WO2024020906A1 - 一种用于制备纯碱的反应系统及反应方法 - Google Patents
一种用于制备纯碱的反应系统及反应方法 Download PDFInfo
- Publication number
- WO2024020906A1 WO2024020906A1 PCT/CN2022/108419 CN2022108419W WO2024020906A1 WO 2024020906 A1 WO2024020906 A1 WO 2024020906A1 CN 2022108419 W CN2022108419 W CN 2022108419W WO 2024020906 A1 WO2024020906 A1 WO 2024020906A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- micro
- tower
- interface generator
- reaction
- pipeline
- Prior art date
Links
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 157
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 title claims abstract description 61
- 235000017550 sodium carbonate Nutrition 0.000 title claims abstract description 29
- 229910000029 sodium carbonate Inorganic materials 0.000 title claims abstract description 29
- 238000000034 method Methods 0.000 title claims abstract description 20
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims abstract description 135
- 238000003763 carbonization Methods 0.000 claims abstract description 100
- 229910002092 carbon dioxide Inorganic materials 0.000 claims abstract description 69
- 239000001569 carbon dioxide Substances 0.000 claims abstract description 66
- 238000002425 crystallisation Methods 0.000 claims abstract description 49
- 230000008025 crystallization Effects 0.000 claims abstract description 49
- 239000002994 raw material Substances 0.000 claims abstract description 40
- 239000007788 liquid Substances 0.000 claims abstract description 30
- 239000000463 material Substances 0.000 claims abstract description 17
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 76
- 239000007789 gas Substances 0.000 claims description 61
- 229910021529 ammonia Inorganic materials 0.000 claims description 38
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 30
- 238000004140 cleaning Methods 0.000 claims description 28
- 238000003860 storage Methods 0.000 claims description 25
- 238000001354 calcination Methods 0.000 claims description 18
- 239000001257 hydrogen Substances 0.000 claims description 16
- 229910052739 hydrogen Inorganic materials 0.000 claims description 16
- 239000011780 sodium chloride Substances 0.000 claims description 15
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 14
- 239000007791 liquid phase Substances 0.000 claims description 13
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical group [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 9
- 239000012452 mother liquor Substances 0.000 claims description 9
- 238000002360 preparation method Methods 0.000 claims description 8
- 238000005406 washing Methods 0.000 claims description 7
- 239000012071 phase Substances 0.000 claims description 5
- 239000007790 solid phase Substances 0.000 claims description 3
- 238000005265 energy consumption Methods 0.000 abstract description 4
- 238000004519 manufacturing process Methods 0.000 description 19
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 16
- 239000000047 product Substances 0.000 description 12
- 239000003513 alkali Substances 0.000 description 10
- 230000008569 process Effects 0.000 description 8
- 235000017557 sodium bicarbonate Nutrition 0.000 description 8
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 6
- 229910052799 carbon Inorganic materials 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 4
- 229910000013 Ammonium bicarbonate Inorganic materials 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 235000012538 ammonium bicarbonate Nutrition 0.000 description 4
- 239000001099 ammonium carbonate Substances 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000003546 flue gas Substances 0.000 description 4
- 238000005728 strengthening Methods 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 235000019270 ammonium chloride Nutrition 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- 239000007795 chemical reaction product Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 239000012295 chemical reaction liquid Substances 0.000 description 2
- 239000012043 crude product Substances 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000004064 recycling Methods 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- WJEIYVAPNMUNIU-UHFFFAOYSA-N [Na].OC(O)=O Chemical compound [Na].OC(O)=O WJEIYVAPNMUNIU-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000004945 emulsification Methods 0.000 description 1
- 238000004134 energy conservation Methods 0.000 description 1
- 239000003337 fertilizer Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- VUZPPFZMUPKLLV-UHFFFAOYSA-N methane;hydrate Chemical compound C.O VUZPPFZMUPKLLV-UHFFFAOYSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 239000008239 natural water Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000011112 process operation Methods 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002910 solid waste Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01D—COMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
- C01D7/00—Carbonates of sodium, potassium or alkali metals in general
- C01D7/18—Preparation by the ammonia-soda process
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/141—Feedstock
Definitions
- the present invention relates to the technical field of soda ash preparation, and specifically to a reaction system and reaction method for preparing soda ash.
- the two reaction steps (1) and (2) are carried out in the carbonization reactor (commonly known as the carbonization tower), while the step (3) is carried out in the calcining furnace.
- the "Hou's Alkali Process 1.0” is a joint production of an ammonia plant and an alkali plant.
- the ammonia plant provides the ammonia and carbon dioxide raw materials required for the reaction to the alkali plant.
- the reaction Not only does it produce the precursor compound NaHCO 3 of the target product Na 2 CO 3 , but it also produces ammonium chloride that can be recycled and used as chemical products or fertilizers, instead of the large amount of solid waste CaCl produced in the "Solvay Alkali Process” process. 2 , thus improving the atom economy and the value of the production process is greatly improved.
- the synthetic ammonia raw material in "Hou's Alkali Production Process 1.0” mainly comes from coal-based synthetic ammonia, which is temporarily called “gray ammonia”. Most of the various energy sources used in its production process are fossil energy, not renewable. Green energy; the raw material CO 2 in “Hou's Soda Production Process 1.0” comes from the high-concentration CO 2 (concentration 85%-90%) obtained from the synthetic ammonia gas generation and conversion section, rather than the low-concentration smoke released by other production processes. Tao Qi CO 2 . The former is used in the "Hou's Soda Production Process 1.0" production process, and the comprehensive carbon balance of the entire process is still a high-carbon production process.
- the carbonization reactor (carbonization tower) is about 28 meters high, and the liquid level in it is about 24-26 meters.
- CO 2 as raw material must be added from the bottom of the tower and distributed, then bubbled up from bottom to react with the ammonia water in the liquid phase from top to bottom. Therefore, even if the top of the carbonization tower is operated at normal pressure, the outlet pressure of the corresponding CO 2 compressor configuration should be at least about 0.45MPaG, which undoubtedly requires higher electrical power consumption; according to reaction equation (1), in order to make the reaction proceed faster, And make the NH 3 in it be converted by reaction as much as possible. Generally, CO 2 should be appropriately excessive in the process ingredients.
- the first object of the present invention is to provide a reaction system for preparing soda ash.
- the reaction system combines micro-interface technology into the soda ash preparation process, effectively improves the reaction efficiency of raw materials and the utilization rate of carbon dioxide, and at the same time reduces the amount of carbon dioxide. Input pressure reduces energy consumption.
- the second object of the present invention is to provide a reaction method using the above reaction system.
- the method is simple to operate, can effectively improve the reaction efficiency and utilization rate of carbon dioxide, and at the same time reduces the energy consumption required for the reaction.
- the invention provides a reaction system for preparing soda ash, which includes: a carbonization tower, a reaction crystallization tower and a first micro-interface unit; a material outlet is provided at the bottom of the carbonization tower, and the material outlet is connected to the reaction crystallization tower. ;
- the first micro-interface unit includes a first micro-interface generator and a second micro-interface generator.
- the first micro-interface generator is arranged below the liquid level in the carbonization tower.
- the second micro-interface generator Disposed above the first micro-interface generator, a connecting pipe is provided between the second micro-interface generator and the first micro-interface generator; the first micro-interface generator is connected to an ammonia gas pipeline and Carbon dioxide pipeline, ammonia and carbon dioxide enter the carbonization tower after being dispersed and broken into micron-sized bubbles in the first micro-interface generator;
- baffles There are multiple layers of baffles arranged in the carbonization tower from top to bottom.
- the multiple layers of baffles are staggered and all are arranged below the first micro-interface generator.
- the outlet pressure of the CO 2 compressor should be at least about 0.45MPaG, which requires high electrical power consumption
- the present invention provides a reaction system for preparing soda ash.
- the reaction system can further proceed the reaction in the carbonization tower and improve the conversion rate of carbon dioxide and Reaction efficiency; by setting up the first micro-interface unit, the raw materials can be dispersed and broken into micron-level microbubbles, thereby increasing the mass transfer area between the gas and liquid phases, improving the reaction efficiency and raw material conversion rate.
- the baffle is disposed obliquely downward in a direction away from the side wall of the carbonization tower.
- the inclination angle between the baffle and the side wall of the carbonization tower is 30-60°.
- the baffle is set up to extend the residence time of the reaction raw materials in the carbonization tower through the blocking effect of the baffle. The reason why the angle between the baffle and the side wall of the carbonization tower is set to 30-60° is because the angle If the angle is too large, it will cause excessive resistance to the reaction raw materials and affect the flow of the raw material liquid. If the angle is too small, it will not be able to extend the reaction path. Only between 30-60° can the best effect be guaranteed.
- the number of the baffles is three, and the three baffles are distributed at equal angles along the circumferential direction on the outer wall of the carbonization tower.
- the uppermost one has an inclination angle of 35°
- the middle one has an inclination angle of 45°
- the lowermost one has an inclination angle of 35°.
- the angle is 55°.
- a reinforced pipeline is provided outside the carbonization tower, the inlet of the reinforced pipeline is connected to the side wall of the carbonization tower, and the outlet is connected to the second micro-interface generator.
- the inlet of the reinforced pipeline should be connected to the middle and upper part of the carbonization tower.
