[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023284031A1 - 一种内置式即时脱水微界面强化dmc制备系统及方法 - Google Patents

一种内置式即时脱水微界面强化dmc制备系统及方法 Download PDF

Info

Publication number
WO2023284031A1
WO2023284031A1 PCT/CN2021/109762 CN2021109762W WO2023284031A1 WO 2023284031 A1 WO2023284031 A1 WO 2023284031A1 CN 2021109762 W CN2021109762 W CN 2021109762W WO 2023284031 A1 WO2023284031 A1 WO 2023284031A1
Authority
WO
WIPO (PCT)
Prior art keywords
micro
interface generator
interface
outlet
reaction
Prior art date
Application number
PCT/CN2021/109762
Other languages
English (en)
French (fr)
Inventor
张志炳
周政
田洪舟
李磊
张锋
孟为民
王宝荣
杨高东
罗华勋
杨国强
曹宇
Original Assignee
南京延长反应技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京延长反应技术研究院有限公司 filed Critical 南京延长反应技术研究院有限公司
Publication of WO2023284031A1 publication Critical patent/WO2023284031A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/008Details of the reactor or of the particulate material; Processes to increase or to retard the rate of reaction
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C68/00Preparation of esters of carbonic or haloformic acids
    • C07C68/01Preparation of esters of carbonic or haloformic acids from carbon monoxide and oxygen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C68/00Preparation of esters of carbonic or haloformic acids
    • C07C68/08Purification; Separation; Stabilisation

