone deacetylase |
HDACs | Histone deacetylases |
HFIP | Hexafluoroisopropanol |
HFIP | Hexafluoroisopropanol |
HIV | Human immunodeficiency virus |
HOBt | Hydroxybenzotriazole |
HPV | Human papillomavirus |
IBX | Iodoxybenzoic acid |
MTT | 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide |
NMPA | National Medical Products Administration |
NSAID | Non-steroidal anti-inflammatory drug |
NSCLC | Non-small cell lung cancer |
PARP-1 | Poly(ADP-ribose) polymerase-1 |
PD-1 | Phosphodiesterase 1 |
PDGFR | Platelet-derived growth factor receptor |
p-Erk | Phosphorylated extracellular signal-regulate kinase |
RCD | Regulated cell death |
ROS | Reactive oxygen species |
ROS | Reactive oxygen species |
SARS-CoV-2 | Severe acute respiratory syndrome coronavirus-2 |
SDS | Sodium dodecyl sulfate |
SRB | Sulforhodamine B |
TEBA | Benzyltriethylammonium chloride |
Tf2NH | Bis(trifluoromethane sulfonimide) |
TK | tyrosine kinase |
VEGFR | Vascular endothelial growth factor receptor |
References
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef] [PubMed]
- Aboshouk, D.R.; Youssef, M.A.; Bekheit, M.S.; Hamed, A.R.; Girgis, A.S. Antineoplastic indole-containing compounds with potential VEGFR inhibitory properties. RSC Adv. 2024, 14, 5690–5728. [Google Scholar] [CrossRef] [PubMed]
- International Agency for Research on Cancer, Cancer Tomorrow. Available online: https://gco.iarc.fr/tomorrow/en/dataviz/isotype (accessed on 30 May 2024).
- Rahib, L.; Wehner, M.R.; Matrisian, L.M.; Nead, K.T. Estimated projection of US cancer incidence and death to 2040. JAMA Netw. Open 2021, 4, e214708. [Google Scholar] [CrossRef] [PubMed]
- Bray, F.; Laversanne, M.; Weiderpass, E.; Soerjomataram, I. The ever-increasing importance of cancer as a leading cause of premature death worldwide. Cancer 2021, 127, 3029–3030. [Google Scholar] [CrossRef] [PubMed]
- Kelley, K.D.; Aronowitz, P. Cancer. Med. Clin. N. Am. 2022, 106, 411–422. [Google Scholar] [CrossRef] [PubMed]
- Vasan, N.; Baselga, J.; Hyman, D.M. A view on drug resistance in cancer. Nature 2019, 575, 299–309. [Google Scholar] [CrossRef] [PubMed]
- Emran, T.B.; Shahriar, A.; Mahmud, A.R.; Rahman, T.; Abir, M.H.; Siddiquee, M.F.-R.; Ahmed, H.; Rahman, N.; Nainu, F.; Wahyudin, E.; et al. Multidrug resistance in cancer: Understanding molecular mechanisms, immunoprevention and therapeutic approaches. Front. Oncol. 2022, 12, 891652. [Google Scholar] [CrossRef] [PubMed]
- Dias, M.P.; Moser, S.C.; Ganesan, S.; Jonkers, J. Understanding and overcoming resistance to PARP inhibitors in cancer therapy. Nat. Rev. Clin. Oncol. 2021, 18, 773–791. [Google Scholar] [CrossRef] [PubMed]
- Cesur-Ergün, B.; Demir-Dora, D. Gene therapy in cancer. J. Genet. Med. 2023, 25, e3550. [Google Scholar] [CrossRef]
- Shimu, A.S.; Wei, H.-X.; Li, Q.; Zheng, X.; Li, B. The new progress in cancer immunotherapy. Clin. Exp. Med. 2023, 23, 553–567. [Google Scholar] [CrossRef]
- Jiang, W.; Liang, M.; Lei, Q.; Li, G.; Wu, S. The current status of photodynamic therapy in cancer treatment. Cancers 2023, 15, 585. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Zhang, B.; Li, M.; Zhang, J. The current scenario of naturally occurring indole alkaloids with anticancer potential. Fitoterapia 2023, 165, 105430. [Google Scholar] [CrossRef] [PubMed]
- Islam, F.; Dehbia, Z.; Zehravi, M.; Das, R.; Sivakumar, M.; Krishnan, K.; Billah, A.A.M.; Bose, B.; Ghosh, A.; Paul, S.; et al. Indole alkaloids from marine resources: Understandings from therapeutic point of view to treat cancers. Chem. Biol. Interact. 2023, 383, 110682. [Google Scholar] [CrossRef] [PubMed]
- Panda, S.S.; Girgis, A.S.; Aziz, M.N.; Bekheit, M.S. Spirooxindole: A versatile biologically active heterocyclic scaffold. Molecules 2023, 28, 618. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, A.K.; Raghavaiah, J.; Shahabi, D.; Yadav, M.; Anson, B.J.; Lendy, E.K.; Hattori, S.I.; Higashi-Kuwata, N.; Mitsuya, H.; Mesecar, A.D. Indole chloropyridinyl ester-derived SARS-CoV-2 3CLpro inhibitors: Enzyme inhibition, antiviral efficacy, structure-activity relationship, and X-ray structural studies. J. Med. Chem. 2021, 64, 14702–14714. [Google Scholar] [CrossRef]
- Girgis, A.S.; Panda, S.S.; Kariuki, B.M.; Bekheit, M.S.; Barghash, R.F.; Aboshouk, D.R. Indole-based compounds as potential drug candidates for SARS-CoV-2. Molecules 2023, 28, 6603. [Google Scholar] [CrossRef] [PubMed]
- Bekheit, M.S.; Panda, S.S.; Kariuki, B.M.; Mahmoud, S.H.; Mostafa, A.; Girgis, A.S. Spiroindole-containing compounds bearing phosphonate group of potential Mpro-SARS-CoV-2 inhibitory properties. Eur. J. Med. Chem. 2023, 258, 115563. [Google Scholar] [CrossRef] [PubMed]
- Wyman, K.A.; Girgis, A.S.; Surapaneni, P.S.; Moore, J.M.; Abo Shama, N.M.; Mahmoud, S.H.; Mostafa, A.; Barghash, R.F.; Juan, Z.; Dobaria, R.D.; et al. Synthesis of potential antiviral agents for SARS-CoV-2 using molecular hybridization approach. Molecules 2022, 27, 5923. [Google Scholar] [CrossRef] [PubMed]
- Fawazy, N.G.; Panda, S.S.; Mostafa, A.; Kariuki, B.M.; Bekheit, M.S.; Moatasim, Y.; Kutkat, O.; Fayad, W.; El-Manawaty, M.A.; Soliman, A.A.F.; et al. Development of spiro-3-indolin-2-one containing compounds of antiproliferative and anti-SARS-CoV-2 properties. Sci. Rep. 2022, 12, 13880. [Google Scholar] [CrossRef]
- Girgis, A.S.; Panda, S.S.; Srour, A.M.; Abdelnaser, A.; Nasr, S.; Moatasim, Y.; Kutkat, O.; El Taweel, A.; Kandeil, A.; Mostafa, A.; et al. 3-Alkenyl-2-oxindoles: Synthesis, antiproliferative and antiviral properties against SARS-CoV-2. Bioorg. Chem. 2021, 114, 105131. [Google Scholar] [CrossRef]
