Abstract
(SiO2/Sm2O3) was successfully synthesized and examined using scanning electron microscopy; X-ray diffraction and Fourier transform infrared spectroscopy. Obtained data shows the formation of crystalline phase superimposed over the silicate amorphous matrix. The synthesized catalyst was used for eco-friendly synthesis of bis-indole derivatives. Two moles of indole and different aromatic aldehyde were mixed and heterocyclic aldehydes have been adopted in-expensive, recyclable, easily prepared and nontoxic catalyst (SiO2/Sm2O3) under solvent free conditions. The chemical structures of the synthesized compounds have been introduced and correlated with UV/vis. optical absorption spectra in combination with (HOMO-LUMO) through experimental spectrophotometric data in both direct-indirect transitions and that obtained based of density functional theory (DFT).
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Nasrollahzadeh M, Habibi D, Shahkarami Z, Bayat Y (2009) A general synthetic method for the formation of arylaminotetrazoles using natural natrolite zeolite as a new and reusable heterogeneous catalyst. Tetrahedron 65:10715–10719
Habibi D, Nasrollahzadeh M (2010) Silica-supported ferric chloride (FeCl3-SiO2): an efficient and recyclable heterogeneous catalyst for the preparation of arylaminotetrazoles. Synth Commun 40:3159–3167
Fahy E, Potts BC, Faulkner DJ, Smith K (1991) 6-Bromotryptamine derivatives from the Gulf of California tunicate didemnum candidum. J Nat Prod 54:564–569
Garbe TR, Kobayashi M, Shimizu N, Takesue N, Ozawa M, Yuka-wa H (2000) Indolyl carboxylic acids by condensation of indoles with α-keto acids. J Nat Prod 63:596–598
Rahimizadeh M, Eshghi H, Bakhtiarpoor Z, Pordel M (2009) Ferric hydrogensulfate as a recyclable catalyst for the synthesis of some new bis(indolyl)methane derivatives. J Chem Res 5:269–270
Kobayashi M, Aoki S, Gato K, Matsunami K, Kurosu M, Kitagawa I (1994) Marine natural products. XXXIV. Trisindoline, a new antibiotic indole trimer, produced by a bacterium of Vibrio sp. separated from the marine sponge hyrtios altum. Chem Pharm Bull 42:2449–2451
Sivaprasad G, Perumal PT, Prabavathy VR, Mathivanan N (2006) Synthesis and anti-microbial of pyrazolylbisindoles-promissing antifungal compounds. Bioorg Med Chem Lett 16:6302–6305
Kamal A, Khan MNA, Reddy KS, Srikanth YVV, Ahmed SK, Kumar KP, Murthy USNJ (2009) An efficient synthesis of bis(indolyl)methanes and evaluation of their antimicrobial activities. Enzyme Inhib Med Chem 24:559–565
Porter JK, Bacon CW, Robins JD, Himmel-sbach DS, Higman HC (1977) Indole alkaloids from Balansia epichloe (Weese). J Agri Food Chem 25:88–93
Benabadji SH, Wen R, Zheng J, Dong X, Yuan S (2004) Anticarcinogenic and antioxidant activity of diindolylmethane derivatives. Acta Pharmacol Sin 25:666–671
Giannini G, Marzi M, Tinti MO, Pisano C (2000) International patent. WO0236597. Chem Abstr 136:355230
Valeria L, Ernesto M (1998) EP0887348 A1
Valeria L, Ernesto M, Ambrogio O, Frank G, Hans-Willi K (2000) EP0991645
Pal C, Dey S, Mahato SK, Vinayagam J, Pradhan PK, Giri VS, Jaisankar P, Hossain T, Baruri S, Raya D, Biswas SM (2007) Eco-friendly synthesis and study of new plant growth promoters: 3,3’-diindolylmethane and its derivatives. Bioorg Med Chem Lett 17:4924–4928