Definitions

  • the invention relates to the field of methanol carbonylation reaction preparation, in particular to a built-in instant dehydration micro-interface enhanced DMC preparation system and method.
  • the methanol liquid-phase oxidative carbonylation method is a method for synthesizing DMC (dimethyl carbonate) based on CH 3 OH, O 2 and CO under the action of a catalyst.
  • the existing production process is generally carried out in two sets of reaction devices.
  • Each reaction device consists of two parallel reactors and a gas-liquid separation tank.
  • the reaction temperature is 115-120° C.
  • the reaction pressure is 2.2-2.5 MPaG.
  • the normal operating liquid level of the gas-liquid separation tank is about 50%.
  • the catalyst is a cuprous chloride-based catalyst, the particle size of the catalyst particle is 200 mesh (74 ⁇ m), it is in a quasi-homogeneous state in the slurry, and the content is 1.5%-3% (wt).
  • the liquid phase feed of the reactor is fresh methanol and the methanol circulated in the system, after being mixed, they enter the downcomer at the bottom of the gas-liquid separation tank and flow into the bottom of the reactor respectively.
  • the fresh O2 and CO in the gas phase feed are mixed with the recycle gas (mainly CO), they enter the two reactors in the form of bubbling through the sparger at the bottom of the two reactors.
  • the oxygen concentration in the feed is ⁇ 5%.
  • O 2 , CO and methanol generate DMC and water under the action of catalyst.
  • the oxidative carbonylation reaction of methanol is an exothermic reaction, and the heat of reaction for generating 1mol of DMC is about 310kJ.
  • the reaction materials are discharged in the gas phase, and the latent heat of evaporation is 31kJ/mol. Due to the low single-pass conversion rate of raw materials and the relatively small amount of heat released by the reaction, it is necessary to supplement the heat through the U-shaped heat exchanger inside the reactor to adjust the reaction temperature to be constant. There are 4 heat exchangers inside each reactor, and the steam consumption is about 0-10t/h.
  • the mixed gas of the raw material is bubbled into the liquid phase after being initially distributed by the distributor at the bottom of the reactor. Since the sparger openings are at the millimeter level ( ⁇ 5mm), the diameter of the generated bubbles is relatively large (8-15mm), the gas-liquid interface area is relatively small, and the initially distributed bubbles are easy to coalesce during the rising process, and the bubbles in the reactor The distribution is uneven, and the liquid circulation adopts the density difference circulation method, and the flow velocity is slow ( ⁇ 0.1m/s), which makes the gas-liquid mass transfer rate low, resulting in a macroscopic reaction rate that is seriously lower than the design expected value;
  • the first purpose of the present invention is to provide a built-in instant dehydration micro-interface enhanced DMC preparation system, which can make the raw materials react more fully and improve the conversion rate of raw materials by dividing the reaction tower into the first reaction section and the second reaction section ;
  • the mixed gas is dispersed and broken into micron-sized micro-bubbles, which improves the phase boundary mass transfer area between methanol and synthesis gas, and improves
  • the reaction rate is improved, the residence time of raw materials in the reactor is reduced, thereby reducing the occurrence of side reactions; at the same time, it can effectively reduce the energy consumption of the reaction and increase the conversion rate of the reaction.
  • the second object of the present invention is to provide a kind of preparation method that adopts above-mentioned system, and this method is easy and simple to operate, by applying above-mentioned system, has reduced reaction energy consumption, has improved the single-pass conversion rate of methanol and the yield of DMC.
  • the invention provides a built-in instant dehydration micro-interface enhanced DMC preparation system, comprising: a reaction tower, a sealing plate is arranged in the middle of the reaction tower; the first reaction section is above the sealing plate, and the second reaction section is below; The side wall of the first reaction section is connected with a methanol pipeline and a mixed gas pipeline from top to bottom;
  • a first micro-interface generator is arranged in the first reaction section, a second micro-interface generator is arranged above the first micro-interface generator, and the first micro-interface generator and the second micro-interface generate All devices are connected with the mixed gas pipeline to disperse and break the mixed gas into micro-bubbles of micron scale; the top of the first micro-interface generator is provided with a micro-bubble outlet close to the first micro-interface generator; The bottom outlet of the second micro-interface generator is connected with a microbubble pipeline, and the outlet of the microbubble pipeline is covered above the microbubble outlet;
  • a multi-layer buffer plate is arranged above the first micro-interface generator, and a plug flow layer is formed between the multi-layer buffer plates; the buffer plate is located below the first liquid level in the first reaction section; the The side wall between the buffer plate and the first micro-interface generator is provided with a water outlet, and the water outlet is provided with a filter membrane that only passes through the water;
  • a first product outlet is provided on the side wall of the first reaction section, and the first product outlet is located below the first liquid level; the first product outlet is connected to the second reaction section.
  • the mixed gas of the raw material is bubbled into the liquid phase after initial distribution through the distributor at the bottom of the reactor. Since the sparger openings are at the millimeter level ( ⁇ 5mm), the diameter of the generated bubbles is relatively large (8-15mm), the gas-liquid interface area is relatively small, and the initially distributed bubbles are easy to coalesce during the rising process, and the bubbles in the reactor The distribution is uneven, and the liquid circulation adopts the density difference circulation method, and the flow rate is slow ( ⁇ 0.1m/s), which makes the gas-liquid mass transfer rate low, resulting in a macroscopic reaction rate that is seriously lower than the expected value of the design, and because the product DMC is in the system If the residence time in the medium is too long, the hydrolysis reaction with water will generate CO2, and side reactions between CO and O2 will easily occur at the same time. These factors greatly reduce the conversion rate of raw materials.
  • the present invention provides a built-in instant dehydration micro-interface enhanced DMC preparation system.
  • the system divides the reaction tower into the first reaction section and the second reaction section to make the raw material react more fully and improve the raw material Conversion rate; by setting the first micro-interface generator and the second micro-interface generator in the first reaction section, the mixed gas is dispersed and broken into micron-sized micro-bubbles, which improves the phase boundary mass transfer area between methanol and syngas , improve the reaction rate, reduce the residence time of raw materials in the reactor, thereby reducing the occurrence of side reactions; at the same time, it can effectively reduce the energy consumption of the reaction and increase the conversion rate of the reaction.
  • a third micro-interface generator is arranged in the second reaction section, and the third micro-interface generator is connected to the gas mixture pipeline.
  • the third micro-interface generator can disperse and crush the mixed gas in the second reaction stage, and increase the mass transfer area of the phase boundary.
  • a multi-layer sieve plate is arranged above the third micro-interface generator; the sieve plate is arranged below the second liquid level in the second reaction section.
  • the multi-layer sieve plate can convert the fully mixed flow into a plug flow, thereby inhibiting the side reaction between DMC and water.
  • a partition plate is provided above the second liquid level; a water filter layer is provided above the partition plate; a water storage area is formed between the partition plate and the water filter layer;
  • the side wall of the second reaction section is provided with a circulation pipeline, the inlet of the circulation pipeline is located between the second liquid level and the partition plate, and the outlet is located above the filter water layer.
  • a distributor is provided at the outlet of the third micro-interface generator, the distributor is conical and the tapered tip faces the third micro-interface generator; a plurality of distributors are arranged on the distributor hole.
  • the outlet direction of the microbubbles is set parallel or vertically upward.
  • the micro-bubble outlet When the micro-bubble outlet is vertically upward, it forms a 180° angle with the flow direction of the bubbles at the outlet of the second micro-interface generator, which prolongs the mixing path of the bubbles and can effectively improve the mixing effect.
  • the first micro-interface generator is a pneumatic micro-interface generator
  • the second micro-interface generator is a gas-liquid linkage micro-interface generator or a hydraulic micro-interface generator
  • the third micro-interface generator is a pneumatic micro-interface Generator, any one of hydraulic micro-interface generator and gas-liquid linkage micro-interface generator.
  • the reactor of the present invention is divided into a first reaction section and a second reaction section by a sealing plate, and the product after the reaction of the first reaction section enters the second reaction section to continue to participate in the reaction, which effectively improves the conversion rate of raw materials;
  • the first micro-interface generator and the second micro-interface generator are installed inside, and the mixed gas is dispersed and broken into microbubbles through the two micro-interface generators, which can effectively increase the phase boundary mass transfer area between the mixed gas and methanol, and improve the reaction rate.
  • Efficiency During the reaction, the mixed gas passes through the first micro-interface generator and the second micro-interface generator to disperse and break into micro-bubbles, and then undergoes carbonylation reaction with methanol under the participation of the catalyst.
  • the present invention uses the combination of the first micro-interface generator and the second micro-interface generator in the first reaction zone to form a hybrid micro-interface unit SBBS, which improves the application effect of the single micro-interface generator; on the one hand, the first micro-interface generates A collision flow can be formed between the device and the second micro-interface generator to further disperse and break the bubbles; The inside of the microinterface generator is flushed to prevent clogging. Moreover, such setting can also improve the fixing effect, and the pipeline connected between the first micro-interface generator and the second micro-interface generator can support the second micro-interface generator.
  • the space in the reactor itself is relatively narrow. If the micro-interface generators are set too scattered, it will also affect the normal operation of the reactor.
  • the overall design of the structure also shortens the distance between each micro-interface generator and strengthens the relationship between each component. The ability to cooperate with each other, after the bubbles broken by the micro-interface collide with each other, the effect of dispersion and crushing is improved.
  • the first micro-interface generator and the second micro-interface generator are connected as a whole through the micro-bubble pipeline, and the micro-bubble pipeline is directly connected to the upper part of the first micro-interface generator.
  • the micro-bubble outlet, the micro-bubble outlet is the outlet of the micro-bubbles formed after the first micro-interface generator disperses and breaks, through the guiding function of the micro-bubble channel, it provides power to the material going out of the micro-bubble outlet.
  • the outlet of the microbubbles can be set in a horizontal direction or a vertical upward direction.
  • the horizontal direction is directly sprayed out, and the vertical upward direction is equivalent to setting a 180-degree return bend at the outlet, thereby further improving the gas-liquid emulsion.
  • the circulating energy can also drive the materials with poor mixing effect in the upper part to be back mixed and then crushed.
  • the third micro-interface generator is arranged in the second reaction section of the present invention, and the mixed gas is dispersed and crushed by the third micro-interface generator, thereby increasing the mass transfer area of the phase boundary between gas and liquid.
  • the sieve plate By setting the sieve plate above and using the plug flow layer formed between the multi-layer sieve plates, the reaction between DMC and water is effectively suppressed, and the yield of DMC is improved; the buffer plate set in the first reaction section is also to suppress DMC and water. Reaction.
  • the micro-bubbles can be uniformly dispersed, preventing the bubbles from coalescing. It can be seen that the present invention effectively improves the application effect of the micro-interface generator itself and improves the product yield by combining the micro-interface generator with a sieve plate, a buffer plate, and a distributor.
  • the first reaction section of the present invention is provided with a drain, and the drain is provided with a filter membrane that only supplies water to pass through; this arrangement is to discharge the water produced by the reaction in time to prevent side reactions between water and DMC; the drain is arranged at The area between the buffer plate and the first micro-interface generator is because this area is a fully mixed flow area where the reaction is intense, and the liquid flows quickly, which is convenient for timely discharge of water after it is produced.
  • the second reaction section of the present invention is provided with a water storage area composed of a partition plate and a water filter layer.