- Bekheit, M.S.; Panda, S.S.; Girgis, A.S. Potential RNA-dependent RNA polymerase inhibitors as prospective drug candidates for SARS-CoV-2. Eur. J. Med. Chem. 2023, 252, 115292. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, M.; Saxena, A.; Saha, B. An insight in anti-malarial potential of indole scaffold: A review. Eur. J. Med. Chem. 2021, 218, 113400. [Google Scholar] [CrossRef] [PubMed]
- Li, J.-Y.; Sun, X.-F.; Li, J.-J.; Yu, F.; Zhang, Y.; Huang, X.-J.; Jiang, F.-X. The antimalarial activity of indole alkaloids and hybrids. Arch. Pharm. 2020, 353, e2000131. [Google Scholar] [CrossRef] [PubMed]
- Qin, H.-L.; Liu, J.; Fang, W.-Y.; Ravindar, L.; Rakesh, K.P. Indole-based derivatives as potential antibacterial activity against methicillin-resistance Staphylococcus aureus (MRSA). Eur. J. Med. Chem. 2020, 194, 112245. [Google Scholar] [CrossRef] [PubMed]
- Meng, T.; Hou, Y.; Shang, C.; Zhang, J.; Zhang, B. Recent advances in indole dimers and hybrids with antibacterial activity against methicillin-resistant Staphylococcus aureus. Arch. Pharm. 2020, 354, e2000266. [Google Scholar] [CrossRef] [PubMed]
- Bokhtia, R.M.; Panda, S.S.; Girgis, A.S.; Samir, N.; Said, M.F.; Abdelnaser, A.; Nasr, S.; Bekheit, M.S.; Dawood, A.S.; Sharma, H.; et al. New NSAID conjugates as potent and selective COX-2 inhibitors: Synthesis, molecular modeling and biological investigation. Molecules 2023, 28, 1945. [Google Scholar] [CrossRef] [PubMed]
- Song, L.-L.; Mu, Y.-L.; Zhang, H.-C.; Wu, G.-Y.; Sun, J.-Y. A new indole alkaloid with anti-inflammatory from the branches of Nauclea officinalis. Nat. Prod. Res. 2020, 34, 2283–2288. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Pu, H.; Qin, X.; Liu, J.; Wen, Z.; Huang, Y.; Xiang, J.; Xiang, Y.; Ju, J.; Duan, Y.; et al. Syn-2,3-diols and anti-inflammatory indole derivatives from Streptomyces sp. CB09001. Nat. Prod. Res. 2021, 35, 144–151. [Google Scholar] [CrossRef] [PubMed]
- Tivorbex FDA Approval History. Available online: https://www.drugs.com/history/tivorbex.html (accessed on 30 May 2024).
- Delavirdine. Available online: https://www.drugs.com/search.php?searchterm=Delavirdine (accessed on 30 May 2024).
- Atevirdine. Available online: https://go.drugbank.com/drugs/DB12264 (accessed on 30 May 2024).
- Sertindole FDA Approval History. Available online: https://www.drugs.com/history/serdolect.html (accessed on 30 May 2024).
- Maxalt. Available online: https://www.thepharmaletter.com/article/merck-s-maxalt-approved-in-usa (accessed on 30 May 2024).
- Ondansetron FDA Approval History. Available online: https://www.drugs.com/history/zuplenz.html (accessed on 30 May 2024).
- Arbidol. Available online: https://go.drugbank.com/drugs/DB13609 (accessed on 30 May 2024).
- Sumatriptan. Available online: https://www.drugs.com/search.php?searchterm=Sumatriptan (accessed on 30 May 2024).
- Ropinirole. Available online: https://www.drugs.com/search.php?searchterm=Ropinirole (accessed on 30 May 2024).
- Tadalafil. Available online: https://www.drugs.com/search.php?searchterm=Tadalafil (accessed on 30 May 2024).
- Zolmitriptan. Available online: https://www.drugs.com/mtm/zolmitriptan.html (accessed on 30 May 2024).
- Pindolol. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2007/018285s034lbl.pdf (accessed on 30 May 2024).
- Tang, D.; Kang, R.; Berghe, T.V.; Vandenabeele, P.; Kroemer, G. The molecular machinery of regulated cell death. Cell Res. 2019, 29, 347–364. [Google Scholar] [CrossRef] [PubMed]
- Tong, X.; Tang, R.; Xiao, M.; Xu, J.; Wang, W.; Zhang, B.; Liu, J.; Yu, X.; Shi, S. Targeting cell death pathways for cancer therapy: Recent developments in necroptosis, pyroptosis, ferroptosis, and cuproptosis research. J. Hematol. Oncol. 2022, 15, 174. [Google Scholar] [CrossRef]
- Peng, F.; Liao, M.; Qin, R.; Zhu, S.; Peng, C.; Fu, L.; Chen, Y.; Han, B. Regulated cell death (RCD) in cancer: Key pathways and targeted therapies. Signal Transduct. Target. Ther. 2022, 7, 286. [Google Scholar] [CrossRef]
- Qin, R.; You, F.M.; Zhao, Q.; Xie, X.; Peng, C.; Zhan, G.; Han, B. Naturally derived indole alkaloids targeting regulated cell death (RCD) for cancer therapy: From molecular mechanisms to potential therapeutic targets. J. Hematol. Oncol. 2022, 15, 133. [Google Scholar] [CrossRef] [PubMed]
- Dadashpour, S.; Emami, S. Indole in the target-based design of anticancer agents: A versatile scaffold with diverse mechanisms. Eur. J. Med. Chem. 2018, 150, 9–29. [Google Scholar] [CrossRef]
- Mondal, D.; Amin, S.A.; Moinul, M.; Das, K.; Jha, T.; Gayen, S. How the structural properties of the indole derivatives are important in kinase targeted drug design?: A case study on tyrosine kinase inhibitors. Bioorg. Med. Chem. 2022, 53, 116534. [Google Scholar] [CrossRef] [PubMed]
- Jiang, B.-E.; Hu, J.; Liu, H.; Liu, Z.; Wen, Y.; Liu, M.; Zhang, H.K.; Pang, X.; Yu, L.-F. Design, synthesis, and biological evaluation of indole-based hydroxamic acid derivatives as histone deacetylase inhibitors. Eur. J. Med. Chem. 2022, 227, 113893. [Google Scholar] [CrossRef]
- Jia, Y.; Wen, X.; Gong, Y.; Wang, X. Current scenario of indole derivatives with potential anti-drug-resistant cancer activity. Eur. J. Med. Chem. 2020, 200, 112359. [Google Scholar] [CrossRef]
- Sunitinib. Available online: https://go.drugbank.com/drugs/DB01268 (accessed on 30 May 2024).
- Sunitinib FDA approved history. Available online: https://www.drugs.com/history/sutent.html (accessed on 30 May 2024).
- Nintedanib. Available online: https://go.drugbank.com/drugs/DB09079 (accessed on 30 May 2024).
- Nintedanib FDA Approved History. Available online: https://www.drugs.com/history/ofev.html (accessed on 30 May 2024).