- a cleaning pipeline is provided above the plurality of baffles, a first cleaning outlet and a second cleaning outlet are provided on the cleaning pipeline, the first cleaning outlet faces the baffle, and the The second cleaning outlet faces the side wall of the carbonization tower, and the inlet of the cleaning pipeline is connected to the strengthening pipeline.
- Setting up a cleaning pipeline can continuously clean the baffle plate and the inner wall of the carbonization tower to prevent the adhesion of raw materials.
- the cleaning pipeline is parallel to the baffle; preferably, an anti-clogging nozzle is provided in the carbonization tower, the inlet of the anti-clogging nozzle is connected to the reinforced pipeline, and the outlet faces the material outlet.
- Anti-clogging nozzles can be installed to flush the material outlet to prevent it from clogging.
- the second micro-interface generator is located at the top of the carbonization tower, a gas pipeline is provided between the carbonization tower and the second micro-interface generator, and the gas above the liquid level in the carbonization tower passes through the The gas pipeline enters the second micro-interface generator.
- the unreacted gas at the top of the tower is entrained into the second micro-interface generator through the gas pipeline. After being dispersed and broken by the second micro-interface generator, it returns to the tower to continue the reaction, which improves the gas conversion rate.
- a second micro-interface unit is provided in the reaction crystallization tower, and the second micro-interface unit is connected to the carbon dioxide pipeline.
- carbon dioxide can enter the tower in the form of micron-sized bubbles to react deeply with the sodium chloride solution, which is beneficial to improving the raw material reaction efficiency.
- the reaction crystallization tower is equipped with a stirrer, and the stirrer is arranged above the second micro-interface unit.
- the degree of back-mixing of the solution in the tower can be increased, thereby improving the reaction efficiency.
- the second micro-interface unit includes a third micro-interface generator and a fourth micro-interface generator, and the third micro-interface generator is opposite to the outlet of the fourth micro-interface generator.
- the third micro-interface generator and the fourth micro-interface generator are respectively disposed on opposite side walls of the reaction crystallization tower, and the stirrer is located along the horizontal direction at the third micro-interface generator. between the generator and the fourth micro-interface generator.
- the reaction system of the present invention mainly includes two reaction sections, which are the first reaction section of the carbonization tower and the second reaction section of the reaction crystallization tower.
- the reaction crystallization section of the traditional carbonization tower is integrated in the carbonization tower, while the present invention is
- the reaction crystallization tower is set up separately, and carbon dioxide is introduced into the reaction crystallization tower at the same time, which effectively promotes the progress of the overall reaction and the utilization of raw materials.
- a first micro-interface unit is provided in the carbonization tower.
- the micro-interface unit is composed of a first micro-interface generator and a second micro-interface generator.
- the two micro-interfaces are arranged in an up-and-down direction and are passed through Connecting pipes are connected; among them, the first micro-interface generator mainly disperses and crushes the carbon dioxide and ammonia that pass into the carbonization tower, and converts the pressure energy of the gas transported into the tower or the kinetic energy of the circulating liquid into bubble surface energy And passed to ammonia and carbon dioxide, causing ammonia and carbon dioxide to break up to form micron-sized bubbles to react with the sodium chloride solution in the tower, increasing the mass transfer area between the gas and liquid phases, and strengthening the reaction within the preset conditions.
- the mass transfer rate and improve the conversion rate and utilization rate of carbon dioxide; the function of the second micro-interface generator is to entrain the unreacted gas that spills to the top of the tower, redisperse and crush it, and then return it to the tower through the connecting pipe to continue reaction to improve the conversion rate of raw materials; the microbubbles of the second microinterface generator can be dispersed again after entering the first microinterface generator through the connecting pipe, improving the uniformity of their distribution in the liquid raw materials.
- the setting of the connecting tube can also support the second micro-interface generator and improve the overall structural strength.
- the carbonization tower is also provided with baffles.
- the baffles of the present invention are multi-layered, preferably three-layered, and have a certain inclination angle.
- the inclination angles of the three-layer baffles increase sequentially, so that they can be used to
- the blocking effect of the reaction material prolongs its residence time in the tower, thereby improving its conversion rate.
- the position of the baffle needs to be set below the first micro-interface unit. This is because the main reaction zone is actually below the first micro-interface unit.
- the microbubbles flow from the second micro-interface of the first micro-interface unit. It flows out of the generator and reacts with water.
- the reaction time is prolonged under the action of the baffle, which helps the raw materials to fully react.
- the reaction crystallization tower of the present invention is provided with a second micro-interface unit.
- the micro-interface unit is composed of a third micro-interface generator and a fourth micro-interface generator.
- the two micro-interface generators are respectively arranged in the reaction crystallization tower.
- the opposite side walls and the outlets are opposite, so that a collision flow can be formed between the two micro-interface generators to improve the dispersion efficiency;
- the reaction crystallization tower is also equipped with a stirrer, and the stirrer can cooperate with the second micro-interface unit to control the micro-interface.
- the bubbles are stirred to improve the uniformity of their dispersion in the liquid in the tower and further improve the reaction effect. It can be seen that the present invention specifically designs the position and quantity of the micro-interface generator and combines it with a stirrer. Improved its own application effect.
- the micro-interface generator used in the present invention has been reflected in the inventor's previous patents, such as application numbers CN201610641119.6, CN201610641251.7, CN201710766435.0, CN106187660, CN105903425A, Patents of CN109437390A, CN205833127U and CN207581700U.
- the prior patent CN201610641119.6 introduces in detail the specific product structure and working principle of the micron bubble generator (i.e., micro-interface generator).
- the application document records that “the micron bubble generator includes a main body and a secondary crushing part. It has a cavity, and the body is provided with an inlet communicating with the cavity.
- the opposite first and second ends of the cavity are open, and the cross-sectional area of the cavity extends from the middle of the cavity to the first end and the second end of the cavity.
- the second end is reduced; the secondary crushing piece is located at at least one of the first end and the second end of the cavity, a part of the secondary crushing piece is located in the cavity, and the secondary crushing piece is open to both ends of the cavity
- An annular channel is formed between the through holes.
- the micron bubble generator also includes an air inlet pipe and a liquid inlet pipe.” From the specific structure disclosed in the application document, we can know that its specific working principle is: the liquid enters the micron tangentially through the liquid inlet pipe.
- the gas is rotated and cut at ultra-high speed, breaking the gas bubbles into micro-bubbles at the micron level, thereby increasing the mass transfer area between the liquid phase and the gas phase.
- the micron bubble generator in this patent is a pneumatic micro-interface generator. device.
- the primary bubble breaker has a circulating liquid inlet, a circulating gas inlet and a gas-liquid mixture outlet, while the secondary bubble breaker connects the feed inlet with the gas-liquid mixture outlet, indicating that the bubble breaker is Gas and liquid need to be mixed in.
- the primary bubble breaker mainly uses circulating liquid as power, so in fact the primary bubble breaker is a hydraulic micro-interface generator, and the secondary bubble breaker is a gas-liquid generator. The mixture is simultaneously introduced into the elliptical rotating ball for rotation, thereby achieving bubble crushing during the rotation. Therefore, the secondary bubble breaker is actually a gas-liquid linkage micro-interface generator.
- micro-interface generator used in the present invention is not limited to the above forms.
- specific structure of the bubble breaker recorded in the previous patent is only one of the forms that the micro-interface generator of the present invention can adopt.
- the previous patent 201710766435.0 records that "the principle of the bubble breaker is high-speed jet flow to achieve mutual collision of gases", and also explains that it can be used in micro-interface strengthening reactors to verify the relationship between bubble breaker and micro-interface generator.
- the correlation between; and the specific structure of the bubble breaker is also recorded in the previous patent CN106187660.
- the specific working principle of the bubble breaker is explained in detail.
- the top of the bubble breaker is the liquid phase inlet, and the side is the gas phase inlet.
- the liquid phase coming in from the top provides entrainment power, thereby achieving the effect of crushing into ultra-fine bubbles. It can also be seen in the attached picture.
- the bubble breaker has a conical structure, and the diameter of the upper part is larger than the diameter of the lower part, so that the liquid phase can better provide entrainment power.
- micro-interface generator Since the micro-interface generator had just been developed in the early stages of the prior patent application, it was initially named micron bubble generator (CN201610641119.6), bubble breaker (201710766435.0), etc. With continuous technological improvements, it was later renamed micro-interface generator.
- the micro-interface generator in the present invention is equivalent to the previous micron bubble generator, bubble breaker, etc., but the name is different. To sum up, the micro-interface generator of the present invention belongs to the prior art.
- a backmixing pipeline is provided outside the reaction crystallization tower; the inlet of the backmixing pipeline is connected to the side wall of the reaction crystallization tower, and the outlet is connected to the bottom of the reaction crystallization tower.
- Setting up a backmixing pipeline can increase the degree of backmixing of the reaction liquid in the tower, prevent crystallization at the bottom of the tower from clogging, and improve the conversion rate and utilization rate of carbon dioxide.
- the reaction crystallization tower is connected to the filter, and after the reaction product of the reaction crystallization tower is filtered by the filter, the liquid phase enters the mother liquor storage tank.
- the solid phase enters the calcining tower; a product conveyor is provided at the bottom of the calcining tower.
