Aristoteline, an Indole-Alkaloid, Induces Relaxation by Activating Potassium Channels and Blocking Calcium Channels in Isolated Rat Aorta
"> Figure 1
<p>Chemical structure of aristoteline (ARI).</p> "> Figure 2
<p>ARI directly causes relaxation on vascular smooth muscle of aorta. Vasodilatation response induced by ARI (1 nM to 100 μM) after the addition of phenylephrine (PE) (1 μM) is shown in intact aortic rings (endo or control) and denuded aorta (endo-denuded) (<b>A</b>), preincubate with L-NAME (100 μM) (<b>B</b>) or with 1<span class="html-italic">H</span>-(1,2,4)oxadiazolo[4,3-<span class="html-italic">a</span>]quinoxalin-1-one (ODQ) (1 μM) (<b>C</b>). Values are mean ± standard error of the mean of 6 experiments. The determination of IC<sub>50</sub> were performed using nonlinear regression and a repeated-measures two-way analysis of variance (ANOVA) to compare curves. Statistically significant difference *<span class="html-italic">p</span> < 0.05 vs. Control.</p> "> Figure 3
<p>Original trace showing the time course of the concentration–response curves to KCl in intact aortic ring from rat in absence and presence of ARI (10<sup>−5</sup> M). The aortic ring was pre-incubated with ARI for 20 min before KCl was added.</p> "> Figure 4
<p>Effect of ARI on the contractile response to KCl (<b>A</b>) and PE (<b>B</b>) in rat aortic ring. The aorta was pre-incubated in absence (control) or presence of ARI (10 μM) or caffeine (10 mM) for 20 min. Values are the mean ± standard error of the means of 6 experiments. The asterisks in (<b>A</b>) refer to both, ARI and caffeine. The determination of EC<sub>50</sub> were performed using nonlinear regression and a repeated-measures two-way ANOVA to compare curves. Statistically significant difference *<span class="html-italic">p</span> < 0.05 vs. Control.</p> "> Figure 5
<p>Effect of ARI on calcium release from the phenylephrine-sensitive intracellular calcium stores. The aortic rings were pre-incubated in a free calcium buffer for 10 min before PE was added (<b>A</b>), and then, the CaCl<sub>2</sub> (0.1, 0.3, 0.6, and 1.0 mM) was added to the bath (<b>B</b>). Vasoconstriction occurred just when the agonist of Ca<sub>V</sub>1.2 channels (10 nM Bay K8644) was added with 15 mM KCl to the bath (<b>C</b>). The aorta was pre-incubated in absence (control) or presence of ARI (10 μM) for 20 min. Values are mean ± standard error of the mean of 6 experiments. Statistically significant difference *<span class="html-italic">p</span> < 0.05 vs. Control.</p> "> Figure 6
<p>Original trace showing the time course of the concentration–response curves to ARI in intact aortic ring from rat in absence (<b>A</b>) and presence of BaCl<sub>2</sub> (10 μM; <b>B</b>). The aortic ring was pre-incubated with BaCl<sub>2</sub> for 20 min before PE (1 μM) was added.</p> "> Figure 7
<p>Evaluation of the ARI vasodilatation mechanism associated with potassium channels. Effect of ARI after the addition of BaCl<sub>2</sub> (10 μM) as a blocker of inward rectifier potassium channels (Kir) is shown (<b>A</b>), glibenclamide (10 μM) as blocker of adenosine triphosphate (ATP)-sensitive K<sup>+</sup> channels (<b>B</b>), 4-AP (1 mM) as a non-selective blocker of Kv channels (<b>C</b>) and tetraethylammonium (TEA) (1 mM) as a blocker of KCa channels (<b>D</b>). PE (1 μM) was used to induce the contractile responses to the aortic rings. The determination of IC<sub>50</sub> were performed using non-linear regression and a repeated-measures two-way ANOVA to compare curves; <span class="html-italic">n</span> = 6. Statistically significant difference *<span class="html-italic">p</span> < 0.05 vs. Control.</p> "> Figure 8