- Jamadar, A.; Suma, S.M.; Mathew, S.; Fields, T.A.; Wallace, D.P.; Calvet, J.P.; Rao, R. The tyrosine-kinase inhibitor Nintedanib ameliorates autosomal-dominant polycystic kidney disease. Cell Death Dis. 2021, 12, 947. [Google Scholar] [CrossRef] [PubMed]
- Hilberg, F.; Tontsch-Grunt, U.; Baum, A.; Le, A.T.; Doebele, R.C.; Lieb, S.; Gianni, D.; Voss, T.; Garin-Chesa, P.; Haslinger, C.; et al. Triple angiokinase inhibitor Nintedanib directly inhibits tumor cell growth and induces tumor shrinkage via blocking oncogenic receptor tyrosine kinases. J. Pharmacol. Exp. Ther. 2018, 364, 494–503. [Google Scholar] [CrossRef]
- Riesco-Martinez, M.C.; Torre, A.S.; García-Carbonero, R. Safety and efficacy of nintedanib for the treatment of metastatic colorectal cancer. Expert Opin. Investig. Drugs 2017, 26, 1295–1305. [Google Scholar] [CrossRef]
- Kurzrock, R.; Stewart, D.J. Exploring the benefit/risk associated with antiangiogenic agents for the treatment of non–small cell lung cancer patients. Clin. Cancer Res. 2017, 23, 1137–1148. [Google Scholar] [CrossRef]
- Anlotinib. Available online: https://go.drugbank.com/drugs/DB11363 (accessed on 30 May 2024).
- Li, S. Anlotinib: A novel targeted drug for bone and soft tissue sarcoma. Front. Oncol. 2021, 11, 664853. [Google Scholar] [CrossRef] [PubMed]
- Shen, G.; Zheng, F.; Ren, D.; Du, F.; Dong, Q.; Wang, Z.; Zhao, F.; Ahmad, R.; Zhao, J. Anlotinib: A novel multi-targeting tyrosine kinase inhibitor in clinical development. J. Hematol. Oncol. 2018, 11, 120. [Google Scholar] [CrossRef] [PubMed]
- Syed, Y.Y. Anlotinib: First global approval. Drugs 2018, 78, 1057–1062. [Google Scholar] [CrossRef]
- Panobinostat. Available online: https://go.drugbank.com/drugs/DB06603 (accessed on 30 May 2024).
- Osimertinib. Available online: https://go.drugbank.com/drugs/DB09330 (accessed on 30 May 2024).
- Anlotinib. Available online: https://go.drugbank.com/drugs/DB11885 (accessed on 30 May 2024).
- Girgis, A.S.; D’Arcy, P.; Aboshouk, D.R.; Bekheit, M.S. Synthesis and bio-properties of 4-piperidone containing compounds as curcumin mimics. RSC Adv. 2022, 12, 31102–31123. [Google Scholar] [CrossRef] [PubMed]
- Newman, D.J. Drug discovery from natural sources. Curr. Pharmacol. Rep. 2023, 9, 67–89. [Google Scholar] [CrossRef]
- Xu, Z.; Eichler, B.; Klausner, E.A.; Duffy-Matzner, J.; Zheng, W. Lead/drug discovery from natural resources. Molecules 2022, 28, 8280. [Google Scholar] [CrossRef] [PubMed]
- Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; Supuran, C.T. Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov. 2021, 20, 200–216. [Google Scholar] [CrossRef] [PubMed]
- Hui, Z.; Wen, H.; Zhu, J.; Deng, H.; Jiang, X.; Ye, X.-Y.; Wang, L.; Xie, T.; Bai, R. Discovery of plant-derived anti-tumor natural products: Potential leads for anti-tumor drug discovery. Bioorg. Chem. 2024, 142, 106957. [Google Scholar] [CrossRef] [PubMed]
- Thanikachalam, P.V.; Maurya, R.K.; Garg, V.; Monga, V. An Insight into the medicinal perspective of synthetic analogs of indole: A review. Eur. J. Med. Chem. 2019, 180, 562–612. [Google Scholar] [CrossRef] [PubMed]
- Vinblastine. Available online: https://www.drugs.com/mtm/vinblastine.html (accessed on 30 May 2024).
- Vinblastine. Available online: https://go.drugbank.com/drugs/DB00570 (accessed on 30 May 2024).
- Vincristine. Available online: https://www.drugs.com/mtm/vincristine.html (accessed on 30 May 2024).
- Vincristine. Available online: https://go.drugbank.com/drugs/DB00541 (accessed on 30 May 2024).
- Gao, G.; Li, J.; Cao, Y.; Li, X.; Qian, Y.; Wang, X.; Li, M.; Qiu, Y.; Wu, T.; Wang, L.; et al. Design, synthesis, and biological evaluation of novel 4,4′-bipyridine derivatives acting as CDK9-Cyclin T1 protein-protein interaction inhibitors against triple-negative breast cancer. Eur. J. Med. Chem. 2023, 261, 115858. [Google Scholar] [CrossRef]
- Liu, X.; Luo, B.; Wu, X.; Tang, Z. Cuproptosis and cuproptosis-related genes: Emerging potential therapeutic targets in breast cancer. Biochim. Biophys. Acta Rev. Cancer 2023, 1878, 189013. [Google Scholar] [CrossRef] [PubMed]
- El-Gazzar, M.G.M.; Ghorab, M.M.; Amin, M.A.; Korany, M.; Khedr, M.A.; El-Gazzar, M.G.; Sakr, T.M. Computational, in vitro and radiation-based in vivo studies on acetamide quinazolinone derivatives as new proposed purine nucleoside phosphorylase inhibitors for breast cancer. Eur. J. Med. Chem. 2023, 248, 115087. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; He, J.; Huang, J.; Yu, T.; Shi, X.; Zhang, T.; Yan, G.; Chen, S.; Peng, C. Harmine induces anticancer activity in breast cancer cells via targeting TAZ. Int. J. Oncol. 2019, 54, 1995–2004. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zhou, Z.; Zhou, X.; Chen, L.; Bie, S.; Jing, Z. Mukonal exerts anticancer effects on the human breast cancer cells by inducing autophagy and apoptosis and inhibits the tumor growth in vivo. AMB Express 2020, 10, 148. [Google Scholar] [CrossRef] [PubMed]
- Duan, F.F.; Liu, L.; Gao, Y.; Peng, X.G.; Meng, X.G.; Ruan, H.L. [11]-Chaetoglobosins from Pseudeurotium bakeri induce G2/M cell cycle arrest and apoptosis in human cancer cells. J. Nat. Prod. 2021, 84, 1904–1914. [Google Scholar] [CrossRef] [PubMed]
- Schabath, M.B.; Cote, M.L. Cancer progress and priorities: Lung cancer. Cancer Epidemiol. Biomarkers Prev. 2019, 28, 1563–1579. [Google Scholar] [CrossRef]
- Lung Cancer. Available online: https://www.who.int/news-room/fact-sheets/detail/lung-cancer?gad_source=1&gclid=CjwKCAjwte-vBhBFEiwAQSv_xS3Y12SJADHBJ5AKzeEL9AjY_SrIq1SmesZHPK_QBFTOyhHBItTTixoC7XMQAvD_BwE (accessed on 30 May 2024).