- the top of the carbonization tower is provided with a raw material adding pipeline and a tail gas washing tower for adding sodium chloride solution, and the sodium chloride solution in the raw material adding pipeline is sent to the carbonization tower through the tail gas washing tower.
- the carbonization tower In the carbonization tower.
- the ammonia pipeline is connected to an ammonia preparation unit;
- the ammonia preparation unit includes an air separator, a hydrogen synthesizer and an ammonia synthesizer, and the air separator and the hydrogen synthesizer are both connected to the ammonia Synthesizer connected.
- the carbon dioxide pipeline is connected to a carbon dioxide storage tank, and the carbon dioxide storage tank is connected to a flue gas unit for providing carbon dioxide.
- the flue gas unit can be IGCC flue gas.
- the exhaust gas from the steam turbine or gas turbine can be desulfurized and denitrified and then input into the carbon dioxide storage tank.
- the hydrogen synthesizer is connected to the carbon dioxide storage tank.
- the tail gas outlet of the calcining tower is connected to a condenser
- the liquid phase outlet of the condenser is connected to the tail gas washing tower
- the gas phase outlet of the condenser is connected to the carbon dioxide storage tank.
- the invention also provides a reaction method for preparing soda ash, using the above reaction system to prepare soda ash.
- the reaction method includes the following steps: ammonia and carbon dioxide are dispersed and broken into micron-level microbubbles through micro-interfaces and then mixed with water to react to generate ammonium bicarbonate; ammonium bicarbonate reacts with sodium chloride to generate sodium bicarbonate; carbonic acid Sodium hydrogen is decomposed by heat to obtain soda ash.
- the carbon dioxide delivery pressure is 0.03-0.18MPaG.
- the reaction system of the present invention effectively improves the reaction efficiency and the conversion rate of raw materials by setting up a carbonization tower and a reaction crystallization tower, and setting up a first micro-interface unit and a second micro-interface unit respectively therein;
- CO 2 can enter from the top of the micro-interface enhanced carbonization tower, and then be directly sent to the carbonization tower after emulsification through the micro-interface
- the delivery pressure of CO 2 can be reduced from 0.45-0.46MPaG to less than 0.18MPaG, but the CO 2 that originally entered from the bottom of the reactor is only a single-pass reaction, and can be converted into a two-pass reaction. Under the conditions, the conversion rate and utilization rate of CO 2 are improved;
- the reaction raw materials of the present invention are low-carbon and environmentally friendly.
- the ammonia raw material can be green ammonia or blue ammonia.
- CO 2 uses low-concentration CO 2 of 70% or less as the raw material.
- CO 2 from IGCC flue gas is used as the carbon source. It is also possible to mix the recovered CO2 with a concentration of 75-80% from the calciner and the low concentration CO2 of the flue gas to form 50-75% CO2 as the carbon source. In this way, the production process of the present invention becomes a carbon-negative production process, which reduces production costs.
- Figure 1 is a schematic structural diagram of the reaction system provided in Embodiment 1 of the present invention.
- FIG. 2 is a schematic structural diagram of the carbonization tower provided in Embodiment 1 of the present invention.
- FIG. 3 is a schematic structural diagram of the baffle plate in the carbonization tower in the top view direction provided in Embodiment 1 of the present invention
- Figure 4 is a schematic structural diagram of the reaction crystallization tower provided in Embodiment 1 of the present invention.
- connection should be understood in a broad sense.
- connection or integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two components.
- connection or integral connection
- connection or integral connection
- connection can be a mechanical connection or an electrical connection
- it can be a direct connection or an indirect connection through an intermediate medium
- it can be an internal connection between two components.
- specific meanings of the above terms in the present invention can be understood on a case-by-case basis.
- this embodiment provides a reaction system for preparing soda ash, including: a carbonization tower 10, a reaction crystallization tower 20 and a first micro-interface unit; a material outlet 101 is provided at the bottom of the carbonization tower 10, and the material outlet 101 is connected to the reaction crystallization tower 20;
- the first micro-interface unit includes a first micro-interface generator 105 and a second micro-interface generator 107.
- the first micro-interface generator 105 is arranged below the liquid level in the carbonization tower 10, and the second micro-interface generator The generator 107 is arranged above the first micro-interface generator 105, and a connecting pipe 106 is provided between the second micro-interface generator 107 and the first micro-interface generator 105; the first micro-interface generator 105 is connected to an ammonia gas pipeline 60 and carbon dioxide pipeline 70. After ammonia and carbon dioxide are dispersed and broken into micron-sized bubbles in the first micro-interface generator 105, they enter the carbonization tower 10.
- the second micro-interface generator 107 is located at the top of the carbonization tower 10.
- a gas pipeline 108 is provided between the carbonization tower 10 and the second micro-interface generator 107.
- the gas above the liquid level in the carbonization tower 10 passes through the gas pipeline. 108 into the second micro-interface generator 107.
- the unreacted gas at the top of the tower is entrained into the second micro-interface generator 107 through the gas pipeline 108. After being dispersed and broken by the second micro-interface generator 107, it returns to the tower to continue the reaction, which improves the gas conversion rate.
- a reinforced pipeline 50 is provided outside the carbonization tower 10 .
- the inlet of the reinforced pipeline 50 is connected to the side wall of the carbonization tower 10 , and the outlet is connected to the second micro-interface generator 107 .
- the inlet of the reinforced pipeline 50 should be connected to the middle and upper part of the carbonization tower 10 .
- the top of the carbonization tower 10 is provided with a raw material adding pipeline 40 for adding sodium chloride solution and a tail gas scrubber 30.
- the sodium chloride solution in the raw material adding pipeline 40 is sent to the carbonization tower 10 through the tail gas scrubber 30.
- baffles 103 are arranged in the carbonization tower 10 from top to bottom.
- the multi-layer baffles 103 are staggered and are all arranged below the first micro-interface generator 105. .
- a cleaning pipeline 104 is provided above the plurality of baffles 103.
- a first cleaning outlet 1042 and a second cleaning outlet 1041 are provided on the cleaning pipeline 104.
- the first cleaning outlet 1042 faces the baffle 103, and the second cleaning outlet 1041 Towards the side wall of the carbonization tower 10 , the inlet of the cleaning pipeline 104 is connected to the strengthening pipeline 50 .
- the baffle 103 is arranged obliquely downward in a direction away from the side wall of the carbonization tower 10, and the cleaning pipeline 104 is parallel to the baffle 103.
- the inclination angle between the baffle 103 and the side wall of the carbonization tower 10 can be set to 30-60°.
- the number of baffles 103 is three, and the three baffles 103 are distributed at equal angles along the circumferential direction on the outer wall of the carbonization tower 10 .
- the uppermost baffle 103 has an inclination angle of 35°
- the middle baffle 103 has an inclination angle of 45°
- the lowermost baffle 103 has an inclination angle of 55°. This setting can increase the resistance in a gradient and further extend the flow path, thereby helping to improve the conversion rate of raw materials.
- an anti-clogging nozzle 102 is provided in the carbonization tower 10.
- the inlet of the anti-clogging nozzle 102 is connected to the reinforced pipeline 50, and the outlet faces the material outlet 101.
- the reaction crystallization tower 20 is provided with a second micro-interface unit, and the second micro-interface unit is connected to the carbon dioxide pipeline 70 .
- the second micro-interface unit By arranging the second micro-interface unit in the reaction crystallization tower 20, carbon dioxide can enter the tower with micron-level bubbles to react deeply with the sodium chloride solution, which is beneficial to improving the raw material reaction efficiency.
- the reaction crystallization tower 20 is also equipped with a stirrer 203, and the stirrer 203 is arranged above the second micro-interface unit.
- the stirrer 203 By arranging the stirrer 203, the degree of back-mixing of the solution in the tower can be increased, thereby improving the reaction efficiency.
- the second micro-interface unit includes a third micro-interface generator 201 and a fourth micro-interface generator 202.
- the outlets of the third micro-interface generator 201 and the fourth micro-interface generator 202 are opposite.
- the third micro-interface generator 201 and the fourth micro-interface generator 202 are respectively disposed on opposite side walls in the reaction crystallization tower 20, and the stirrer 203 is located between the third micro-interface generator 201 and the fourth micro-interface generator 201 in the horizontal direction. between interface generators 202.
- a backmixing pipeline 204 is also provided outside the reaction crystallization tower 20; the inlet of the backmixing pipeline 204 is connected to the side wall of the reaction crystallization tower 20, and the outlet is connected to the bottom of the reaction crystallization tower 20.
- the backmixing pipeline 204 can increase the degree of backmixing of the reaction liquid in the tower, prevent the crystallization at the bottom of the tower from clogging, and improve the conversion rate and utilization rate of carbon dioxide.
- the reaction system of this embodiment also includes a filter 90, a calcining tower 110 and a mother liquor storage tank 100; the reaction crystallization tower 20 is connected to the filter 90. After the reaction product of the reaction crystallization tower 20 is filtered by the filter 90, The liquid phase enters the mother liquor storage tank 100, and the solid phase enters the calcining tower 110; a product conveyor 120 is provided at the bottom of the calcining tower 110.
- a high-temperature gas channel 130 for providing high-temperature carbon dioxide to the calcining tower 110 is connected to the side wall of the calcining tower 110 .
- the filter 90 is provided with a filter medium for separating solid and liquid, and a screw conveyor for outputting the filter residue is provided above the filter medium.
