[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023248690A1 - 植物病害抵抗性誘導剤、植物病害抵抗性誘導方法、及び、植物病害抵抗性誘導剤の製造方法 - Google Patents

植物病害抵抗性誘導剤、植物病害抵抗性誘導方法、及び、植物病害抵抗性誘導剤の製造方法 Download PDF

Info

Publication number
WO2023248690A1
WO2023248690A1 PCT/JP2023/019242 JP2023019242W WO2023248690A1 WO 2023248690 A1 WO2023248690 A1 WO 2023248690A1 JP 2023019242 W JP2023019242 W JP 2023019242W WO 2023248690 A1 WO2023248690 A1 WO 2023248690A1
Authority
WO
WIPO (PCT)
Prior art keywords
disease resistance
plant disease
outer membrane
cell wall
protein
Prior art date
Application number
PCT/JP2023/019242
Other languages
English (en)
French (fr)
Inventor
征司 児島
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2023248690A1 publication Critical patent/WO2023248690A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N63/00Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates
    • A01N63/20Bacteria; Substances produced thereby or obtained therefrom
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01PBIOCIDAL, PEST REPELLANT, PEST ATTRACTANT OR PLANT GROWTH REGULATORY ACTIVITY OF CHEMICAL COMPOUNDS OR PREPARATIONS
    • A01P3/00Fungicides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/89Algae ; Processes using algae

Definitions

  • the present disclosure relates to a plant disease resistance inducing agent that is a natural metabolite that contributes to inducing disease resistance in plants, a method for inducing plant disease resistance, and a method for producing a plant disease resistance inducing agent.
  • Patent Document 1 As naturally occurring substances that induce disease resistance in plants, certain oxo fatty acid derivatives (Patent Document 1) and polypeptide chains forming part of elongation factor (EF-Tu) (Patent Document 1) are used as naturally occurring substances that induce disease resistance in plants. Document 2) is known. Furthermore, it is known that disease resistance can be induced in plants by, for example, inoculating them with specific microbial species (Patent Document 3).
  • the present disclosure provides a plant disease resistance agent that can effectively induce disease resistance in plants, and a method for inducing plant disease resistance. Further, the present disclosure provides a method for producing a plant disease resistance inducer, which allows the plant disease resistance inducer to be produced easily and efficiently.
  • a plant disease resistance inducer includes cyanobacterial secretions.
  • the plant disease resistance inducing agent and the plant disease resistance inducing method of the present disclosure can effectively induce disease resistance in plants. Moreover, the method for producing a plant disease resistance inducer of the present disclosure allows the production of a plant disease resistance inducer simply and efficiently.
  • FIG. 1 is a flowchart showing an example of a method for producing a plant disease resistance inducer according to an embodiment.
  • FIG. 2 is a diagram schematically showing the cell surface layer of cyanobacteria.
  • FIG. 3 is a transmission electron microscope image of an ultrathin section of the modified cyanobacteria of Example 1.
  • FIG. 4 is an enlarged image of the broken line area A in FIG.
  • FIG. 5 is a transmission electron microscope image of an ultrathin section of the modified cyanobacteria of Example 2.
  • FIG. 6 is an enlarged image of the broken line area B in FIG.
  • FIG. 7 is a transmission electron microscope image of an ultrathin section of the modified cyanobacteria of Comparative Example 1.
  • FIG. 8 is an enlarged image of the broken line area C in FIG. FIG.
  • FIG. 10 shows SEQ ID NO: 01 to SEQ ID NO: 03.
  • FIG. 11 shows SEQ ID NO: 04 to SEQ ID NO: 06.
  • FIG. 12 shows SEQ ID NO:07.
  • FIG. 13 shows SEQ ID NO:08.
  • FIG. 14 shows SEQ ID NO:09.
  • FIG. 15 shows SEQ ID NO: 10 to SEQ ID NO: 11.
  • FIG. 16 shows SEQ ID NO: 12 to SEQ ID NO: 18.
  • FIG. 17 shows SEQ ID NO: 19 to SEQ ID NO: 22.
  • Patent Document 1 discloses a plant activator that induces systemic resistance in plants through the salicylic acid pathway and suppresses plant diseases by applying oxo fatty acid derivatives, which are fatty acid metabolites of bacteria, to plants. There is. Furthermore, since oxo fatty acid derivatives are naturally occurring fatty acid oxides, it has been reported that the plant activator has a low environmental impact and causes almost no phytotoxicity to the plants to which it is applied.
  • Patent Document 2 describes a polypeptide consisting of a part of an elongation factor (EF-Tu) that is widely conserved in plant pathogenic bacteria and non-plant pathogenic bacteria, and consisting of a predetermined amino acid sequence. , discloses polypeptides that are active in inducing immune responses in grasses.
  • the polypeptide is highly safe for humans and has an extremely low environmental impact, and because it is a relatively low molecular weight polypeptide, it can be easily produced using bacteria at low cost. has been reported. It has also been reported that the peptide and the plant disease resistance inducer containing the same are less likely to produce drug-resistant mutants and can be applied over a long period of time.
  • Patent Document 3 discloses the use of a novel Paenibacillus genus bacteria having a plant disease control effect for plant disease control. Specifically, it has been reported that Paenibacillus spores, vegetative cells, dried cells, whole cultures, or their freeze-dried powders can be applied to plants in various forms to be effective. There is.
  • Cyanobacteria also called cyanobacteria or blue-green algae
  • Cyanobacteria are a group of eubacteria that decompose water through photosynthesis to produce oxygen, and use the energy obtained to fix CO2 in the air.
  • cyanobacteria can also fix nitrogen (N 2 ) in the air.
  • N 2 nitrogen
  • cyanobacteria can obtain most of the raw materials (i.e., nutrients) and energy necessary for bacterial growth from air, water, and light, so cyanobacteria can be grown using inexpensive raw materials and simple processes. Cyanobacteria can be cultured.
  • cyanobacteria are known to grow quickly and have high light utilization efficiency, and in addition, they are easier to genetically manipulate than other algal species, so cyanobacteria are the most popular photosynthetic microorganisms.
  • Active research and development is being carried out regarding material production. For example, production of fuels such as ethanol, isobutanol, alkanes, and fatty acids (Patent Document 4: Japanese Patent No. 6341676) has been reported as an example of substance production using cyanobacteria.
  • Research and development is also being conducted on the production of substances that serve as nutritional sources for living organisms. For example, since proteins can only be synthesized by living organisms, there is a need for the development of technology to easily and efficiently produce proteins.
  • Non-patent Document 1 Jie Zhou et al. ., “Discovery of a super-strong promoter enable efficient production of heterologous proteins in cyanobacteria”, Scientific Reports, Nature Research, 2014, Vol.4, Article No.4500).
  • Non-Patent Document 1 For example, with the technique described in Non-Patent Document 1 mentioned above, efficient expression of a heterologous gene can be realized in cyanobacteria. Using this technology, it is possible to produce a desired protein within the cells of cyanobacteria (hereinafter also referred to as inside the bacterial cells). However, since proteins produced within cyanobacterial cells are difficult to secrete outside the cells, it is necessary to crush the cyanobacterial cells and extract the proteins produced within the cells.
  • the present inventors succeeded in secreting proteins and intracellular metabolites produced within the cyanobacterial cell to the outside of the cell. We found that this makes it easier to Furthermore, the present inventors have also discovered that cyanobacterial secretions have the effect of inducing disease resistance in plants. Thereby, the plant disease resistance-inducing substance secreted outside the cyanobacterial cells can be efficiently produced without disrupting the cyanobacterial cells. In addition, since operations such as extraction are not required, the physiological activity of the plant disease resistance inducer is less likely to be impaired, so the plant disease resistance inducer containing the secretion can effectively prevent plant disease. Resistance can be induced.
  • the plant disease resistance inducing agent and the plant disease resistance inducing method of the present disclosure can effectively induce disease resistance in plants. Moreover, the method for producing a plant disease resistance inducer of the present disclosure allows the production of a plant disease resistance inducer simply and efficiently.
  • a plant disease resistance inducer includes cyanobacterial secretions.
  • the plant disease resistance inducer contains a secretion that is involved in inducing disease resistance in plants, and therefore can effectively induce disease resistance in plants.
  • the cyanobacterium may be a modified cyanobacterium in which the function of a protein involved in bonding the outer membrane and the cell wall is suppressed or lost.
  • the bond between the cell wall and the outer membrane (that is, the amount of bond and binding force) is partially reduced, making it easier for the outer membrane to partially detach from the cell wall. Therefore, in the modified cyanobacteria, proteins and metabolites produced within the bacterial body (that is, substances produced within the bacterial body) tend to leak out of the outer membrane (that is, outside the bacterial body). This facilitates the secretion of proteins and metabolites produced within the cells of the modified cyanobacteria to the outside of the cells, thereby eliminating the need for extraction treatment for substances produced within the cells, such as crushing the cells.
  • plant disease resistance substances involved in inducing disease resistance in plants
  • a decrease in the physiological activity of the inducing substance (also referred to as an inducer) and a decrease in yield are also less likely to occur. Therefore, the plant disease resistance inducer according to one embodiment of the present disclosure can effectively induce disease resistance in plants.
  • the protein involved in binding the outer membrane and the cell wall is an SLH (Surface Layer Homology) domain-retaining outer membrane protein and a cell wall-pyruvic acid protein. It may be at least one modified enzyme.
  • SLH Surface Layer Homology domain-retaining outer membrane protein and a cell wall-pyruvic acid protein. It may be at least one modified enzyme.
  • modified cyanobacteria for example, (i) an enzyme that catalyzes the reaction of pyruvate modification of the SLH domain-retaining outer membrane protein that binds to the cell wall and the bound sugar chain on the surface of the cell wall (i.e., cell wall-pyruvate modification); (ii) the expression of at least one of an SLH domain-retaining outer membrane protein and a cell wall-pyruvate modifying enzyme is suppressed. Therefore, the bond between the SLH domain of the SLH domain-retaining outer membrane protein in the outer membrane and the covalent sugar chain on the surface of the cell wall (that is, the amount and strength of the bond) is reduced.
  • the plant disease resistance inducing agent contains a plant disease resistance inducing substance efficiently secreted by the modified cyanobacteria, and thus can effectively induce resistance to plant diseases. Can be done.
  • the SLH domain-retaining outer membrane protein is Slr1841, which consists of the amino acid sequence shown by SEQ ID NO: 1, and NIES970_09470, which consists of the amino acid sequence shown by SEQ ID NO: 2.
  • Anacy_3458 consisting of the amino acid sequence shown in SEQ ID NO: 3, or a protein having an amino acid sequence that is 50% or more identical to any of these SLH domain-retaining outer membrane proteins.
  • any of the SLH domain-retaining outer membrane proteins shown in SEQ ID NOs: 1 to 3 above or any of these SLH domain-retaining outer membrane proteins and the amino acid sequence The function of a protein that is 50% or more identical is suppressed or lost, or (ii) any of the SLH domain-retaining outer membrane proteins shown in SEQ ID NOs: 1 to 3 above or the SLH domain of any of these. Expression of a protein whose amino acid sequence is 50% or more identical to the retained outer membrane protein is suppressed.
  • the function of the SLH domain-retaining outer membrane protein or a protein having the same function as the SLH domain-retaining outer membrane protein in the outer membrane is suppressed or lost; or (ii) The expression level of an SLH domain-retaining outer membrane protein or a protein having a function equivalent to the SLH domain-retaining outer membrane protein in the outer membrane is reduced.
  • the binding domain for binding the outer membrane to the cell wall for example, the SLH domain
  • the binding domain for binding the outer membrane to the cell wall has a reduced binding amount and binding force to the cell wall, resulting in the outer membrane partially detaching from the cell wall. It becomes easier.
  • the plant disease resistance inducing agent contains a plant disease resistance inducing substance efficiently secreted by the modified cyanobacteria, and therefore can effectively induce disease resistance in plants. can.
  • the cell wall-pyruvic acid modifying enzyme is Slr0688, which consists of the amino acid sequence shown in SEQ ID NO: 4, Synpcc7942_1529, which consists of the amino acid sequence shown in SEQ ID NO: 5, It may be Anacy_1623 consisting of the amino acid sequence shown in SEQ ID NO: 6, or a protein having an amino acid sequence that is 50% or more identical to any of these cell wall-pyruvate modifying enzymes.
  • any of the cell wall-pyruvate modifying enzymes shown in SEQ ID NOs: 4 to 6 above or any of these cell wall-pyruvate modifying enzymes and the amino acid sequence are 50% or (ii) any of the cell wall-pyruvate modification enzymes shown in SEQ ID NOs: 4 to 6 above or the cell wall-pyruvate modification of any of these.
  • the expression of proteins whose amino acid sequences are 50% or more identical to the enzyme is suppressed.
  • modified cyanobacteria (i) the function of a cell wall-pyruvate modifying enzyme or a protein having an equivalent function to the enzyme is suppressed or lost, or (ii) the function of a cell wall-pyruvate modifying enzyme or a protein having an equivalent function to the enzyme is
  • the expression level of proteins with equivalent functions decreases. This makes it difficult for the covalent sugar chains on the surface of the cell wall to be modified with pyruvate, so the amount and binding force of the sugar chains on the cell wall to bind to the SLH domain of the SLH domain-retaining outer membrane protein in the outer membrane. is reduced.
  • the plant disease resistance inducing agent contains a plant disease resistance inducing substance efficiently secreted by the modified cyanobacteria, and therefore can effectively induce disease resistance in plants. can.
  • the cyanobacterium is a modified cyanobacterium in which a gene that expresses a protein involved in binding the outer membrane and the cell wall has been deleted or inactivated. It may also be bacteria.
  • the modified cyanobacteria improves the productivity of secretion of plant disease resistance inducers produced within the bacterial cells.
  • the plant disease resistance inducer according to one embodiment of the present disclosure can effectively induce disease resistance in plants.
  • the gene for expressing the protein involved in the binding between the outer membrane and the cell wall is a gene encoding an SLH domain-retaining outer membrane protein, and a gene encoding an SLH domain-retaining outer membrane protein; - It may be at least one gene encoding a pyruvate modifying enzyme.
  • the modified cyanobacteria As a result, in the modified cyanobacteria, at least one of the genes encoding the SLH domain-retaining outer membrane protein and the gene encoding the cell wall-pyruvate modifying enzyme has been deleted or inactivated. Therefore, in the modified cyanobacteria, for example, (i) the expression of at least one of the SLH domain-retaining outer membrane protein and cell wall-pyruvate modification enzyme is suppressed, or (ii) the SLH domain-retaining outer membrane protein and the cell wall - At least one function of the pyruvate-modifying enzyme is inhibited or lost.
  • the bond between the SLH domain of the SLH domain-retaining outer membrane protein in the outer membrane and the covalent sugar chain on the surface of the cell wall (that is, the amount and strength of the bond) is reduced.
  • the binding between the outer membrane and the cell wall is reduced, making it easier for the outer membrane to partially detach from the cell wall, allowing proteins and metabolites produced within the cell to leak out of the cell.
  • the plant disease resistance inducing agent contains a plant disease resistance inducing substance efficiently secreted by the modified cyanobacteria, and therefore cannot effectively induce disease resistance in plants. can.
  • the gene encoding the SLH domain-retaining outer membrane protein includes slr1841, which consists of the nucleotide sequence shown in SEQ ID NO: 7, and slr1841, which consists of the nucleotide sequence shown in SEQ ID NO: 8.
  • the gene may be nies970_09470 consisting of the sequence nies970_09470, anacy_3458 consisting of the base sequence shown in SEQ ID NO: 9, or a gene whose base sequence is 50% or more identical to any of these genes.
  • the modified cyanobacteria a gene encoding any of the SLH domain-retaining outer membrane proteins shown in SEQ ID NOs: 7 to 9 above, or a gene that is 50% or more identical to the base sequence of any of these genes. is deleted or inactivated. Therefore, in the modified cyanobacteria, (i) the expression of any of the above-mentioned SLH domain-retaining outer membrane proteins or a protein having a function equivalent to any of these proteins is suppressed, or (ii) the above-mentioned The function of any SLH domain-retaining outer membrane protein or a protein having a function equivalent to any of these proteins is suppressed or lost.
  • the binding domain for example, SLH domain
  • the binding domain for binding the outer membrane to the cell wall has a reduced binding amount and binding force, so the outer membrane tends to partially detach from the cell wall.
  • the proteins and metabolites produced within the bacterial cells tend to leak out of the bacterial cells, so that the plant disease resistance-inducing substances produced within the bacterial cells also tend to leak out of the bacterial cells. Therefore, the plant disease resistance inducer according to one aspect of the present disclosure contains a plant disease resistance inducer efficiently secreted by the modified cyanobacteria, and therefore can effectively induce disease resistance in plants. .
  • the gene encoding the cell wall-pyruvic acid modifying enzyme includes slr0688, which consists of the base sequence shown in SEQ ID NO: 10, and slr0688, which consists of the base sequence shown in SEQ ID NO: 11. It may be synpcc7942_1529 consisting of the nucleotide sequence shown in SEQ ID NO: 12, anacy_1623 consisting of the nucleotide sequence shown in SEQ ID NO: 12, or a gene whose nucleotide sequence is 50% or more identical to any of these genes.
  • the nucleotide sequence is 50% or more identical to the gene encoding any of the cell wall-pyruvate modifying enzymes shown in SEQ ID NOs: 10 to 12 above, or the gene encoding any of these enzymes.
  • a gene is deleted or inactivated. Therefore, in the modified cyanobacteria, (i) the expression of any of the above cell wall-pyruvate modifying enzymes or a protein having a function equivalent to any of these enzymes is suppressed, or (ii) any of the above The function of the cell wall-pyruvate modifying enzyme or a protein having a function equivalent to any of these enzymes is suppressed or lost.
  • the plant disease resistance inducing agent contains a plant disease resistance inducing substance efficiently secreted by the modified cyanobacteria, and therefore can effectively induce disease resistance in plants. can.