- Siegel, R.L.; Giaquinto, A.N.; Jemal, A. Cancer statistics, 2024. CA Cancer J. Clin. 2024, 74, 12–49. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.M.; Park, S.-H.; Nam, M.J. Induction of apoptosis in indole-3-carbinol-treated lung cancer H1299 cells via ROS level elevation. Hum. Exp. Toxicol. 2021, 40, 812–825. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Guo, Q.; Zhang, J.; Yin, Z.; Song, W.; He, B.; Zhang, Y.; Zhang, W.J.; Chen, L. Chaetoglobosin G inhibits proliferation, autophagy and cell cycle of lung cancer cells through EGFR/MEK/ERK signaling pathway. Pharmazie 2020, 75, 642–645. [Google Scholar] [PubMed]
- Al-Rashed, S.; Baker, A.; Ahmad, S.S.; Syed, A.; Bahkali, A.H.; Elgorban, A.M.; Khan, M.S. Vincamine, a safe natural alkaloid, represents a novel anticancer agent. Bioorg. Chem. 2021, 107, 104626. [Google Scholar] [CrossRef]
- Key Statistics about Stomach Cancer. Available online: https://www.cancer.net/cancer-types/stomach-cancer/statistics (accessed on 30 May 2024).
- Stomach Cancer. Available online: https://www.cancer.org.au/cancer-information/types-of-cancer/stomach-cancer (accessed on 30 May 2024).
- Wang, G.; Liu, G.; Ye, Y.; Fu, Y.; Zhang, X. Bufothionine exerts anti-cancer activities in gastric cancer through Pim3. Life Sci. 2019, 232, 116615. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.; Li, X.; Feng, G.; Ma, Y.; Ye, F.; Shen, H.; Sun, K.; Lu, R.; Miao, S. 3,3′-Diindolylmethane induces ferroptosis by BAP1-IP3R axis in BGC-823 gastric cancer cells. Anticancer Drugs 2022, 33, 362–370. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Wagle, N.S.; Cercek, A.; Smith, R.A.; Jemal, A. Colorectal cancer statistics, 2023. CA Cancer J. Clin. 2023, 73, 233–254. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Song, W.; Shen, Y.; Wang, H.; Fan, Z. LncRNA KLK8 modulates stem cell characteristics in colon cancer. Pathol. Res. Pract. 2021, 224, 153437. [Google Scholar] [CrossRef] [PubMed]
- Srour, A.M.; Panda, S.S.; Mostafa, A.; Fayad, W.; El-Manawaty, M.A.; Soliman, A.A.F.; Moatasim, Y.; El Taweel, A.; Abdelhameed, M.F.; Bekheit, M.S.; et al. Synthesis of aspirin-curcumin mimic conjugates of potential antitumor and anti-SARS-CoV-2 properties. Bioorg. Chem. 2021, 117, 105466. [Google Scholar] [CrossRef] [PubMed]
- Haraldsdottir, S.; Einarsdottir, H.M.; Smaradottir, A.; Gunnlaugsson, A.; Halfdanarson, T.R. Colorectal cancer—Review. Laeknabladid 2014, 100, 75–82. [Google Scholar] [PubMed]
- Ren, H.; Zhao, J.; Fan, D.; Wang, Z.; Zhao, T.; Li, Y.; Zhao, Y.; Adelson, D.; Hao, H. Alkaloids from nux vomica suppresses colon cancer cell growth through Wnt/β-catenin signaling pathway. Phytother. Res. 2019, 33, 1570–1578. [Google Scholar] [CrossRef] [PubMed]
- Li, J.-M.; Huang, Y.-C.; Kuo, Y.-H.; Cheng, C.-C.; Kuan, F.-C.; Chang, S.-F.; Lee, Y.-R.; Chin, C.-C.; Shi, C.-S. Flavopereirine suppresses the growth of colorectal cancer cells through P53 signaling dependence. Cancers 2019, 11, 1034. [Google Scholar] [CrossRef] [PubMed]
- Pancreatic Cancer Statistics. Available online: https://www.wcrf.org/cancer-trends/pancreatic-cancer-statistics (accessed on 30 May 2024).
- Pancreatic Cancer-Patient Version. Available online: https://www.cancer.gov/types/pancreatic (accessed on 30 May 2024).
- Malsy, M.; Bitzinger, D.; Graf, B.; Bundscherer, A. Staurosporine induces apoptosis in pancreatic carcinoma cells PaTu 8988t and Panc-1 via the intrinsic signaling pathway. Eur. J. Med. Res. 2019, 24, 5. [Google Scholar] [CrossRef] [PubMed]
- Tabassum, F.; Hasan, C.M.; Masud, M.M.; Jamshidi, S.; Rahman, K.M.; Ahsan, M. Indole alkaloids from the leaves of Ravenia spectabilis engl. with activity against pancreatic cancer cell line. Phytochemistry 2021, 186, 112744. [Google Scholar] [CrossRef]
- Key Statistics about Liver Cancer. Available online: https://www.cancer.net/cancer-types/liver-cancer/statistics (accessed on 30 May 2024).
- Girgis, A.S.; Panda, S.S.; Ahmed Farag, I.S.; El-Shabiny, A.M.; Moustafa, A.M.; Ismail, N.S.M.; Pillai, G.G.; Panda, C.S.; Hall, C.D.; Katritzky, A.R. Synthesis, and QSAR analysis of anti-oncological active spiro-alkaloids. Org. Biomol. Chem. 2015, 13, 1741–1753. [Google Scholar] [CrossRef] [PubMed]
- Hou, Z.-L.; Han, F.-Y.; Lou, L.-L.; Zhao, W.-Y.; Huang, X.X.; Yao, G.-D.; Song, S.-J. The nature compound dehydrocrenatidine exerts potent antihepatocellular carcinoma by destroying mitochondrial complexes in vitro and in vivo. Phytother. Res. 2022, 36, 1353–1371. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.-X.; Li, X.-P.; Zhou, P.; Li, D.-Y.; Lyu, X.-T.; Chen, Y.; Lyu, Y.-W.; Tian, K.; Yuan, D.-Z.; Ran, J.-H.; et al. Evodiamine induces apoptosis in SMMC-7721 and HepG2 cells by suppressing NOD1 signal pathway. Int. J. Mol. Sci. 2018, 19, 3419. [Google Scholar] [CrossRef] [PubMed]
- Cervical Cancer. Available online: https://www.awarenessdepot.com/allcancers-cervicalcancer.html (accessed on 30 May 2024).
- Types of Cervical Cancer. Available online: http://www.cancer.gov/cancertopics/types/cervical (accessed on 30 May 2024).
- What Is Cervical Cancer. Available online: https://www.cancer.gov/types/cervical (accessed on 30 May 2024).
- Guo, C.; Meng, Q.; Liu, J.; Wu, J.; Jia, H.; Liu, D.; Gu, Y.; Liu, J.; Huang, J.; Fan, A.; et al. Sclerotiamides C-H, notoamides from a marine gorgonian-derived fungus with cytotoxic activities. J. Nat. Prod. 2022, 85, 1067–1078. [Google Scholar] [CrossRef] [PubMed]
- Mao, J.-Q.; Zheng, Y.-Y.; Wang, C.-Y.; Liu, Y.; Yao, G.-S. Sclerotioloids A–C: Three new alkaloids from the marine-derived fungus Aspergillus sclerotiorum ST0501. Mar. Drugs 2023, 21, 219. [Google Scholar] [CrossRef] [PubMed]
- Ai, Y.; He, H.; Chen, P.; Yan, B.; Zhang, W.; Ding, Z.; Li, D.; Chen, J.; Ma, Y.; Cao, Y.; et al. An alkaloid initiates phosphodiesterase 3A-schlafen 12 dependent apoptosis without affecting the phosphodiesterase activity. Nat. Commun. 2020, 11, 3236. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Li, L.; Jiang, L.-R.; Tan, J.-Y.; Guo, L.-N.; Wang, X.-L.; Dong, W.; Wang, W.-B.; Sun, J.-K.; Song, B. Alkaloids constituents from the roots of Phragmites australis (Cav.), Trin. Ex Steud. with their cytotoxic activities. Nat. Prod. Res. 2022, 36, 1454–1459. [Google Scholar] [CrossRef] [PubMed]
- Ovarian Cancer Statistics. Available online: https://www.wcrf.org/cancer-trends/ovarian-cancer-statistics/ (accessed on 30 May 2024).