  • the water storage area is filtered through the liquid circulated by the circulation pipeline, and the water in the liquid is filtered into the water storage area separately. discharge, thereby effectively avoiding the hydrolysis of DMC and improving the yield of DMC.
  • micro-interface generator used in the present invention has been embodied in the inventor's previous patents, such as application numbers CN201610641119.6, CN201610641251.7, CN201710766435.0, CN106187660, CN105903425A, Patents of CN109437390A, CN205833127U and CN207581700U.
  • the specific product structure and working principle of the micro-bubble generator (that is, the micro-interface generator) were introduced in detail in the prior patent CN201610641119.6.
  • the body is provided with an inlet communicating with the cavity, the opposite first end and second end of the cavity are open, and the cross-sectional area of the cavity is from the middle of the cavity to the first end and the second end of the cavity.
  • the second end is reduced; the secondary broken piece is arranged at at least one of the first end and the second end of the cavity, a part of the secondary broken piece is set in the cavity, and the two ends of the secondary broken piece and the cavity are open
  • An annular channel is formed between the through holes.
  • the micron bubble generator also includes an inlet pipe and a liquid inlet pipe.” From the specific structure disclosed in the application document, it can be known that the specific working principle is: the liquid enters the micrometer tangentially through the liquid inlet pipe.
  • the gas is rotated and cut at a super high speed, so that the gas bubbles are broken into micron-level micro-bubbles, thereby increasing the mass transfer area between the liquid phase and the gas phase, and the micro-bubble generator in this patent belongs to the pneumatic micro-interface generation device.
  • the primary bubble breaker has a circulating liquid inlet, a circulating gas inlet, and a gas-liquid mixture outlet, while the secondary bubble breaker connects the feed port with the gas-liquid mixture outlet, indicating that the bubble breaker is both It needs to be mixed with gas and liquid.
  • the primary bubble breaker mainly uses circulating fluid as power, so in fact, the primary bubble breaker is a hydraulic micro-interface generator, and the secondary bubble breaker is a gas-liquid breaker.
  • the mixture is passed into the elliptical rotating ball for rotation at the same time, so that the bubbles are broken during the rotation process, so the secondary bubble breaker is actually a gas-liquid linkage micro-interface generator.
  • the micro-interface generator used in the present invention is not limited to the above-mentioned several forms
  • the specific structure of the bubble breaker described in the prior patents is only one of the forms that the micro-interface generator of the present invention can adopt.
  • the liquid phase coming in from the top provides the entrainment power, so as to achieve the effect of crushing into ultra-fine bubbles, which can also be seen in the attached drawings.
  • the bubble breaker has a conical structure, and the diameter of the upper part is larger than that of the lower part, which is also for the liquid phase to provide better entrainment power.
  • micro-interface generator Since the micro-interface generator was just developed in the early stage of the patent application, it was named micro-bubble generator (CN201610641119.6) and bubble breaker (201710766435.0) in the early stage. With continuous technological improvement, it was later renamed as micro-interface generator Device, now the micro-interface generator in the present invention is equivalent to the previous micro-bubble generator, bubble breaker, etc., but the name is different. In summary, the micro-interface generator of the present invention belongs to the prior art.
  • the water storage area is connected with a drainage channel for drainage;
  • the side wall of the second reaction section is provided with a second product outlet, and the second product outlet is vertically located above the water filter layer , the outlet of the second product is connected with a refining tank.
  • a non-condensable gas outlet is provided above the refining tank, and the non-condensable gas outlet is connected to the second micro-interface generator.
  • the present invention also provides a preparation method using the above-mentioned built-in instant dehydration micro-interface strengthening DMC preparation system, comprising the following steps:
  • the synthesis gas After the synthesis gas is broken through the micro-interface, it is mixed with methanol and a catalyst for carbonylation reaction to obtain the product DMC; the catalyst is cuprous chloride.
  • the temperature of the carbonylation reaction is 108-113° C.
  • the pressure is 1.3-1.8 MPa.
  • the yield of DMC obtained by adopting the preparation method of the invention is high.
  • the preparation method itself has low reaction temperature, greatly reduced pressure, and significantly reduced cost.
  • the built-in instant dehydration micro-interface strengthening DMC preparation system of the present invention utilizes the combination of the first micro-interface generator and the second micro-interface generator to form a hybrid micro-interface unit SBBS, which improves the application effect of a single micro-interface generator;
  • a collision flow can be formed between the first micro-interface generator and the second micro-interface generator to further disperse and break the air bubbles;
  • the inside of the first micro-interface generator is blocked, it can pass through the second micro-interface
  • the bubble flow of the generator flushes the inside of the first micro-interface generator to prevent clogging.
  • this setting can also improve the fixing effect, and the pipeline connected between the first micro-interface generator and the second micro-interface generator plays a supporting effect on the second micro-interface generator;
  • the micro-bubbles can be evenly dispersed, and the bubbles are placed to coalesce;
  • FIG. 1 is a schematic structural diagram of a system for preparing DMC through micro-interface strengthening provided in Example 1 of the present invention
  • Fig. 2 is the structural representation of the reaction tower that the embodiment of the present invention 1 provides;
  • Fig. 3 is a schematic structural diagram of the distributor provided by Embodiment 1 of the present invention.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. Connected, or integrally connected; it can be mechanically connected or electrically connected; it can be directly connected or indirectly connected through an intermediary, and it can be the internal communication of two components. Those of ordinary skill in the art can understand the specific meanings of the above terms in the present invention in specific situations.
  • the present embodiment provides a built-in instant dehydration micro-interface enhanced DMC preparation system, including: a reaction tower 10, the middle of the reaction tower 10 is provided with a sealing plate 50; above the sealing plate 50 is the first reaction Section 30, below is the second reaction section 20; the side wall of the first reaction section 30 is connected with methanol pipeline 70 and mixed gas pipeline 60 from top to bottom; the side wall of the first reaction section 30 is provided with the first product outlet 307 , the first product outlet 307 is located below the first liquid level; the first product outlet 307 is connected to the second reaction section 20 .
  • the first micro-interface generator 301 is arranged in the first reaction section 30, the second micro-interface generator 306 is arranged above the first micro-interface generator 301, the first micro-interface generator 301 and the second micro-interface generator 306 are all connected with the mixed gas pipeline 60 to disperse and break the mixed gas into micro-bubbles at the micron level;
  • the top of the first micro-interface generator 301 is provided with a micro-bubble outlet close to the first micro-interface generator 301;
  • the bottom outlet of the device 306 is connected with a microbubble pipeline 305, and the outlet of the microbubble pipeline 305 is covered above the microbubble outlet.
  • the top and side of the first micro-interface generator 301 are provided with outlets, and the micro-bubbles at the top outlet can collide with the bubbles of the second micro-interface generator 306 to further disperse and break.
  • a multi-layer buffer plate 304 is arranged above the first micro-interface generator 301, and a plug flow layer is formed between the multi-layer buffer plates 304; the buffer plate 304 is located below the first liquid level in the first reaction section 30; the buffer plate
  • the side wall between 304 and the first micro-interface generator 301 is provided with a water outlet 302, and the water outlet 302 is provided with a filter membrane 303 through which only water passes.
  • the outlet direction of the microbubbles is set parallel or vertically upward.
  • the micro-bubble outlet is arranged vertically upward.
  • the microbubble outlet was vertically upwards, it formed a 180° corner with the outlet bubble flow direction of the second microinterface generator 306, and the gas-liquid emulsion stream flowing down from the second microinterface generator 306 was connected to the upper part of the first microinterface generator.
  • the microbubbles flowing out of the outlet collide to form a collision flow, which can further promote the dispersion and crushing of the microbubbles.
  • the micro-bubble outlet is not shown in the figure, its specific structure is relatively clear through the text description of the present invention.
  • a third micro-interface generator 201 is provided in the second reaction section 20 , and the third micro-interface generator 201 is connected to the gas mixture pipeline 60 .
  • the third micro-interface generator 201 can disperse and crush the mixed gas in the second reaction section 20 to increase the mass transfer area of the phase boundary.
  • a multi-layer sieve plate 203 is arranged above the third micro-interface generator 201; the sieve plate 203 is arranged below the second liquid level in the second reaction section 20.
  • the multi-layer sieve plate 203 can convert the fully mixed flow into a plug flow, thereby inhibiting the side reaction between DMC and water.
  • a partition plate 205 is provided above the second liquid level; a water filter layer 206 is provided above the partition plate 205; a water storage area is formed between the partition plate 205 and the water filter layer 206;
  • the side wall of the second reaction section 20 is provided with a circulation pipeline 204 , the inlet of the circulation pipeline 204 is located between the second liquid level and the partition plate 205 , and the outlet is located above the filter layer 206 .
  • the product enters the upper part of the water filter layer 206 from the circulation pipeline 204 in the form of gas, and the water vapor entrained in the product gas flow enters the water storage area through the water filter layer 206 .
  • the water filter layer 206 is a membrane that only allows water to pass through.
  • a distributor 202 is provided at the outlet of the third micro-interface generator 201, and the distributor 202 is conical and the tip of the cone faces the third micro-interface generator 201; the distributor 202 is provided with a plurality of distribution holes 2021.
  • the first micro-interface generator 301 is a pneumatic micro-interface generator
  • the second micro-interface generator 306 is a gas-liquid linkage micro-interface generator
  • the third micro-interface generator 201 is a pneumatic micro-interface generator
  • the water storage area is connected with a drainage channel 80 for drainage; the side wall of the second reaction section 20 is provided with a second product outlet 207, and the second product outlet 207 is located in the water filter layer 206 along the vertical direction.
  • a refining tank 40 is connected to the second product outlet 207 .
  • a non-condensable gas outlet is provided above the refining tank 40 , and the non-condensable gas outlet is connected to the second micro-interface generator 306 .
  • a vacuum condenser 90 is provided on the drainage channel 80.
  • the vacuum condenser 90 vacuumizes the water storage area to form a negative pressure area, which increases the gradient of water molecule diffusion and promotes the water molecule and product gas. At the same time, the extracted water vapor is condensed into liquid water and discharged.
  • the methanol and the mixed gas are fed into the reaction tower at the same time, and the mixed gas is dispersed into microbubbles by the first micro-interface generator, the second micro-interface generator and the third micro-interface generator. Methanol is reacted, and the reaction product is refined in a refining tank to obtain the product DMC.
  • Methanol conversion converted methanol moles/feed methanol moles
  • DMC yield molar flow rate of output DMC/molar amount of feed methanol.
  • the single-pass conversion rate of methanol has reached 21.15% (the existing process is generally 10-15%), and the yield of DMC has reached 18.50% (the existing process is generally 8-12%).
  • the reaction temperature is 108°C and the pressure is 1.3MPa, while the existing reaction temperature is generally 120-125°C and the pressure is 2.2-2.5MPa. It can be seen that the system of this embodiment is significantly lower than the existing process temperature and pressure.
  • reaction temperature is 110° C.
  • pressure is 1.5 MPa.
  • reaction temperature is 113° C.
  • pressure is 1.8 MPa.
  • Embodiment 1 The difference between this example and Embodiment 1 is that the hybrid micro-interface generator composed of the first micro-interface generator and the second micro-interface generator is not used. Its material feed is identical with embodiment 1.
  • the conversion rate of methanol per pass is 11%, and the yield of DMC is 9%.
  • Embodiment 1 The difference between this example and Embodiment 1 is that the hybrid micro-interface generator combined by the first micro-interface generator and the second micro-interface generator is replaced by a pneumatic micro-interface generator. Its material feed is identical with embodiment 1.
  • the reaction system of the present invention requires lower reaction temperature and pressure, fewer side reactions, and higher conversion rate of methanol, and is worthy of wide popularization and application.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