  • a method for inducing plant disease resistance uses a plant disease resistance inducing agent containing a cyanobacterial secretion.
  • the disease resistance in plants can be effectively induced. can be induced.
  • a method for producing a plant disease resistance inducer includes the steps of: preparing cyanobacteria; causing the cyanobacteria to secrete a secretion involved in inducing disease resistance in plants; including.
  • a plant disease resistance inducer containing the following can be produced.
  • each figure is not necessarily strictly illustrated.
  • substantially the same components are denoted by the same reference numerals, and overlapping explanations may be omitted or simplified.
  • the numerical range does not represent only a strict meaning, but includes a substantially equivalent range, for example, measuring the amount of protein (for example, number or concentration, etc.) or the range thereof.
  • both a bacterial body and a cell represent one individual cyanobacterium.
  • BLAST Basic Local Alignment Search Tool
  • NCBI National Center for Biotechnology Information
  • Ru Information regarding cyanobacterial genes and proteins encoded by the genes is published, for example, in the NCBI database mentioned above and Cyanobase (http://genome.microbedb.jp/cyanobase/). From these databases, the amino acid sequences of proteins of interest and the base sequences of genes encoding those proteins can be obtained.
  • a plant disease resistance inducer refers to a drug for inducing resistance to a plant disease and controlling the plant disease. Since the plant disease resistance inducer is intended to prevent disease, it may be applied before the onset of disease.
  • the plant disease resistance inducer may be used by any of the following methods: spraying, dusting, dipping, coating, coating, fumigation, smoking, irrigation, etc. Specific methods of use include methods of spraying or applying the drug to plants, soaking plant seeds in a liquid containing the drug, and spraying the drug to fields where the disease is occurring or is likely to be infected. methods, or methods of mixing chemicals into soil.
  • the amount of the plant disease resistance inducer to be used may be determined as appropriate depending on the type of target plant, the growth stage of the target plant, the nature of the soil, the type of formulation, the method of application, the timing of application, and the like.
  • Plants to which the plant disease resistance inducer is applied include all cultivated plants, and may be either monocotyledonous plants or dicotyledonous plants.
  • cruciferous plants such as cabbage, grasses such as rice, corn, barley, and wheat, solanaceous plants such as tomatoes, eggplants, potatoes, and tobacco, cucurbits such as cucumbers, melons, and pumpkins, etc.
  • leguminous plants such as soybeans, peas, kidney beans, alfalfa, and peanuts; rose family plants such as strawberries, apples, and pears; mulberry plants such as mulberry; mallow plants such as cotton; carrots and parsley.
  • Examples include, but are not limited to, plants of the Umbelliferae family such as , celery, Asteraceae plants such as burdock and lettuce, and Vitaceae plants such as grapes.
  • the plant disease resistance inducer includes cyanobacterial secretions.
  • the cyanobacteria are, for example, modified cyanobacteria (hereinafter also referred to as parent cyanobacteria) in which the function of a protein involved in binding between the outer membrane and the cell wall (hereinafter also referred to as binding-related protein) is suppressed or lost. It's bacteria. Note that cyanobacteria (that is, parent cyanobacteria) and modified cyanobacteria will be described later.
  • the plant disease resistance inducer includes a secreted product secreted by the above-mentioned cyanobacteria and involved in inducing disease resistance in plants. Being involved in inducing disease resistance in plants means not only being directly involved in inducing disease resistance in plants, but also indirectly (in other words, auxiliary) being involved in inducing disease resistance in plants. It may also include doing. As a result, the plant disease resistance inducer can effectively induce resistance to plant diseases, so applying the plant disease resistance inducer to plants can improve the yield and quality of plants. be able to.
  • the secreted material contains proteins and metabolites produced within the cyanobacterial cells (hereinafter also referred to as intracellularly produced substances).
  • the intracellularly produced substances include substances that induce plant disease resistance (so-called plant disease resistance inducing substances).
  • Substances produced within bacteria include, for example, organic substance degrading enzymes such as peptidase, nuclease, or phosphatase, DNA metabolism-related substances such as adenosine or guanosine, and nucleic acid (for example, DNA or RNA) synthesis promoting substances such as p-aminobenzoic acid or spermidine.
  • organic substance degrading enzymes such as peptidase, nuclease, or phosphatase
  • DNA metabolism-related substances such as adenosine or guanosine
  • nucleic acid for example, DNA or RNA
  • synthesis promoting substances such as p-aminobenzoic acid or spermidine.
  • FIG. 1 is a flowchart showing an example of a method for producing a plant disease resistance inducer according to the present embodiment.
  • the method for producing a plant disease resistance inducer includes the steps of preparing cyanobacteria (step S01), and causing the cyanobacteria to secrete secretions involved in inducing plant disease resistance (step S01). S02).
  • cyanobacteria are, for example, modified cyanobacteria (so-called parent cyanobacteria) in which the function of a protein involved in bonding the outer membrane and the cell wall is suppressed or lost. Therefore, in step S01, modified cyanobacteria may be prepared. In this case, in step S02, the modified cyanobacteria are caused to secrete secretions that are involved in inducing disease resistance in plants.
  • the secreted material contains proteins and metabolites produced within the cells of the cyanobacteria (that is, substances produced within the cells). These intracellularly produced substances include substances involved in inducing disease resistance in plants (that is, plant disease resistance inducers).
  • step S01 the above cyanobacteria are prepared.
  • Preparing cyanobacteria refers to adjusting the state of cyanobacteria to a state where they can secrete secretions, for example, by restoring bacterial cells from freeze-dried cyanobacteria or glycerol stocks.
  • the cyanobacteria that have finished secreting the plant disease resistant substance in step S02 may be collected.
  • preparing the cyanobacteria may mean, for example, producing a modified cyanobacterium by genetically modifying a parent cyanobacterium, or a freeze-dried product or The method may be to restore the bacterial cells from the glycerol stock, or it may be to collect the modified cyanobacteria that have finished secreting the plant disease resistance inducer in step S02.
  • cyanobacteria are caused to secrete secretions that are involved in inducing disease resistance in plants.
  • the cyanobacteria in this embodiment are modified cyanobacteria (that is, parent cyanobacteria) in which the function of a protein involved in bonding the outer membrane and the cell wall is suppressed or lost; The proteins and metabolites that are produced are likely to be secreted outside the outer membrane (that is, outside the bacterial cell).
  • These intracellularly produced substances include substances involved in inducing disease resistance in plants. Therefore, in step S02, by culturing the modified cyanobacteria under predetermined conditions, intracellularly produced substances that are involved in inducing disease resistance in plants are secreted outside the bacterial cells.
  • Cultivation of cyanobacteria can generally be carried out based on liquid culture using BG-11 medium (see Table 2) or a modified method thereof. Therefore, culturing of modified cyanobacteria may be carried out in the same manner.
  • the cyanobacterial culture period for producing a plant disease resistance inducer may be any period that allows proteins and metabolites to accumulate at a high concentration under conditions where the bacterial cells sufficiently proliferate. For example, , may be for 1 to 3 days, or may be for 4 to 7 days.
  • the culture method may be, for example, aeration agitation culture or shaking culture.
  • the modified cyanobacteria produce proteins and metabolites (that is, intracellularly produced substances) within the bacterial cells, and secrete the intracellularly produced substances into the culture solution.
  • the substance produced inside the fungus includes a substance produced inside the fungus that is involved in inducing disease resistance in plants (that is, a plant disease resistance inducing substance).
  • the culture solution is filtered or centrifuged to remove solids such as cells (i.e., bacterial bodies), and the culture supernatant is recovered. may be collected.
  • the secreted substance containing intracellularly produced substances involved in inducing disease resistance in plants is Since it is secreted outside the bacterial cells, there is no need to disrupt the cells to recover the plant disease resistance inducer. Therefore, the modified cyanobacteria remaining after recovery of the plant disease resistance inducing substance can be repeatedly used to produce a plant disease resistance inducing agent.
  • the method for recovering the plant disease resistance inducer secreted into the culture solution is not limited to the above example, and it is also possible to recover the plant disease resistance inducer in the culture solution while culturing the modified cyanobacteria. good.
  • the plant disease resistance inducing substance that has passed through the permeable membrane may be recovered.
  • the plant disease resistance-inducing substance in the culture solution can be recovered while cultivating the modified cyanobacteria, so that there is no need to remove the cells of the modified cyanobacteria from the culture solution. Therefore, a plant disease resistance inducer can be produced more easily and efficiently.
  • the recovery process of bacterial cells from the culture solution and the process of crushing the bacterial cells are not necessary, damage and stress to the modified cyanobacteria can be reduced. Therefore, the secretion productivity of the plant disease resistance inducer of the modified cyanobacteria is less likely to decrease, and the modified cyanobacteria can be used for a longer period of time.
  • a plant disease resistance inducer can be obtained easily and efficiently.
  • cyanobacteria (so-called parent cyanobacteria) and modified cyanobacteria will be explained.
  • the parent cyanobacteria will be referred to as cyanobacteria
  • the cyanobacteria in this embodiment will be referred to as modified cyanobacteria.
  • Cyanobacteria also called blue-green algae or cyanobacteria, are a group of prokaryotes that perform photosynthesis while collecting light energy with chlorophyll and electrolyzing water to generate oxygen. Cyanobacteria are highly diverse, and include, for example, unicellular species such as Synechocystis sp. PCC 6803 and filamentous multicellular species such as Anabaena sp. PCC 7120. Regarding the growing environment, there are thermophilic species such as Thermosynechococcus elongatus, marine species such as Synechococcus elongatus, and freshwater species such as Synechocystis.
  • FIG. 2 is a diagram schematically showing the cell surface layer of cyanobacteria.
  • the cell surface layer of cyanobacteria is composed of, in order from the inside, a plasma membrane (also called inner membrane 1), peptidoglycan 2, and outer membrane 5, which is a lipid membrane that forms the outermost layer of the cell.
  • Ru Sugar chains 3 composed of glucosamine, mannosamine, etc. are covalently bonded to peptidoglycan 2, and pyruvate is bonded to these covalently bonded sugar chains 3 (Non-patent Document 2: Jurgens and Weckesser, 1986, J. Bacteriol., 168:568-573).
  • the peptidoglycan 2 and the covalent sugar chain 3 are collectively referred to as a cell wall 4.
  • the gap between the plasma membrane (that is, the inner membrane 1) and the outer membrane 5 is called the periplasm, and is used for protein decomposition or three-dimensional structure formation, lipid or nucleic acid decomposition, or the uptake of extracellular nutrients.
  • the periplasm the gap between the plasma membrane (that is, the inner membrane 1) and the outer membrane 5 is called the periplasm, and is used for protein decomposition or three-dimensional structure formation, lipid or nucleic acid decomposition, or the uptake of extracellular nutrients.
  • the SLH domain-retaining outer membrane protein (for example, Slr1841 in the figure) consists of a C-terminal region embedded in the lipid membrane (also referred to as outer membrane 5) and an N-terminal SLH domain 7 that protrudes from the lipid membrane. It is widely distributed in cyanobacteria and bacteria belonging to the class Negativicutes, a group of Gram-negative bacteria (Non-Patent Document 3: Kojima et al., 2016, Biosci. Biotech. Biochem., 10:1954-1959). The region embedded in the lipid membrane (i.e.
  • Patent Document 4 Kowata et al., 2017, J. Bacteriol., 199:e00371-17).
  • SLH domain 7 In order for SLH domain 7 to bind to cell wall 4, covalent sugar chain 3 in peptidoglycan 2 needs to be modified with pyruvate (Non-Patent Document 5: Kojima et al., 2016, J. Biol Chem., 291:20198-20209).
  • genes encoding SLH domain-retaining outer membrane protein 6 include slr1841 or slr1908 held by Synechocystis sp. PCC 6803, or oprB held by Anabaena sp. 90.
  • cell wall-pyruvate modification enzyme 9 The enzyme that catalyzes the pyruvate modification reaction of covalent sugar chain 3 in peptidoglycan 2 (hereinafter referred to as cell wall-pyruvate modification enzyme 9) was identified in the Gram-positive bacterium Bacillus anthracis and named CsaB. (Non-patent document 6: Mesnage et al., 2000, EMBO J., 19:4473-4484). Among cyanobacteria whose genome sequences have been published, many species possess genes encoding homologous proteins with amino acid sequence identity of 30% or more with CsaB. Examples include slr0688 held by Synechocystis sp. PCC 6803 or syn7502_03092 held by Synechococcus sp. 7502.
  • cyanobacteria CO 2 fixed through photosynthesis is converted into precursors of various amino acids and intracellular molecules through multistep enzymatic reactions.
  • proteins and metabolites are synthesized within the cytoplasm of cyanobacteria. Some of these proteins and metabolites function within the cytoplasm, while others are transported from the cytoplasm to the periplasm and function within the periplasm.
  • no case of active secretion of proteins and metabolites outside the cell has been reported in cyanobacteria.
  • cyanobacteria Because cyanobacteria have a high photosynthetic ability, they do not necessarily need to take in organic matter from the outside as nutrients. Therefore, cyanobacteria have very few channel proteins in their outer membrane 5 that allow organic substances to pass therethrough, such as the organic substance channel protein 8 (eg, Slr1270) in FIG. For example, in Synechocystis sp. PCC 6803, organic channel protein 8, which allows organic matter to pass through, is present in only about 4% of the total protein content of outer membrane 5.
  • organic substance channel protein 8 eg, Slr1270
  • cyanobacteria in order for cyanobacteria to take in inorganic ions necessary for growth into cells with high efficiency, only inorganic ions can be permeated by cyanobacteria, such as SLH domain-retaining outer membrane protein 6 (e.g., Slr1841) shown in Figure 2.
  • the outer membrane 5 contains many ion channel proteins that cause For example, in Synechocystis sp. PCC 6803, ion channel proteins that permeate inorganic ions account for about 80% of the total protein content of the outer membrane 5.
  • the cyanobacteria in this embodiment are modified cyanobacteria (so-called parent cyanobacteria) in which the function of a protein involved in binding between the outer membrane 5 and the cell wall 4 (so-called binding-related protein) is suppressed or lost. It's bacteria. More specifically, for example, the modified cyanobacteria is such that the total amount of proteins involved in binding between the outer membrane 5 and the cell wall 4 (i.e., binding-related proteins) is lower than that in the parent strain (i.e., parent cyanobacteria). The total amount of protein is suppressed to 30% or more and 70% or less.
  • the total amount of binding-related proteins is suppressed to 30% of the total amount of the protein in the parent strain
  • the bond between the outer membrane 5 and the cell wall 4 (for example, the amount of bond and the binding force) is partially reduced, so that the outer membrane 5 is easily partially detached from the cell wall 4. Therefore, the modified cyanobacteria has improved secretion productivity of intracellularly produced substances, such as proteins and metabolites produced within the microbial cells, to the outside of the microbial cells.
  • intracellularly produced substances include intracellularly produced substances that are involved in inducing disease resistance in plants (that is, plant disease resistance inducing substances). Therefore, the modified cyanobacteria also improves the secretion productivity of the plant disease resistance inducing substance, which secretes the plant disease resistance inducing substance produced inside the bacterial body to the outside of the bacterial body. Furthermore, since there is no need to crush the bacterial cells to recover the plant disease resistance inducer, the modified cyanobacteria can be used repeatedly even after the plant disease resistance inducer has been recovered.
  • production means that the modified cyanobacteria produce proteins and metabolites within the bacterial cells, and secretion production means that the produced proteins and metabolites are secreted outside the bacterial cells.
  • the protein involved in the binding between the outer membrane 5 and the cell wall 4 may be, for example, at least one of the SLH domain-retaining outer membrane protein 6 and the cell wall-pyruvate modifying enzyme 9.
  • the modified cyanobacterium has, for example, the function of at least one of the SLH domain-retaining outer membrane protein 6 and the cell wall-pyruvate modifying enzyme 9 suppressed or lost.
  • the modified cyanobacteria (i) at least one function of the SLH domain-retaining outer membrane protein 6 and the cell wall-pyruvate modifying enzyme 9 may be suppressed or lost, and (ii) the SLH domain that binds to the cell wall 4 may be suppressed or lost.
  • At least one of the expression of the retained outer membrane protein 6 and the expression of an enzyme that catalyzes the pyruvate modification reaction of sugar chains bound to the surface of the cell wall 4 may be suppressed. .
  • the outer membrane 5 is modified to partially detach from the cell wall 4 by suppressing the function of at least one binding-related protein of the SLH domain-retaining outer membrane protein 6 and the cell wall-pyruvate modifying enzyme 9.
  • the following cyanobacteria will be explained in more detail.
  • the cyanobacteria that are the parent microorganisms of the modified cyanobacteria in this embodiment, before suppressing or losing at least one of the expression of the SLH domain-retaining outer membrane protein 6 and the expression of the cell wall-pyruvate modifying enzyme 9 is not particularly limited, and may be any type of cyanobacteria.
  • the parent cyanobacteria may be of the genus Synechocystis, Synechococcus, Anabaena, or Thermosynechococcus, among them Synechocystis sp. PCC 6803, Synechococcus sp. PCC 7942, or Thermosynechococcus elongatus BP-1. Good too.
  • the base sequence and the position of the gene on the chromosomal DNA or plasmid can be confirmed in the NCBI database and Cyanobase mentioned above.
  • the SLH domain-retaining outer membrane protein 6 and the cell wall-pyruvic acid modifying enzyme 9, whose functions are suppressed or lost in the modified cyanobacteria according to the present embodiment, can be used in any of the parent cyanobacteria as long as they are possessed by the parent cyanobacteria. They may be of cyanobacteria, and are not limited by the location of the genes encoding them (for example, on chromosomal DNA or on plasmids).
  • the SLH domain-retaining outer membrane protein 6 may be Slr1841, Slr1908, or Slr0042 when the parent cyanobacterium belongs to the genus Synechocystis, or may be NIES970_09470 when the parent cyanobacterium belongs to the genus Synechococcus.