- Jeong, M.; Kim, H.M.; Ahn, J.-H.; Lee, K.-T.; Jang, D.S.; Choi, J.-H. 9-Hydroxycanthin-6-one isolated from stem bark of Ailanthus altissima induces ovarian cancer cell apoptosis and inhibits the activation of tumor-associated macrophages. Chem. Biol. Interact. 2018, 280, 99–108. [Google Scholar] [CrossRef] [PubMed]
- Cancer Stat Facts: Leukemia. Available online: https://seer.cancer.gov/statfacts/html/leuks.html (accessed on 30 May 2023).
- Leukemia-Patient Version. Available online: https://www.cancer.gov/types/leukemia (accessed on 30 May 2023).
- Types of Leukemia. Available online: https://www.cancercenter.com/cancer-types/leukemia/types (accessed on 30 May 2023).
- Cancer Stat Facts: Leukemia. Available online: https://www.cancer.gov/about-cancer/treatment/drugs/leukemia (accessed on 30 May 2023).
- Spirin, P.; Shyrokova, E.; Lebedev, T.; Vagapova, E.; Smirnova, P.; Kantemirov, A.; Dyshlovoy, S.A.; Von Amsberg, G.; Zhidkov, M.; Prassolov, V. Cytotoxic marine alkaloid 3,10-dibromofascaplysin induces apoptosis and synergizes with cytarabine resulting in leukemia cell death. Mar. Drugs 2021, 19, 489. [Google Scholar] [CrossRef]
- Alhuthali, H.M.; Bradshaw, T.D.; Lim, K.H.; Kam, T.-S.; Seedhouse, C.H. The natural alkaloid Jerantinine B has activity in acute myeloid leukemia cells through a mechanism involving c-Jun. BMC Cancer 2020, 20, 629. [Google Scholar] [CrossRef]
- Wang, Y.-P.; Pan, F.; Wang, Y.-D.; Khan, A.; Liu, Y.-P.; Yang, M.-L.; Cao, J.-X.; Zhao, T.-R.; Cheng, G.-G. Anti-leukemic effect and molecular mechanism of 11-methoxytabersonine from Melodinus cochinchinensis via network pharmacology, ROS-mediated mitochondrial dysfunction and PI3K/Akt signaling pathway. Bioorg. Chem. 2022, 120, 105607. [Google Scholar] [CrossRef] [PubMed]
- Salucci, S.; Burattini, S.; Buontempo, F.; Orsini, E.; Furiassi, L.; Mari, M.; Lucarini, S.; Martelli, A.M.; Falcieri, E. Marine bisindole alkaloid: A potential apoptotic inducer in human cancer cells. Eur. J. Histochem. 2018, 62, 2881. [Google Scholar] [CrossRef] [PubMed]
- Youssef, M.A.; Panda, S.S.; Aboshouk, D.R.; Said, M.F.; El Taweel, A.; GabAllah, M.; Fayad, W.; Soliman, A.A.F.; Mostafa, A.; Fawzy, N.G.; et al. Novel curcumin mimics: Design, synthesis, biological properties and computational studies of piperidone-piperazine conjugates. ChemistrySelect 2022, 7, e202201406. [Google Scholar] [CrossRef]
- Panda, S.S.; Girgis, A.S.; Thomas, S.J.; Capito, J.E.; George, R.F.; Salman, A.; El-Manawaty, M.A.; Samir, A. Synthesis, pharmacological profile and 2D-QSAR studies of curcumin-amino acid conjugates as potential drug candidates. Eur. J. Med. Chem. 2020, 196, 112293. [Google Scholar] [CrossRef] [PubMed]
- Nofal, Z.M.; Srour, A.M.; El-Eraky, W.I.; Saleh, D.O.; Girgis, A.S. Rational design, synthesis and QSAR study of vasorelaxant active 3-pyridinecarbonitriles incorporating 1H-benzimidazol-2-yl function. Eur. J. Med. Chem. 2013, 63, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Girgis, A.S.; Kalmouch, A.; Ellithey, M. Synthesis of novel vasodilatory active nicotinate esters with amino acid function. Bioorg. Med. Chem. 2006, 14, 8488–8494. [Google Scholar] [CrossRef] [PubMed]
- Girgis, A.S.; Panda, S.S.; Srour, A.M.; Farag, H.; Ismail, N.S.M.; Elgendy, M.; Abdel-Aziz, A.K.; Katritzky, A.R. Rational design, synthesis and molecular modeling studies of novel anti-oncological alkaloids against melanoma. Org. Biomol. Chem. 2015, 13, 6619–6633. [Google Scholar] [CrossRef] [PubMed]
- Galal, S.A.; Abdelsamie, A.S.; Shouman, S.A.; Attia, Y.M.; Ali, H.I.; Tabll, A.; El-Shenawy, R.; El Abd, Y.S.; Ali, M.M.; Mahmoud, A.E.; et al. Part I: Design, synthesis and biological evaluation of novel pyrazole-benzimidazole conjugates as checkpoint kinase 2 (Chk2) inhibitors with studying their activities alone and in combination with genotoxic drugs. Eur. J. Med. Chem. 2017, 134, 392–405. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Yu, Q.; Liu, S.; Wu, C.; Zhang, X. Insight into the binding mode of HIF-2 agonists through molecular dynamic simulations and biological validation. Eur. J. Med. Chem. 2021, 211, 112999. [Google Scholar] [CrossRef] [PubMed]
- Peerzada, M.N.; Khan, P.; Ahmad, K.; Hassan, M.I.; Azam, A. Synthesis, characterization and biological evaluation of tertiary sulfonamide derivatives of pyridyl-indole based heteroaryl chalcone as potential carbonic anhydrase IX inhibitors and anticancer agents. Eur. J. Med. Chem. 2018, 155, 13–23. [Google Scholar] [CrossRef]
- Guo, Y.-L.; Yu, J.-W.; Cao, Y.; Cheng, K.-X.; Dong-Zhi, S.-N.-M.; Zhang, Y.-F.; Ren, Q.-J.; Yin, Y.; Li, C.-L. Design, synthesis, and biological evaluation of harmine derivatives as topoisomerase I inhibitors for cancer treatment. Eur. J. Med. Chem. 2024, 265, 116061. [Google Scholar] [CrossRef] [PubMed]
- Singla, R.; Gupta, K.B.; Upadhyay, S.; Dhiman, M.; Jaitak, V. Design, synthesis and biological evaluation of novel indole-benzimidazole hybrids targeting estrogen receptor alpha (ER-α). Eur. J. Med. Chem. 2018, 146, 206–219. [Google Scholar] [CrossRef] [PubMed]
- Kazan, F.; Yagci, Z.B.; Bai, R.; Ozkirimli, E.; Hamel, E.; Ozkirimli, S. Synthesis and biological evaluation of indole-2-carbohydrazides and thiazolidinyl-indole-2-carboxamides as potent tubulin polymerization inhibitors. Comput. Biol. Chem. 2019, 80, 512–523. [Google Scholar] [CrossRef] [PubMed]