- the ammonia pipeline 60 is connected to an ammonia preparation unit; the ammonia preparation unit includes an air separator 190, a hydrogen synthesizer 170, and an ammonia synthesizer 180.
- the air separator 190 and the hydrogen synthesizer 170 are both connected to the ammonia synthesizer. 180 connected.
- the hydrogen synthesizer 170 is also connected to the carbon dioxide storage tank 140 . Among them, natural gas and water are reacted in the hydrogen synthesizer 170, and the generated carbon dioxide is input into the carbon dioxide storage tank 140.
- the generated hydrogen enters the ammonia synthesizer 180 and the nitrogen separated by the air separator 190 to generate ammonia.
- the separation method of carbon dioxide and hydrogen produced from hydrogen synthesis gas can adopt membrane separation methods commonly used in this field.
- the carbon dioxide pipeline 70 is connected to a carbon dioxide storage tank 140, and the carbon dioxide storage tank 140 is connected to a flue gas unit for providing carbon dioxide.
- the flue gas unit may be IGCC flue gas.
- the exhaust gas from the steam turbine 160 or the gas turbine 150 may be desulfurized and denitrified and then input into the carbon dioxide storage tank 140 .
- the carbon dioxide from the steam turbine 160 it can be mixed with the carbon dioxide produced in the hydrogen synthesizer 170 to make the carbon dioxide concentration meet the standard; when the carbon dioxide from the gas turbine 150 is used, it can be used directly due to its high carbon dioxide concentration.
- the tail gas outlet of the calcining tower 110 is connected to a condenser 80
- the liquid phase outlet of the condenser 80 is connected to the tail gas washing tower 30
- the gas phase outlet of the condenser 80 is connected to the carbon dioxide storage tank 140 .
- the reaction method of the reaction system in this embodiment is as follows: ammonia and carbon dioxide are dispersed and broken into micron-level microbubbles through the micro-interface, and then mixed with water in the carbonization tower 10 to react to generate ammonium bicarbonate; ammonium bicarbonate reacts with sodium chloride to generate carbonic acid.
- the crude product of sodium bicarbonate and sodium bicarbonate enters the reaction crystallization tower 20.
- Carbon dioxide is fed through the second micro-interface unit and continues to react with the unreacted raw materials in the crude product.
- the reaction product enters the filter 90 for filtration, and the liquid enters the mother liquor storage tank.
- the ammonium chloride product is obtained through traditional separation (specifically, sodium chloride can be added to the mother liquor to precipitate ammonium chloride, and the remaining sodium chloride solution can be reused as a reaction raw material); the filter residue enters the calcining tower 110 , the sodium bicarbonate is thermally decomposed to obtain soda ash, which is output through the product conveyor 120.
- the carbon dioxide and water produced by calcination are condensed and separated by the condenser 80, and the separated water is sent to the carbonization tower 10 through the tail gas scrubber 30, and separated
- the released carbon dioxide is sent to the carbon dioxide storage tank 140.
- Example 1 The only difference between this example and Example 1 is that the inclination angle of the baffles in the carbonization tower is 45°.
- Example 1 The only difference between this example and Example 1 is that the inclination angle of the baffles in the carbonization tower is 10°.
- Example 1 The only difference between this example and Example 1 is that no baffles are provided in the carbonization tower.
- the reaction systems of Examples 1-4 and Comparative Example 1 were respectively used to produce soda ash.
- the specific experimental conditions were as follows: sodium chloride solution entered the reactor, the feed volume was 1.08m 3 /h, the temperature was 38-42°C, and the pressure was 0.4MPaG.
- the inlet air containing 75% to 85% CO 2 enters the micro-interface unit at the upper part of the tower.
- the feed volume is about 21Nm 3 /h
- the temperature is 30 to 50°C
- the pressure is 0.08MPaG
- the reaction temperature in the carbonization tower is 50°C.
- the sodium bicarbonate production intensity in the product output from the reaction crystallization tower and the CO 2 concentration in the tail gas discharged from the tail gas scrubber were tested.
- the test results are as follows.
- the sodium bicarbonate production intensity is usually about 58.3kg/m 3 ⁇ h
- the CO 2 concentration in the tail gas is generally 8-20%
- the power consumption per ton of product is 12.19kW ⁇ h/t.