  • the parent cyanobacteria is of the genus Anabaena, it may be Anacy_5815 or Anacy_3458, etc.
  • the parent cyanobacteria is of the genus Microcystis, it may be A0A0F6U6F8_MICAE, etc.
  • the parent cyanobacteria When the parent cyanobacteria is of the genus Cyanothece, it may be A0A3B8XX12_9CYAN, etc. When the parent cyanobacterium belongs to the genus Leptolyngbya, it may be A0A1Q8ZE23_9CYAN, etc. When the parent cyanobacterium belongs to the genus Calothrix, it may be A0A1Z4R6U0_9CYAN, and when the parent cyanobacterium belongs to the genus Nostoc, it may be A0A1C0VG86_9NOSO, etc.
  • the parent cyanobacterium belongs to the genus Crocosphaera, it may be B1WRN6_CROS5, and when the parent cyanobacterium belongs to the genus Pleurocapsa, it may be K9TAE4_9CYAN.
  • the SLH domain-retaining outer membrane protein 6 is, for example, Slr1841 (SEQ ID NO: 1) of Synechocystis sp. PCC 6803, NIES970_09470 (SEQ ID NO: 2) of Synechococcus sp. NIES-970, or Anabaena cylindrica PCC. 7122 Anacy_3458 (SEQ ID NO: 3), etc. may be used.
  • it may be a protein that has an amino acid sequence that is 50% or more identical to these SLH domain-retaining outer membrane proteins 6.
  • the function of the protein whose sequence is 50% or more identical may be suppressed or lost, and
  • the expression of a protein whose amino acid sequence is 50% or more identical to SLH domain-retaining outer membrane protein 6 may be suppressed.
  • the function of the SLH domain-retaining outer membrane protein 6 in the outer membrane 5 or a protein having a function equivalent to the SLH domain-retaining outer membrane protein 6 is suppressed or lost;
  • the expression level of the SLH domain-retaining outer membrane protein 6 or a protein having the same function as the SLH domain-retaining outer membrane protein 6 in the outer membrane 5 is reduced.
  • the binding domain for example, SLH domain 7
  • the binding domain for example, SLH domain 7 for binding the outer membrane 5 to the cell wall 4 decreases the binding amount and binding force with the cell wall 4, so that the outer membrane 5 binds to the cell wall 4. Partial detachment becomes easier.
  • substances produced inside the bacteria are likely to leak out of the cells, and plant disease resistance-inducing substances produced inside the cells are also likely to leak out of the cells.
  • the amino acid sequences of a protein are 30% or more identical, the protein has a high degree of homology in its three-dimensional structure and is therefore likely to have the same function as the protein in question. Therefore, as the SLH domain-retaining outer membrane protein 6 whose function is suppressed or lost, for example, the amino acid sequence of any of the SLH domain-retaining outer membrane proteins 6 shown in SEQ ID NOs: 1 to 3 above, and 40% It consists of an amino acid sequence having an identity of preferably 50% or more, more preferably 60% or more, still more preferably 70% or more, even more preferably 80% or more, even more preferably 90% or more, and It may be a protein or polypeptide that has the function of binding to the covalent sugar chain 3.
  • the cell wall-pyruvate modifying enzyme 9 may be Slr0688, etc. when the parent cyanobacterium belongs to the genus Synechocystis, and may be Syn7502_03092 or Synpcc7942_1529, etc. when the parent cyanobacterium belongs to the genus Synechococcus. If the cyanobacterium belongs to the genus Anabaena, it may be ANA_C20348 or Anacy_1623, and if the parent cyanobacterium belongs to the genus Microcystis, it may be CsaB (NCBI access ID: TRU80220), or if the parent cyanobacterium belongs to the genus Cyanothece.
  • the parent cyanobacterium belongs to the genus Spirulina, it may be CsaB (NCBI access ID: WP_026079530.1), etc. If the parent cyanobacterium belongs to the genus Calothrix, it may be CsaB (NCBI access ID: WP_096658142.1), etc., and if the parent cyanobacterium belongs to the genus Nostoc, it may be CsaB (NCBI access ID: WP_099068528.1), etc.
  • the parent cyanobacterium belongs to the genus Crocosphaera, it may be CsaB (NCBI access ID: WP_012361697.1), and if the parent cyanobacterium belongs to the genus Pleurocapsa, it may be CsaB (NCBI access ID: WP_036798735), etc. Good too.
  • the cell wall-pyruvate modifying enzyme 9 is, for example, Slr0688 (SEQ ID NO: 4) of Synechocystis sp. PCC 6803, Synpcc7942_1529 (SEQ ID NO: 5) of Synechococcus sp. Anacy_1623 (SEQ ID NO: 6) or the like may be used. Further, it may be a protein having an amino acid sequence that is 50% or more identical to these cell wall-pyruvate modifying enzymes 9.
  • the function of proteins that are 50% or more identical may be suppressed or lost
  • any of the cell walls shown in SEQ ID NOs: 4 to 6 above - pyruvate modifying enzyme 9 or the cell wall of any of these - Expression of a protein whose amino acid sequence is 50% or more identical to pyruvate modifying enzyme 9 may be suppressed.
  • the function of the cell wall-pyruvate modifying enzyme 9 or a protein having an equivalent function to the enzyme is suppressed or lost, or (ii) the function of the cell wall-pyruvate modifying enzyme 9 or the relevant enzyme is suppressed or lost.
  • the expression level of proteins with functions equivalent to enzymes decreases. This makes it difficult for the covalent sugar chains 3 on the surface of the cell wall 4 to be modified with pyruvate, so that the sugar chains 3 on the cell wall 4 interact with the SLH domain 7 of the SLH domain-retaining outer membrane protein 6 in the outer membrane 5. The amount of binding and the binding strength are reduced.
  • the covalently bonded sugar chains 3 on the surface of the cell wall 4 are difficult to be modified with pyruvate, so the binding force between the cell wall 4 and the outer membrane 5 is weakened, and the outer membrane 5 becomes easily partially detached from the cell wall 4.
  • the modified cyanobacteria substances produced inside the bacteria are likely to leak out of the cells, and plant disease resistance-inducing substances produced inside the cells are also likely to leak out of the cells.
  • the cell wall-pyruvate modifying enzyme 9 whose function is suppressed or lost is, for example, an amino acid sequence of any of the cell wall-pyruvate modifying enzymes 9 shown in SEQ ID NOS: 4 to 6 above, and 40% or more of the amino acid sequence
  • the peptidoglycan of the cell wall 4 preferably consists of an amino acid sequence having an identity of 50% or more, more preferably 60% or more, still more preferably 70% or more, even more preferably 80% or more, still more preferably 90% or more, and It may be a protein or polypeptide that has a function of catalyzing a reaction that modifies the covalently bonded sugar chain 3 of 2 with pyruvate.
  • suppressing or losing the function of the SLH domain-retaining outer membrane protein 6 means suppressing or losing the ability of the protein to bind to the cell wall 4, and refers to suppressing or losing the ability of the protein to bind to the outer membrane 5. or the ability of the protein to become embedded in the outer membrane 5 and function.
  • suppressing or losing the function of the cell wall-pyruvic acid modifying enzyme 9 means suppressing or losing the function of the protein to modify the covalent sugar chain 3 of the cell wall 4 with pyruvate.
  • the means for suppressing or losing the function of these proteins is not particularly limited as long as it is a means commonly used for suppressing or losing the function of proteins.
  • the means includes, for example, deleting or inactivating the gene encoding the SLH domain-retaining outer membrane protein 6 and the gene encoding the cell wall-pyruvate modifying enzyme 9, inhibiting the transcription of these genes,
  • the method may include inhibiting the translation of transcription products of these genes, or administering an inhibitor that specifically inhibits these proteins.
  • the modified cyanobacterium has a gene that expresses a protein involved in binding the outer membrane 5 and the cell wall 4 deleted or inactivated.
  • the modified cyanobacteria the expression of proteins involved in binding between the cell wall 4 and outer membrane 5 is suppressed, or the function of the protein is suppressed or lost, so that the cell wall 4 and outer membrane 5 are bonded.
  • the binding (that is, the binding amount and binding strength) is partially reduced.
  • the outer membrane 5 tends to be partially detached from the cell wall 4. Therefore, in the modified cyanobacteria, intracellularly produced substances such as proteins and metabolites produced inside the microbial cell are removed from the outer membrane 5.
  • the modified cyanobacteria improves the secretion productivity of the plant disease resistance inducing substance, which secretes the plant disease resistance inducing substance produced within the bacterial body to the outside of the bacterial body.
  • the modified cyanobacteria can be repeatedly used to produce plant disease resistance-inducing substances.
  • the gene that expresses the protein involved in the binding between the outer membrane 5 and the cell wall 4 is, for example, at least one of the gene encoding the SLH domain-retaining outer membrane protein 6 and the gene encoding the cell wall-pyruvate modifying enzyme 9. There may be.
  • the modified cyanobacteria at least one of the genes encoding SLH domain-retaining outer membrane protein 6 and the gene encoding cell wall-pyruvate modifying enzyme 9 has been deleted or inactivated.
  • the modified cyanobacteria for example, (i) the expression of at least one of the SLH domain-retaining outer membrane protein 6 and the cell wall-pyruvate modifying enzyme 9 is suppressed, or (ii) the SLH domain-retaining outer membrane protein At least one function of cell wall-pyruvate modifying enzyme 6 and cell wall-pyruvate modifying enzyme 9 is suppressed or lost. Therefore, the bond between the SLH domain 7 of the SLH domain-retaining outer membrane protein 6 in the outer membrane 5 and the covalent sugar chain 3 on the surface of the cell wall 4 (that is, the bond amount and binding force) is reduced.
  • the SLH domain-retaining outer membrane protein 6 in order to suppress or lose at least one function of the SLH domain-retaining outer membrane protein 6 and the cell wall-pyruvate modifying enzyme 9 in cyanobacteria, for example, the SLH domain-retaining outer membrane protein 6 is used. Transcription of at least one of the gene encoding cell wall-pyruvate modifying enzyme 9 may be suppressed.
  • the gene encoding SLH domain-retaining outer membrane protein 6 may be slr1841, slr1908, or slr0042 when the parent cyanobacterium belongs to the genus Synechocystis, and may be nies970_09470 when the parent cyanobacterium belongs to the genus Synechococcus.
  • the parent cyanobacteria when the parent cyanobacteria is of the genus Anabaena, it may be anacy_5815 or anacy_3458, etc.
  • the parent cyanobacteria is of the genus Microcystis, it may be A0A0F6U6F8_MICAE, etc.
  • the parent cyanobacteria When the parent cyanobacteria is of the genus Cyanothece, it may be A0A3B8XX12_9CYAN, etc. If the parent cyanobacteria belongs to the genus Leptolyngbya, it may be A0A1Q8ZE23_9CYAN, etc. If the parent cyanobacterium belongs to the genus Calothrix, it may be A0A1Z4R6U0_9CYAN, and if the parent cyanobacterium belongs to the genus Nostoc, it may be A0A1C0VG86_9NOSO, etc.
  • the parent cyanobacterium belongs to the genus Crocosphaera, it may be B1WRN6_CROS5, and when the parent cyanobacterium belongs to the genus Pleurocapsa, it may be K9TAE4_9CYAN.
  • the base sequences of these genes can be obtained from the NCBI database or Cyanobase mentioned above.
  • genes encoding SLH domain-retaining outer membrane protein 6 include slr1841 (SEQ ID NO: 7) of Synechocystis sp. PCC 6803, nies970_09470 (SEQ ID NO: 8) of Synechococcus sp. NIES-970, and Anabaena cylindrica PCC. 7122 anacy_3458 (SEQ ID NO: 9), or a gene whose amino acid sequence is 50% or more identical to these genes.
  • the gene encoding any of the SLH domain-retaining outer membrane protein 6 shown in SEQ ID NOs: 7 to 9 above, or the base sequence of any of these genes is 50% or more identical. Genes are deleted or inactivated. Therefore, in the modified cyanobacteria, (i) the expression of any of the above-mentioned SLH domain-retaining outer membrane protein 6 or a protein having a function equivalent to any of these proteins is suppressed, or (ii) the above-mentioned The function of any of the SLH domain-retaining outer membrane protein 6 or a protein having a function equivalent to any of these proteins is suppressed or lost.
  • the binding domain for example, SLH domain 7
  • the binding domain decreases the binding amount and binding force with the cell wall 4, so that the outer membrane 5 is separated from the cell wall 4. Parts become easier to disengage.
  • the proteins and metabolites produced within the bacterial cells tend to leak out of the bacterial cells, so that the plant disease resistance-inducing substances produced within the bacterial cells also tend to leak out of the bacterial cells.
  • the amino acid sequences of a protein are 30% or more identical, it is said that the protein is likely to have the same function as the protein. Therefore, if the base sequences of genes encoding proteins are 30% or more identical, it is considered that there is a high possibility that a protein having the same function as the protein will be expressed. Therefore, as a gene encoding the SLH domain-retaining outer membrane protein 6 whose function is suppressed or lost, for example, any of the genes encoding the SLH domain-retaining outer membrane protein 6 shown in SEQ ID NOs: 7 to 9 above.
  • the gene encoding cell wall-pyruvate modifying enzyme 9 may be slr0688, etc. when the parent cyanobacterium belongs to the genus Synechocystis, and may be syn7502_03092 or synpcc7942_1529, etc. when the parent cyanobacterium belongs to the genus Synechococcus. If the parent cyanobacterium belongs to the genus Anabaena, it may be ana_C20348 or anacy_1623, and if the parent cyanobacterium belongs to the genus Microcystis, it may be csaB (NCBI access ID: TRU80220), etc.
  • the parent cyanobacterium belongs to the genus Cyanothece, it may be csaB (NCBI access ID: WP_107667006.1), etc., and if the parent cyanobacterium belongs to the genus Spirulina, it may be csaB (NCBI access ID: WP_026079530.1), etc. , if the parent cyanobacteria belongs to the genus Calothrix, it may be csaB (NCBI access ID: WP_096658142.1), etc., and if the parent cyanobacteria belongs to the genus Nostoc, it may be csaB (NCBI access ID: WP_099068528.1), etc.
  • the parent cyanobacterium belongs to the genus Crocosphaera, it may be csaB (NCBI access ID: WP_012361697.1), and if the parent cyanobacterium belongs to the genus Pleurocapsa, it may be csaB (NCBI access ID: WP_036798735). etc. may be used.
  • the base sequences of these genes can be obtained from the NCBI database or Cyanobase mentioned above.
  • the gene encoding cell wall-pyruvate modification enzyme 9 is slr0688 (SEQ ID NO: 10) of Synechocystis sp. PCC 6803, synpcc7942_1529 (SEQ ID NO: 11) of Synechococcus sp. PCC 7942, or Anabaena cylindrica PCC. 7122 anacy_1623 (SEQ ID NO: 12).
  • the gene may have a base sequence that is 50% or more identical to these genes.
  • the base sequence of the gene encoding any of the cell wall-pyruvic acid modifying enzymes 9 shown in SEQ ID NOs: 10 to 12 above or the gene encoding any of these enzymes is 50% or more. Genes that are identical are deleted or inactivated. Therefore, in the modified cyanobacteria, (i) the expression of any of the above cell wall-pyruvate modifying enzymes 9 or a protein having a function equivalent to any of these enzymes is suppressed, or (ii) the above-mentioned The function of any cell wall-pyruvate modifying enzyme 9 or a protein having a function equivalent to any of these enzymes is suppressed or lost.
  • any of the genes encoding the cell wall-pyruvate modifying enzyme 9 shown in SEQ ID NOs: 10 to 12 above can be used. From a base sequence having an identity of 40% or more, preferably 50% or more, more preferably 60% or more, still more preferably 70% or more, even more preferably 80% or more, even more preferably 90% or more with the base sequence. It may also be a gene that encodes a protein or polypeptide that has the function of catalyzing a reaction that modifies the covalent sugar chain 3 of the peptidoglycan 2 of the cell wall 4 with pyruvate.
  • the method for producing a modified cyanobacterium includes the step of suppressing or losing the function of a protein involved in binding the outer membrane 5 and the cell wall 4 in the cyanobacterium.
  • the protein involved in the binding between the outer membrane 5 and the cell wall 4 may be, for example, at least one of the SLH domain-retaining outer membrane protein 6 and the cell wall-pyruvic acid modifying enzyme 9.
  • Means for suppressing or losing protein function include, but are not particularly limited to, deletion or deletion of the gene encoding the SLH domain-retaining outer membrane protein 6 and the gene encoding the cell wall-pyruvate modifying enzyme 9. Whether it is by inactivating these genes, inhibiting the transcription of these genes, inhibiting the translation of the transcripts of these genes, or administering inhibitors that specifically inhibit these proteins. good.
  • Means for deleting or inactivating the above gene include, for example, introducing a mutation into one or more bases on the base sequence of the gene, replacing the base sequence with another base sequence, or replacing the base sequence with another base sequence. It may be insertion, or deletion of part or all of the base sequence of the gene.
  • Means for inhibiting the transcription of the above genes include, for example, introducing mutations into the promoter region of the gene, inactivating the promoter by substituting or inserting other base sequences, or CRISPR interference (non-transfer).
  • Patent Document 7 Yao et al., ACS Synth. Biol., 2016, 5:207-212).
  • Specific methods for the above-mentioned mutagenesis or base sequence substitution or insertion may be, for example, ultraviolet irradiation, site-specific mutagenesis, or homologous recombination.
  • the means for inhibiting the translation of the transcription product of the gene may be, for example, RNA (ribonucleic acid) interference.
  • modified cyanobacteria may be produced by suppressing or losing the function of a protein involved in binding the outer membrane 5 and cell wall 4 in cyanobacteria.
  • modified cyanobacteria produced by the above production method, the bond between the cell wall 4 and the outer membrane 5 (that is, the bond amount and binding force) is partially reduced, so that the outer membrane 5 is partially separated from the cell wall 4. It becomes easier to detach.