- Gaur, A.; Peerzada, M.N.; Khan, N.S.; Ali, I.; Azam, A. Synthesis and anticancer evaluation of novel indole based arylsulfonylhydrazides against human breast cancer cells. ACS Omega 2022, 7, 42036–42043. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-T.; Huang, X.; Cai, X.-C.; Kang, X.-X.; Zhu, H.-L. Synthesis, biological evaluation and molecular docking of thiazole hydrazone derivatives grafted with indole as novel tubulin polymerization inhibitors. J. Mol. Struct. 2024, 1301, 137343. [Google Scholar] [CrossRef]
- Boraei, A.T.A.; Singh, P.K.; Sechi, M.; Satta, S. Discovery of novel functionalized 1,2,4-triazoles as PARP-1 inhibitors in breast cancer: Design, synthesis and antitumor activity evaluation. Eur. J. Med. Chem. 2019, 182, 111621. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Zhuang, Y.-X.; Diao, P.-C.; Yang, F.; Wu, S.-Y.; Lv, L.; You, W.-W.; Zhao, P.-L. Synthesis, biological evaluation, and molecular docking investigation of 3-amidoindoles as potent tubulin polymerization inhibitors. Eur. J. Med. Chem. 2019, 162, 525–533. [Google Scholar] [CrossRef] [PubMed]
- La Regina, G.; Bai, R.; Coluccia, A.; Naccarato, V.; Famiglini, V.; Nalli, M.; Masci, D.; Verrico, A.; Rovella, P.; Mazzoccoli, C.; et al. New 6- and 7-heterocyclyl-1H-indole derivatives as potent tubulin assembly and cancer cell growth inhibitors. Eur. J. Med. Chem. 2018, 152, 283–297. [Google Scholar] [CrossRef] [PubMed]
- Ren, W.; Deng, Y.; Ward, J.D.; Vairin, R.; Bai, R.; Wanniarachchi, H.I.; Hamal, K.B.; Tankoano, P.E.; Tamminga, C.S.; Bueno, L.M.A.; et al. Synthesis and biological evaluation of structurally diverse 6-aryl-3-aroyl-indole analogues as inhibitors of tubulin polymerization. Eur. J. Med. Chem. 2024, 263, 115794. [Google Scholar] [CrossRef]
- Vekariya, R.H.; Aubé, J. Hexafluoro-2-propanol-promoted intermolecular Friedel-Crafts acylation reaction. Org. Lett. 2016, 18, 3534–3537. [Google Scholar] [CrossRef]
- Ghanim, A.M.; Girgis, A.S.; Kariuki, B.M.; Samir, N.; Said, M.F.; Abdelnaser, A.; Nasr, S.; Bekheit, M.S.; Abdelhameed, M.F.; Almalki, A.J.; et al. Design and synthesis of ibuprofen-quinoline conjugates as potential anti-inflammatory and analgesic drug candidates. Bioorg. Chem. 2022, 119, 105557. [Google Scholar] [CrossRef] [PubMed]
- Seliem, I.A.; Girgis, A.S.; Moatasim, Y.; Kandeil, A.; Mostafa, A.; Ali, M.A.; Bekheit, M.S.; Panda, S.S. New pyrazine conjugates: Synthesis, computational studies, and antiviral properties against SARS-CoV-2. ChemMedChem 2021, 16, 3418–3427. [Google Scholar] [CrossRef] [PubMed]
- Seliem, I.A.; Panda, S.S.; Girgis, A.S.; Moatasim, Y.; Kandeil, A.; Mostafa, A.; Ali, M.A.; Nossier, E.S.; Rasslan, F.; Srour, A.M.; et al. New quinoline-triazole conjugates: Synthesis, and antiviral properties against SARS-CoV-2. Bioorg. Chem. 2021, 114, 105117. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, A.D.; Panda, S.S.; Girgis, A.S.; Sahu, S.; George, R.F.; Srour, A.M.; La Starza, B.; Asiri, A.M.; Hall, C.D.; Katritzky, A.R. Microwave assisted synthesis and QSAR study of novel NSAID acetaminophen conjugates with amino acid linkers. Org. Biomol. Chem. 2014, 12, 7238–7249. [Google Scholar] [CrossRef] [PubMed]
- Mishriky, N.; Asaad, F.M.; Ibrahim, Y.A.; Girgis, A.S. New 2-pyrazolines of anticipated molluscicidal activity. Pharmazie 1996, 51, 544–548. [Google Scholar] [PubMed]
- Shareef, M.A.; Ganapathi, T.; Khan, I.; Rani, S.; Rajanna, A.; Akbar, S.; Kumar, C.G.; Babu, B.N. New indolyl-arylaminopropenone conjugates: Synthesis, cytotoxicity and apoptotic inducing studies. ChemistrySelect 2020, 5, 2063–2069. [Google Scholar] [CrossRef]
- Naaz, F.; Ahmad, F.; Lone, B.A.; Pokharel, Y.R.; Fuloria, N.K.; Fuloria, S.; Ravichandran, M.; Pattabhiraman, L.; Shafi, S.; Yar, M.S. Design and synthesis of newer 1,3,4-oxadiazole and 1,2,4-triazole based Topsentin analogues as anti-proliferative agent targeting tubulin. Bioorg. Chem. 2020, 95, 103519. [Google Scholar] [CrossRef] [PubMed]
- Jain, R.; Gahlyan, P.; Dwivedi, S.; Konwar, R.; Kumar, S.; Bhandari, M.; Arora, R.; Kakkar, R.; Kumar, R.; Prasad, A.K. Design, synthesis and evaluation of 1H-1,2,3-triazol-4-yl-methyl tethered 3-pyrrolylisatins as potent anti-breast cancer agents. ChemistrySelect 2018, 3, 5263–5268. [Google Scholar] [CrossRef]
- Chavan, P.V.; Desai, U.V.; Wadgaonkar, P.P.; Tapase, S.R.; Kodam, K.M.; Choudhari, A.; Sarkar, D. Click chemistry based multicomponent approach in the synthesis of spirochromenocarbazole tethered 1,2,3-triazoles as potential anticancer agents. Bioorg. Chem. 2019, 85, 475–486. [Google Scholar] [CrossRef]
- Sharma, B.; Singh, A.; Gu, L.; Saha, S.T.; Singh-Pillay, A.; Cele, N.; Singh, P.; Kaur, M.; Kumar, V. Diastereoselective approach to rationally design tetrahydro-β-carboline–isatin conjugates as potential SERMs against breast cancer. RSC Adv. 2019, 9, 9809–9819. [Google Scholar] [CrossRef]
- Kumar, S.; Gu, L.; Palma, G.; Kaur, M.; Singh-Pillay, A.; Singh, P.; Kumar, V. Design, synthesis, anti-proliferative evaluation and docking studies of 1H-1,2,3-triazole tethered Ospemifene-isatin conjugates as selective estrogen receptor modulators. New J. Chem. 2018, 42, 3703–3713. [Google Scholar] [CrossRef]
- Altowyan, M.S.; Soliman, S.M.; Haukka, M.; Al-Shaalan, N.H.; Alkharboush, A.A.; Barakat, A. Synthesis, characterization, and cytotoxicity of new spirooxindoles engrafted furan structural motif as a potential anticancer agent. ACS Omega 2022, 7, 35743–35754. [Google Scholar] [CrossRef] [PubMed]
- Eldehna, W.M.; EL-Naggar, D.H.; Hamed, A.R.; Ibrahim, H.S.; Ghabbour, H.A.; Abdel-Aziz, H.A. One-pot three-component synthesis of novel spirooxindoles with potential cytotoxic activity against triple-negative breast cancer MDA-MB-231 cells. J. Enzyme Inhib. Med. Chem. 2018, 33, 309–318. [Google Scholar] [CrossRef] [PubMed]