- the sodium bicarbonate production intensity of each embodiment of the present invention has increased significantly, and the sodium bicarbonate production intensity of Example 1 has increased by 20%.
- the CO 2 concentration of the reaction system tail gas in each embodiment is less than 5%, which is 37.5-75% lower than that of the existing technology.
- the input pressure of carbon dioxide in this embodiment only needs 0.08MPaG, it is lower than that of the existing technology per ton.
- Product power consumption is also reduced by 33.3-11.2%.
- Example 1 Comparing the data of Example 1, Example 2, Example 4 and Comparative Example 1, it can be found that the test result parameters of Example 1 are all optimal, indicating that the folding plate arrangement of Example 1 can achieve the best results. Excellent reaction effect; the experimental effects of Example 4 and Comparative Example 1 are not much different, indicating that when the inclination angle of the baffle is too small, it basically cannot have the effect of extending the reaction path.
- Example 1 Comparing Example 1 with Example 3, it can be found that the exhaust CO 2 concentration of Example 1 is significantly lower than that of Example 3, indicating that Example 1 achieves CO 2 capture by setting up a second micro-interface generator and improves the CO 2 conversion rate.
- the reaction system for preparing soda ash of the present invention can effectively improve the reaction efficiency of raw materials and the utilization rate of carbon dioxide, while reducing the input pressure of carbon dioxide, thereby effectively saving energy consumption.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
一种用于制备纯碱的反应系统及反应方法,该反应系统包括:碳化塔(10)、反应结晶塔(20)和第一微界面机组;所述碳化塔(10)底部设置有物料出口(101),所述物料出口(101)与所述反应结晶塔(20)相连;所述第一微界面机组包括第一微界面发生器(105)和第二微界面发生器(107),所述第一微界面发生器(105)设置在所述碳化塔(10)内液面的下方,所述第二微界面发生器(107)设置在所述第一微界面发生器(105)的上方,所述第二微界面发生器(107)与所述第一微界面发生器(105)间设置有连接管(106)。该用于制备纯碱的反应系统能够有效提高原料的反应效率及二氧化碳的利用率,同时降低二氧化碳的输入压力,进而有效节约能耗。
Description
本发明涉及纯碱制备技术领域,具体而言,涉及一种用于制备纯碱的反应系统及反应方法。
“侯氏制碱法1.0”化学原理主要包括以下三个化学反应步骤:
(1)NH
3+H
2O+CO
2=NH
4HCO
3
(2)NH
4HCO
3+NaCl=NH
4Cl+NaHCO
3↓
(3)2NaHCO
3=Na
2CO
3+CO
2↑+H
2O(热分解)
上述三个反应步骤中,(1)、(2)两个反应步骤在碳化反应器(俗称碳化塔)中进行,而步骤(3)则在煅烧炉中进行。相对于“索尔维制碱法”而言,“侯氏制碱法1.0”是把氨厂和碱厂联建联产,由氨厂向碱厂提供反应所需要的氨和二氧化碳原料,反应不仅产出目标产物Na
2CO
3的前体化合物NaHCO
3,同时产出氯化铵可回收作为化工产品或化肥使用,而非“索尔维制碱法”工艺中产出的大量固废CaCl
2,从而提高了原子经济性和生产过程价值得到大幅提升。
然而,在全球节能减碳、绿色发展的大趋势下,“侯氏制碱法1.0”正面临下列问题:
第一,原料方面,“侯氏制碱法1.0”中的合成氨原料主要来自煤制合成氨,暂称其为“灰氨”,其生产过程所用的各种能源大多也是化石能源,而非可再生绿色能源;“侯氏制碱法1.0”中的原料CO
2是来自于合成氨造气和变换工段得到的高浓度CO
2(浓度85%-90%),而非其它生产过程释放的低浓度烟道气CO
2。前者用于“侯氏制碱法1.0”生产过程,其全过程的综合碳平衡仍然 是高碳生产过程。
第二,工艺操作方面,碳化反应器(碳化塔)约28米高,其中的液位高度约24-26米左右。为了提高反应效率,作为原料的CO
2必须从塔的底部位置加入并进行分布后,自下而上鼓泡上升与自上而下的液相中的氨水发生反应。因此,即使碳化塔顶为常压操作,相应的CO
2压缩机配置出口压力至少应为0.45MPaG左右,这无疑需要消耗较高的电功率;根据反应方程式(1),为了使反应较快进行,并使其中的NH
3尽可能被反应转化,一般在工艺配料让CO
2适当过量。由于“侯氏制碱法1.0”碳化塔的反应效率较低,CO
2气泡自下而上单程至顶难以彻底反应完全,最终就会在碳化塔顶部聚集并夹杂部分氨气一起排出碳化塔外。而目前的工艺并未回收此部分CO
2并使其再循环利用,而是进入后处理系统处理后排空进入大气,这造成了原料CO
2的浪费。
有鉴于此,特提出本发明。
发明内容
本发明的第一目的在于提供一种用于制备纯碱的反应系统,该反应系统将微界面技术结合到纯碱制备工艺中,有效提高了原料的反应效率及二氧化碳的利用率,同时降低了二氧化碳的输入压力,降低了能耗。
本发明的第二目的在于提供一种应用上述反应系统的反应方法,该方法操作简单,能够有效提高二氧化碳的反应效率和利用率,同时减少了反应所需能耗。
为了实现本发明的上述目的,特采用以下技术方案:
本发明提供了一种用于制备纯碱的反应系统,包括:碳化塔、反应结晶塔和第一微界面机组;所述碳化塔底部设置有物料出口,所述物料出口与所述反应结晶塔相连;
所述第一微界面机组包括第一微界面发生器和第二微界面发生器,所述第 一微界面发生器设置在所述碳化塔内液面的下方,所述第二微界面发生器设置在所述第一微界面发生器的上方,所述第二微界面发生器与所述第一微界面发生器间设置有连接管;所述第一微界面发生器连接有氨气管路和二氧化碳管路,氨气和二氧化碳在所述第一微界面发生器中分散破碎成微米级气泡后,进入所述碳化塔中;
所述碳化塔内由上到下依次设置有多层折流板,多层所述折流板交错设置且多层所述折流板均设置在所述第一微界面发生器的下方。
现有技术中,采用“侯氏制碱法”制备纯碱时主要存在以下问题:
1、为保证反应效率,CO
2压缩机配置出口压力至少应为0.45MPaG左右,这需要消耗较高的电功率;
2、碳化塔中各原料反应效率较低,CO
2气泡自下而上单程至顶难以彻底反应完全,最终就会在碳化塔顶部聚集并夹杂部分氨气一起排出碳化塔外,造成了原料的浪费。
为解决上述技术问题,本发明提供了一种用于制备纯碱的反应系统,该反应系统通过在碳化塔后设置一个反应结晶塔,能够使反应在碳化塔中进一步进行,提高二氧化碳的转化率和反应效率;通过设置第一微界面机组,能够将原料分散破碎成微米级别的微气泡,从而提高了气液两相间的传质面积,提高了反应效率和原料转化率。
优选的,所述折流板沿远离所述碳化塔侧壁方向倾斜向下设置。进一步的,所述折流板与所述碳化塔侧壁间的倾斜角为30-60°。设置折流板是为了通过折流板的阻隔作用延长反应原料在碳化塔内的停留时间,而之所以要将折流板与碳化塔侧壁间的角度设置为30-60°,是因为角度过大会给反应原料造成过大的阻力,影响原料液体的流动,角度过小则无法起到延长反应路径的效果,只有在30-60°之间才能够保证最佳的效果。
优选的,所述折流板数量为三个,三个所述折流板沿周向在所述碳化塔的外壁上呈等角度分布。
优选的,三个所述折流板中位于最上方的所述折流板倾斜角度为35°,位于中部的所述折流板倾斜角度为45°,位于最下方的所述折流板倾斜角度为55°。这样设置能够使阻力呈梯度增加,进一步延长其流动路径,进而有助于提高原料的转化率。
优选的,所述碳化塔外设置有强化管路,所述强化管路的入口与所述碳化塔侧壁相连,出口与所述第二微界面发生器相连。强化管路的入口应连接在碳化塔的中上部。通过设置强化管路,能够使碳化塔内部的反应原料形成外循环,延长其反应路径,同时由于强化管路将碳化塔内的物料不断抽吸,能够在塔内产生负压区,利用负压将塔顶未反应的气体吸入塔内液体中继续反应,从而实现了塔内液面上层的气体循环利用。
优选的,多个所述折流板上方均设置有清洗管路,所述清洗管路上设置有第一清洗出口和第二清洗出口,所述第一清洗出口朝向所述折流板,所述第二清洗出口朝向所述碳化塔的侧壁,所述清洗管路的进口与所述强化管路相连。设置清洗管路能够不断地对折流板板面及碳化塔的内壁进行清洗,防止原料的附着。
优选的,所述清洗管路与所述折流板平行;优选的,所述碳化塔内设置有防堵喷头,所述防堵喷头进口与所述强化管路相连,出口朝向所述物料出口。设置防堵喷头能够对物料出口进行冲洗,防止其堵塞。
优选的,所述第二微界面发生器位于所述碳化塔顶部,所述碳化塔与所述第二微界面发生器间设置有气体管路,所述碳化塔内液面上方的气体经所述气体管路进入所述第二微界面发生器中。反应时,塔顶未反应的气体经气体管路卷吸进入第二微界面发生器中,经第二微界面发生器分散破碎后返回塔内继续反应,提高了气体的转化率。
优选的,所述反应结晶塔内设置有第二微界面机组,所述第二微界面机组与所述二氧化碳管路相连。通过在反应结晶塔内设置第二微界面机组,能够使二氧化碳以微米级气泡尺度进入塔内与氯化钠溶液进行深度反应,有利于提高 原料反应效率。
优选的,所述反应结晶塔内设置有搅拌器,所述搅拌器设置在所述第二微界面机组的上方。通过设置搅拌器,能够增加塔内溶液的返混程度,使得反应效率提升。