  • substances produced within the bacterium such as proteins and metabolites that are produced within the bacterium tend to leak out of the outer membrane 5 (in other words, out of the bacterium), resulting in plant disease resistance.
  • Substances involved in sexual induction that is, plant disease resistance inducers
  • modified cyanobacteria with improved secretion productivity of plant disease resistance-inducing substances can be provided.
  • the plant disease resistance-inducing substances produced within the bacterial cells leak out of the bacterial cells, so the bacterial cells are crushed in order to recover the substances. There's no need to. For example, it is sufficient to cultivate the modified cyanobacteria under appropriate conditions and then recover the plant disease resistance inducer secreted into the culture solution. It is also possible to recover the material. Therefore, by using the modified cyanobacteria obtained by this production method, it is possible to efficiently produce microbiological plant disease resistance inducers. Therefore, according to the method for producing modified cyanobacteria in the present embodiment, it is possible to provide modified cyanobacteria with high utilization efficiency that can be repeatedly used even after the plant disease resistance-inducing substance is recovered.
  • the method for inducing plant disease resistance according to this embodiment uses the above-mentioned plant disease resistance inducing agent.
  • the plant disease resistance inducing agent according to the present embodiment is a plant disease resistance inducing agent with improved plant disease resistance inducing effect, so that by using the above plant disease resistance inducing agent, , can effectively induce plant disease resistance.
  • the above-mentioned plant disease resistance inducers may be used as they are, or after being concentrated or diluted.
  • concentration and application method of the plant disease resistance inducer should be determined as appropriate depending on the type of plant, soil properties, purpose, etc. Good too.
  • the plant disease resistance inducer may be, for example, the culture solution itself of the modified cyanobacteria, or it may be a solution obtained by removing the cells of the modified cyanobacteria from the culture solution, and the plant disease resistance inducer may be a solution obtained by removing the cells of the modified cyanobacteria from the culture solution. It may also be an extract extracted by.
  • the dosage form of the plant disease resistance inducing agent may be liquid, or may be a powder obtained by drying a liquid plant disease resistance inducing agent, for example, by a technique such as spray drying.
  • the method for applying the plant disease resistance inducer to plants may be, for example, spraying on plants or soil, irrigation, or mixing. More specifically, for example, several milliliters per individual plant may be added to the base of the plant about once a week, or may be sprayed on the leaves.
  • the modified cyanobacteria the method for producing the modified cyanobacteria, the plant disease resistance inducer, the method for inducing plant disease resistance, and the method for producing the plant disease resistance inducer of the present disclosure will be specifically explained in Examples.
  • the present disclosure is in no way limited to the following examples.
  • cyanobacteria As a method for partially detaching the outer membrane of cyanobacteria from the cell wall, we will suppress the expression of the slr1841 gene encoding an SLH domain-retaining outer membrane protein (Example 1) and modify the cell wall with pyruvate. The expression of the slr0688 gene encoding the enzyme was suppressed (Example 2), and two types of modified cyanobacteria were produced. Then, the protein secretion productivity of these modified cyanobacteria was measured, and the secreted intracellular substances (here, proteins and intracellular metabolites) were identified.
  • the cyanobacterial species used in this example is Synechocystis sp. PCC 6803 (hereinafter simply referred to as "cyanobacteria").
  • Example 1 In Example 1, a modified cyanobacterium in which the expression of the slr1841 gene encoding the SLH domain-retaining outer membrane protein was suppressed was produced.
  • a modified cyanobacterial strain in which slr1841 gene expression is suppressed CRISPR (Clustered Regularly Interspaced Short Palindromic Repeat) interference method was used as a method for suppressing gene expression.
  • CRISPR Clustered Regularly Interspaced Short Palindromic Repeat
  • the expression of the slr1841 gene is suppressed by introducing the gene encoding the dCas9 protein (hereinafter referred to as the dCas9 gene) and the slr1841_sgRNA (single-guide Ribonucleic Acid) gene into the chromosomal DNA of cyanobacteria. Can be done.
  • the mechanism of gene expression suppression using this method is as follows.
  • a Cas9 protein lacking nuclease activity (dCas9) and sgRNA (slr1841_sgRNA) that binds complementary to the base sequence of the slr1841 gene form a complex.
  • this complex recognizes the slr1841 gene on the cyanobacterial chromosomal DNA and specifically binds to the slr1841 gene. This binding causes steric hindrance, which inhibits transcription of the slr1841 gene. As a result, the expression of the cyanobacterial slr1841 gene is suppressed.
  • the three genes mentioned above are inserted into the psbA1 gene on the chromosomal DNA in a linked state, so they can be amplified as one DNA fragment by PCR.
  • the obtained DNA fragment is referred to as "psbA1::dCas9 cassette.”
  • the psbA1::dCas9 cassette was inserted into the pUC19 plasmid using the In-Fusion PCR cloning method (registered trademark) to obtain the pUC19-dCas9 plasmid.
  • sgRNA specifically binds to the target gene by introducing a sequence of approximately 20 bases complementary to the target sequence into a region called protospacer on the sgRNA gene. do.
  • the protospacer sequences used in this example are shown in Table 3.
  • the sgRNA gene (excluding the protospacer region) and the kanamycin resistance marker gene are inserted into the slr2030-slr2031 gene on the chromosomal DNA in a linked form. Therefore, by adding a protospacer sequence (SEQ ID NO: 21) complementary to the slr1841 gene (SEQ ID NO: 7) to the primers used when amplifying the sgRNA gene by PCR, we created an sgRNA (slr1841_sgRNA) that specifically recognizes slr1841. ) can be easily obtained.
  • a DNA fragment (slr2030-2031::slr1841_sgRNA) was obtained in which i) slr2030 gene fragment, (ii) slr1841_sgRNA, (iii) kanamycin resistance marker gene, and (iv) slr2031 gene fragment were linked in this order.
  • slr2030-2031::slr1841_sgRNA was inserted into the pUC19 plasmid to obtain the pUC19-slr1841_sgRNA plasmid.
  • the pUC19-slr1841_sgRNA plasmid was introduced into the Synechocystis dCas9 strain in the same manner as in (1-1) above, and the transformed cells were selected on a BG-11 agar medium containing 30 ⁇ g/mL kanamycin.
  • a transformant Synechocystis dCas9 slr1841_sgRNA strain (hereinafter also referred to as slr1841 suppressed strain) in which slr1841_sgRNA was inserted into the slr2030-slr2031 gene on the chromosomal DNA was obtained.
  • Example 2 a modified cyanobacterium in which the expression of the slr0688 gene encoding a cell wall-pyruvate modifying enzyme was suppressed was obtained by the following procedure.
  • the set of primers slr2030-Fw (SEQ ID NO: 15) and sgRNA_slr0688-Rv (SEQ ID NO: 19) and the set of sgRNA_slr0688-Fw (SEQ ID NO: 20) and slr2031-Rv (SEQ ID NO: 18) listed in Table 1 were used.
  • In-Fusion PCR was performed on a DNA fragment (slr2030-2031::slr0688_sgRNA) in which (i) slr2030 gene fragment, (ii) slr0688_sgRNA, (iii) kanamycin resistance marker gene, and (iv) slr2031 gene fragment were linked in this order.
  • Example 1 the cell surface conditions of the bacterial strains obtained in Example 1, Example 2, and Comparative Example 1 were observed and protein secretion productivity tests were conducted. The details will be explained below.
  • the cells in the resin were sliced to a thickness of 70 nm using an ultramicrotome (Ultracut) to create ultrathin sections.
  • This ultrathin section was stained with a 2% uranium acetate and 1% lead citrate solution to prepare a transmission electron microscopy sample of the slr1841 suppressed strain of Example 1. Note that the same operation was performed for the slr0688 suppressed strain of Example 2 and the Control strain of Comparative Example 1, respectively, to prepare samples for transmission electron microscopy.
  • FIG. 3 is a TEM (Transmission Electron Microscope) image of the slr1841 suppressed strain of Example 1.
  • FIG. 4 is an enlarged image of the broken line area A in FIG.
  • FIG. 4(a) is an enlarged TEM image of the broken line area A in FIG. 3
  • FIG. 4(b) is a diagram depicting the enlarged TEM image of FIG. 4(a).
  • FIG. 5 is a TEM image of the slr0688 suppressed strain of Example 2.
  • FIG. 6 is an enlarged image of the broken line area B in FIG. 6(a) is an enlarged TEM image of the broken line area B in FIG. 5, and
  • FIG. 6(b) is a diagram depicting the enlarged TEM image of FIG. 6(a).
  • FIG. 7 is a TEM image of the Control strain of Comparative Example 1.
  • FIG. 8 is an enlarged image of the broken line area C in FIG.
  • FIG. 8(a) is an enlarged TEM image of the broken line area C in FIG. 7
  • FIG. 8(b) is a diagram depicting the enlarged TEM image of FIG. 8(a).
  • the cell surface layer of the Control strain of Comparative Example 1 was well-organized, and the inner membrane, cell wall, outer membrane, and S layer remained laminated in this order.
  • the parts where the outer membrane detached from the cell wall, the parts where the outer membrane peeled off from the cell wall (that is, the parts fell off), and the parts where the outer membrane bent were I could't see it.
  • Protein secretion productivity test The slr1841 suppressed strain of Example 1, the slr0688 suppressed strain of Example 2, and the Control strain of Comparative Example 1 were cultured, and the amount of protein secreted outside the cells (hereinafter referred to as secreted (also referred to as protein amount) was measured. The protein secretion productivity of each of the above bacterial strains was evaluated based on the amount of protein in the culture solution. Note that protein secretion productivity refers to the ability to produce proteins by secreting proteins produced within the cells to the outside of the cells. A specific method will be explained below.
  • Example 1 Culture of strain The slr1841 suppressed strain of Example 1 was cultured in the same manner as in (3-1) above. Culturing was performed independently three times. The strains of Example 2 and Comparative Example 1 were also cultured under the same conditions as the strains of Example 1.
  • the culture solution obtained in (4-1) above was centrifuged at 2,500 g for 10 minutes at room temperature to obtain a culture supernatant.
  • the obtained culture supernatant was filtered using a membrane filter with a pore size of 0.22 ⁇ m to completely remove the cells of the slr1841 suppressed strain of Example 1.
  • the total amount of protein contained in the culture supernatant after filtration was quantified by the BCA (Bicinchoninic Acid) method. This series of operations was performed for each of the three independently cultured cultures, and the average value and standard deviation of the amount of protein secreted extracellularly of the slr1841 suppressed strain of Example 1 was determined.
  • the protein in the three culture solutions was quantified under the same conditions, and the average value and standard deviation of the protein amounts in the three culture solutions were determined.
  • the amount of protein secreted into the culture supernatant (mg/ L) was improved by about 25 times.
  • the absorbance (730 nm) of the culture solution was measured and the amount of secreted protein per 1 g of bacterial cell dry weight (mg protein/g cell dry weight) was calculated.
  • the amount of secreted protein per gram of bacterial cell dry weight was approximately 36 times higher than that of the Control strain of Comparative Example 1.
  • the gene encoding the cell wall-pyruvate modifying enzyme ( The slr0688 suppressed strain of Example 2, in which the expression of slr0688) was suppressed, had a higher amount of protein secreted into the culture supernatant. This is thought to be related to the fact that the number of covalently bonded sugar chains on the cell wall surface is greater than the number of SLH domain-retaining outer membrane proteins (Slr1841) in the outer membrane.
  • IAA iodoacetamide
  • cysteine was added at a final concentration of 60 mM, and the mixture was allowed to stand at room temperature for 10 minutes.
  • 400 ng of trypsin was added and left standing at 37°C overnight to fragment the protein into peptide fragments.
  • TFA Trifluoroacetic Acid
  • the sample was dried using a centrifugal evaporator. Thereafter, 3% acetonitrile and 0.1% formic acid were added, and the sample was dissolved using a closed ultrasonic crusher. The peptide concentration was adjusted to 200 ng/ ⁇ L.
  • Sample injection amount 200ng
  • Solvent A solvent is 0.1% formic acid aqueous solution, B solvent is 0.1% formic acid + 80% acetonitrile
  • Gradient program B solvent 8% after 4 minutes of sample injection, B solvent 44% after 27 minutes, B solvent 80% after 28 minutes, 34 Measurement ends after minutes
  • Plant Cultivation Test (7-1-1) Tomato Cultivation Test In the tomato cultivation test, cherry tomatoes were grown in the following manner. First, commercially available culture soil was placed in a cultivation planter (22 cm x 16 cm), and three tomato seeds were sown per planter. Cultivation was performed at an indoor temperature of 23° C., a white light source photon flux density of 250 ⁇ mol/m 2 /s, and 16 hours of light and 8 hours of darkness. Approximately one week after the start of cultivation, when the cotyledons had developed, the plants were thinned out to equalize the size of the plants in each planter.
  • Example 3 In Example 3, as described above, the individual sizes of each planter were made the same, and after planting cherry tomato seedlings, a plant disease resistance inducer diluted 20 times with water was applied at a rate of 10 mL per tomato plant once every two weeks. It was sprayed on the leaves.
  • Comparative Example 2 Comparative Example 2 was carried out in the same manner as Example 3 except that water was used instead of the disease resistance inducer.
  • Example 4 In Example 4, as described above, the individual size of each pot was made the same, and two weeks after sowing, a plant disease resistance inducer diluted 20 times with water was sprayed on the leaves to the extent that the leaves were visually wet.
  • Comparative Example 3 Comparative Example 3 was carried out in the same manner as Example 4 except that water was used instead of the disease resistance inducer.
  • RNA plant kit manufactured by Takara Bio Inc.
  • This total RNA is processed with TruSeq (registered trademark) Standard mRNA LT Sample Prep Kit (manufactured by Illumina) to create a library, and the created library is subjected to transcriptome analysis using NovaSeq (registered trademark) next-generation sequencer (manufactured by Illumina). Performed sequencing.
  • RNA-Seq by performing RNA-Seq on the samples of the comparative example (untreated group) and the example (treated group) using a next-generation sequencer, we can identify differences in expression levels between the untreated group and the treated group.
  • Transcripts genes
  • the NPR1 (Nonexpressor of Pathogenesis-Related 1) gene, TGA gene, and PR gene which are widely present in plants in general, are genes involved in plant disease resistance (hereinafter referred to as plant disease resistance-related genes).
  • plant disease resistance-related genes By analyzing the expression level of the Pathogenesis-Related-1 (Pathogenesis-Related-1) gene, we investigated changes in the expression of genes related to plant disease resistance.
  • Table 6 shows the results of expression level analysis of plant disease resistance-related genes in Examples 3 and 4. Additionally, Table 7 shows the NCBI-gene IDs of the disease resistance genes corresponding to *1 to *8 listed in Table 6.
  • Table 6 shows, as a result of the expression level analysis of Example 3, the expression level (also referred to as transcription level) of the plant disease resistance-related gene of the cherry tomato of Comparative Example 2, and the plant disease resistance of the cherry tomato of Example 3. Relative values of expression levels (transcription levels) of sex-related genes are shown. Table 6 also shows the results of the expression level analysis in Example 4, showing the expression levels (transcription levels) of plant disease resistance-related genes in spinach grown in Comparative Example 3 compared to the expression levels (transcription levels) of spinach grown in Example 4. The relative values of expression levels (transcription levels) of plant disease resistance-related genes are shown.
  • cherry tomatoes (Example 3) and spinach (Example 4) to which the plant disease resistance inducer of the present disclosure was applied were found to have a high level of NPR1 gene, TGA gene, and PR-1 gene. It was confirmed that the expression level increased at least twice. Specifically, the expression level of the NPR1 gene was doubled in both cherry tomatoes (Example 3) and spinach (Example 4). Furthermore, the expression level of the TGA gene increased nearly 15 times in cherry tomatoes (Example 3), and increased 4 to 53 times in spinach (Example 4). Furthermore, the expression level of PR-1 gene 3 increased twice in cherry tomatoes (Example 3), and increased three to four times in spinach (Example 4).
  • the NPR1 gene, TGA gene, and PR-1 gene are widely present in plants in general and are known to improve disease resistance.
  • the above results suggest that the disease resistance inducer of the present disclosure has a versatile effect applicable to various plants and significantly activates disease resistance-related genes. Therefore, it was confirmed that the plant disease resistance inducer of the present disclosure can effectively induce disease resistance in plants.