一种内置式即时脱水微界面强化DMC制备系统及方法,包括:反应塔(10),所述反应塔(10)中部设置有密封板(50);所述密封板(50)上方为第一反应段(30),下方为第二反应段(20);所述第一反应段(30)的侧壁由上到下连接有甲醇管道(70)和混合气管道(60);所述第一反应段(30)内设置有第一微界面发生器(301),所述第一微界面发生器(301)上方设置有第二微界面发生器(306),所述第一微界面发生器(301)与所述第二微界面发生器(306)均与所述混合气管道(60)相连以将混合气分散破碎成微米级别的微气泡。系统所需反应温度和压力低,副反应少、甲醇转化率高,值得广泛推广应用。

Description

一种内置式即时脱水微界面强化DMC制备系统及方法 技术领域
本发明涉及甲醇羰基化反应制备领域,具体而言,涉及一种内置式即时脱水微界面强化DMC制备系统及方法。
背景技术
甲醇液相氧化羰基化法是一种基于CH 3OH、O 2及CO在催化剂作用下合成DMC(碳酸二甲酯)的方法。
现有生产工艺流程一般是在两套反应装置中进行的。每套反应装置由两台并联的反应器以及一台气液分离罐组成。反应温度为115-120℃,反应压力为2.2-2.5MPaG。气液分离罐正常操作液面为50%左右。催化剂为氯化亚铜系催化剂,催化剂颗粒粒径200目(74μm),在浆料中呈拟均相状态,含量为1.5%-3%(wt)。
反应器液相进料为新鲜甲醇与系统循环的甲醇,经混合后进入气液分离罐底部的降液管分别流进反应器底部。气相进料中新鲜O 2和CO与循环气(主要为CO)混合后,通过两台反应器底部的分布器以鼓泡形式分别进入两台反应器。为保证O 2全部充分反应,以及控制排出气中O 2含量在爆炸极限以下,进料中氧气浓度<5%。在两台反应器中,O 2、CO与甲醇在催化剂作用下生成DMC与水。两台反应器顶部有管道与气液分离罐连接,反应器上部气液混合物进入气液分离罐进行分离。分离出的气相混合物料送至下游装置,主要组分为CO,DMC、甲醇、CO 2以及水。分离罐底部的液相从降液管与原料甲醇混合后,循环回至两台反应器底部。
甲醇氧化羰基化反应为放热反应,生成1molDMC反应热约为310kJ,反应物料以气相出料,蒸发潜热31kJ/mol。由于原料单程转化率低,反应放热总 量相对较少,需要通过反应器内部U型换热器补充热量来调节反应温度恒定。每台反应器内部设有4台换热器,蒸汽耗量约为0-10t/h。
现有DMC生产工艺主要问题如下:
(1)原料混合气在反应器底部经过分布器初始分布后鼓泡进入液相。由于分布器开孔为毫米级别(φ5mm),所产生的气泡直径偏大(8~15mm),气液相界面积偏小,且初始分布的气泡在上升过程中容易聚并,反应器内气泡分布不均匀,加之液体循环采用密度差环流方式,流速较慢(<0.1m/s),使得气液传质速率偏低,导致宏观反应速率严重低于设计预期值;
(2)O 2耗量多,但实际有效利用率很低;
(3)CO单程转化率约为2-8%,且CO进料量偏多,因此新鲜CO压缩机和循环CO压缩机动力消耗偏大;
(4)由于产物DMC在系统中停留时间过长,与水发生水解反应,生成了CO 2,同时CO和O 2易发生副反应,这些因素大大降低了原料的转化率。
有鉴于此,特提出本发明。
发明内容
本发明的第一目的在于提供一种内置式即时脱水微界面强化DMC制备系统,该系统通过将反应塔分成第一反应段和第二反应段,使原料反应更加充分,提高了原料的转化率;通过在第一反应段内设置第一微界面发生器和第二微界面发生器将混合气分散破碎成了微米级的微气泡,提高了甲醇和合成气间的相界传质面积,提高了反应速率,减少了原料在反应器内的存留时间,从而减少了副反应的发生;同时能够有效地降低反应能耗,提高反应转化率。
本发明的第二目的在于提供一种采用上述系统的制备方法,该方法操作简便,通过应用上述系统,降低了反应能耗,提高了甲醇的单程转化率和DMC的收率。
为了实现本发明的上述目的,特采用以下技术方案:
本发明提供了一种内置式即时脱水微界面强化DMC制备系统,包括:反应塔,所述反应塔中部设置有密封板;所述密封板上方为第一反应段,下方为第二反应段;所述第一反应段的侧壁由上到下连接有甲醇管道和混合气管道;
所述第一反应段内设置有第一微界面发生器,所述第一微界面发生器上方设置有第二微界面发生器,所述第一微界面发生器与所述第二微界面发生器均与所述混合气管道相连以将混合气分散破碎成微米级别的微气泡;所述第一微界面发生器的上方紧贴所述第一微界面发生器设置有微气泡出口;所述第二微界面发生器的底部出口连接有微气泡管路,所述微气泡管路的出口覆盖在所述微气泡出口的上方;
所述第一微界面发生器上方设置有多层缓冲板,多层所述缓冲板间形成平推流层;所述缓冲板位于所述第一反应段内第一液面的下方;所述缓冲板与所述第一微界面发生器之间的侧壁设置有排水口,所述排水口处设置有仅供水通过的过滤膜;
所述第一反应段的侧壁上设置有第一产物出口,所述第一产物出口位于所述第一液面的下方;所述第一产物出口与所述第二反应段相连。
现有技术中,原料混合气在反应器底部经过分布器初始分布后鼓泡进入液相。由于分布器开孔为毫米级别(φ5mm),所产生的气泡直径偏大(8~15mm),气液相界面积偏小,且初始分布的气泡在上升过程中容易聚并,反应器内气泡分布不均匀,加之液体循环采用密度差环流方式,流速较慢(<0.1m/s),使得气液传质速率偏低,导致宏观反应速率严重低于设计预期值,且由于产物DMC在系统中停留时间过长,与水发生水解反应,生成了CO2,同时CO和O2易发生副反应,这些因素大大降低了原料的转化率。
为解决上述技术问题,本发明提供了一种内置式即时脱水微界面强化DMC制备系统,该系统通过将反应塔分成第一反应段和第二反应段,使原料反应更加充分,提高了原料的转化率;通过在第一反应段内设置第一微界面发 生器和第二微界面发生器将混合气分散破碎成了微米级的微气泡,提高了甲醇和合成气间的相界传质面积,提高了反应速率,减少了原料在反应器内的存留时间,从而减少了副反应的发生;同时能够有效地降低反应能耗,提高反应转化率。
优选的,所述第二反应段内设置有第三微界面发生器,所述第三微界面发生器与所述混合气管道相连。第三微界面发生器能够对第二反应段的混合气进行分散破碎,提高相界传质面积。
优选的,所述第三微界面发生器的上方设置有多层筛板;所述筛板设置在所述第二反应段内第二液面的下方。多层筛板能够将全混流转化为平推流,从而抑制DMC与水发生副反应。
优选的,所述第二液面的上方设置有分隔板;所述分隔板上方设置有滤水层;所述分隔板与所述滤水层之间形成储水区;所述第二反应段侧壁设置有循环管路,所述循环管路的进口位于所述第二液面与所述分隔板之间,出口位于所述滤水层上方。通过设置储水区,能够及时将反应产生的水脱除,防止副反应的发生,提高产物产率。
优选的,所述第三微界面发生器的出口处设置有分布器,所述分布器呈锥形且锥形尖端朝向所述第三微界面发生器;所述分布器上设置有多个分布孔。通过设置分布器,能够使微气泡在第二反应段中均匀分布,防止微气泡聚并。
优选的,所述微气泡出口方向平行或竖直向上设置。当微气泡出口竖直向上时,与第二微界面发生器的出口气泡流动方向形成180°拐角,延长了气泡混合路径,能够有效提高混合效果。
优选的,所述第一微界面发生器为气动式微界面发生器,第二微界面发生器为气液联动式微界面发生器或液动式微界面发生器,第三微界面发生器为气动式微界面发生器、液动式微界面发生器和气液联动式微界面发生器中的任意一种。
本发明的反应器通过密封板分成了第一反应段和第二反应段,第一反应段 反应后的产物进入第二反应区继续参与反应,有效提高了原料转化率;通过在第一反应段内设置第一微界面发生器和第二微界面发生器,通过两个微界面发生器将混合气分散破碎成为微气泡,能够有效提高混合气与甲醇之间的相界传质面积,提高反应效率;反应时,混合气经过第一微界面发生器和第二微界面发生器分散破碎成微气泡后,在催化剂的参与下与甲醇发生羰基化反应。