优选的,所述第二微界面机组包括第三微界面发生器和第四微界面发生器,所述第三微界面发生器与所述第四微界面发生器出口相对。
优选的,所述第三微界面发生器与所述第四微界面发生器分别设置在所述反应结晶塔内相对的侧壁上,所述搅拌器沿水平方向位于所述第三微界面发生器与所述第四微界面发生器之间。
本发明的反应系统主要包括两个反应段,分别为碳化塔的第一反应段和反应结晶塔的第二反应段,传统碳化塔的反应结晶段是集成在碳化塔中的,本发明则是将反应结晶塔单独设置,同时在反应结晶塔内通入二氧化碳,有效促进了整体反应的进行及原料的利用率。
本发明中,碳化塔内设置有第一微界面机组,该微界面机组是由第一微界面发生器和第二微界面发生器组合而成,两个微界面采用上下方位进行布置,并通过连接管进行连接;其中,第一微界面发生器主要对通入碳化塔内的二氧化碳和氨气进行分散破碎,通过将输送进入塔内的气体的压力能或者循环液的动能转变为气泡表面能并传递给氨气以及二氧化碳,使得氨气以及二氧化碳破碎形成微米级气泡与塔内氯化钠溶液进行反应,提高了气液两相间的传质面积,使得在预设的条件范围内强化反应的传质速率并提高二氧化碳的转化率以及利用率;第二微界面发生器的作用则是对溢散到塔顶的未反应气体进行卷吸,将其重新分散破碎后通过连接管返回塔内继续反应,提高原料的转化率;第二微界面发生器的微气泡经连接管进入第一微界面发生器后还能够再次分散,提高其在液体原料中分布的均匀度。另外,连接管的设置还能够对第二微界面发生器起到支撑作用,提高整体结构强度。
碳化塔内还设置有折流板,本发明的折流板为多层,最好为三层,且具有 一定的倾斜角度,三层折流板的倾斜角度依次增大,这样能够利用其对反应物料的阻挡作用延长其在塔内的停留时间,进而提高其转化率。同时,折流板位置需要设置在第一微界面机组的下方,这是因为主要的反应区实际上就是在第一微界面机组下方,此时微气泡从第一微界面机组的第二微界面发生器中流出,与水进行反应,同时在折流板的作用下延长其反应时间,有助于原料的充分反应。
本发明的反应结晶塔内设置有第二微界面机组,该微界面机组由第三微界面发生器和第四微界面发生器组成,两个微界面发生器分别设置在所述反应结晶塔内相对的侧壁上且出口相对,这样能够在两个微界面发生器间形成碰撞流,提高分散效率;反应结晶塔内还设置有搅拌器,搅拌器能够与第二微界面机组配合,对微气泡进行搅拌,提高其在塔内液体中分散的均匀度,进一步提高反应效果,可见,本发明通过对微界面发生器的位置、数量等进行特定的设计,并使其与搅拌器相结合,提高了其本身的应用效果。
本领域所属技术人员可以理解的是,本发明所采用的微界面发生器在本发明人在先专利中已有体现,如申请号CN201610641119.6、CN201610641251.7、CN201710766435.0、CN106187660、CN105903425A、CN109437390A、CN205833127U及CN207581700U的专利。在先专利CN201610641119.6中详细介绍了微米气泡发生器(即微界面发生器)的具体产品结构和工作原理,该申请文件中记载了“微米气泡发生器包括本体和二次破碎件、本体内具有空腔,本体上设有与空腔连通的进口,空腔的相对的第一端和第二端均敞开,其中空腔的横截面积从空腔的中部向空腔的第一端和第二端减小;二次破碎件设在空腔的第一端和第二端中的至少一个处,二次破碎件的一部分设在空腔内,二次破碎件与空腔两端敞开的通孔之间形成一个环形通道。微米气泡发生器还包括进气管和进液管。”从该申请文件中公开的具体结构可以知晓其具体工作原理为:液体通过进液管切向进入微米气泡发生器内,超高速旋转并切割气体,使气体气泡破碎成微米级别的微气泡,从而提高液相与气相之间的传质面积,而 且该专利中的微米气泡发生器属于气动式微界面发生器。
另外,在先专利201610641251.7中有记载一次气泡破碎器具有循环液进口、循环气进口和气液混合物出口,二次气泡破碎器则是将进料口与气液混合物出口连通,说明气泡破碎器都是需要气液混合进入,另外从后面的附图中可知,一次气泡破碎器主要是利用循环液作为动力,所以其实一次气泡破碎器属于液动式微界面发生器,二次气泡破碎器是将气液混合物同时通入到椭圆形的旋转球中进行旋转,从而在旋转的过程中实现气泡破碎,所以二次气泡破碎器实际上是属于气液联动式微界面发生器。其实,无论是液动式微界面发生器,还是气液联动式微界面发生器,都属于微界面发生器的一种具体形式,然而本发明所采用的微界面发生器并不局限于上述几种形式,在先专利中所记载的气泡破碎器的具体结构只是本发明微界面发生器可采用的其中一种形式而已。
此外,在先专利201710766435.0中记载到“气泡破碎器的原理就是高速射流以达到气体相互碰撞”,并且也阐述了其可以用于微界面强化反应器,验证本身气泡破碎器与微界面发生器之间的关联性;而且在先专利CN106187660中对于气泡破碎器的具体结构也有相关的记载,具体见说明书中第[0031]-[0041]段,以及附图部分,其对气泡破碎器S-2的具体工作原理有详细的阐述,气泡破碎器顶部是液相进口,侧面是气相进口,通过从顶部进来的液相提供卷吸动力,从而达到粉碎成超细气泡的效果,附图中也可见气泡破碎器呈锥形的结构,上部的直径比下部的直径要大,也是为了液相能够更好的提供卷吸动力。
由于在先专利申请的初期,微界面发生器才刚研发出来,所以早期命名为微米气泡发生器(CN201610641119.6)、气泡破碎器(201710766435.0)等,随着不断技术改进,后期更名为微界面发生器,现在本发明中的微界面发生器相当于之前的微米气泡发生器、气泡破碎器等,只是名称不一样。综上所述,本发明的微界面发生器属于现有技术。
优选的,所述反应结晶塔外侧设置有返混管路;所述返混管路的进口与所述反应结晶塔的侧壁相连,出口与所述反应结晶塔的底部相连。设置返混管路 能够增加塔内反应液的返混程度,防止塔底结晶堵塞,提高二氧化碳的转化率以及利用率。
优选的,还包括过滤器、煅烧塔和母液储罐;所述反应结晶塔与所述过滤器相连,所述反应结晶塔的反应产物经所述过滤器过滤后,液相进入所述母液储罐中,固相进入所述煅烧塔中;所述煅烧塔底部设置有产物输送机。
优选的,所述碳化塔顶部设置有用于投加氯化钠溶液的原料投加管路和尾气洗涤塔,所述原料投加管路中的氯化钠溶液经所述尾气洗涤塔送入所述碳化塔中。
优选的,所述氨气管路连接有氨气制备单元;所述氨气制备单元包括空气分离器、氢气合成器和氨合成器,所述空气分离器和所述氢气合成器均与所述氨合成器相连。
优选的,所述二氧化碳管路连接有二氧化碳储罐,所述二氧化碳储罐连接有用于提供二氧化碳的烟道气单元。该烟道气单元可为IGCC烟气,实际使用时,可将蒸汽轮机或燃气轮机的尾气经脱硫脱氮后输入二氧化碳储罐中。
优选的,所述氢气合成器与所述二氧化碳储罐相连。
优选的,所述煅烧塔的尾气出口连接有冷凝器,所述冷凝器的液相出口与所述尾气洗涤塔相连,所述冷凝器的气相出口与所述二氧化碳储罐相连。
本发明还提供了一种用于制备纯碱的反应方法,应用上述的反应系统制备纯碱。
优选的,所述反应方法包括以下步骤:氨气和二氧化碳经微界面分散破碎成微米级别的微气泡后与水混合反应生成碳酸氢铵;碳酸氢铵与氯化钠反应生成碳酸氢钠;碳酸氢钠受热分解得到纯碱。
优选的,所述二氧化碳的输送压力为0.03-0.18MPaG。
与现有技术相比,本发明的有益效果在于:
(1)本发明的反应系统通过设置碳化塔和反应结晶塔,并在其内分别设 置第一微界面机组和第二微界面机组,有效提高了反应效率和原料的转化率;
(2)本发明将传统的碳化反应工艺改成微界面强化碳化工艺(简称MIR-H)之后,CO
2就可以从微界面强化碳化塔顶部进入,再通过微界面乳化之后直接送至碳化塔的底部,这样,不仅可将CO
2的输送压力从0.45-0.46MPaG降至0.18MPaG以内,而且原本从反应器底部进入的仅为单程反应的CO
2,可变为双程反应,在相同反应条件下,提高了CO
2的转化率和利用率;
(3)本发明的反应原料低碳环保,其中氨原料可采用绿氨或蓝氨,CO
2采用70%或以下的低浓度CO
2为原料,如采用IGCC烟气的CO
2作为碳源,也可将来自煅烧炉的浓度为75-80%的回收CO
2与烟气的低浓度CO
2混合形成50-75%的CO
2为碳源。这样,本发明生产过程就变成了负碳生产工艺,降低了生产成本。
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1为本发明实施例1提供的反应系统的结构示意图;
图2为本发明实施例1提供的碳化塔的结构示意图;
图3为本发明实施例1提供的俯视方向下碳化塔内折流板的结构示意图;
图4为本发明实施例1提供的反应结晶塔的结构示意图。
其中:
10-碳化塔; 101-物料出口;
102-防堵喷头; 103-折流板;
104-清洗管路; 1041-第二清洗出口;
1042-第一清洗出口; 105-第一微界面发生器;
106-连接管; 107-第二微界面发生器;
108-气体管路; 20-反应结晶塔;
201-第三微界面发生器; 202-第四微界面发生器;
203-搅拌器; 204-返混管路;
30-尾气洗涤塔; 40-原料投加管路;
50-强化管路; 60-氨气管路;
70-二氧化碳管路; 80-冷凝器;
90-过滤器; 100-母液储罐;
110-煅烧塔; 120-产物输送机;
130-高温气体通道; 140-二氧化碳储罐;
150-燃气轮机; 160-蒸汽轮机;
170-氢气合成器; 180-氨合成器;
190-空气分离器。
下面将结合附图和具体实施方式对本发明的技术方案进行清楚、完整地描述,但是本领域技术人员将会理解,下列所描述的实施例是本发明一部分实施例,而不是全部的实施例,仅用于说明本发明,而不应视为限制本发明的范围。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位 或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
为了更加清晰的对本发明中的技术方案进行阐述,下面以具体实施例的形式进行说明。
实施例1
参阅图1-4,本实施例提供了一种用于制备纯碱的反应系统,包括:碳化塔10、反应结晶塔20和第一微界面机组;碳化塔10底部设置有物料出口101,物料出口101与反应结晶塔20相连;
如图2所示,第一微界面机组包括第一微界面发生器105和第二微界面发生器107,第一微界面发生器105设置在碳化塔10内液面的下方,第二微界面发生器107设置在第一微界面发生器105的上方,第二微界面发生器107与第一微界面发生器105间设置有连接管106;第一微界面发生器105连接有氨气管路60和二氧化碳管路70,氨气和二氧化碳在第一微界面发生器105中分散破碎成微米级气泡后,进入碳化塔10中。
本实施例中,第二微界面发生器107位于碳化塔10顶部,碳化塔10与第二微界面发生器107间设置有气体管路108,碳化塔10内液面上方的气体经气体管路108进入第二微界面发生器107中。反应时,塔顶未反应的气体经气体管路108卷吸进入第二微界面发生器107中,经第二微界面发生器107分散破 碎后返回塔内继续反应,提高了气体的转化率。