Sujatha K, Perumal PT, Muralidharan D, Rajendran M (2009) Synthesis, analgesic and anti-inflammatory activities of bis(indolyl)methanes. Indian J Chem 48B:267–272
Kamble VT, Kadam KR, Joshi NS, Muley DB (2007) HClO4 −SiO2 as a novel and recyclable catalyst for the synthesis of bis-indolylmethanes and bis-indolylglycoconjugates. Catal Commun 8:498–502
Farhanullah A, Sharon PR, Maulik VJ (2004) Amberlyst 15 catalyzed synthesis of indole-pyrazole based tri(hetero)arylmethanes. Tetrahedron Lett 45:5099–5102
Karthik M, Mageshk CJ, Perumal PT, Palanichamy M, Arabindoo B, Murugesan V (2005) Zeolite-catalyzed ecofriendly synthesis of vibrindole A and bis(indolyl)methanes. Appl Catal A 286:137–141
Karthik M, Tripathi AK, Gupta NM, Palanichamy M, Murugesan V (2004) Zeolite catalyzed electrophilic substitution reaction of indoles with aldehydes: synthesis of bis(indolyl)methanes. Catal Commun 5:371–375
Tadi K, Chang Y, Ashok BT, Chen Y, Moscatello A, Schaefer SD, Schantz ST, Policastro AJ, Geliebter J, Tiwari RK (2005) 3, 3’-Diindolylmethane, a cruciferous vegetable derived synthetic anti-proliferative compound in thyroid disease. Biochem Biophys Res Commun 337:1019–1025
Kumar GSS, Prabu AM, Jenniefer SJ, Bhuvanesh N, Muthiah BP, Kumaresan S (2013) Syntheses of phenoxyalkyl esters of 3,3’-bis(indolyl)methanes and studies on their molecular properties from single crystal XRD and DFT techniques. J Mol Struct 1047:109–120
Gill CH, Joshi RS, Mandhane PG, Diwakar SD (2010) Ultrasound assisted green synthesis of bis(indol-3-yl)methanes catalyzed by 1-hexenesulphonic acid sodium salt. Ultrason Sonochem 17:298–300
Hasaninejad A, Shekouhy M, Zare A, Ghattali SMSH, Golzar N (2011) PEG-SO3H as a new, highly efficient and homogeneous polymeric catalyst for the synthesis of bis(indolyl)methanes and 4,4’-(arylmethylene)-bis(3-methyl-1-phenyl-1H pyrazol-5-ol)s in water. J Iran Chem Soc 8:411–423
Khaksar S, Ostad SM (2011) Pentafluorophenylammonium triflate as an efficient, environmentally friendly and novel organocatalyst for synthesis of bisindolyl methane derivatives. J Fluorine Chem 132:937–939
Kolvari E, Zolfigol MA, Banary H (2011) Synthesis of bis(indolyl)methanes using molten N-butylpyridinium bromide. Chin Chem Lett 22:1305–1308
Qu HE, Xiao C, Wang N, Yu KH, Hu QS, Liu LX (2011) RuCl3 ⋅3H2O catalyzed reactions: facile synthesis of Bis(indolyl)methanes under mild conditions. Molecules 16:3855–3868
Kamble S, Rashinkar G, Kumbhar A, Salunkhe R (2012) Hydrotrope induced catalysis in water: a clean and green approach for the synthesis of medicinally relevant bis(indolyl)methanes and 2-aryl benzimidazoles. Synth Commun 42:756–766
Yadav JS, Reddy BVS, Murthy CVSR, Kumar GM, Madan C (2001) Lithium perchlorate catalyzed reactions of indoles: an expeditious synthesisof Bis(indolyl)methanes. Synthesis 5:783–787
Ramesh C, Banerjee J, Pal R, Das B (2003) Silica supported sodium hydrogen sulfate and amberlyst-15: two efficient heterogeneous catalysts for facile synthesis of Bis- and Tris(1H-indol-3-yl)methanes from indoles and carbonyl compounds. Adv Synth Catal 345:557–559