<p>Original tracing showing the time course of the contractile response to KCl (60 mM) and TEA (1 mM) in intact aortic rings from rats. These are in the absence or presence of ARI (10<sup>-5</sup> M). The aortic rings were pre-incubated with ARI for 20 min before TEA was added.</p> "> Figure 9
<p>Evaluation of the ARI contraction mechanism associated with potassium channels. The aortic rings were pre-contracted with KCl (15 mM) (<b>A</b>), BaCl<sub>2</sub> (1 mM) as a blocker of inward rectifier potassium channels (Kir) (<b>B</b>), TEA (1 mM) as a non-selective blocker of KCa1.1 channels (<b>C</b>). The vascular tissue was pre-incubated in absence (control) or presence of ARI (10 μM) for 20 min. Unpaired Student’s t-tests; <span class="html-italic">n</span> = 6. Statistically significant difference *<span class="html-italic">p</span> < 0.05 vs. Control.</p> "> Figure 10
<p>Evaluation of the ARI vasodilatation mechanism associated with endothelial prostanoids. Data shows the effect of ARI after the addition of indomethacin (10 μM) as a non-selective cyclooxygenase inhibitor. PE (1 μM) was used to induce the contractile responses. The determination of IC<sub>50</sub> were performed using nonlinear regression and a repeated-measures two-way ANOVA to compare curves; <span class="html-italic">n</span> = 6. Statistically significant difference *<span class="html-italic">p</span> < 0.05 vs. Control.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Chemical Composition
2.2. Relaxation Effect of Aristoteline (ARI) on Isolated Rat Aorta
2.3. ARI Reduced the Contractile Response to KCl and Phenylephrine (PE)
2.4. Role of Extracellular Calcium in the Vascular Response to ARI
2.5. Role of Potassium Channels on Vascular Relaxation of ARI
2.6. Role of Prostaglandins on Vascular Relaxation of ARI
3. Discussion
4. Materials and Methods
4.1. Drugs
4.2. Isolation of ARI
4.3. Animals
4.4. Isolation of Aortic Rings
4.5. Vascular Reactivity Experiments
4.6. Assessment of the Effect of ARI on the Vasodilation in Isolated Aortic Rings Pre-Contracted with PE, with and without Endothelium
4.7. Assessment of the Effect of ARI on the Contractile Response to KCl and PE
4.8. Assessment of the Role of Intracellular and Extracellular Calcium in the Vascular Response to ARI
4.9. Assessment of the Role of Potassium Channels in the Vascular Response to ARI
4.10. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zuniga, G.E.; Tapia, A.; Arenas, A.; Contreras, R.A.; Zuniga-Libano, G. Phytochemistry and biological properties of Aristotelia chilensis a Chilean blackberry: a review. Phytochem. Rev. 2017, 16, 1081–1094. [Google Scholar] [CrossRef]
- Rodríguez, K.; Ah-Hen, K.S.; Vega-Gálvez, A.; Vásquez, V.; Quispe-Fuentes, I.; Rojas, P.; Lemus-Mondaca, R. Changes in bioactive components and antioxidant capacity of maqui, Aristotelia chilensis [Mol] Stuntz, berries during drying. LWT Food Sci. Technol. 2016, 65, 537–542. [Google Scholar] [CrossRef]