- Hendy, M.S.; Ali, A.A.; Ahmed, L.; Hossam, R.; Mostafa, A.; Elmazar, M.M.; Naguib, B.H.; Attia, Y.M.; Ahmed, M.S. Structure-based drug design, synthesis, in vitro, and in vivo biological evaluation of indole-based biomimetic analogs targeting estrogen receptor-α inhibition. Eur. J. Med. Chem. 2019, 166, 281–290. [Google Scholar] [CrossRef] [PubMed]
- Rhodes, S.; Short, S.; Sharma, S.; Kaur, R.; Jha, M. One-pot mild and efficient synthesis of [1,3]thiazino[3,2-a]indol-4-ones and their anti-proliferative activity. Org. Biomol. Chem. 2019, 17, 3914–3920. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; He, L.; Xiang, T.-L.; Tang, Y.-J. Discover 4β-NH-(6-aminoindole)-4 desoxy-podophyllotoxin with nanomolar-potency antitumor activity by improving the tubulin binding affinity on the basis of a potential binding site nearby colchicine domain. Eur. J. Med. Chem. 2019, 170, 73–86. [Google Scholar] [CrossRef] [PubMed]
- Bakherad, Z.; Safavi, A.; Fassihi, A.; Sadeghi-Aliabadi, H.; Bakherad, M.; Rastegar, H.; Ghasemi, J.B.; Sepehri, S.; Saghaie, L.; Mahdavi, M. Anti-cancer, anti-oxidant and molecular docking studies of thiosemicarbazone indole-based derivatives. Res. Chem. Intermed. 2019, 45, 2827–2854. [Google Scholar] [CrossRef]
- Das Mukherjee, D.; Kumar, N.M.; Tantak, M.P.; Das, A.; Ganguli, A.; Datta, S.; Kumar, D.; Chakrabarti, G. Development of novel bis(indolyl)-hydrazide-hydrazone derivatives as potent microtubule-targeting cytotoxic agents against A549 lung cancer cells. Biochemistry 2016, 55, 3020–3035. [Google Scholar] [CrossRef] [PubMed]
- Manuel-Manresa, P.; Korrodi-Gregório, L.; Hernando, E.; Villanueva, A.; Martínez-García, D.; Rodilla, A.M.; Ramos, R.; Fardilha, M.; Moya, J.; Quesada, R.; et al. Novel indole-based tambjamine-analogues induce apoptotic lung cancer cell death through p38 mitogen-activated protein kinase activation. Mol. Cancer Ther. 2017, 16, 1224–1235. [Google Scholar] [CrossRef]
- Martínez-García, D.; Pérez-Hernández, M.; Korrodi-Gregório, L.; Quesada, R.; Ramos, R.; Baixeras, N.; Pérez-Tomás, R.; Soto-Cerrato, V. The natural-based antitumor compound T21 decreases survivin levels through potent STAT3 inhibition in lung cancer models. Biomolecules 2019, 9, 361. [Google Scholar] [CrossRef]
- Nguyen, T.D.; Le, T.M.D. Development of a novel indirubin derivative with enhanced anticancer properties: Synthesis, in vitro, and in vivo evaluation. Chem. Pap. 2024, 78, 2469–2478. [Google Scholar] [CrossRef]
- Lu, F.L.; Chen, B.B.; Wang, C.H.; Zhuang, C.L.; Miao, Z.Y.; Zhang, X.D.; Wu, Y.L. Design, synthesis, and biological evaluation of novel trimethoxyindole derivatives derived from natural products. Monatsh. Chem. 2019, 150, 1545–1552. [Google Scholar] [CrossRef]
- Liu, S.; Li, X.; Chen, C.; Lin, X.; Zuo, W.; Peng, C.; Jiang, Q.; Huang, W.; He, G. Design, synthesis, and biological evaluation of novel discoidin domain receptor inhibitors for the treatment of lung adenocarcinoma and pulmonary fibrosis. Eur. J. Med. Chem. 2024, 265, 116100. [Google Scholar] [CrossRef]
- He, P.; Du, L.; Dai, Q.; Li, G.; Yu, B.; Chang, L. Design, synthesis and biological evaluation of structurally new 4-indolyl quinazoline derivatives as highly potent, selective and orally bioavailable EGFR inhibitors. Bioorg. Chem. 2024, 142, 106970. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Peng, H.; He, M.; Peng, Z.; Wang, G. Novel tubulin polymerization inhibitors based on the hybridization of coumarin and indole ring: Design, synthesis and bioactivities evaluation. J. Mol. Struct. 2024, 1305, 137761. [Google Scholar] [CrossRef]
- Song, Y.; Feng, S.; Feng, J.; Dong, S.; Yang, K.; Liu, Z.; Qiao, X. Synthesis and biological evaluation of novel pyrazoline derivatives containing indole skeleton as anti-cancer agents targeting topoisomerase II. Eur. J. Med. Chem. 2020, 200, 112459. [Google Scholar] [CrossRef]
- Song, M.; Wang, S.; Wang, Z.; Fu, Z.; Zhou, S.; Cheng, H.; Liang, Z.; Deng, X. Synthesis, antimicrobial and cytotoxic activities, and molecular docking studies of N-arylsulfonylindoles containing an aminoguanidine, a semicarbazide, and a thiosemicarbazide moiety. Eur. J. Med. Chem. 2019, 166, 108–118. [Google Scholar] [CrossRef] [PubMed]
- Al-Wabli, R.I.; Almomen, A.A.; Almutairi, M.S.; Keeton, A.B.; Piazza, G.A.; Attia, M.I. New isatin-indole conjugates: Synthesis, characterization, and a plausible mechanism of their in vitro antiproliferative activity. Drug Des. Devel. Ther. 2020, 14, 483. [Google Scholar] [CrossRef] [PubMed]
- Demir-Yazıcı, K.; Trawally, M.; Bua, S.; Öztürk-Civelek, D.; Akdemir, A.; Supuran, C.T.; Güzel-Akdemir, Ö. Novel 2-(hydrazinocarbonyl)-3-phenyl-1H-indole-5-sulfonamide based thiosemicarbazides as potent and selective inhibitors of tumor-associated human carbonic anhydrase IX and XII: Synthesis, cytotoxicity, and molecular modelling studies. Bioorg. Chem. 2024, 144, 107096. [Google Scholar] [CrossRef]
- Sigalapalli, D.K.; Pooladanda, V.; Singh, P.; Kadagathur, M.; Guggilapu, S.D.; Uppu, J.L.; Tangellamudi, N.D.; Gangireddy, P.K.; Godugu, C.; Bathini, N.B. Discovery of certain benzyl/phenethyl thiazolidinone-indole hybrids as potential anti-proliferative agents: Synthesis, molecular modeling and tubulin polymerization inhibition study. Bioorg. Chem. 2019, 92, 103188. [Google Scholar] [CrossRef]