碳化塔10外设置有强化管路50,强化管路50的入口与碳化塔10侧壁相连,出口与第二微界面发生器107相连。强化管路50的入口应连接在碳化塔10的中上部。通过设置强化管路50,能够使碳化塔10内部的反应原料形成外循环,延长其反应路径,同时由于强化管路50将碳化塔10内的物料不断抽吸,能够在塔内产生负压区,利用负压将塔顶未反应的气体吸入塔内液体中继续反应,从而实现了塔内液面上层的气体循环利用。
碳化塔10顶部设置有用于投加氯化钠溶液的原料投加管路40和尾气洗涤塔30,原料投加管路40中的氯化钠溶液经尾气洗涤塔30送入碳化塔10中。
继续参阅图2,碳化塔10内由上到下依次设置有多层折流板103,多层折流板103交错设置且多层折流板103均设置在第一微界面发生器105的下方。多个折流板103上方均设置有清洗管路104,清洗管路104上设置有第一清洗出口1042和第二清洗出口1041,第一清洗出口1042朝向折流板103,第二清洗出口1041朝向碳化塔10的侧壁,清洗管路104的进口与强化管路50相连。
具体的,折流板103沿远离碳化塔10侧壁方向倾斜向下设置,清洗管路104与折流板103平行。折流板103与碳化塔10侧壁间的倾斜角可设置为30-60°。
如图3所示,本实施例中,折流板103数量为三个,三个折流板103沿周向在碳化塔10的外壁上呈等角度分布。三个折流板103中位于最上方的折流板103倾斜角度为35°,位于中部的折流板103倾斜角度为45°,位于最下方的折流板103倾斜角度为55°。这样设置能够使阻力呈梯度增加,进一步延长其流动路径,进而有助于提高原料的转化率。
为防止物料出口101堵塞,在碳化塔10内设置有防堵喷头102,防堵喷头102进口与强化管路50相连,出口朝向物料出口101。
如图4所示,反应结晶塔20内设置有第二微界面机组,第二微界面机组与二氧化碳管路70相连。通过在反应结晶塔20内设置第二微界面机组,能够 使二氧化碳以微米级气泡尺度进入塔内与氯化钠溶液进行深度反应,有利于提高原料反应效率。
反应结晶塔20内还设置有搅拌器203,搅拌器203设置在第二微界面机组的上方。通过设置搅拌器203,能够增加塔内溶液的返混程度,使得反应效率提升。
其中,第二微界面机组包括第三微界面发生器201和第四微界面发生器202,第三微界面发生器201与第四微界面发生器202出口相对。
具体的,第三微界面发生器201与第四微界面发生器202分别设置在反应结晶塔20内相对的侧壁上,搅拌器203沿水平方向位于第三微界面发生器201与第四微界面发生器202之间。
反应结晶塔20外侧还设置有返混管路204;返混管路204的进口与反应结晶塔20的侧壁相连,出口与反应结晶塔20的底部相连。使用时,返混管路204能够增加塔内反应液的返混程度,防止塔底结晶堵塞,提高二氧化碳的转化率以及利用率。
如图1所示,本实施例的反应系统还包括过滤器90、煅烧塔110和母液储罐100;反应结晶塔20与过滤器90相连,反应结晶塔20的反应产物经过滤器90过滤后,液相进入母液储罐100中,固相进入煅烧塔110中;煅烧塔110底部设置有产物输送机120。煅烧塔110侧壁连接有用于为煅烧塔110提供高温二氧化碳的高温气体通道130。
其中,过滤器90中设置有用于分离固液的过滤介质,过滤介质上方设置有用于将滤渣输出的螺杆输送机。
本实施例中,氨气管路60连接有氨气制备单元;氨气制备单元包括空气分离器190、氢气合成器170和氨合成器180,空气分离器190和氢气合成器170均与氨合成器180相连。氢气合成器170还与二氧化碳储罐140相连。其中,氢气合成器170中采用天然气与水反应,生成的二氧化碳输入到二氧化碳储罐140中,生成的氢气进入氨合成器180与空气分离器190分离出的氮气生 成氨气。氢气合成气产生的二氧化碳与氢气的分离方法可采用本领域常用的膜分离法。
二氧化碳管路70连接有二氧化碳储罐140,二氧化碳储罐140连接有用于提供二氧化碳的烟道气单元。该烟道气单元可为IGCC烟气,实际使用时,可将蒸汽轮机160或燃气轮机150的尾气经脱硫脱氮后输入二氧化碳储罐140中。当使用来自蒸汽轮机160的二氧化碳时,可将其与氢气合成器170中产生的二氧化碳混合以使二氧化碳浓度达标;当使用来自燃气轮机150的二氧化碳时,由于其本身二氧化碳浓度较高,可直接使用。
本实施例中,煅烧塔110的尾气出口连接有冷凝器80,冷凝器80的液相出口与尾气洗涤塔30相连,冷凝器80的气相出口与二氧化碳储罐140相连。
本实施例的反应系统反应方法如下:氨气和二氧化碳经微界面分散破碎成微米级别的微气泡后在碳化塔10中与水混合反应生成碳酸氢铵;碳酸氢铵与氯化钠反应生成碳酸氢钠;碳酸氢钠粗产物进入反应结晶塔20中,二氧化碳通过第二微界面机组进料,与粗产物中未反应的原料继续反应,反应产物进入过滤器90中过滤,液体进入母液储罐100,而后通过传统分离得到氯化铵产物(具体可通过向母液中投加氯化钠,从而析出氯化铵,剩余的氯化钠溶液可作为反应原料重复利用);滤渣进入煅烧塔110中,其中的碳酸氢钠受热分解得到纯碱,并经产物输送机120输出,煅烧产生的二氧化碳和水则通过冷凝器80冷凝分离,分离得到的水通过尾气洗涤塔30送入碳化塔10中,分离出的二氧化碳则送入二氧化碳储罐140中。
实施例2
本例与实施例1的不同点仅在于碳化塔中折流板的倾斜角度均为45°。
实施例3
本例与实施例1的不同点仅在于不设置第二微界面发生器。
实施例4
本例与实施例1的不同点仅在于碳化塔中折流板的倾斜角度均为10°。
比较例1
本例与实施例1的不同点仅在于碳化塔中不设置折流板。
实验例1
分别采用实施例1-4和比较例1的反应系统生产纯碱,具体实验条件如下:氯化钠溶液进入反应器,进料量1.08m
3/h,温度38~42℃,压力0.4MPaG。含75%~85%CO
2的进气在塔上部进入微界面机组,进料量约21Nm
3/h,温度30~50℃,压力0.08MPaG,碳化塔内反应温度为50℃。
对反应结晶塔输出的产物中碳酸氢钠生产强度以及尾气洗涤塔排出的尾气中CO
2浓度进行测试,测试结果如下表。
表1测试结果
现有技术中采用“侯氏制碱法”制备纯碱时,碳酸氢钠生产强度通常为58.3kg/m
3·h左右,其尾气中CO
2浓度一般为8-20%,吨产物电耗为12.19kW·h/t。从表1中可以看出,与现有碳化塔相比较,本发明的各实施例碳酸氢钠生产强 度明显增长,且实施例1的碳酸氢钠生产强度更是增长了20%,本发明的各实施例反应系统尾气CO
2浓度均低于5%,相比于现有技术降低了37.5-75%,且由于本实施例的二氧化碳输入压力仅需0.08MPaG,相比于现有技术每吨产物电耗也降低了33.3-11.2%。
将实施例1、实施例2、实施例4以及比较例1的数据进行对比,可以发现实施例1的各测试结果参数均为最优,说明采用实施例1的折板布置方式时能够达到最优的反应效果;实施例4与比较例1的实验效果相差不大,说明在折流板倾斜角度过小时其基本无法起到延长反应路径的效果。
将实施例1与实施例3进行对比,可以发现实施例1的尾气CO
2浓度明显低于实施例3,说明实施例1通过设置第二微界面发生器实现了对CO
2的捕集,提高了CO
2的转化率。
总之,与现有技术的相比,本发明的用于制备纯碱的反应系统能够有效提高原料的反应效率及二氧化碳的利用率,同时降低二氧化碳的输入压力,进而有效节约能耗。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。
Claims (10)
- 一种用于制备纯碱的反应系统,其特征在于,包括:碳化塔、反应结晶塔和第一微界面机组;所述碳化塔底部设置有物料出口,所述物料出口与所述反应结晶塔相连;所述第一微界面机组包括第一微界面发生器和第二微界面发生器,所述第一微界面发生器设置在所述碳化塔内液面的下方,所述第二微界面发生器设置在所述第一微界面发生器的上方,所述第二微界面发生器与所述第一微界面发生器间设置有连接管;所述第一微界面发生器连接有氨气管路和二氧化碳管路,氨气和二氧化碳在所述第一微界面发生器中分散破碎成微米级气泡后,进入所述碳化塔中;所述碳化塔内由上到下依次设置有多层折流板,多层所述折流板交错设置且多层所述折流板均设置在所述第一微界面发生器的下方。
- 根据权利要求1所述的用于制备纯碱的反应系统,其特征在于,所述折流板沿远离所述碳化塔侧壁方向倾斜向下设置;优选的,所述折流板与所述碳化塔侧壁间的倾斜角为30-60°;优选的,所述折流板数量为三个,三个所述折流板沿周向在所述碳化塔的外壁上呈等角度分布;优选的,三个所述折流板中位于最上方的所述折流板倾斜角度为35°,位于中部的所述折流板倾斜角度为45°,位于最下方的所述折流板倾斜角度为55°。
- 根据权利要求1所述的用于制备纯碱的反应系统,其特征在于,所述碳化塔外设置有强化管路,所述强化管路的入口与所述碳化塔侧壁相连,出口与所述第二微界面发生器相连。
- 根据权利要求3所述的用于制备纯碱的反应系统,其特征在于,多个所述折流板上方均设置有清洗管路,所述清洗管路上设置有第一清洗出口和第二清洗出口,所述第一清洗出口朝向所述折流板,所述第二清洗出口朝向所述碳化塔的侧壁,所述清洗管路的进口与所述强化管路相连;优选的,所述清洗管路与所述折流板平行;优选的,所述碳化塔内设置有防堵喷头,所述防堵喷 头进口与所述强化管路相连,出口朝向所述物料出口。
- 根据权利要求1所述的用于制备纯碱的反应系统,其特征在于,所述第二微界面发生器位于所述碳化塔顶部,所述碳化塔与所述第二微界面发生器间设置有气体管路,所述碳化塔内液面上方的气体经所述气体管路进入所述第二微界面发生器中。
- 根据权利要求1所述的用于制备纯碱的反应系统,其特征在于,所述反应结晶塔内设置有第二微界面机组,所述第二微界面机组与所述二氧化碳管路相连;优选的,所述反应结晶塔内设置有搅拌器,所述搅拌器设置在所述第二微界面机组的上方。
- 根据权利要求6所述的用于制备纯碱的反应系统,其特征在于,所述第二微界面机组包括第三微界面发生器和第四微界面发生器,所述第三微界面发生器与所述第四微界面发生器出口相对;优选的,所述第三微界面发生器与所述第四微界面发生器分别设置在所述反应结晶塔内相对的侧壁上,所述搅拌器沿水平方向位于所述第三微界面发生器与所述第四微界面发生器之间。
- 根据权利要求1所述的用于制备纯碱的反应系统,其特征在于,所述反应结晶塔外侧设置有返混管路;所述返混管路的进口与所述反应结晶塔的侧壁相连,出口与所述反应结晶塔的底部相连。
- 根据权利要求1所述的用于制备纯碱的反应系统,其特征在于,还包括过滤器、煅烧塔和母液储罐;所述反应结晶塔与所述过滤器相连,所述反应结晶塔的反应产物经所述过滤器过滤后,液相进入所述母液储罐中,固相进入所述煅烧塔中;所述煅烧塔底部设置有产物输送机;优选的,所述碳化塔顶部设置有用于投加氯化钠溶液的原料投加管路和尾气洗涤塔,所述原料投加管路中的氯化钠溶液经所述尾气洗涤塔送入所述碳化塔中;优选的,所述氨气管路连接有氨气制备单元;所述氨气制备单元包括空气分离器、氢气合成器和氨合成器,所述空气分离器和所述氢气合成器均与所述 氨合成器相连;优选的,所述二氧化碳管路连接有二氧化碳储罐,所述二氧化碳储罐连接有用于提供二氧化碳的烟道气单元;优选的,所述氢气合成器与所述二氧化碳储罐相连;优选的,所述煅烧塔的尾气出口连接有冷凝器,所述冷凝器的液相出口与所述尾气洗涤塔相连,所述冷凝器的气相出口与所述二氧化碳储罐相连。