- Cespedes, C.L.; Pavon, N.; Dominguez, M.; Alarcon, J.; Balbontin, C.; Kubo, I.; El-Hafidi, M.; Avila, J.G. The chilean superfruit black-berry Aristotelia chilensis (Elaeocarpaceae), Maqui as mediator in inflammation-associated disorders. Food Chem. Toxicol. 2017, 108, 438–450. [Google Scholar] [CrossRef] [PubMed]
- Munoz, O.; Christen, P.; Cretton, S.; Backhouse, N.; Torres, V.; Correa, O.; Costa, E.; Miranda, H.; Delporte, C. Chemical study and anti-inflammatory, analgesic and antioxidant activities of the leaves of Aristotelia chilensis (Mol.) Stuntz, Elaeocarpaceae. J. Pharm. Pharmacol. 2011, 63, 849–859. [Google Scholar] [CrossRef] [PubMed]
- Cespedes, C.L.; Balbontin, C.; Avila, J.G.; Dominguez, M.; Alarcon, J.; Paz, C.; Burgos, V.; Ortiz, L.; Penaloza-Castro, I.; Seigler, D.S.; et al. Inhibition on cholinesterase and tyrosinase by alkaloids and phenolics from Aristotelia chilensis leaves. Food Chem. Toxicol. 2017, 109, 984–995. [Google Scholar] [CrossRef] [PubMed]
- Cespedes, C.L.; El-Hafidi, M.; Pavon, N.; Alarcon, J. Antioxidant and cardioprotective activities of phenolic extracts from fruits of Chilean blackberry Aristotelia chilensis (Elaeocarpaceae), Maqui. Food Chem. 2008, 107, 820–829. [Google Scholar] [CrossRef]
- Paz, C.; Becerra, J.; Silva, M.; Cabrera-Pardo, J.; Burgos, V.; Heydenreich, M.; Schmidt, B. (-)-8-Oxohobartine a New Indole Alkaloid from Aristotelia chilensis (Mol.) Stuntz. Rec. Nat. Prod. 2016, 10, 68–73. [Google Scholar]
- Paz, C.; Becerra, J.; Silva, M.; Freire, E.; Baggio, R. A polymorphic form of 4,4-dimethyl-8-methylene-3-azabicyclo 3.3.1 non-2-en-2-yl 3-indolyl ketone, an indole alkaloid extracted from Aristotelia chilensis (maqui). Acta Crystallogr. Sect. C-Cryst. Struct. Commun. 2013, 69. [Google Scholar] [CrossRef]
- Gopalakrishna, E.M.; Watson, W.H.; Silva, M.; Bittner, M. Aristotelinine. Acta Crystallogr. Sect. B 1978, 34, 3778–3780. [Google Scholar] [CrossRef]
- Watson, W.H.; Nagl, A.; Silva, M.; Cespedes, C.; Jakupovic, J. A new indole alkaloid from Aristotelia chilensis. Acta Crystallogr. Sect. C 1989, 45, 1322–1324. [Google Scholar] [CrossRef]
- Cespedes, C.; Jakupovic, J.; Silva, M.; Watson, W. Indole alkaloids from Aristotelia chilensis. Phytochemistry 1990, 29, 1354–1356. [Google Scholar] [CrossRef]
- Cifuentes, F.; Palacios, J.; Paredes, A.; Nwokocha, C.R.; Paz, C. 8-Oxo-9-Dihydromakomakine Isolated from Aristotelia chilensis Induces Vasodilation in Rat Aorta: Role of the Extracellular Calcium Influx. Molecules 2018, 23, 11. [Google Scholar] [CrossRef] [PubMed]
- Halcox, J.P.; Quyyumi, A.A. Coronary vascular endothelial function and myocardial ischemia: why should we worry about endothelial dysfunction? Coron Artery Dis. 2001, 12, 475–484. [Google Scholar] [CrossRef] [PubMed]
- Luna-Vazquez, F.J.; Ibarra-Alvarado, C.; Rojas-Molina, A.; Rojas-Molina, I.; Zavala-Sanchez, M.A. Vasodilator Compounds Derived from Plants and Their Mechanisms of Action. Molecules 2013, 18, 5814–5857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cuong, N.M.; Khanh, P.N.; Huyen, P.T.; Duc, H.V.; Huong, T.T.; Ha, V.T.; Durante, M.; Sgaragli, G.; Fusi, F. Vascular L-type Ca(2)(+) channel blocking activity of sulfur-containing indole alkaloids from Glycosmis petelotii. J. Nat. Prod. 2014, 77, 1586–1593. [Google Scholar] [CrossRef] [PubMed]
- Anderson, B.F.; Robertson, G.B.; Avey, H.P.; Donovan, W.F.; Bick, I.R.C.; Bremner, J.B.; Finney, A.J.T.; Preston, N.W.; Gallagher, R.T.; Russell, G.B. Aristoteline, a novel indole alkaloid, X-Ray structural determination. J. Chem. Soc.-Chem. Commun. 1975. [Google Scholar] [CrossRef]