本发明在第一反应区内利用第一微界面发生器和第二微界面发生器结合形成混合式微界面机组SBBS,提高了单独的微界面发生器的应用效果;一方面,第一微界面发生器与第二微界面发生器间能够形成碰撞流,进一步对气泡进行分散破碎;另一方面,当第一微界面发生器内部堵塞时,能够通过第二微界面发生器的气泡流对第一微界面发生器内部进行冲洗,防止堵塞。且这样设置还能够提高固定效果,通过第一微界面发生器和第二微界面发生器间相连接的管路对第二微界面发生器起到支撑效果。本身反应器内的空间比较窄小,如果微界面发生器设置的过于分散也会影响到反应器的正常工作,另外设计为整体的结构也缩短了各个微界面发生器的距离,加强各个部件之间的互相协作能力,通过微界面破碎的气泡互相碰撞冲击后,从而提高分散破碎效果。
另外,在本发明的方案中,第一微界面发生器与第二微界面发生器是通过微气泡管路连接为一个整体的,而且微气泡管路直接连通第一微界面发生器上部设置的微气泡出口,该微气泡出口即是第一微界面发生器分散破碎后形成的微气泡的出口,通过微气泡通道的引导作用,给微气泡出口出去的物料提供动力。此外,该微气泡出口可以设置为沿水平方向或垂直朝上的方向,水平方向就是直接喷射出去,垂直朝上的方向相当于在出口处设置了180的回弯,从而更加提升气液乳化物的流通能量,也可以带动位于上部的混合效果差的物料进行返混再破碎。
本发明的第二反应段内设置有第三微界面发生器,通过第三微界面发生器对混合气进行分散破碎,提高了气液间的相界传质面积。通过在上方设置筛板,利用多层筛板间形成的平推流层,有效抑制了DMC和水的反应,提高了DMC 的收率;第一反应段设置的缓冲板也是为了抑制DMC和水的反应。通过在第三微界面发生器出口处设置锥形的分布器能够使微气泡均匀分散,放置气泡聚并。可见,本发明通过将微界面发生器与筛板、缓冲板和分布器等相结合,有效提高了微界面发生器本身的应用效果,提高了产物收率。
另外,本发明的第一反应段设置有排水口,排水口处设置有仅供水通过的过滤膜;这样设置是为了及时排出反应产生的水,防止水与DMC发生副反应;将排水口设置在缓冲板与第一微界面发生器之间则是因为在此区域为反应剧烈进行的全混流区域,液体流动速度快,便于水产生后的及时排出。
本发明的第二反应段设置有由分隔板与滤水层组成的储水区,该储水区通过将循环管路循环的液体进行过滤,液体中的水被过滤到储水区中单独排出,从而有效避免了DMC的水解,提高了DMC的收率。
本领域所属技术人员可以理解的是,本发明所采用的微界面发生器在本发明人在先专利中已有体现,如申请号CN201610641119.6、CN201610641251.7、CN201710766435.0、CN106187660、CN105903425A、CN109437390A、CN205833127U及CN207581700U的专利。在先专利CN201610641119.6中详细介绍了微米气泡发生器(即微界面发生器)的具体产品结构和工作原理,该申请文件中记载了“微米气泡发生器包括本体和二次破碎件、本体内具有空腔,本体上设有与空腔连通的进口,空腔的相对的第一端和第二端均敞开,其中空腔的横截面积从空腔的中部向空腔的第一端和第二端减小;二次破碎件设在空腔的第一端和第二端中的至少一个处,二次破碎件的一部分设在空腔内,二次破碎件与空腔两端敞开的通孔之间形成一个环形通道。微米气泡发生器还包括进气管和进液管。”从该申请文件中公开的具体结构可以知晓其具体工作原理为:液体通过进液管切向进入微米气泡发生器内,超高速旋转并切割气体,使气体气泡破碎成微米级别的微气泡,从而提高液相与气相之间的传质面积,而且该专利中的微米气泡发生器属于气动式微界面发生器。
另外,在先专利201610641251.7中有记载一次气泡破碎器具有循环液进 口、循环气进口和气液混合物出口,二次气泡破碎器则是将进料口与气液混合物出口连通,说明气泡破碎器都是需要气液混合进入,另外从后面的附图中可知,一次气泡破碎器主要是利用循环液作为动力,所以其实一次气泡破碎器属于液动式微界面发生器,二次气泡破碎器是将气液混合物同时通入到椭圆形的旋转球中进行旋转,从而在旋转的过程中实现气泡破碎,所以二次气泡破碎器实际上是属于气液联动式微界面发生器。其实,无论是液动式微界面发生器,还是气液联动式微界面发生器,都属于微界面发生器的一种具体形式,然而本发明所采用的微界面发生器并不局限于上述几种形式,在先专利中所记载的气泡破碎器的具体结构只是本发明微界面发生器可采用的其中一种形式而已。
此外,在先专利201710766435.0中记载到“气泡破碎器的原理就是高速射流以达到气体相互碰撞”,并且也阐述了其可以用于微界面强化反应器,验证本身气泡破碎器与微界面发生器之间的关联性;而且在先专利CN106187660中对于气泡破碎器的具体结构也有相关的记载,具体见说明书中第[0031]-[0041]段,以及附图部分,其对气泡破碎器S-2的具体工作原理有详细的阐述,气泡破碎器顶部是液相进口,侧面是气相进口,通过从顶部进来的液相提供卷吸动力,从而达到粉碎成超细气泡的效果,附图中也可见气泡破碎器呈锥形的结构,上部的直径比下部的直径要大,也是为了液相能够更好的提供卷吸动力。
由于在先专利申请的初期,微界面发生器才刚研发出来,所以早期命名为微米气泡发生器(CN201610641119.6)、气泡破碎器(201710766435.0)等,随着不断技术改进,后期更名为微界面发生器,现在本发明中的微界面发生器相当于之前的微米气泡发生器、气泡破碎器等,只是名称不一样。综上所述,本发明的微界面发生器属于现有技术。
优选的,所述储水区连通有用于排水的排水通道;所述第二反应段的侧壁上设置有第二产物出口,所述第二产物出口沿竖直方向位于所述滤水层上方,所述第二产物出口连接有精制罐。
优选的,所述精制罐上方设置有不凝气出口,所述不凝气出口与所述第二 微界面发生器相连。
本发明还提供了一种采用上述的内置式即时脱水微界面强化DMC制备系统的制备方法,包括如下步骤:
将合成气经微界面破碎后,与甲醇和催化剂混合进行羰基化反应,得到产物DMC;所述催化剂为氯化亚铜。
优选的,所述羰基化反应温度为108-113℃,压力为1.3-1.8MPa。
采用本发明的制备方法得到的DMC收率高。且该制备方法本身反应温度低、压力大幅度下降,成本显著降低。
与现有技术相比,本发明的有益效果在于:
(1)本发明的内置式即时脱水微界面强化DMC制备系统利用第一微界面发生器和第二微界面发生器结合形成混合式微界面机组SBBS,提高了单独的微界面发生器的应用效果;一方面,第一微界面发生器与第二微界面发生器间能够形成碰撞流,进一步对气泡进行分散破碎;另一方面,当第一微界面发生器内部堵塞时,能够通过第二微界面发生器的气泡流对第一微界面发生器内部进行冲洗,防止堵塞。且这样设置还能够提高固定效果,通过第一微界面发生器和第二微界面发生器间相连接的管路对第二微界面发生器起到支撑效果;
(2)通过设置第三微界面发生器,对第二反应段中的混合气进行分散破碎,提高了气液间的相界传质面积;
(3)通过在第三微界面发生器上方设置筛板,利用多层筛板间形成的平推流层,有效抑制了DMC和水的反应,提高了DMC的收率;
(4)通过在第三微界面发生器出口处设置锥形的分布器能够使微气泡均匀分散,放置气泡聚并;
(5)通过在第一反应段设置排水口和第二反应段设置储水区,能够及时脱除反应产生的水,防止副反应的发生,提高产物的收率。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1为本发明实施例1提供的微界面强化制备DMC的系统的结构示意图;
图2为本发明实施例1提供的反应塔的结构示意图;
图3为本发明实施例1提供的分布器的结构示意图。