  • the plant disease resistance inducing agent and the plant disease resistance inducing method of the present disclosure it is possible to effectively induce disease resistance in plants, thereby improving the resistance of plants to diseases. Furthermore, according to the method for producing a plant disease resistance inducer of the present disclosure, by culturing cyanobacteria, a plant disease resistance inducer containing the secretions thereof can be produced. It can be manufactured easily and efficiently. Therefore, according to the present disclosure, it is possible to increase the resistance of plants to diseases, so it is possible to expect increased yield and higher quality of crops.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Plant Pathology (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Pest Control & Pesticides (AREA)
  • Environmental Sciences (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mycology (AREA)
  • Dentistry (AREA)
  • Agronomy & Crop Science (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本開示は、効果的に植物の病害に対する抵抗性を誘導することができる植物病害抵抗性誘導剤を提供する。本開示による植物病害抵抗性誘導剤は、シアノバクテリアの分泌物を含む。

Description

植物病害抵抗性誘導剤、植物病害抵抗性誘導方法、及び、植物病害抵抗性誘導剤の製造方法
 本開示は、植物の病害抵抗性誘導に資する天然代謝産物である植物病害抵抗性誘導剤、植物病害抵抗性誘導方法、及び、植物病害抵抗性誘導剤の製造方法に関する。
 世界人口の増加に伴う食糧増産への要求に伴い、限られた耕作地の中で効率よく品質の高い農作物を生産するための技術開発が求められている。具体的には、成長増進による栽培期間の短縮、栽培面積あたりの収穫量の増加、病害及び規格外品の低減による歩留まり向上、並びに、果実の増体及び高糖度化などの生産物の高品質化が望まれている。
 また、地球温暖化の防止及び環境負荷の低減の観点から、脱化石資源に向けた生物由来原料の利用が増大している。中でも、製造過程における化石エネルギーの消費量が少なく、かつ、施用において環境負荷の少ない天然由来の物質の活用が望まれている。
 例えば、植物の病害抵抗性を誘導する天然由来の物質として、特定のオキソ脂肪酸誘導体(特許文献1)、及び、伸長因子(Elongation Factor Tu : EF-Tu)の一部分を形成するポリペプチド鎖(特許文献2)などが知られている。また、例えば、特定の微生物種を植物に接種することにより植物の病害抵抗性を誘導できることが知られている(特許文献3)。
特許第6759448号公報 特開2015-077116号公報 特許第4359619号公報
 しかしながら、上記の従来技術では、例えば、微生物による植物病害抵抗性誘導物質の産生、又は、病害抵抗性誘導物質の精製若しくは抽出などのプロセスが煩雑で手間がかかり、コストが嵩む。また、微生物そのものを植物に接種する場合は、使用する微生物種、対象となる植物種、土壌の性質の組み合わせによりその効果が異なり、汎用性に欠け、病害抵抗性誘導の効果が不安定である。
 そこで、本開示は、効果的に植物の病害抵抗性を誘導することができる植物病害抵抗性剤、及び、植物病害抵抗性誘導方法を提供する。また、本開示は、植物病害抵抗性誘導剤を、簡便に、かつ、効率良く製造できる植物病害抵抗性誘導剤の製造方法を提供する。
 本開示の一態様に係る植物病害抵抗性誘導剤は、シアノバクテリアの分泌物を含む。
 本開示の植物病害抵抗性誘導剤及び植物病害抵抗性誘導方法は、効果的に植物の病害抵抗性を誘導することができる。また、本開示の植物病害抵抗性誘導剤の製造方法は、植物病害抵抗性誘導剤を、簡便に、かつ、効率良く製造することができる。
図1は、実施の形態に係る植物病害抵抗性誘導剤の製造方法の一例を示すフローチャートである。 図2は、シアノバクテリアの細胞表層を模式的に示した図である。 図3は、実施例1の改変シアノバクテリアの超薄切片の透過型電子顕微鏡像である。 図4は、図3の破線領域Aの拡大像である。 図5は、実施例2の改変シアノバクテリアの超薄切片の透過型電子顕微鏡像である。 図6は、図5の破線領域Bの拡大像である。 図7は、比較例1の改変シアノバクテリアの超薄切片の透過型電子顕微鏡像である。 図8は、図7の破線領域Cの拡大像である。 図9は、実施例1、実施例2及び比較例1の改変シアノバクテリアの培養上清中のタンパク質量(n=3、エラーバー=SD)を示すグラフである。 図10は、配列番号:01~配列番号:03を示す。 図11は、配列番号:04~配列番号:06を示す。 図12は、配列番号:07を示す。 図13は、配列番号:08を示す。 図14は、配列番号:09を示す。 図15は、配列番号:10~配列番号:11を示す。 図16は、配列番号:12~配列番号:18を示す。 図17は、配列番号:19~配列番号:22を示す。
 (本開示の基礎となった知見)
 背景技術で述べたように、限られた耕作地の中で効率よく品質の高い農作物を生産するための技術が求められている。また、作物生産の促進のために、施用において環境負荷の少ない天然由来の物質の活用が求められている。中でも、当該物質の製造時に化石エネルギーの消費量が少なく、より環境負荷の少ない物質が望まれている。
 作物生産を促進する技術として、以下の従来技術が開示されている。
 例えば、特許文献1には、菌の脂肪酸代謝物であるオキソ脂肪酸誘導体を植物に施用することで、サリチル酸経路により植物に全身抵抗性を誘導し、植物病害を抑制する植物賦活剤が開示されている。また、オキソ脂肪酸誘導体は、天然に存在する脂肪酸酸化物であるため、当該植物賦活剤の環境負荷は低く、かつ、施用される植物への薬害もほとんどないことが報告されている。
 また、例えば、特許文献2には、植物病原性細菌及び非植物病原性細菌に広く保存されている伸長因子(EF-Tu)の一部からなり、所定のアミノ酸配列からなるポリペプチドであって、イネ科植物の免疫応答を誘導する活性があるポリペプチドが開示されている。当該ポリペプチドは、人間に対する安全性が高く、環境負荷も極めて低いこと、及び、比較的低分子量のポリペプチドであるため、細菌を用いて容易にかつ低コストで製造することが可能であることが報告されている。また、当該ペプチド及びそれを含む植物病害抵抗性誘導剤は、薬剤の抵抗性変異株が出現しにくく、長期間にわたる施用が可能であることも報告されている。
 また、例えば、特許文献3では、植物病害防除作用を有する新規なPaenibacillus属菌を植物病害防除に用いることが開示されている。具体的には、Paenibacillus属菌の芽胞、栄養菌体、乾燥菌体、又は、全培養物もしくはその凍結乾燥粉末などを様々な形態で植物に施用しても効果を発揮することが報告されている。
 しかしながら、上記の従来技術では、微生物による植物病害抵抗性誘導物質の産生、又は、植物病害抵抗性誘導物質の精製若しくは抽出などのプロセスが煩雑で手間がかかり、コストも嵩む。また、上記の従来技術では、植物病害抵抗性誘導物質を精製及び抽出する際に、当該植物病害抵抗性誘導物質の収率の低下又は活性の低下などの損失が発生する。一方、微生物そのものを植物に接種する場合は、使用する微生物種、対象となる植物種、土壌の性質の組み合わせによりその効果が異なり、汎用性に欠け、植物病害抵抗性誘導の効果が不安定である。このことから、より安価な原料で簡便なプロセスで生産でき、かつ植物病害抵抗性誘導効果の高い天然由来の物質の開発が望まれている。
 本発明者らは、植物病害抵抗性誘導物質の製造に使用する微生物として、シアノバクテリアに着目した。シアノバクテリア(藍色細菌又は藍藻とも呼ばれる)は、真正細菌の一群であり、光合成により水を分解して酸素を産生し、得たエネルギーにより空気中のCOを固定する。シアノバクテリアは、種によっては、空気中の窒素(N)も固定できる。このように、シアノバクテリアは、菌体の生育に必要な原料(つまり、栄養分)及びエネルギーの大部分を、空気、水、及び、光から得ることができるため、安価な原料で簡便なプロセスでシアノバクテリアを培養することができる。
 また、シアノバクテリアの特性として、生育が早く光利用効率が高いことが知られており、加えてその他の藻類種と比較して遺伝子操作が容易であるため、光合成微生物の中でもシアノバクテリアを利用した物質生産に関して活発な研究開発が行われている。例えば、シアノバクテリアを用いた物質生産の例として、エタノール、イソブタノール、アルカン類、及び、脂肪酸(特許文献4:特許第6341676号公報)等の燃料の生産が報告されている。また、生物の栄養源となる物質の生産に関する研究開発も行われている。例えば、タンパク質は生物にしか合成できないため、簡便に、かつ、効率良くタンパク質を生産する技術の開発が求められている。当該技術に用いる生物種の1つとして、光エネルギーと大気中のCOとを利用できるシアノバクテリアの活用が期待され、活発な研究開発が行われている(非特許文献1:Jie Zhou et al., “Discovery of a super-strong promoter enable efficient production of heterologous proteins in cyanobacteria”,Scientific Reports, Nature Research, 2014, Vol.4, Article No.4500)。
 例えば、上記の非特許文献1に記載の技術では、シアノバクテリアにおいて異種遺伝子の効率的な発現を実現することができる。当該技術を用いれば、シアノバクテリアの細胞内(以下、菌体内ともいう)で所望のタンパク質を産生させることができる。しかしながら、シアノバクテリアの細胞内で産生されたタンパク質は、細胞外に分泌されにくいため、シアノバクテリアの細胞を破砕して、細胞内で産生されたタンパク質を抽出する必要がある。
 そこで、本発明者らは、シアノバクテリアの細胞壁を被覆する外膜を部分的に細胞壁から脱離させることにより、シアノバクテリアの菌体内で産生されたタンパク質及び菌体内代謝産物が菌体外に分泌されやすくなることを見出した。さらに、本発明者らは、シアノバクテリアの分泌物が植物の病害抵抗性誘導効果を有することも発見した。これにより、シアノバクテリアの菌体を破砕することなく、菌体外に分泌された植物病害抵抗性誘導物質を効率よく製造することができる。また、抽出などの操作が不要となることにより、植物病害抵抗性誘導物質の生理活性が損なわれにくくなるため、当該分泌物を含む植物病害抵抗性誘導剤によれば、効果的に植物の病害抵抗性を誘導することができる。
 したがって、本開示の植物病害抵抗性誘導剤及び植物病害抵抗性誘導方法は、効果的に植物の病害抵抗性を誘導することができる。また、本開示の植物病害抵抗性誘導剤の製造方法は、植物病害抵抗性誘導剤を、簡便に、かつ、効率良く、製造することができる。
 (本開示の概要)
 本開示の一態様の概要は、以下の通りである。
 本開示の一態様に係る植物病害抵抗性誘導剤は、シアノバクテリアの分泌物を含む。
 これにより、植物病害抵抗性誘導剤は、植物の病害抵抗性の誘導に関与する分泌物を含むため、効果的に植物の病害に対する抵抗性を誘導することができる。
 例えば、本開示の一態様に係る植物病害抵抗性誘導剤では、前記シアノバクテリアは、外膜と細胞壁との結合に関与するタンパク質の機能が抑制又は喪失されている改変シアノバクテリアであってもよい。
 これにより、改変シアノバクテリアでは、細胞壁と外膜との結合(つまり、結合量及び結合力)が部分的に低減するため、外膜が細胞壁から部分的に脱離しやすくなる。そのため、改変シアノバクテリアでは、菌体内で産生されたタンパク質及び代謝産物(つまり、菌体内産生物質)が外膜の外に(つまり、菌体の外に)漏出しやすくなる。これにより、改変シアノバクテリアの菌体内で産生されたタンパク質及び代謝産物が菌体外に分泌されやすくなるため、例えば菌体を破砕するなどの、菌体内産生物質の抽出処理が不要となる。そのため、菌体内産生物質の生理活性の低下及び収率の低下が起こりにくくなり、改変シアノバクテリアの菌体内産生物質のうち、植物の病害抵抗性の誘導に関与する物質(以下、植物病害抵抗性誘導物質ともいう)の生理活性の低下及び収率の低下も起こりにくくなる。したがって、本開示の一態様に係る植物病害抵抗性誘導剤は、効果的に植物の病害に対する抵抗性を誘導することができる。
 例えば、本開示の一態様に係る植物病害抵抗性誘導剤は、前記外膜と細胞壁との結合に関与するタンパク質は、SLH(Surface Layer Homology)ドメイン保持型外膜タンパク質、及び、細胞壁-ピルビン酸修飾酵素の少なくとも1つであってもよい。
 これにより、改変シアノバクテリアでは、例えば、(i)細胞壁と結合するSLHドメイン保持型外膜タンパク質及び細胞壁の表面の結合糖鎖をピルビン酸修飾する反応を触媒する酵素(つまり、細胞壁-ピルビン酸修飾酵素)の少なくとも1つの機能が抑制若しくは喪失されている、又は、(ii)SLHドメイン保持型外膜タンパク質、及び、細胞壁-ピルビン酸修飾酵素の少なくとも1つの発現が抑制されている。そのため、外膜中のSLHドメイン保持型外膜タンパク質のSLHドメインと、細胞壁の表面の共有結合型の糖鎖との結合(つまり、結合量及び結合力)が低減する。これにより、外膜と細胞壁との結合が弱まった部分において外膜が細胞壁から脱離しやすくなる。その結果、改変シアノバクテリアでは、外膜と細胞壁との結合が低減することにより外膜が細胞壁から部分的に脱離しやすくなるため、上記のように菌体内で産生されたタンパク質及び代謝産物などの菌体内産生物質が菌体外に漏出しやすくなる。これにより、改変シアノバクテリアは、菌体内で産生された植物病害抵抗性誘導物質を菌体外に分泌する分泌生産性が向上する。したがって、本開示の一態様に係る植物病害抵抗性誘導剤は、当該改変シアノバクテリアにより効率良く分泌された植物病害抵抗性誘導物質を含むため、効果的に植物の病害に対する抵抗性を誘導することができる。
 例えば、本開示の一態様に係る植物病害抵抗性誘導剤は、前記SLHドメイン保持型外膜タンパク質は、配列番号1で示されるアミノ酸配列からなるSlr1841、配列番号2で示されるアミノ酸配列からなるNIES970_09470、配列番号3で示されるアミノ酸配列からなるAnacy_3458、又は、これらのいずれかのSLHドメイン保持型外膜タンパク質とアミノ酸配列が50%以上同一であるタンパク質であってもよい。
 これにより、改変シアノバクテリアでは、例えば、(i)上記の配列番号1~3で示されるいずれかのSLHドメイン保持型外膜タンパク質又はこれらのいずれかのSLHドメイン保持型外膜タンパク質とアミノ酸配列が50%以上同一であるタンパク質の機能が抑制若しくは喪失されている、又は、(ii)上記の配列番号1~3で示されるいずれかのSLHドメイン保持型外膜タンパク質又はこれらのいずれかのSLHドメイン保持型外膜タンパク質とアミノ酸配列が50%以上同一であるタンパク質の発現が抑制されている。そのため、改変シアノバクテリアでは、(i)外膜中のSLHドメイン保持型外膜タンパク質若しくはSLHドメイン保持型外膜タンパク質と同等の機能を有するタンパク質の機能が抑制若しくは喪失される、又は、(ii)外膜中のSLHドメイン保持型外膜タンパク質若しくはSLHドメイン保持型外膜タンパク質と同等の機能を有するタンパク質の発現量が低減する。その結果、改変シアノバクテリアでは、外膜が細胞壁と結合するための結合ドメイン(例えばSLHドメイン)が、細胞壁と結合する結合量及び結合力が低減するため、外膜が細胞壁から部分的に脱離しやすくなる。これにより、菌体内産生物質が菌体外に漏出されやすくなるため、菌体内で産生された植物病害抵抗性誘導物質も菌体外に漏出されやすくなる。したがって、本開示の一態様に係る植物病害抵抗性誘導剤は、改変シアノバクテリアにより効率的に分泌された植物病害抵抗性誘導物質を含むため、効果的に植物の病害抵抗性を誘導することができる。
 例えば、本開示の一態様に係る植物病害抵抗性誘導剤は、前記細胞壁-ピルビン酸修飾酵素は、配列番号4で示されるアミノ酸配列からなるSlr0688、配列番号5で示されるアミノ酸配列からなるSynpcc7942_1529、配列番号6で示されるアミノ酸配列からなるAnacy_1623、又は、これらのいずれかの細胞壁-ピルビン酸修飾酵素とアミノ酸配列が50%以上同一であるタンパク質であってもよい。