- Zulliger, M.A.; Kwak, N.T.; Tsapikouni, T.; Stergiopulos, N. Effects of longitudinal stretch on VSM tone and distensibility of muscular conduit arteries. Am. J. Physiol. Heart Circ. Physiol. 2002, 283, 2599–2605. [Google Scholar] [CrossRef]
- Vesely, D.L. Ergotamine and dihydroergotamine enhance guanylate cyclase activity. Res. Commun. Chem. Pathol. Pharmacol. 1983, 40, 245–254. [Google Scholar]
- da Silva, F.H.; Claudino, M.A.; Báu, F.R.; Rojas-Moscoso, J.A.; Mónica, F.Z.; De Nucci, G.; Antunes, E. Vas deferens smooth muscle responses to the nitric oxide-independent soluble guanylate cyclase stimulator BAY 41-2272. Eur. J. Pharmacol. 2012, 688, 49–55. [Google Scholar] [CrossRef]
- Derbyshire, E.R.; Marletta, M.A. Structure and regulation of soluble guanylate cyclase. Annu. Rev. Biochem. 2012, 81, 533–559. [Google Scholar] [CrossRef]
- Nelson, M.T.; Quayle, J.M. Physiological roles and properties of potassium channels in arterial smooth muscle. Am. J. Physiol. 1995, 268, 799–822. [Google Scholar] [CrossRef]
- Gutman, G.A.; Chandy, K.G.; Grissmer, S.; Lazdunski, M.; McKinnon, D.; Pardo, L.A.; Robertson, G.A.; Rudy, B.; Sanguinetti, M.C.; Stühmer, W.; et al. International Union of Pharmacology. LIII. Nomenclature and molecular relationships of voltage-gated potassium channels. Pharmacol. Rev. 2005, 57, 473–508. [Google Scholar] [CrossRef]
- Guedes, D.N.; Silva, D.F.; Barbosa-Filho, J.M.; Medeiros, I.A. Muscarinic agonist properties involved in the hypotensive and vasorelaxant responses of rotundifolone in rats. Planta Medica. 2002, 68, 700–704. [Google Scholar] [CrossRef]
- Palacios, J.; Espinoza, F.; Munita, C.; Cifuentes, F.; Michea, L. Na+ -K+ -2Cl- cotransporter is implicated in gender differences in the response of the rat aorta to phenylephrine. Br. J. Pharmacol 2006, 148, 964–972. [Google Scholar] [CrossRef]
- Orallo, F.; Alzueta, A.F. Preliminary study of the vasorelaxant effects of (+)-nantenine, an alkaloid isolated from Platycapnos spicata, in rat aorta. Planta Med. 2001, 67, 800–806. [Google Scholar] [CrossRef]
- Mustafa, M.R.; Achike, F.I. Dicentrine is preferentially antagonistic to rat aortic than splenic alpha 1-adrenoceptor stimulation. Acta Pharmacol. Sin. 2000, 21, 1165–1168. [Google Scholar]
- Wang, K.; Zhou, X.Y.; Wang, Y.Y.; Li, M.M.; Li, Y.S.; Peng, L.Y.; Cheng, X.; Li, Y.; Wang, Y.P.; Zhao, Q.S. Macrophyllionium and macrophyllines A and B, oxindole alkaloids from Uncaria macrophylla. J. Nat. Prod. 2011, 74, 12–15. [Google Scholar] [CrossRef]
- McFadzean, I.; Gibson, A. The developing relationship between receptor-operated and store-operated calcium channels in smooth muscle. Br. J. Pharmacol. 2002, 135, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.-B.; Chen, C.-X.; Sim, S.-M.; Kwan, C.-Y. In vitro vasodilator mechanisms of the indole alkaloids rhynchophylline and isorhynchophylline, isolated from the hook of Uncaria rhynchophylla (Miquel). Naunyn-Schmiedeberg’s Archives of Pharmacology 2004, 369, 232–238. [Google Scholar] [CrossRef]
- Ishizuka, M.; Koga, I.; Zaima, K.; Kaneda, T.; Hirasawa, Y.; Hadi, A.H.; Morita, H. Vasorelaxant effects on rat aortic artery by two types of indole alkaloids, naucline and cadamine. J. Nat. Med. 2013, 67, 399–403. [Google Scholar] [CrossRef]