其中:
10-反应塔;                         20-第二反应段;
201-第三微界面发生器;              202-分布器;
2021-分布孔;                       203-筛板;
204-循环管路;                      205-分隔板;
206-滤水层;                        207-第二产物出口;
                                    30-第一反应段;
301-第一微界面发生器;              302-排水口;
303-过滤膜;                        304-缓冲板;
305-微气泡管路;                    306-第二微界面发生器;
307-第一产物出口;
40-精制罐;                         50-密封板;
60-混合气管道;                     70-甲醇管道;
80-排水通道;                       90-真空冷凝器。
具体实施方式
下面将结合附图和具体实施方式对本发明的技术方案进行清楚、完整地描述,但是本领域技术人员将会理解,下列所描述的实施例是本发明一部分实施例,而不是全部的实施例,仅用于说明本发明,而不应视为限制本发明的范围。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
为了更加清晰的对本发明中的技术方案进行阐述,下面以具体实施例的形式进行说明。
实施例1
参阅图1-3所示,本实施例提供了一种内置式即时脱水微界面强化DMC制备系统,包括:反应塔10,反应塔10中部设置有密封板50;密封板50上方为第一反应段30,下方为第二反应段20;第一反应段30的侧壁由上到下连接有甲醇管道70和混合气管道60;第一反应段30的侧壁上设置有第一产物出 口307,第一产物出口307位于第一液面的下方;第一产物出口307与第二反应段20相连。
其中,第一反应段30内设置有第一微界面发生器301,第一微界面发生器301上方设置有第二微界面发生器306,第一微界面发生器301与第二微界面发生器306均与混合气管道60相连以将混合气分散破碎成微米级别的微气泡;第一微界面发生器301的上方紧贴第一微界面发生器301设置有微气泡出口;第二微界面发生器306的底部出口连接有微气泡管路305,微气泡管路305的出口覆盖在微气泡出口的上方。事实上,第一微界面发生器301的顶部和侧部均设置有出口,顶部出口的微气泡能够与第二微界面发生器306的气泡进行碰撞,进一步分散破碎。
具体的,第一微界面发生器301上方设置有多层缓冲板304,多层缓冲板304间形成平推流层;缓冲板304位于第一反应段30内第一液面的下方;缓冲板304与第一微界面发生器301之间的侧壁设置有排水口302,排水口302处设置有仅供水通过的过滤膜303。
具体的,微气泡出口方向平行或竖直向上设置。本实施例中,微气泡出口竖直向上设置。当微气泡出口竖直向上时,与第二微界面发生器306的出口气泡流动方向形成180°拐角,从第二微界面发生器306中流下来的气液乳化物流与第一微界面发生器上部出口流出的微气泡进行碰撞,形成碰撞流,能够进一步促进微气泡的分散破碎。。微气泡出口虽然没有在图中明示出来,但是通过本发明的文字阐述对其具体结构也比较明了清楚。
在本实施例中,第二反应段20内设置有第三微界面发生器201,第三微界面发生器201与混合气管道60相连。第三微界面发生器201能够对第二反应段20的混合气进行分散破碎,提高相界传质面积。
第三微界面发生器201的上方设置有多层筛板203;筛板203设置在第二反应段20内第二液面的下方。多层筛板203能够将全混流转化为平推流,从而抑制DMC与水发生副反应。
具体的,本实施例中,第二液面的上方设置有分隔板205;分隔板205上方设置有滤水层206;分隔板205与滤水层206之间形成储水区;第二反应段20侧壁设置有循环管路204,循环管路204的进口位于第二液面与分隔板205之间,出口位于滤水层206上方。反应时,产物以气体的方式从循环管路204进入滤水层206的上方,产物气流中夹杂的水蒸汽经滤水层206进入储水区中。其中,滤水层206为仅供水通过的膜。
具体的,第三微界面发生器201的出口处设置有分布器202,分布器202呈锥形且锥形尖端朝向第三微界面发生器201;分布器202上设置有多个分布孔2021。
在本实施例中,第一微界面发生器301为气动式微界面发生器,第二微界面发生器306为气液联动式微界面发生器,第三微界面发生器201为气动式微界面发生器、液动式微界面发生器和气液联动式微界面发生器中的任意一种。
具体的,储水区连通有用于排水的排水通道80;第二反应段20的侧壁上设置有第二产物出口207,所述第二产物出口207沿竖直方向位于所述滤水层206上方,第二产物出口207连接有精制罐40。精制罐40上方设置有不凝气出口,不凝气出口与第二微界面发生器306相连。为加快水的排出,在排水通道80上设置有真空冷凝器90,反应时,真空冷凝器90将储水区抽真空,形成负压区,提高水分子扩散的梯度,促进水分子与产物气体的分离,同时将抽出的水蒸气冷凝为液态水排出。
反应时,将甲醇和混合气同时通入反应塔中,混合气经第一微界面发生器、第二微界面发生器和第三微界面发生器分散为微气泡后,在催化剂的参与下与甲醇进行反应,反应产物经精制罐精制后,得到产物DMC。
其中,反应具体的工艺参数如下表:
Figure PCTCN2021109762-appb-000001
Figure PCTCN2021109762-appb-000002
甲醇转化率=转化的甲醇摩尔量/进料甲醇摩尔量,
DMC收率=产出DMC的摩尔流量/进料甲醇摩尔量。
由上表可以看出,甲醇的单程转化率达到了21.15%(现有工艺一般为10-15%),DMC的收率达到18.50%(现有工艺一般为8-12%)。反应温度为108℃,压力为1.3MPa,而现有的反应温度一般为120-125℃,压力为2.2-2.5MPa,可见,本实施例的系统相对于现有工艺温度和压力显著降低。
实施例2
本实施例与实施例1仅在工艺参数上有所不同,具体的工艺参数如下表:
Figure PCTCN2021109762-appb-000003
其中,反应温度为110℃,压力为1.5MPa。
经计算,甲醇的单程转化率达到了21.07%,DMC的收率达到18.42%。可见,本实施例的系统相对于现有工艺温度和压力显著降低。
实施例3
本实施例与实施例1仅在工艺参数上有所不同,具体的工艺参数如下表:
Figure PCTCN2021109762-appb-000004
Figure PCTCN2021109762-appb-000005
其中,反应温度为113℃,压力为1.8MPa。
经计算,甲醇的单程转化率达到了20.99%,DMC的收率达到18.45%。可见,本实施例的系统相对于现有工艺温度和压力显著降低。
比较例1
本例中与实施例1所不同的是不使用由第一微界面发生器和第二微界面发生器结合成的混合式微界面发生器。其物料进料与实施例1相同。
经计算,甲醇单程转化率为11%,DMC收率为9%。
比较例2
本例中与实施例1所不同的是将由第一微界面发生器和第二微界面发生器结合成的混合式微界面发生器替换为一个气动式微界面发生器。其物料进料与实施例1相同。
经计算,甲醇单程转化率为15%,DMC收率为12%。
总之,与现有技术的相比,本发明的反应系统所需反应温度和压力低,副反应少、甲醇转化率高,值得广泛推广应用。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