 これにより、改変シアノバクテリアでは、例えば、(i)上記の配列番号4~6で示されるいずれかの細胞壁-ピルビン酸修飾酵素若しくはこれらのいずれかの細胞壁-ピルビン酸修飾酵素とアミノ酸配列が50%以上同一であるタンパク質の機能が抑制又は喪失されている、又は、(ii)上記の配列番号4~6で示されるいずれかの細胞壁-ピルビン酸修飾酵素若しくはこれらのいずれかの細胞壁-ピルビン酸修飾酵素とアミノ酸配列が50%以上同一であるタンパク質の発現が抑制されている。そのため、改変シアノバクテリアでは、(i)細胞壁-ピルビン酸修飾酵素又は当該酵素と同等の機能を有するタンパク質の機能が抑制若しくは喪失される、又は、(ii)細胞壁-ピルビン酸修飾酵素又は当該酵素と同等の機能を有するタンパク質の発現量が低減する。これにより、細胞壁の表面の共有結合型の糖鎖がピルビン酸で修飾されにくくなるため、細胞壁の糖鎖が外膜中のSLHドメイン保持型外膜タンパク質のSLHドメインと結合する結合量及び結合力が低減する。その結果、改変シアノバクテリアでは、細胞壁の表面の共有結合型の糖鎖がピルビン酸で修飾されにくくなるため、細胞壁と外膜との結合力が弱まり、外膜が細胞壁から部分的に脱離しやすくなる。これにより、菌体内産生物質が菌体外に漏出されやすくなるため、菌体内で産生された植物病害抵抗性誘導物質も菌体外に漏出されやすくなる。したがって、本開示の一態様に係る植物病害抵抗性誘導剤は、改変シアノバクテリアにより効率的に分泌された植物病害抵抗性誘導物質を含むため、効果的に植物の病害抵抗性を誘導することができる。
 例えば、本開示の一態様に係る植物病害抵抗性誘導剤は、前記シアノバクテリアは、前記外膜と細胞壁との結合に関与するタンパク質を発現させる遺伝子が欠失又は不活性化されている改変シアノバクテリアであってもよい。
 これにより、改変シアノバクテリアでは、細胞壁と外膜との結合に関与するタンパク質の発現が抑制されるため、又は、当該タンパク質の機能が抑制若しくは喪失されるため、細胞壁と外膜との結合(つまり、結合量及び結合力)が部分的に低減する。その結果、改変シアノバクテリアでは、外膜が細胞壁から部分的に脱離しやすくなるため、菌体内で産生されたタンパク質及び代謝産物などの菌体内産生物質が外膜の外、つまり、菌体外に漏出しやすくなる。そのため、改変シアノバクテリアは、菌体内で産生された植物病害抵抗性誘導物質の分泌生産性が向上する。これにより、菌体を破砕するなどの、菌体内産生物質の抽出処理が不要となるため、菌体内産生物質の生理活性の低下及び収率の低下が起こりにくくなり、菌体内で産生された植物病害抵抗性誘導物質の生理活性の低下及び収率の低下も起こりにくくなる。したがって、本開示の一態様に係る植物病害抵抗性誘導剤は、効果的に植物の病害抵抗性を誘導することができる。
 例えば、本開示の一態様に係る植物病害抵抗性誘導剤は、前記外膜と細胞壁との結合に関与するタンパク質を発現させる遺伝子は、SLHドメイン保持型外膜タンパク質をコードする遺伝子、及び、細胞壁-ピルビン酸修飾酵素をコードする遺伝子の少なくとも1つであってもよい。
 これにより、改変シアノバクテリアでは、SLHドメイン保持型外膜タンパク質をコードする遺伝子、及び、細胞壁-ピルビン酸修飾酵素をコードする遺伝子の少なくとも1つの遺伝子が欠失又は不活性化されている。そのため、改変シアノバクテリアでは、例えば、(i)SLHドメイン保持型外膜タンパク質及び細胞壁-ピルビン酸修飾酵素の少なくとも1つの発現が抑制される、又は、(ii)SLHドメイン保持型外膜タンパク質及び細胞壁-ピルビン酸修飾酵素の少なくとも1つの機能が抑制若しくは喪失される。そのため、外膜中のSLHドメイン保持型外膜タンパク質のSLHドメインと、細胞壁の表面の共有結合型の糖鎖との結合(つまり、結合量及び結合力)が低減する。これにより、外膜と細胞壁との結合が弱まった部分において外膜が細胞壁から脱離しやすくなる。その結果、改変シアノバクテリアでは、外膜と細胞壁との結合が低減することにより外膜が細胞壁から部分的に脱離しやすくなるため、菌体内で産生されたタンパク質及び代謝産物が菌体外に漏出しやすくなり、菌体内で産生された植物病害抵抗性誘導物質も菌体外に漏出しやすくなる。したがって、本開示の一態様に係る植物病害抵抗性誘導剤は、当該改変シアノバクテリアによって効率よく分泌された植物病害抵抗性誘導物質を含むため、効果的に植物の病害抵抗性を誘導することができる。
 例えば、本開示の一態様に係る植物病害抵抗性誘導剤は、前記SLHドメイン保持型外膜タンパク質をコードする遺伝子は、配列番号7で示される塩基配列からなるslr1841、配列番号8で示される塩基配列からなるnies970_09470、配列番号9で示される塩基配列からなるanacy_3458、又は、これらのいずれかの遺伝子と塩基配列が50%以上同一である遺伝子であってもよい。
 これにより、改変シアノバクテリアでは、上記の配列番号7~9で示されるいずれかのSLHドメイン保持型外膜タンパク質をコードする遺伝子又はこれらのいずれかの遺伝子の塩基配列と50%以上同一である遺伝子が欠失又は不活性化される。そのため、改変シアノバクテリアでは、(i)上記のいずれかのSLHドメイン保持型外膜タンパク質若しくはこれらのいずれかのタンパク質と同等の機能を有するタンパク質の発現が抑制される、又は、(ii)上記のいずれかのSLHドメイン保持型外膜タンパク質若しくはこれらのいずれかのタンパク質と同等の機能を有するタンパク質の機能が抑制若しくは喪失される。その結果、改変シアノバクテリアでは、外膜が細胞壁と結合するための結合ドメイン(例えばSLHドメイン)が細胞壁と結合する結合量及び結合力が低減するため、外膜が細胞壁から部分的に脱離しやすくなる。これにより、菌体内で産生されたタンパク質及び代謝産物が菌体外に漏出しやすくなるため、菌体内で産生された植物病害抵抗性誘導物質も菌体外に漏出しやすくなる。したがって、本開示の一態様に係る植物病害抵抗性誘導剤は、改変シアノバクテリアによって効率よく分泌された植物病害抵抗性誘導物質を含むため、効果的に植物の病害抵抗性を誘導することができる。
 例えば、本開示の一態様に係る植物病害抵抗性誘導剤では、前記細胞壁-ピルビン酸修飾酵素をコードする遺伝子は、配列番号10で示される塩基配列からなるslr0688、配列番号11で示される塩基配列からなるsynpcc7942_1529、配列番号12で示される塩基配列からなるanacy_1623、又は、これらのいずれかの遺伝子と塩基配列が50%以上同一である遺伝子であってもよい。
 これにより、改変シアノバクテリアでは、上記の配列番号10~12で示されるいずれかの細胞壁-ピルビン酸修飾酵素をコードする遺伝子又はこれらのいずれかの酵素をコードする遺伝子の塩基配列と50%以上同一である遺伝子が欠失又は不活性化される。そのため、改変シアノバクテリアでは、(i)上記のいずれかの細胞壁-ピルビン酸修飾酵素若しくはこれらのいずれかの酵素と同等の機能を有するタンパク質の発現が抑制される、又は、(ii)上記のいずれかの細胞壁-ピルビン酸修飾酵素若しくはこれらのいずれかの酵素と同等の機能を有するタンパク質の機能が抑制若しくは喪失される。これにより、細胞壁の表面の共有結合型の糖鎖がピルビン酸で修飾されにくくなるため、細胞壁の糖鎖が外膜中のSLHドメイン保持型外膜タンパク質のSLHドメインと結合する結合量及び結合力が低減する。その結果、改変シアノバクテリアでは、細胞壁が外膜と結合するための糖鎖がピルビン酸で修飾される量が低減するため、細胞壁と外膜との結合力が弱まり、外膜が細胞壁から部分的に離脱しやすくなる。これにより、菌体内で産生されたタンパク質及び代謝産物が菌体外に漏出しやすくなるため、菌体内で産生された植物病害抵抗性誘導物質も菌体外に漏出しやすくなる。したがって、本開示の一態様に係る植物病害抵抗性誘導剤は、改変シアノバクテリアによって効率的に分泌された植物病害抵抗性誘導物質を含むため、効果的に植物の病害抵抗性を誘導することができる。
 また、本開示の一態様に係る植物病害抵抗性誘導方法は、シアノバクテリアの分泌物を含む植物病害抵抗性誘導剤を用いる。
 本開示の一態様に係る植物病害抵抗性誘導方法によれば、植物の病害抵抗性の誘導に関与する分泌物を含む植物病害抵抗性誘導剤を用いるため、効果的に植物の病害抵抗性を誘導することができる。
 また、本開示の一態様に係る植物病害抵抗性誘導剤の製造方法は、シアノバクテリアを準備するステップと、前記シアノバクテリアに植物の病害抵抗性の誘導に関与する分泌物を分泌させるステップと、を含む。
 これにより、シアノバクテリアを培養するだけでシアノバクテリアの菌体内で産生された植物の病害抵抗性の誘導に関与する分泌物を分泌させることができるため、容易に、かつ、効率よく、当該分泌物を含む植物病害抵抗性誘導剤を製造することができる。
 以下、実施の形態について、図面を参照しながら具体的に説明する。
 なお、以下で説明する実施の形態は、いずれも包括的又は具体的な例を示すものである。以下の実施の形態で示される数値、材料、ステップ、ステップの順序などは、一例であり、本開示を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
 また、各図は、必ずしも厳密に図示したものではない。各図において、実質的に同一の構成については同一の符号を付し、重複する説明は省略又は簡略化される場合がある。
 また、以下において、数値範囲は、厳密な意味のみを表すのではなく、実質的に同等な範囲、例えば、タンパク質の量(例えば、数又は濃度等)又はその範囲を計測することなどを含む。
 また、本明細書では、菌体と細胞とは、いずれも1つのシアノバクテリアの個体を表している。
 (実施の形態)
 本明細書において、塩基配列及びアミノ酸配列の同一性は、BLAST(Basic Local Alignment Search Tool)アルゴリズムによって計算される。具体的には、NCBI(National Center for Biotechnology Information)(https://blast.ncbi.nlm.nih.gov/Blast.cgi)のウェブサイトで利用できるBLASTプログラムにてペアワイズ解析を行うことにより算出される。シアノバクテリアの遺伝子及び当該遺伝子がコードするタンパク質に関する情報は、例えば上述のNCBIデータベース及びCyanobase(http://genome.microbedb.jp/cyanobase/)において公開されている。これらのデータベースから、目的のタンパク質のアミノ酸配列及びそれらのタンパク質をコードする遺伝子の塩基配列を取得することができる。
 [1.植物病害抵抗性誘導剤]
 まず、本実施の形態に係る植物病害抵抗性誘導剤について説明する。植物病害抵抗性誘導剤は、植物の病害に対する抵抗性を誘導し、植物の病害を防除するための薬剤をいう。植物病害抵抗性誘導剤は、病害の予防を目的としているため、病害が発生する時期前に施用してもよい。植物病害抵抗性誘導剤の使用方法としては、散布、散粉、浸漬、粉衣、塗布、燻蒸、燻煙、潅注などのいずれであってもよい。具体的な使用態様としては、植物へ薬剤を散布又は塗布する方法、薬剤を含む液に植物の種子を浸漬する方法、病害が発生している圃場又は発生する恐れのある圃場に薬剤を散布する方法、又は、土壌へ薬剤を混合する方法などが挙げられる。また、植物病害抵抗性誘導剤の使用量は、対象植物の種類、対象植物の生育段階、土壌の性質、剤型の種類、施用方法、施用時期などにより適宜設定してもよい。植物病害抵抗性誘導剤の適用対象となる植物は、栽培植物すべてが挙げられ、単子葉植物、又は、双子葉植物のいずれであってもよい。例えば、キャベツなどのアブラナ科植物、イネ、トウモロコシ、オオムギ、及び、コムギなどのイネ科植物、トマト、ナス、ジャガイモ、及び、タバコなどのナス科の植物、キュウリ、メロン、及び、カボチャなどのウリ科植物、ダイズ、エンドウ、インゲンマメ、アルファルファ、及び、ラッカセイなどのマメ科植物、イチゴ、リンゴ、及び、ナシなどのバラ科植物、クワなどのクワ科植物、ワタなどのアオイ科植物、ニンジン、パセリ、及び、セロリーなどのセリ科植物、ゴボウ、及び、レタスなどのキク科植物、ブドウなどのブドウ科植物などが挙げられるが、これらの植物に限定されない。
 植物病害抵抗性誘導剤は、シアノバクテリアの分泌物を含む。当該シアノバクテリアは、例えば、シアノバクテリア(以下、親シアノバクテリアともいう)において外膜と細胞壁との結合に関与するタンパク質(以下、結合関連タンパク質ともいう)の機能が抑制又は喪失されている改変シアノバクテリアである。なお、シアノバクテリア(つまり、親シアノバクテリア)及び改変シアノバクテリアについては後述する。
 植物病害抵抗性誘導剤は、上記のシアノバクテリアにより分泌された、植物の病害抵抗性の誘導に関与する分泌物を含む。植物の病害抵抗性の誘導に関与するとは、植物の病害抵抗性の誘導に直接的に関与することだけでなく、植物の病害抵抗性の誘導に間接的に(言い換えると、補助的に)関与することも含んでもよい。これにより、植物病害抵抗性誘導剤は、効果的に植物の病害に対する抵抗性を誘導することができるため、植物病害抵抗性誘導剤を植物に適用することで、植物の収量及び品質を向上させることができる。
 当該分泌物は、シアノバクテリアの菌体内で産生されたタンパク質及び代謝産物(以下、菌体内産生物質ともいう)を含む。当該菌体内産生物質には、植物の病害に対する抵抗性を誘導する物質(いわゆる、植物病害抵抗性誘導物質)が含まれている。
 菌体内産生物質は、例えば、ペプチダーゼ、ヌクレアーゼ、若しくは、フォスファターゼ等の有機物分解酵素、アデノシン若しくはグアノシン等のDNA代謝関連物質、p-アミノ安息香酸若しくはスペルミジンなどの核酸(例えば、DNA又はRNA)合成促進に関与する細胞内分子、3-ヒドロキシ酪酸などのケトン体、又は、グルコン酸などの有機酸である。シアノバクテリアの分泌物は、これらの菌体内産生物質の混合物であってもよい。
 [2.植物病害抵抗性誘導剤の製造方法]
 続いて、本実施の形態に係る植物病害抵抗性誘導剤の製造方法について図1を参照しながら説明する。図1は、本実施の形態に係る植物病害抵抗性誘導剤の製造方法の一例を示すフローチャートである。
 本実施の形態に係る植物病害抵抗性誘導剤の製造方法は、シアノバクテリアを準備するステップ(ステップS01)と、当該シアノバクテリアに植物の病害抵抗性誘導に関与する分泌物を分泌させるステップ(ステップS02)と、を含む。上述したように、シアノバクテリアは、例えば、シアノバクテリア(いわゆる、親シアノバクテリア)において外膜と細胞壁との結合に関与するタンパク質の機能が抑制又は喪失されている改変シアノバクテリアである。したがって、ステップS01では、改変シアノバクテリアを準備してもよい。この場合、ステップS02では、当該改変シアノバクテリアに植物の病害抵抗性誘導に関与する分泌物を分泌させる。上述したように、当該分泌物は、上記のシアノバクテリアの菌体内で産生されたタンパク質及び代謝産物(つまり、菌体内産生物質)を含む。これらの菌体内産生物質には、植物の病害抵抗性の誘導に関与する物質(つまり、植物病害抵抗性誘導物質)が含まれる。
 以下、各ステップについてより具体的に説明する。
 ステップS01では、上記のシアノバクテリアを準備する。シアノバクテリアを準備するとは、シアノバクテリアが分泌物を分泌できる状態にシアノバクテリアの状態を調整することをいい、例えば、シアノバクテリアの凍結乾燥体又はグリセロールストックから菌体を復元することであってもよいし、ステップS02で植物病害抵抗性物質を分泌させ終えたシアノバクテリアを回収することであってもよい。また、シアノバクテリアが改変シアノバクテリアである場合、シアノバクテリアを準備するとは、例えば、親シアノバクテリアを遺伝子改変して改変シアノバクテリアを作製することであってもよく、改変シアノバクテリアの凍結乾燥体又はグリセロールストックから菌体を復元することであってもよく、ステップS02で植物病害抵抗性誘導物質を分泌させ終えた改変シアノバクテリアを回収することであってもよい。
 ステップS02では、シアノバクテリアに植物の病害抵抗性の誘導に関与する分泌物を分泌させる。本実施の形態におけるシアノバクテリアは、シアノバクテリア(つまり、親シアノバクテリア)において外膜と細胞壁との結合に関与するタンパク質の機能が抑制又は喪失されている改変シアノバクテリアであるため、菌体内で産生されたタンパク質及び代謝産物が外膜の外(つまり、菌体外)に分泌されやすい。これらの菌体内産生物質には、植物の病害抵抗性の誘導に関与する物質も含まれる。そのため、ステップS02では、改変シアノバクテリアを所定の条件で培養することにより、植物の病害抵抗性の誘導に関与する菌体内産生物質が菌体外に分泌される。
 シアノバクテリアの培養は、一般に、BG-11培地(表2参照)を用いた液体培養又はその変法に基づいて実施することができる。そのため、改変シアノバクテリアの培養も同様に実施してもよい。また、植物病害抵抗性誘導剤を製造するためのシアノバクテリアの培養期間としては、十分に菌体が増殖した条件でタンパク質及び代謝産物が高濃度に蓄積するように行える期間であればよく、例えば、1~3日間であってもよく、4~7日間であってもよい。また、培養方法は、例えば、通気攪拌培養又は振とう培養であってもよい。
 上記の条件で培養することにより、改変シアノバクテリアは、菌体内でタンパク質及び代謝産物(つまり、菌体内産生物質)を産生し、当該菌体内産生物質を培養液中に分泌する。当該菌体内産生物質は、植物の病害抵抗性の誘導に関与する菌体内産生物質(つまり、植物病害抵抗性誘導物質)を含む。培養液中に分泌された菌体内産生物質を回収する場合、培養液をろ過、又は遠心分離等することにより、培養液から細胞(つまり、菌体)等の固形分を除去し、培養上清を回収してもよい。本実施の形態に係る植物病害抵抗性誘導剤の製造方法によれば、植物の病害抵抗性の誘導に関与する菌体内産生物質(つまり、植物病害抵抗性誘導物質)を含む分泌物が改変シアノバクテリアの細胞外に分泌されるので、植物病害抵抗性誘導物質の回収のために細胞を破砕する必要がない。そのため、植物病害抵抗性誘導物質の回収後に残った改変シアノバクテリアを繰り返し使用して、植物病害抵抗性誘導剤の製造を行うことができる。
 なお、培養液中に分泌された植物病害抵抗性誘導物質の回収方法は、上記の例に限られず、改変シアノバクテリアを培養しながら、培養液中の植物病害抵抗性誘導物質を回収してもよい。例えば、タンパク質を透過させる透過膜を用いることにより、透過膜を透過した植物病害抵抗性誘導物質を回収してもよい。このように、改変シアノバクテリアを培養しながら培養液中の植物病害抵抗性誘導物質を回収することができるため、培養液から改変シアノバクテリアの菌体を除去する処理が不要となる。そのため、より簡便に、かつ、効率良く植物病害抵抗性誘導剤を製造することができる。