- Barakat, A.; Islam, M.S.; Ghawas, H.M.; Al-Majid, A.M.; El-Senduny, F.F.; Badria, F.A.; Elshaier, Y.A.; Ghabbour, H.A. Substituted spirooxindole derivatives as potent anticancer agents through inhibition of phosphodiesterase 1. RSC Adv. 2018, 8, 14335–14346. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.S.; Ghawas, H.M.; El-Senduny, F.F.; Al-Majid, A.M.; Elshaier, Y.A.M.M.; Badria, F.A.; Barakat, A. Synthesis of new thiazolo-pyrrolidine–(spirooxindole) tethered to 3-acylindole as anticancer agents. Bioorg. Chem. 2019, 82, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Qin, X.; Cui, X. Methyl-indole inhibits pancreatic cancer cell viability by down-regulating ZFX expression. 3 Biotech. 2020, 10, 187. [Google Scholar] [CrossRef] [PubMed]
- Cascioferro, S.; Petri, G.L.; Parrino, B.; El Hassouni, B.; Carbone, D.; Arizza, V.; Perricone, U.; Padova, A.; Funel, N.; Peters, G.J.; et al. 3-(6-Phenylimidazo[2,1-b][1,3,4]thiadiazol-2-yl)-1H-indole derivatives as new anticancer agents in the treatment of pancreatic ductal adenocarcinoma. Molecules 2020, 25, 329. [Google Scholar] [CrossRef] [PubMed]
- El-Sharief, A.M.S.; Ammar, Y.A.; Belal, A.; El-Sharief, M.A.M.S.; Mohamed, Y.A.; Mehany, A.B.M.; Ali, G.A.M.E.; Ragab, A. Design, synthesis, molecular docking and biological activity evaluation of some novel indole derivatives as potent anticancer active agents and apoptosis inducers. Bioorg. Chem. 2019, 85, 399–412. [Google Scholar] [CrossRef]
- Li, Z.; Luo, M.; Cai, B.; Rashid, H.-U.; Huang, M.; Jiang, J.; Wang, L.; Wu, L. Design, synthesis, biological evaluation and structure-activity relationship of sophoridine derivatives bearing pyrrole or indole scaffold as potential antitumor agents. Eur. J. Med. Chem. 2018, 157, 665–682. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Liu, Y.; Li, Y. Synthesis of spirooxindole-O-naphthoquinone- tetrazolo[1,5-a] pyrimidine hybrids as potential anticancer agents. Molecules 2018, 23, 2330. [Google Scholar] [CrossRef] [PubMed]
- Naaz, F.; Pallavi, M.C.P.; Shafi, S.; Mulakayala, N.; Yar, M.S.; Kumar, H.M.S. 1,2,3-Triazole tethered indole-3-glyoxamide derivatives as multiple inhibitors of 5-LOX, COX-2 & tubulin: Their anti-proliferative & anti-inflammatory activity. Bioorg. Chem. 2018, 81, 1–20. [Google Scholar]
- Khan, I.; Garikapati, K.R.; Shaik, A.B.; Makani, V.K.K.; Rahim, A.; Shareef, M.A.; Reddy, V.G.; Pal-Bhadra, M.; Kamal, A.; Kumar, C.G. Design, synthesis and biological evaluation of 1,4-dihydro indeno[1,2-c]pyrazole linked oxindole analogues as potential anticancer agents targeting tubulin and inducing p53 dependent apoptosis. Eur. J. Med. Chem. 2018, 114, 104–115. [Google Scholar] [CrossRef]
- Chen, K.; Zhang, Y.-L.; Fan, J.; Ma, X.; Qin, Y.-J.; Zhu, H.-L. Novel nicotinoyl pyrazoline derivates bearing N-methyl indole moiety as antitumor agents: Design, synthesis and evaluation. Eur. J. Med. Chem. 2018, 156, 722–737. [Google Scholar] [CrossRef]
- Iacopetta, D.; Catalano, A.; Ceramella, J.; Barbarossa, A.; Carocci, A.; Fazio, A.; La Torre, C.; Caruso, A.; Ponassi, M.; Rosano, C.; et al. Synthesis, anticancer and antioxidant properties of new indole and pyranoindole derivatives. Bioorg. Chem. 2020, 105, 104440. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Liu, X.; Zhang, J.; Yao, J.; Cui, X.; Tang, Y.; Xi, Z.; Han, M.; Tian, H.; Chen, Y.; et al. Green synthesis and anti-tumor efficacy via inducing pyroptosis of novel 1H-benzo[e]indole-2(3H)-one spirocyclic derivatives. Bioorg. Chem. 2024, 142, 106930. [Google Scholar] [CrossRef] [PubMed]
- Cheng, G.; Wang, Z.; Yang, J.; Bao, Y.; Xu, Q.; Zhao, L.; Liu, D. Design, synthesis and biological evaluation of novel indole derivatives as potential HDAC/BRD4 dual inhibitors and anti-leukemia agents. Bioorg. Chem. 2019, 84, 410–417. [Google Scholar] [CrossRef] [PubMed]
- Cury, N.M.; Capitão, R.M.; de Almeida, R.d.C.B.; Artico, L.L.; Corrêa, J.R.; Dos Santos, E.F.S.; Yunes, J.A.; Correia, C.R.D. Synthesis and evaluation of 2-carboxy indole derivatives as potent and selective anti-leukemic agents. Eur. J. Med. Chem. 2019, 181, 111570. [Google Scholar] [CrossRef]
Drug | Bio-Properties | Reference |
---|---|---|
Non-steroidal anti-inflammatory drug, “NSAID” | [30] | |
Anti-HIV, “human immunodeficiency virus” | [31] | |
Anti-HIV | [32] | |
Neuroleptic | [33] | |
Analgesic | [34] | |
Antiemetic | [35] | |
Antiviral | [36] | |
For treatment of migraines and cluster headaches | [37] | |
For treatment of symptoms of Parkinson’s disease and restless legs syndrome | [38] | |
For treatment of erectile dysfunction, benign prostatic hyperplasia, and pulmonary arterial hypertension | [39] | |
For treatment of acute migraine with or without aura in adults | [40] | |
Antihypertensive (β-antagonist) | [41] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassan, S.M.; Farid, A.; Panda, S.S.; Bekheit, M.S.; Dinkins, H.; Fayad, W.; Girgis, A.S. Indole Compounds in Oncology: Therapeutic Potential and Mechanistic Insights. Pharmaceuticals 2024, 17, 922. https://doi.org/10.3390/ph17070922
Hassan SM, Farid A, Panda SS, Bekheit MS, Dinkins H, Fayad W, Girgis AS. Indole Compounds in Oncology: Therapeutic Potential and Mechanistic Insights. Pharmaceuticals. 2024; 17(7):922. https://doi.org/10.3390/ph17070922
Chicago/Turabian StyleHassan, Sara M., Alyaa Farid, Siva S. Panda, Mohamed S. Bekheit, Holden Dinkins, Walid Fayad, and Adel S. Girgis. 2024. "Indole Compounds in Oncology: Therapeutic Potential and Mechanistic Insights" Pharmaceuticals 17, no. 7: 922. https://doi.org/10.3390/ph17070922
APA StyleHassan, S. M., Farid, A., Panda, S. S., Bekheit, M. S., Dinkins, H., Fayad, W., & Girgis, A. S. (2024). Indole Compounds in Oncology: Therapeutic Potential and Mechanistic Insights. Pharmaceuticals, 17(7), 922. https://doi.org/10.3390/ph17070922