Chakrabarty M, Ghosh N, Basak R, Harigaya Y (2002) Two efficient heterogeneous catalysts for facile synthesis of. Bis- and Tris(1H-indol-3-yl)methanes from indoles and carbonyl. Compounds. Tetrahedron Lett 43:4075–4078
Seyedi N, Khabazzadeh H, Saidi K (2009) Cu1.5PMo12O40 as an efficient, mild and heterogeneous catalyst for the condensation of indole with carbonyl compounds. Mol Divers 13:337–342
Nakamoto K (1977) Infrared and raman spectra of inorganic and coordination compounds. Wiley Inter Science, New York
Kirk CT (1988) Quantitative analysis of the effect of disorder-induced mode coupling on infrared absorption in silica. Phys Rev B8(2):1255–1273
Najafi M, Yousefi Y, Rafati AA (2012) Synthesis, characterization and adsorption studies of several heavy metal ions on amino-functionalized silica nano hollow sphere and silica gel. Sep Purif Technol 85:193–205
Hassan AF, Abdelghany AM, Elhadidy H, Youssef AM (2014) Synthesis and characterization of high surface area nanosilica from rice husk ash by surfactant-free sol-gel method. J Sol-Gel Sci Technol 69(3):465–472
Soliman HA, Khatab TK (2014) Efficient heterogeneous catalytic one-pot, three-component synthesis of γ-hydroxy-β-ketoamide. Egypt J Chem 57:129–142
Soliman HA, Khatab TK (2016) New approach for tetrachlorosilane promoted One-Pot, condensation reaction for Tetrahydrobenzo[a]Xanthene-11-Ones with docking validation as Aurora Kinase Inhibitor. Silicon, Published Online. https://doi.org/10.1007/s12633-016-9421-0
Soliman HA, Khatab TK (2016) Utilization of bromine azide to access vicinal-azidobromides from arylidene malononitrile, vol 27
Soliman HA, Khatab TK (2016) V2 O 5/SiO2 as a heterogeneous catalyst in the synthesis of bis(indolyl)metanes under solvent free condition. Silicon, Published Online. https://doi.org/10.1007/s12633-016-9515-8
Ji S-J, Wang S-Y, Zhang Y, Loh T-P (2004) Facile synthesis of bis(indolyl)methanes using catalytic amount of iodine at room temperature under solvent-free conditions. Tetrahedron 60:2051–2055
Kamal A, Qureshi AA (1963) Syntheses of some substituted di-indolylmethanes in aqueous medium at room temperature. Tetrahedron 19:513–520
Esmaielpour M, Akhlaghinia B, Iahanshahi R (2017) Green and efficient synthesis of aryl/alkylbis(indolyl)methanes using expanded Perlite-PPA as a heterogeneous solid acid catalyst in aqueous media. J Chem Sci 129:313–328
Bandgar BP, Patil AV, Kamble VT (2007) Fluoroboric acid adsorbed on silica gel catalyzed synthesis of bisindolyl alkanes under mild and solvent-free conditions. Arkivoc 16:252–259
Rekha M, Manjunath HR, Nagaraju N (2013) Mn/Al2 O 3 and Mn/ZrO2 as selective catalysts for the synthesis of bis(indolyl)methanes: The role of surface acidity and particle morphology. J Ind Eng Chem 19:337–346
Azizi N, Torkian L, Saidi MR (2007) Highly efficient synthesis of bis(indolyl)methanes in water. J Mol Catal A: Chem 275:109–112
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Khatab, T.K., Abdelghany, A.M., Shaker, N. et al. Evaluation of the Optical and Structural Properties of Constructed Bis-indole Derivatives Using (Sm2O3/SiO2) Catalyst. Silicon 10, 2173–2179 (2018). https://doi.org/10.1007/s12633-017-9747-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12633-017-9747-2