 また、培養液からの菌体の回収処理及び菌体の破砕処理が不要となることにより、改変シアノバクテリアが受けるダメージ及びストレスを低減することができる。そのため、改変シアノバクテリアの植物病害抵抗性誘導物質の分泌生産性が低減しにくくなり、より長く改変シアノバクテリアを使用することができる。
 以上のように、本実施の形態における改変シアノバクテリアを用いることで、植物病害抵抗性誘導剤を簡便に、かつ、効率よく得ることができる。
 以下、シアノバクテリア(いわゆる、親シアノバクテリア)及び改変シアノバクテリアについて説明する。以下では、親シアノバクテリアをシアノバクテリアと呼び、本実施の形態におけるシアノバクテリアを改変シアノバクテリアと呼ぶ。
 [3.シアノバクテリア]
 シアノバクテリアは、藍藻又は藍色細菌とも呼ばれ、クロロフィルで光エネルギーを捕集し、得たエネルギーで水を電解して酸素を発生しながら光合成をおこなう原核生物の一群である。シアノバクテリアは、多様性に富んでおり、例えば、細胞形状ではSynechocystis sp. PCC 6803のような単細胞性の種及びAnabaena sp. PCC 7120のような多細胞が連なった糸状性の種がある。生育環境についても、Thermosynechococcus elongatusのような好熱性の種、Synechococcus elongatusのような海洋性の種、Synechocystisのような淡水性の種がある。また、Microcystis aeruginosaのようにガス小胞を持ち毒素を産生する種、及び、チラコイドを持たずに原形質膜に集光アンテナであるフィコビリソームと呼ばれるタンパク質を有するGloeobacter violaceusのように、独自の特徴をもつ種も多数挙げられる。
 図2は、シアノバクテリアの細胞表層を模式的に示した図である。図2に示されるように、シアノバクテリアの細胞表層は、内側から順に、原形質膜(内膜1ともいう)、ペプチドグリカン2、及び細胞最外層を形成する脂質膜である外膜5で構成される。ペプチドグリカン2にはグルコサミン及びマンノサミンなどで構成される糖鎖3が共有結合しており、また、これらの共有結合型の糖鎖3にはピルビン酸が結合している(非特許文献2:Jurgens and Weckesser, 1986, J. Bacteriol., 168:568-573)。本明細書では、ペプチドグリカン2と共有結合型の糖鎖3とを含めて細胞壁4と呼ぶ。また、原形質膜(つまり、内膜1)と外膜5との間隙は、ペリプラズムと呼ばれ、タンパク質の分解又は立体構造の形成、脂質又は核酸の分解、若しくは、細胞外の栄養素の取り込み等に関与する様々な酵素が存在する。
 SLHドメイン保持型外膜タンパク質(例えば、図中のSlr1841)は、脂質膜(外膜5ともいう)に埋め込まれたC末端側領域と、脂質膜から突き出したN末端側のSLHドメイン7から成り、シアノバクテリア及びグラム陰性細菌の一群であるNegativicutes綱に属する細菌において広く分布している(非特許文献3:Kojima et al., 2016, Biosci. Biotech. Biochem., 10:1954-1959)。脂質膜(つまり、外膜5)に埋め込まれた領域は、親水性物質の外膜透過を可能にするためのチャネルを形成し、一方でSLHドメイン7は細胞壁4に結合する機能をもつ(非特許文献4:Kowata et al., 2017, J. Bacteriol., 199:e00371-17)。SLHドメイン7が細胞壁4に結合するためには、ペプチドグリカン2における共有結合型の糖鎖3がピルビン酸で修飾されている必要がある(非特許文献5:Kojima et al., 2016, J. Biol. Chem., 291:20198-20209)。SLHドメイン保持型外膜タンパク質6をコードする遺伝子の例としては、Synechocystis sp. PCC 6803が保持するslr1841若しくはslr1908、又はAnabaena sp. 90が保持するoprBなどが挙げられる。
 ペプチドグリカン2における共有結合型の糖鎖3のピルビン酸修飾反応を触媒する酵素(以下、細胞壁-ピルビン酸修飾酵素9という)は、グラム陽性菌であるBacillus anthracisにおいて同定され、CsaBと命名されている(非特許文献6:Mesnage et al., 2000, EMBO J., 19:4473-4484)。ゲノム塩基配列が公開されているシアノバクテリアにおいて、多くの種がCsaBとアミノ酸配列の同一性が30%以上となる相同タンパク質をコードする遺伝子を保持している。例としては、Synechocystis sp. PCC 6803が保持するslr0688又はSynechococcus sp. 7502が保持するsyn7502_03092などが挙げられる。
 シアノバクテリアでは、光合成により固定されたCOは多段階の酵素反応を経て各種アミノ酸及び細胞内分子の前駆体に変換される。それらを原料として、シアノバクテリアの細胞質内でタンパク質及び代謝産物が合成される。それらのタンパク質及び代謝産物の中には、細胞質内で機能するものもあるし、細胞質からペリプラズムに輸送されてペリプラズム内で機能するものもある。しかしながら、細胞外にタンパク質及び代謝産物を積極的に分泌するケースは、現在までシアノバクテリアにおいては報告されていない。
 シアノバクテリアは、高い光合成能力を有するため、必ずしも有機物を栄養分として外から取り込む必要がない。そのため、シアノバクテリアは、図2の有機物チャネルタンパク質8(例えば、Slr1270)のように、有機物を透過させるチャネルタンパク質を外膜5に非常にわずかにしか有していない。例えば、Synechocystis sp. PCC 6803では、有機物を透過させる有機物チャネルタンパク質8は、外膜5の総タンパク質量の約4%しか存在しない。一方、シアノバクテリアは、生育に必要な無機イオン類を高効率で細胞内に取り込むために、図2のSLHドメイン保持型外膜タンパク質6(例えば、Slr1841)のように、無機イオン類のみを透過させるイオンチャネルタンパク質を外膜5に多く有する。例えば、Synechocystis sp. PCC 6803では、無機イオンを透過させるイオンチャネルタンパク質は、外膜5の総タンパク質量の約80%を占める。
 このように、シアノバクテリアでは、外膜5におけるタンパク質などの有機物を透過させるチャネルが非常に少ないため、菌体内で産生されたタンパク質及び代謝産物を菌体外に積極的に分泌することが難しいと考えられている。
 [4.改変シアノバクテリア]
 続いて、改変シアノバクテリアについて図2を参照しながら説明する。
 本実施の形態におけるシアノバクテリアは、シアノバクテリア(いわゆる、親シアノバクテリア)において外膜5と細胞壁4との結合に関与するタンパク質(いわゆる、結合関連タンパク質)の機能が抑制又は喪失されている改変シアノバクテリアである。より具体的には、例えば、改変シアノバクテリアは、シアノバクテリアにおいて外膜5と細胞壁4との結合に関与するタンパク質(つまり、結合関連タンパク質)の総量が、親株(つまり、親シアノバクテリア)における当該タンパク質の総量の30%以上70%以下に抑制されている。例えば、「結合関連タンパク質の総量が、親株における当該タンパク質の総量の30%に抑制されている」とは、親株における当該タンパク質の総量の70%が喪失し、30%が残存している状態のことを意味する。これにより、改変シアノバクテリアでは、外膜5と細胞壁4との結合(例えば、結合量及び結合力)が部分的に低減するため、外膜5が細胞壁4から部分的に脱離しやすくなる。そのため、改変シアノバクテリアは、菌体内で産生されたタンパク質及び代謝産物などの菌体内産生物質を菌体外に分泌する菌体内産生物質の分泌生産性が向上する。上述したように、菌体内産生物質には、植物の病害抵抗性の誘導に関与する菌体内産生物質(つまり、植物病害抵抗性誘導物質)が含まれる。そのため、改変シアノバクテリアは、菌体内で産生された植物病害抵抗性誘導物質を菌体外に分泌する植物病害抵抗性誘導物質の分泌生産性も向上する。また、菌体を破砕して植物病害抵抗性誘導物質を回収する必要がないため、植物病害抵抗性誘導物質を回収した後も、改変シアノバクテリアを繰り返し使用することができる。なお、本明細書では、改変シアノバクテリアが菌体内でタンパク質及び代謝物を作り出すことを産生と言い、産生されたタンパク質及び代謝物を菌体外に分泌することを分泌生産と言う。
 外膜5と細胞壁4との結合に関与するタンパク質は、例えば、SLHドメイン保持型外膜タンパク質6及び細胞壁-ピルビン酸修飾酵素9の少なくとも1つであってもよい。本実施の形態では、改変シアノバクテリアは、例えば、SLHドメイン保持型外膜タンパク質6及び細胞壁-ピルビン酸修飾酵素9の少なくとも1つのタンパク質の機能が抑制又は喪失されている。例えば、改変シアノバクテリアでは、(i)SLHドメイン保持型外膜タンパク質6及び細胞壁-ピルビン酸修飾酵素9の少なくとも1つの機能が抑制又は喪失されてもよく、(ii)細胞壁4と結合するSLHドメイン保持型外膜タンパク質6の発現、及び、細胞壁4の表面の結合糖鎖のピルビン酸修飾反応を触媒する酵素(つまり、細胞壁-ピルビン酸修飾酵素9)の発現の少なくとも1つが抑制されてもよい。これにより、外膜5中のSLHドメイン保持型外膜タンパク質6のSLHドメイン7と細胞壁4の表面の共有結合型の糖鎖3との結合(つまり、結合量及び結合力)が低減する。そのため、これらの結合が弱まった部分において外膜5が細胞壁4から脱離しやすくなる。外膜5が細胞壁4から部分的に脱離することにより、改変シアノバクテリアの細胞内、特にペリプラズムに存在するタンパク質及び代謝産物などの菌体内産生物質が細胞の外(外膜5の外)へ漏出しやすくなる。これにより、改変シアノバクテリアは、菌体内で産生された植物病害抵抗性誘導物質を菌体外に分泌する分泌生産性が向上する。
 以下、SLHドメイン保持型外膜タンパク質6及び細胞壁-ピルビン酸修飾酵素9の少なくとも1つの結合関連タンパク質の機能が抑制されることにより外膜5が部分的に細胞壁4から脱離するように改変されたシアノバクテリアについてより具体的に説明する。
 本実施の形態における改変シアノバクテリアの親微生物となる、SLHドメイン保持型外膜タンパク質6の発現及び細胞壁-ピルビン酸修飾酵素9の発現の少なくとも1つを抑制する又は喪失させる前のシアノバクテリア(つまり、親シアノバクテリア)の種類は、特に制限はなく、あらゆる種類のシアノバクテリアであってもよい。例えば、親シアノバクテリアは、Synechocystis属、Synechococcus属、Anabaena属、又は、Thermosynechococcus属であってもよく、中でも、Synechocystis sp. PCC 6803、Synechococcus sp. PCC 7942、又は、Thermosynechococcus elongatus BP-1であってもよい。
 これらの親シアノバクテリアにおけるSLHドメイン保持型外膜タンパク質6及び細胞壁-ピルビン酸修飾反応を触媒する酵素(つまり、細胞壁-ピルビン酸修飾酵素9)のアミノ酸配列、それらの結合関連タンパク質をコードする遺伝子の塩基配列、及び、当該遺伝子の染色体DNA又はプラスミド上での位置は、上述のNCBIデータベース及びCyanobaseで確認することができる。
 なお、本実施の形態に係る改変シアノバクテリアにおいて機能が抑制又は喪失されるSLHドメイン保持型外膜タンパク質6及び細胞壁-ピルビン酸修飾酵素9は、親シアノバクテリアが保有している限り、いずれの親シアノバクテリアのものであってもよく、それらをコードする遺伝子の存在場所(例えば、染色体DNA上又はプラスミド上)により制限されるものではない。
 例えば、SLHドメイン保持型外膜タンパク質6は、親シアノバクテリアがSynechocystis属の場合、Slr1841、Slr1908、又は、Slr0042等であってもよく、親シアノバクテリアがSynechococcus属の場合、NIES970_09470等であってもよく、親シアノバクテリアがAnabaena属の場合、Anacy_5815又はAnacy_3458等であってもよく、親シアノバクテリアがMicrocystis属の場合、A0A0F6U6F8_MICAE等であってもよく、親シアノバクテリアがCyanothece属の場合、A0A3B8XX12_9CYAN等であってもよく、親シアノバクテリアがLeptolyngbya属の場合、A0A1Q8ZE23_9CYAN等であってもよく、親シアノバクテリアがCalothrix属の場合、A0A1Z4R6U0_9CYANが挙げられ、親シアノバクテリアがNostoc属の場合、A0A1C0VG86_9NOSO等であってもよく、親シアノバクテリアがCrocosphaera属の場合、B1WRN6_CROS5等であってもよく、親シアノバクテリアがPleurocapsa属の場合、K9TAE4_9CYAN等であってもよい。
 より具体的には、SLHドメイン保持型外膜タンパク質6は、例えば、Synechocystis sp. PCC 6803のSlr1841(配列番号1)、Synechococcus sp. NIES-970のNIES970_09470(配列番号2)、又は、Anabaena cylindrica PCC 7122のAnacy_3458(配列番号3)等であってもよい。また、これらのSLHドメイン保持型外膜タンパク質6とアミノ酸配列が50%以上同一であるタンパク質であってもよい。
 これにより、改変シアノバクテリアでは、例えば、(i)上記の配列番号1~3で示されるいずれかのSLHドメイン保持型外膜タンパク質6又はこれらのいずれかのSLHドメイン保持型外膜タンパク質6とアミノ酸配列が50%以上同一であるタンパク質の機能が抑制若しくは喪失されていてもよく、(ii)上記の配列番号1~3で示されるいずれかのSLHドメイン保持型外膜タンパク質6又はこれらのいずれかのSLHドメイン保持型外膜タンパク質6とアミノ酸配列が50%以上同一であるタンパク質の発現が抑制されていてもよい。そのため、改変シアノバクテリアでは、(i)外膜5中のSLHドメイン保持型外膜タンパク質6若しくはSLHドメイン保持型外膜タンパク質6と同等の機能を有するタンパク質の機能が抑制若しくは喪失される、又は、(ii)外膜5中のSLHドメイン保持型外膜タンパク質6若しくはSLHドメイン保持型外膜タンパク質6と同等の機能を有するタンパク質の発現量が低減する。その結果、改変シアノバクテリアでは、外膜5が細胞壁4と結合するための結合ドメイン(例えば、SLHドメイン7)が細胞壁4と結合する結合量及び結合力が低減するため、外膜5が細胞壁4から部分的に脱離しやすくなる。これにより、改変シアノバクテリアでは、菌体内産生物質が菌体外に漏出しやすくなるため、菌体内で産生された植物病害抵抗性誘導物質も菌体外に漏出しやすくなる。
 一般に、タンパク質のアミノ酸配列が30%以上同一であれば、タンパク質の立体構造の相同性が高いため、当該タンパク質と同等の機能を有する可能性が高いと言われている。そのため、機能が抑制又は喪失されるSLHドメイン保持型外膜タンパク質6としては、例えば、上記の配列番号1~3で示されるSLHドメイン保持型外膜タンパク質6のいずれかのアミノ酸配列と、40%以上、好ましくは50%以上、より好ましくは60%以上、さらに好ましくは70%以上、さらにより好ましくは80%以上、なお好ましくは90%以上の同一性を有するアミノ酸配列からなり、かつ、細胞壁4の共有結合型の糖鎖3と結合する機能を有するタンパク質又はポリペプチドであってもよい。
 また、例えば、細胞壁-ピルビン酸修飾酵素9は、親シアノバクテリアがSynechocystis属の場合、Slr0688等であってもよく、親シアノバクテリアがSynechococcus属の場合、Syn7502_03092又はSynpcc7942_1529等であってもよく、親シアノバクテリアがAnabaena属の場合、ANA_C20348又はAnacy_1623等であってもよく、親シアノバクテリアがMicrocystis属の場合、CsaB (NCBIのアクセスID:TRU80220)等であってもよく、親シアノバクテリアがCyanothece属の場合、CsaB(NCBIのアクセスID:WP_107667006.1)等であってもよく、親シアノバクテリアがSpirulina属の場合、CsaB(NCBIのアクセスID:WP_026079530.1)等であってもよく、親シアノバクテリアがCalothrix属の場合、CsaB(NCBIのアクセスID:WP_096658142.1)等であってもよく、親シアノバクテリアがNostoc属の場合、CsaB(NCBIのアクセスID:WP_099068528.1)等であってもよく、親シアノバクテリアがCrocosphaera属の場合、CsaB(NCBIのアクセスID:WP_012361697.1)等であってもよく、親シアノバクテリアがPleurocapsa属の場合、CsaB(NCBIのアクセスID:WP_036798735)等であってもよい。
 より具体的には、細胞壁-ピルビン酸修飾酵素9は、例えば、Synechocystis sp. PCC 6803のSlr0688(配列番号4)、Synechococcus sp. PCC 7942のSynpcc7942_1529(配列番号5)、又は、Anabaena cylindrica PCC 7122のAnacy_1623(配列番号6)等であってもよい。また、これらの細胞壁-ピルビン酸修飾酵素9とアミノ酸配列が50%以上同一であるタンパク質であってもよい。