  1. 一种内置式即时脱水微界面强化DMC制备系统,其特征在于,包括:反应塔,所述反应塔中部设置有密封板;所述密封板上方为第一反应段,下方为第二反应段;所述第一反应段的侧壁由上到下连接有甲醇管道和混合气管道;
    所述第一反应段内设置有第一微界面发生器,所述第一微界面发生器上方设置有第二微界面发生器,所述第一微界面发生器与所述第二微界面发生器均与所述混合气管道相连以将混合气分散破碎成微米级别的微气泡;所述第一微界面发生器的上方紧贴所述第一微界面发生器设置有微气泡出口;所述第二微界面发生器的底部出口连接有微气泡管路,所述微气泡管路的出口覆盖在所述微气泡出口的上方;
    所述第一微界面发生器上方设置有多层缓冲板,多层所述缓冲板间形成平推流层;所述缓冲板位于所述第一反应段内第一液面的下方;所述缓冲板与所述第一微界面发生器之间的侧壁设置有排水口,所述排水口处设置有仅供水通过的过滤膜;
    所述第一反应段的侧壁上设置有第一产物出口,所述第一产物出口位于所述第一液面的下方;所述第一产物出口与所述第二反应段相连。
  2. 根据权利要求1所述的内置式即时脱水微界面强化DMC制备系统,其特征在于,所述第二反应段内设置有第三微界面发生器,所述第三微界面发生器与所述混合气管道相连。
  3. 根据权利要求2所述的内置式即时脱水微界面强化DMC制备系统,其特征在于,所述第三微界面发生器的上方设置有多层筛板;所述筛板设置在所述第二反应段内第二液面的下方。
  4. 根据权利要求3所述的内置式即时脱水微界面强化DMC制备系统,其特征在于,所述第二液面的上方设置有分隔板;所述分隔板上方设置有滤水层;所述分隔板与所述滤水层之间形成储水区;所述第二反应段侧壁设置有循环管 路,所述循环管路的进口位于所述第二液面与所述分隔板之间,出口位于所述滤水层上方。
  5. 根据权利要求3所述的内置式即时脱水微界面强化DMC制备系统,其特征在于,所述第三微界面发生器的出口处设置有分布器,所述分布器呈锥形且锥形尖端朝向所述第三微界面发生器;所述分布器上设置有多个分布孔。
  6. 根据权利要求1所述的内置式即时脱水微界面强化DMC制备系统,其特征在于,所述微气泡出口方向平行或竖直向上设置。
  7. 根据权利要求4所述的内置式即时脱水微界面强化DMC制备系统,其特征在于,所述储水区连通有用于排水的排水通道;所述第二反应段的侧壁上设置有第二产物出口,所述第二产物出口沿竖直方向位于所述滤水层上方,所述第二产物出口连接有精制罐。
  8. 根据权利要求7所述的内置式即时脱水微界面强化DMC制备系统,其特征在于,所述精制罐上方设置有不凝气出口,所述不凝气出口与所述第二微界面发生器相连。
  9. 采用权利要求1-8任一项所述的内置式即时脱水微界面强化DMC制备系统的制备方法,其特征在于,包括如下步骤:
    将合成气经微界面破碎后,与甲醇和催化剂混合进行羰基化反应,得到产物DMC;所述催化剂为氯化亚铜。
  10. 根据权利要求9所述的制备方法,其特征在于,所述羰基化反应温度为108-113℃,压力为1.3-1.8MPa。
PCT/CN2021/109762 2021-07-16 2021-07-30 一种内置式即时脱水微界面强化dmc制备系统及方法 WO2023284031A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110804200.2A CN113499738A (zh) 2021-07-16 2021-07-16 一种内置式即时脱水微界面强化dmc制备系统及方法
CN202110804200.2 2021-07-16