- Rameshrad, M.; Babaei, H.; Azarmi, Y.; Fouladia, D.F. Rat aorta as a pharmacological tool for in vitro and in vivo studies. Life Sci. 2016, 145, 190–204. [Google Scholar] [CrossRef]
- Cifuentes, F.; Palacios, J.; Kuzmicic, J.; Carvajal, L.; Muñoz, F.; Quispe, C.; Nwokocha, C.R.; Morales, G.; Norambuena-Soto, I.; Chiong, M.; et al. Vasodilator and hypotensive effects of pure compounds and hydroalcoholic extract of Xenophyllum poposum (Phil) V.A Funk (Compositae) on rats. Phytomedicine 2018, 50, 99–108. [Google Scholar] [CrossRef]
- Nwokocha, C.R.; Owu, D.U.; McLaren, M.; Murray, J.; Delgoda, R.; Thaxter, K.; McCalla, G.; Young, L. Possible mechanisms of action of the aqueous extract of Artocarpus altilis (breadfruit) leaves in producing hypotension in normotensive Sprague-Dawley rats. Pharm. Biol. 2012, 50, 1096–1102. [Google Scholar] [CrossRef]
- Nwokocha, C.R.; Owu, D.U.; Gordon, A.; Thaxter, K.; McCalla, G.; Ozolua, R.I.; Young, L. Possible mechanisms of action of the hypotensive effect of Annona muricata (soursop) in normotensive Sprague-Dawley rats. Pharm. Biol. 2012, 50, 1436–1441. [Google Scholar] [CrossRef]
- Hackett, P.H.; Roach, R.C. High-altitude illness. N. Engl. J. Med. 2001, 345, 107–114. [Google Scholar] [CrossRef]
Sample Availability: Samples of 8-oxo-9-dihydromakomakine is available from the corresponding author. |
Drugs | IC50 (μM) | AUC (× 10−3) |
---|---|---|
Control | 15.86 ± 0.91 | 7.17 ± 0.31 |
Endo-denuded | 14.96 ± 0.89 | 5.63 ± 0.49 |
l-NAME | 14.39 ± 0.89 | 6.37 ± 0.25 |
ODQ | 39.75 ± 0.87 * | 5.14 ± 0.24 * |
BaCl2 | 19.64 ± 0.83 * | 2.52 ± 0.52 * |
Glibenclamide | 28.79 ± 0.89 * | 5.34 ± 0.17 * |
TEA | 18.65 ± 0.91 * | 5.62 ± 0.25 |
4-AP | 29.32 ± 0.93 * | 4.04 ± 0.05 * |
Indomethacin | 5.20 ± 0.72 * | 7.76 ± 0.10 |
Drugs | EC50 | AUC |
---|---|---|
KCl (mM) | ||
Control | 23.0 ± 1.3 | 4482 ± 163 |
ARI | 26.0 ± 0.8 * | 3212 ± 293 * |
Caffeine | 29.0 ± 2.1* | 2300 ± 5 * |
PE (nM) | ||
Control | 47.8 ± 0.2 | 1.56 ± 0.08 (×10−3) |
ARI | 51.2 ± 0.1 * | 1.01 ± 0.03 * (×10−3) |
Caffeine | 59.56 ± 0.63 * | 0.08 ± 0.02 * (×10−3) |
Calcium (mM) | ||
Control | 0.30 ± 0.12 | 89.64 ± 8.54 |
ARI | 0.31 ± 0.17 | 47.03 ± 7.09 * |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romero, F.; Palacios, J.; Jofré, I.; Paz, C.; Nwokocha, C.R.; Paredes, A.; Cifuentes, F. Aristoteline, an Indole-Alkaloid, Induces Relaxation by Activating Potassium Channels and Blocking Calcium Channels in Isolated Rat Aorta. Molecules 2019, 24, 2748. https://doi.org/10.3390/molecules24152748
Romero F, Palacios J, Jofré I, Paz C, Nwokocha CR, Paredes A, Cifuentes F. Aristoteline, an Indole-Alkaloid, Induces Relaxation by Activating Potassium Channels and Blocking Calcium Channels in Isolated Rat Aorta. Molecules. 2019; 24(15):2748. https://doi.org/10.3390/molecules24152748
Chicago/Turabian StyleRomero, Fernando, Javier Palacios, Ignacio Jofré, Cristian Paz, Chukwuemeka R. Nwokocha, Adrián Paredes, and Fredi Cifuentes. 2019. "Aristoteline, an Indole-Alkaloid, Induces Relaxation by Activating Potassium Channels and Blocking Calcium Channels in Isolated Rat Aorta" Molecules 24, no. 15: 2748. https://doi.org/10.3390/molecules24152748
APA StyleRomero, F., Palacios, J., Jofré, I., Paz, C., Nwokocha, C. R., Paredes, A., & Cifuentes, F. (2019). Aristoteline, an Indole-Alkaloid, Induces Relaxation by Activating Potassium Channels and Blocking Calcium Channels in Isolated Rat Aorta. Molecules, 24(15), 2748. https://doi.org/10.3390/molecules24152748