- 一种用于制备纯碱的反应方法,其特征在于,应用权利要求1-9任一项所述的反应系统制备纯碱。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210889819.2A CN115286012B (zh) | 2022-07-27 | 2022-07-27 | 一种用于制备纯碱的反应系统及反应方法 |
CN202210889819.2 | 2022-07-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024020906A1 true WO2024020906A1 (zh) | 2024-02-01 |
Family
ID=83824282
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/108419 WO2024020906A1 (zh) | 2022-07-27 | 2022-07-28 | 一种用于制备纯碱的反应系统及反应方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115286012B (zh) |
WO (1) | WO2024020906A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118121966A (zh) * | 2024-05-07 | 2024-06-04 | 东营明德化工有限公司 | 一种化工精馏塔的防堵组件 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008147050A1 (en) * | 2007-05-29 | 2008-12-04 | G & G Korea Co., Ltd. | Apparatus and method for generating micro bubbles |
US20110241230A1 (en) * | 2010-04-02 | 2011-10-06 | Kerfoot William B | Nano-bubble Generator and Treatments |
CN212818998U (zh) * | 2020-04-29 | 2021-03-30 | 山东海天生物化工有限公司 | 一种回收脱硫烟气制备纯碱的生产系统 |
CN113666395A (zh) * | 2021-09-01 | 2021-11-19 | 南京延长反应技术研究院有限公司 | 一种微界面强化联合制碱的装置及生产方法 |
CN113663635A (zh) * | 2021-09-10 | 2021-11-19 | 中国石油大学(华东) | 一种强化碳化反应传质速率的气液传质设备 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4066416A (en) * | 1976-03-30 | 1978-01-03 | Vadim Ivanovich Panov | Carbonating tower for producing sodium bicarbonate magma |
CN1091074C (zh) * | 1997-05-08 | 2002-09-18 | 喻中甫 | 催化循环法生产碳酸氢钠的方法及所采用的多相反应塔 |
CN202099076U (zh) * | 2011-04-29 | 2012-01-04 | 湖北德高镁业有限公司 | 用于白云石灰乳液碳酸化的反应器 |
CN104061580B (zh) * | 2014-06-16 | 2016-11-23 | 河南心连心化肥有限公司 | 处理烟气脱硫带液的氨法脱硫装置及其工艺 |
CN105731497B (zh) * | 2014-12-06 | 2017-07-14 | 中国石油化工股份有限公司 | 一种利用酸性气生产碳酸氢钠的方法及装置 |
PL420589A1 (pl) * | 2017-02-21 | 2018-08-27 | Ciech R&D Spółka Z Ograniczoną Odpowiedzialnością | Sposób odzyskiwania ditlenku węgla do wzbogacania strumieni gazowych stosowanych w wytwarzaniu węglanu sodu i wodorowęglanu sodu metodą Solvaya |
CN211099019U (zh) * | 2019-10-16 | 2020-07-28 | 深圳诚立胜新材料科技有限公司 | 一种上下循环物料的硅胶反应釜 |
CN212237227U (zh) * | 2020-05-06 | 2020-12-29 | 常熟美特钙业有限公司 | 一种碳化塔消除颗粒物排放的装置 |
CN112044390A (zh) * | 2020-08-25 | 2020-12-08 | 南京延长反应技术研究院有限公司 | 一种环状碳酸酯的制备系统及方法 |
CN112573543B (zh) * | 2020-11-18 | 2022-12-09 | 安徽德邦化工有限公司 | 一种基于物料平衡的氨碱法纯碱生产工艺优化系统 |
CN112774592B (zh) * | 2020-12-28 | 2023-05-12 | 南京延长反应技术研究院有限公司 | 一种粗对苯二甲酸加氢精制的微界面反应系统及方法 |
CN114471404A (zh) * | 2022-01-19 | 2022-05-13 | 南京延长反应技术研究院有限公司 | 一种偏苯三甲酸的微界面制备系统及制备方法 |
-
2022
- 2022-07-27 CN CN202210889819.2A patent/CN115286012B/zh active Active
- 2022-07-28 WO PCT/CN2022/108419 patent/WO2024020906A1/zh unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008147050A1 (en) * | 2007-05-29 | 2008-12-04 | G & G Korea Co., Ltd. | Apparatus and method for generating micro bubbles |
US20110241230A1 (en) * | 2010-04-02 | 2011-10-06 | Kerfoot William B | Nano-bubble Generator and Treatments |
CN212818998U (zh) * | 2020-04-29 | 2021-03-30 | 山东海天生物化工有限公司 | 一种回收脱硫烟气制备纯碱的生产系统 |
CN113666395A (zh) * | 2021-09-01 | 2021-11-19 | 南京延长反应技术研究院有限公司 | 一种微界面强化联合制碱的装置及生产方法 |
CN113663635A (zh) * | 2021-09-10 | 2021-11-19 | 中国石油大学(华东) | 一种强化碳化反应传质速率的气液传质设备 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118121966A (zh) * | 2024-05-07 | 2024-06-04 | 东营明德化工有限公司 | 一种化工精馏塔的防堵组件 |
Also Published As
Publication number | Publication date |
---|---|
CN115286012A (zh) | 2022-11-04 |
CN115286012B (zh) | 2023-10-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10208948B2 (en) | Solid fuel grade gasification-combustion dual bed poly-generation system and method thereof | |
CN101555420A (zh) | 煤催化气化反应的方法、系统及设备 | |
WO2023284030A1 (zh) | 一种即时脱水的dmc制备系统及制备方法 | |
CN113666395B (zh) | 一种微界面强化联合制碱的装置及生产方法 | |
WO2024020906A1 (zh) | 一种用于制备纯碱的反应系统及反应方法 | |
CN107286993A (zh) | 变截面循环流化床气化装置以及气化方法 | |
CN113184881A (zh) | 工业氯化钠浓盐水精制生产系统 | |
WO2023284031A1 (zh) | 一种内置式即时脱水微界面强化dmc制备系统及方法 | |
CN102343309A (zh) | 一种机柱联合三段式浮选设备 | |
CN109181771B (zh) | 一种煤催化气化方法及煤催化气化装置 | |
WO2023284029A1 (zh) | 一种dmc的制备系统及制备方法 | |
CN217887994U (zh) | 一种气液连续反应结晶装置 | |
CN113753925B (zh) | 正压沉镁、干法负压蒸氨的氢氧化镁生产装置及方法 | |
CN214781454U (zh) | 一种污泥处理系统 | |
WO2023284025A1 (zh) | 一种常压气源微界面强化生物发酵的装置及方法 | |
CN111690423B (zh) | 一种煤炭的分质清洁利用工艺 | |
CN104673414A (zh) | 一种煤催化气化富甲烷化一体化装置和方法 | |
WO2022165972A1 (zh) | 一种煤催化气化反应炉及煤催化气化反应系统 | |
CN214936175U (zh) | 盐水分级蒸发结晶系统 | |
CN216024766U (zh) | 一种即时脱水的dmc制备系统 | |
EP1286915B1 (en) | Particulate removal in the reformation of halogenated organic materials | |
CN118874337A (zh) | 一种利用工业废气和工业废盐水制碱的系统及方法 | |
CN219972210U (zh) | 一种利用多喷嘴对置式气化炉协同处置生化污泥的系统 | |
CN219424363U (zh) | 一种固定床低压纯氧气化制合成气装置 | |
CN109433278B (zh) | 一种催化剂回收水洗反应器、系统及方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22952368 Country of ref document: EP Kind code of ref document: A1 |