Publications (1)

Publication Number Publication Date
WO2023284031A1 true WO2023284031A1 (zh) 2023-01-19

Family

ID=78013550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/109762 WO2023284031A1 (zh) 2021-07-16 2021-07-30 一种内置式即时脱水微界面强化dmc制备系统及方法

Country Status (2)

Country Link
CN (1) CN113499738A (zh)
WO (1) WO2023284031A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113842851A (zh) * 2021-10-27 2021-12-28 南京延长反应技术研究院有限公司 一种2-甲基四氢呋喃的微界面制备系统及方法
CN113929204A (zh) * 2021-11-11 2022-01-14 南京延长反应技术研究院有限公司 一种微界面强化超高效废水臭氧处理装置及处理方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011042616A1 (fr) * 2009-10-06 2011-04-14 IFP Energies Nouvelles Reacteur a cocourant ascendant de gaz et de liquide faisant appel a un generateur de micro bulles
CN105797654A (zh) * 2016-05-11 2016-07-27 南京大学 一种由环己烷制备环己酮的超高效氧化反应装置及方法
CN106237966A (zh) * 2016-08-23 2016-12-21 南京大学 用于甲苯类物质氧化生产芳香醛的反应器
CN110270280A (zh) * 2019-07-03 2019-09-24 上海米素环保科技有限公司 一种适用于强化浆态床传质的多尺度气泡产生方法和装置
CN111573964A (zh) * 2020-03-24 2020-08-25 南京延长反应技术研究院有限公司 一种内置微界面造纸废水处理系统及处理方法
CN112473566A (zh) * 2019-09-12 2021-03-12 南京延长反应技术研究院有限公司 一种甲醇液相氧化羰基化合成碳酸二甲酯的智能反应系统及工艺
CN215540715U (zh) * 2021-07-16 2022-01-18 南京延长反应技术研究院有限公司 一种内置式即时脱水微界面强化dmc制备系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2086400A1 (en) * 1992-03-06 1993-09-07 Keigo Nishihira Process for preparing carbonic diester
CN104418749A (zh) * 2013-08-26 2015-03-18 泉州恒河化工有限公司 提高甲醇羰基合成碳酸二甲酯粗产品浓度的方法
CN109534999B (zh) * 2018-11-30 2021-08-10 潞安化工集团有限公司 一种碳酸二甲酯的合成工艺及装置
CN112521250A (zh) * 2020-11-30 2021-03-19 南京延长反应技术研究院有限公司 一种气相催化水合法制备乙二醇的微界面反应系统及方法
CN113045387A (zh) * 2021-03-23 2021-06-29 南京延长反应技术研究院有限公司 一种丙烯羰基化制丁辛醇的反应系统及方法
CN113061081A (zh) * 2021-04-01 2021-07-02 南京延长反应技术研究院有限公司 一种丙烯羰基化制丁醛的微界面强化反应系统及方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011042616A1 (fr) * 2009-10-06 2011-04-14 IFP Energies Nouvelles Reacteur a cocourant ascendant de gaz et de liquide faisant appel a un generateur de micro bulles
CN105797654A (zh) * 2016-05-11 2016-07-27 南京大学 一种由环己烷制备环己酮的超高效氧化反应装置及方法
CN106237966A (zh) * 2016-08-23 2016-12-21 南京大学 用于甲苯类物质氧化生产芳香醛的反应器
CN110270280A (zh) * 2019-07-03 2019-09-24 上海米素环保科技有限公司 一种适用于强化浆态床传质的多尺度气泡产生方法和装置
CN112473566A (zh) * 2019-09-12 2021-03-12 南京延长反应技术研究院有限公司 一种甲醇液相氧化羰基化合成碳酸二甲酯的智能反应系统及工艺
CN111573964A (zh) * 2020-03-24 2020-08-25 南京延长反应技术研究院有限公司 一种内置微界面造纸废水处理系统及处理方法
CN215540715U (zh) * 2021-07-16 2022-01-18 南京延长反应技术研究院有限公司 一种内置式即时脱水微界面强化dmc制备系统

Also Published As

Publication number Publication date
CN113499738A (zh) 2021-10-15

Similar Documents

Publication Publication Date Title
WO2023284030A1 (zh) 一种即时脱水的dmc制备系统及制备方法
WO2023284031A1 (zh) 一种内置式即时脱水微界面强化dmc制备系统及方法
WO2022198873A1 (zh) 一种辛醇的产生系统及方法
CN108264935B (zh) 一种处理重油的悬浮床加氢系统
CN113546583A (zh) 一种dmc的微界面制备系统及制备方法
CN113045387A (zh) 一种丙烯羰基化制丁辛醇的反应系统及方法
CN102002395B (zh) 液相循环加氢脱硫系统溶气方法及装置
US11919845B2 (en) Reaction system and method for preparing butyraldehyde by propylene carbonylation
CN113061081A (zh) 一种丙烯羰基化制丁醛的微界面强化反应系统及方法
CN205995420U (zh) 一种气液两相射流反应器以及气液两相射流反应系统
CN106076211A (zh) 一种气液两相射流反应器以及气液两相射流反应系统
CN113061080A (zh) 一种丙烯羰基化制丁醛的微界面反应系统及方法
CN215540714U (zh) 一种dmc的微界面制备系统
CN113546589A (zh) 一种微界面强化制备dmc的系统及制备方法
WO2020155505A1 (zh) 低压气液强化乳化床反应装置及方法
WO2023284029A1 (zh) 一种dmc的制备系统及制备方法
CN103962068A (zh) 浆态床反应器
CN215540715U (zh) 一种内置式即时脱水微界面强化dmc制备系统
CN215540720U (zh) 一种微界面强化制备dmc的系统
CN216024781U (zh) 一种基于微界面的正丁醛缩合反应系统
WO2023284024A1 (zh) 正丁醛缩合制辛烯醛的微界面强化系统及制备方法
WO2024020906A1 (zh) 一种用于制备纯碱的反应系统及反应方法
CN216024790U (zh) 一种正丁醛缩合制辛烯醛的微界面强化系统
CN216024766U (zh) 一种即时脱水的dmc制备系统
CN216024809U (zh) 一种2-甲基四氢呋喃的微界面制备系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21949809

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21949809

Country of ref document: EP

Kind code of ref document: A1