 これにより、改変シアノバクテリアでは、例えば、(i)上記の配列番号4~6で示されるいずれかの細胞壁-ピルビン酸修飾酵素9又はこれらのいずれかの細胞壁-ピルビン酸修飾酵素9とアミノ酸配列が50%以上同一であるタンパク質の機能が抑制又は喪失されていてもよく、(ii)上記の配列番号4~6で示されるいずれかの細胞壁-ピルビン酸修飾酵素9又はこれらのいずれかの細胞壁-ピルビン酸修飾酵素9とアミノ酸配列が50%以上同一であるタンパク質の発現が抑制されていてもよい。そのため、改変シアノバクテリアでは、(i)細胞壁-ピルビン酸修飾酵素9又は当該酵素と同等の機能を有するタンパク質の機能が抑制若しくは喪失される、又は、(ii)細胞壁-ピルビン酸修飾酵素9又は当該酵素と同等の機能を有するタンパク質の発現量が低減する。これにより、細胞壁4の表面の共有結合型の糖鎖3がピルビン酸で修飾されにくくなるため、細胞壁4の糖鎖3が外膜5中のSLHドメイン保持型外膜タンパク質6のSLHドメイン7と結合する結合量及び結合力が低減する。したがって、本実施の形態に係る改変シアノバクテリアでは、細胞壁4の表面の共有結合型の糖鎖3がピルビン酸で修飾されにくくなるため、細胞壁4と外膜5との結合力が弱まり、外膜5が細胞壁4から部分的に脱離しやすくなる。これにより、改変シアノバクテリアでは、菌体内産生物質が菌体外に漏出しやすくなるため、菌体内で産生された植物病害抵抗性誘導物質も菌体外に漏出しやすくなる。
 また、上述したとおり、タンパク質のアミノ酸配列が30%以上同一であれば、当該タンパク質と同等の機能を有する可能性が高いと言われている。そのため、機能が抑制又は喪失される細胞壁-ピルビン酸修飾酵素9としては、例えば、上記の配列番号4~6で示される細胞壁-ピルビン酸修飾酵素9のいずれかのアミノ酸配列と、40%以上、好ましくは50%以上、より好ましくは60%以上、さらに好ましくは70%以上、さらにより好ましくは80%以上、なお好ましくは90%以上の同一性を有するアミノ酸配列からなり、かつ、細胞壁4のペプチドグリカン2の共有結合型の糖鎖3をピルビン酸で修飾する反応を触媒する機能を有するタンパク質又はポリペプチドであってもよい。
 なお、本明細書において、SLHドメイン保持型外膜タンパク質6の機能を抑制する又は喪失させるとは、当該タンパク質の細胞壁4との結合能力を抑制する若しくは喪失させること、当該タンパク質の外膜5への輸送を抑制する若しくは喪失させること、又は、当該タンパク質が外膜5に埋め込まれて機能する能力を抑制する若しくは喪失させることである。
 なお、細胞壁-ピルビン酸修飾酵素9の機能を抑制する又は喪失するとは、当該タンパク質が細胞壁4の共有結合型の糖鎖3をピルビン酸で修飾する機能を抑制する又は喪失させることである。
 これらのタンパク質の機能を抑制する又は喪失させる手段としては、タンパク質の機能の抑制又は喪失に通常使用される手段であれば特に限定されない。当該手段は、例えば、SLHドメイン保持型外膜タンパク質6をコードする遺伝子及び細胞壁-ピルビン酸修飾酵素9をコードする遺伝子を欠失若しくは不活性化させること、これらの遺伝子の転写を阻害すること、これらの遺伝子の転写産物の翻訳を阻害すること、又は、これらのタンパク質を特異的に阻害する阻害剤を投与することなどであってもよい。
 本実施の形態では、改変シアノバクテリアは、外膜5と細胞壁4との結合に関与するタンパク質を発現させる遺伝子が欠失又は不活性されている。これにより、改変シアノバクテリアでは、細胞壁4と外膜5との結合に関与するタンパク質の発現が抑制されるため、又は、当該タンパク質の機能が抑制若しくは喪失されるため、細胞壁4と外膜5との結合(つまり、結合量及び結合力)が部分的に低減する。その結果、改変シアノバクテリアでは、外膜5が細胞壁4から部分的に脱離しやすくなるため、改変シアノバクテリアは、菌体内で産生されたタンパク質及び代謝産物などの菌体内産生物質が外膜5の外、つまり、菌体外に漏出しやすくなる。そのため、改変シアノバクテリアは、菌体内で産生された植物病害抵抗性誘導物質を菌体外に分泌する植物病害抵抗性誘導物質の分泌生産性が向上する。これにより、菌体を破砕するなどの、菌体内産生物質の抽出処理が不要となるため、菌体内産生物質の生理活性の低下及び収率の低下が起こりにくくなる。そのため、菌体内で産生された植物病害抵抗性誘導物質の生理活性の低下及び収率の低下も起こりにくくなるため、植物病害抵抗性誘導効果が向上した植物病害抵抗性誘導剤を製造することができる。また、上記の菌体内産生物質の抽出処理が不要となるため、当該物質を回収した後も、改変シアノバクテリアを繰り返し使用して植物病害抵抗性誘導物質を産生させることができる。
 外膜5と細胞壁4との結合に関与するタンパク質を発現させる遺伝子は、例えば、SLHドメイン保持型外膜タンパク質6をコードする遺伝子及び細胞壁-ピルビン酸修飾酵素9をコードする遺伝子の少なくとも1つであってもよい。改変シアノバクテリアでは、SLHドメイン保持型外膜タンパク質6をコードする遺伝子、及び、細胞壁-ピルビン酸修飾酵素9をコードする遺伝子の少なくとも1つの遺伝子が欠失又は不活性化されている。そのため、改変シアノバクテリアでは、例えば、(i)SLHドメイン保持型外膜タンパク質6及び細胞壁-ピルビン酸修飾酵素9の少なくとも1つの発現が抑制される、又は、(ii)SLHドメイン保持型外膜タンパク質6及び細胞壁-ピルビン酸修飾酵素9の少なくとも1つの機能が抑制若しくは喪失される。そのため、外膜5中のSLHドメイン保持型外膜タンパク質6のSLHドメイン7と、細胞壁4の表面の共有結合型の糖鎖3との結合(つまり、結合量及び結合力)が低減する。これにより、外膜5と細胞壁4との結合が弱まった部分において外膜5が細胞壁4から脱離しやすくなる。その結果、改変シアノバクテリアでは、外膜5と細胞壁4との結合が低減することにより外膜5が細胞壁4から部分的に脱離しやすくなるため、菌体内で産生されたタンパク質及び代謝産物が菌体外に漏出しやすくなる。これにより、改変シアノバクテリアの菌体内で産生された植物病害抵抗性誘導物質も菌体外に漏出しやすくなる。
 本実施の形態では、シアノバクテリアにおけるSLHドメイン保持型外膜タンパク質6及び細胞壁-ピルビン酸修飾酵素9の少なくとも1つの機能を抑制する又は喪失させるために、例えば、SLHドメイン保持型外膜タンパク質6をコードする遺伝子及び細胞壁-ピルビン酸修飾酵素9をコードする遺伝子の少なくとも1つの転写を抑制してもよい。
 例えば、SLHドメイン保持型外膜タンパク質6をコードする遺伝子は、親シアノバクテリアがSynechocystis属の場合、slr1841、slr1908、又は、slr0042等であってもよく、Synechococcus属の場合、nies970_09470等であってもよく、親シアノバクテリアがAnabaena属の場合、anacy_5815又はanacy_3458等であってもよく、親シアノバクテリアがMicrocystis属の場合、A0A0F6U6F8_MICAE等であってもよく、親シアノバクテリアがCyanothece属の場合、A0A3B8XX12_9CYAN等であってもよく、親シアノバクテリアがLeptolyngbya属の場合、A0A1Q8ZE23_9CYAN等であってもよく、親シアノバクテリアがCalothrix属の場合、A0A1Z4R6U0_9CYAN等であってもよく、親シアノバクテリアがNostoc属の場合、A0A1C0VG86_9NOSO等であってもよく、親シアノバクテリアがCrocosphaera属の場合、B1WRN6_CROS5等であってもよく、親シアノバクテリアがPleurocapsa属の場合、K9TAE4_9CYAN等であってもよい。これらの遺伝子の塩基配列は、上述したNCBIデータベース又はCyanobaseから入手できる。
 より具体的には、SLHドメイン保持型外膜タンパク質6をコードする遺伝子は、Synechocystis sp. PCC 6803のslr1841(配列番号7)、Synechococcus sp. NIES-970のnies970_09470(配列番号8)、Anabaena cylindrica PCC 7122のanacy_3458(配列番号9)、又は、これらの遺伝子とアミノ酸配列が50%以上同一である遺伝子であってもよい。
 これにより、改変シアノバクテリアでは、上記の配列番号7~9で示されるいずれかのSLHドメイン保持型外膜タンパク質6をコードする遺伝子又はこれらのいずれかの遺伝子の塩基配列と50%以上同一である遺伝子が欠失又は不活性化される。そのため、改変シアノバクテリアでは、(i)上記のいずれかのSLHドメイン保持型外膜タンパク質6若しくはこれらのいずれかのタンパク質と同等の機能を有するタンパク質の発現が抑制される、又は、(ii)上記のいずれかのSLHドメイン保持型外膜タンパク質6若しくはこれらのいずれかのタンパク質と同等の機能を有するタンパク質の機能が抑制若しくは喪失される。その結果、改変シアノバクテリアでは、外膜5が細胞壁4と結合するための結合ドメイン(例えばSLHドメイン7)が細胞壁4と結合する結合量及び結合力が低減するため、外膜5が細胞壁4から部分的に離脱しやすくなる。これにより、菌体内で産生されたタンパク質及び代謝産物が菌体外に漏出しやすくなるため、菌体内で産生された植物病害抵抗性誘導物質も菌体外に漏出しやすくなる。
 上述したように、タンパク質のアミノ酸配列が30%以上同一であれば、当該タンパク質と同等の機能を有する可能性が高いと言われている。そのため、タンパク質をコードする遺伝子の塩基配列が30%以上同一であれば、当該タンパク質と同等の機能を有するタンパク質が発現される可能性が高いと考えられる。そのため、機能が抑制又は喪失されるSLHドメイン保持型外膜タンパク質6をコードする遺伝子としては、例えば、上記の配列番号7~9で示されるSLHドメイン保持型外膜タンパク質6をコードする遺伝子のいずれかの塩基配列と、40%以上、好ましくは50%以上、より好ましくは60%以上、さらに好ましくは70%以上、さらにより好ましくは80%以上、なお好ましくは90%以上の同一性を有する塩基配列からなる遺伝子であり、かつ、細胞壁4の共有結合型の糖鎖3と結合する機能を有するタンパク質又はポリペプチドをコードする遺伝子であってもよい。
 また、例えば、細胞壁-ピルビン酸修飾酵素9をコードする遺伝子は、親シアノバクテリアがSynechocystis属の場合、slr0688等であってもよく、親シアノバクテリアがSynechococcus属の場合、syn7502_03092又はsynpcc7942_1529等であってもよく、親シアノバクテリアがAnabaena属の場合、ana_C20348又はanacy_1623等であってもよく、親シアノバクテリアがMicrocystis属の場合、csaB (NCBIのアクセスID:TRU80220)等であってもよく、親シアノバクテリアがCyanothece属の場合、csaB(NCBIのアクセスID:WP_107667006.1)等であってもよく、親シアノバクテリアがSpirulina属の場合、csaB(NCBIのアクセスID:WP_026079530.1)等であってもよく、親シアノバクテリアがCalothrix属の場合、csaB(NCBIのアクセスID:WP_096658142.1)等であってもよく、親シアノバクテリアがNostoc属の場合、csaB(NCBIのアクセスID:WP_099068528.1)等であってもよく、親シアノバクテリアがCrocosphaera属の場合、csaB(NCBIのアクセスID:WP_012361697.1)等であってもよく、親シアノバクテリアがPleurocapsa属の場合、csaB(NCBIのアクセスID:WP_036798735)等であってもよい。これらの遺伝子の塩基配列は、上述したNCBIデータベース又はCyanobaseから入手できる。
 より具体的には、細胞壁-ピルビン酸修飾酵素9をコードする遺伝子は、Synechocystis sp. PCC 6803のslr0688(配列番号10)、Synechococcus sp. PCC 7942のsynpcc7942_1529(配列番号11)、又は、Anabaena cylindrica PCC 7122のanacy_1623(配列番号12)であってもよい。また、これらの遺伝子と塩基配列が50%以上同一である遺伝子であってもよい。
 これにより、改変シアノバクテリアでは、上記の配列番号10~12で示されるいずれかの細胞壁-ピルビン酸修飾酵素9をコードする遺伝子又はこれらのいずれかの酵素をコードする遺伝子の塩基配列と50%以上同一である遺伝子が欠失又は不活性化される。そのため、改変シアノバクテリアでは、(i)上記のいずれかの細胞壁-ピルビン酸修飾酵素9若しくはこれらのいずれかの酵素と同等の機能を有するタンパク質の発現が抑制される、又は、(ii)上記のいずれかの細胞壁-ピルビン酸修飾酵素9若しくはこれらのいずれかの酵素と同等の機能を有するタンパク質の機能が抑制若しくは喪失される。これにより、細胞壁4の表面の共有結合型の糖鎖3がピルビン酸で修飾されにくくなるため、細胞壁4の糖鎖3が外膜5中のSLHドメイン保持型外膜タンパク質6のSLHドメイン7と結合する結合量及び結合力が低減する。したがって、本実施の形態に係る改変シアノバクテリアでは、細胞壁4が外膜5と結合するための糖鎖3がピルビン酸で修飾される量が低減するため、細胞壁4と外膜5との結合力が弱まり、外膜5が細胞壁4から部分的に離脱しやすくなる。これにより、菌体内で産生されたタンパク質及び代謝産物が菌体外に漏出しやすくなるため、菌体内で産生された植物病害抵抗性誘導物質も菌体外に漏出しやすくなる。
 上述したように、タンパク質をコードする遺伝子の塩基配列が30%以上同一であれば、当該タンパク質と同等の機能を有するタンパク質が発現される可能性が高いと考えられる。そのため、機能が抑制又は喪失される細胞壁-ピルビン酸修飾酵素9をコードする遺伝子としては、例えば、上記の配列番号10~12で示される細胞壁-ピルビン酸修飾酵素9をコードする遺伝子のいずれかの塩基配列と、40%以上、好ましくは50%以上、より好ましくは60%以上、さらに好ましくは70%以上、さらにより好ましくは80%以上、なお好ましくは90%以上の同一性を有する塩基配列からなり、かつ、細胞壁4のペプチドグリカン2の共有結合型の糖鎖3をピルビン酸で修飾する反応を触媒する機能を有するタンパク質又はポリペプチドをコードする遺伝子であってもよい。
 [5.改変シアノバクテリアの製造方法]
 続いて、本実施の形態における改変シアノバクテリアの製造方法について説明する。改変シアノバクテリアの製造方法は、シアノバクテリアにおいて外膜5と細胞壁4との結合に関与するタンパク質の機能を抑制又は喪失させるステップを含む。
 本実施の形態では、外膜5と細胞壁4との結合に関与するタンパク質は、例えば、SLHドメイン保持型外膜タンパク質6及び細胞壁-ピルビン酸修飾酵素9の少なくとも1つであってもよい。
 なお、タンパク質の機能を抑制する又は喪失させる手段としては、特に限定されないが、例えば、SLHドメイン保持型外膜タンパク質6をコードする遺伝子及び細胞壁-ピルビン酸修飾酵素9をコードする遺伝子を欠失若しくは不活性化させること、これらの遺伝子の転写を阻害すること、これらの遺伝子の転写産物の翻訳を阻害すること、又はこれらのタンパク質を特異的に阻害する阻害剤を投与することなどであってもよい。
 上記遺伝子を欠失又は不活性化させる手段は、例えば、該当遺伝子の塩基配列上の1つ以上の塩基に対する突然変異の導入、該当塩基配列に対する他の塩基配列への置換若しくは他の塩基配列の挿入、又は、該当遺伝子の塩基配列の一部若しくは全部の削除などであってもよい。
 上記遺伝子の転写を阻害する手段は、例えば、該当遺伝子のプロモーター領域に対する変異導入、他の塩基配列への置換若しくは他の塩基配列の挿入による当該プロモーターの不活性化、又は、CRISPR干渉法(非特許文献7:Yao et al., ACS Synth. Biol., 2016, 5:207-212)等であってもよい。上記の変異導入、又は塩基配列の置換若しくは挿入の具体的な手法は、例えば、紫外線照射、部位特異的変異導入、又は、相同組換え法などであってもよい。
 また、上記遺伝子の転写産物の翻訳を阻害する手段は、例えば、RNA(Ribonucleic Acid)干渉法などであってもよい。
 以上のいずれかの手段を用いることにより、シアノバクテリアにおける外膜5と細胞壁4との結合に関与するタンパク質の機能を抑制又は喪失させて、改変シアノバクテリアを製造してもよい。
 これにより、上記の製造方法で製造された改変シアノバクテリアは、細胞壁4と外膜5との結合(つまり、結合量及び結合力)が部分的に低減するため、外膜5が細胞壁4から部分的に脱離しやすくなる。その結果、改変シアノバクテリアでは、菌体内で産生されたタンパク質及び代謝産物などの菌体内産生物質が外膜5の外に(つまり、菌体の外に)漏出しやすくなるため、植物の病害抵抗性誘導に関与する物質(つまり、植物病害抵抗性誘導物質)も菌体外に漏出しやすくなる。したがって、本実施の形態における改変シアノバクテリアの製造方法によれば、植物病害抵抗性誘導物質の分泌生産性が向上した改変シアノバクテリアを提供することができる。
 また、本実施の形態における製造方法で製造された改変シアノバクテリアでは、菌体内で産生された植物病害抵抗性誘導物質が菌体外に漏出するため、当該物質の回収のために菌体を破砕する必要がない。例えば、改変シアノバクテリアを適切な条件で培養し、次いで培養液中に分泌された植物病害抵抗性誘導物質を回収すればよいため、改変シアノバクテリアを培養しながら培養液中の植物病害抵抗性誘導物質を回収することも可能である。そのため、本製造方法により得られる改変シアノバクテリアを使用すれば、効率のよい微生物学的植物病害抵抗性誘導物質の生産を実施することができる。したがって、本実施の形態における改変シアノバクテリアの製造方法によれば、植物病害抵抗性誘導物質を回収した後も繰り返し使用することができる利用効率の高い改変シアノバクテリアを提供することができる。
 [6.植物病害抵抗性誘導方法]
 本実施の形態に係る植物病害抵抗性誘導方法は、上記の植物病害抵抗性誘導剤を用いる。上述したように、本実施の形態に係る植物病害抵抗性誘導剤は、植物病害抵抗性誘導効果が向上した植物病害抵抗性誘導剤であるため、上記の植物病害抵抗性誘導剤を用いることにより、効果的に植物の病害抵抗性を誘導することができる。
 上記の植物病害抵抗性誘導剤は、そのままは勿論、濃縮又は希釈して使用されてもよい。当該植物病害抵抗性誘導剤の植物への適用にあたっては、植物の種類、土壌の性質、及び、目的などに応じて、適宜、植物病害抵抗性誘導剤の濃度、及び、適用方法を決定してもよい。植物病害抵抗性誘導剤は、例えば、改変シアノバクテリアの培養液そのものであってもよく、当該培養液から改変シアノバクテリアの菌体を除去した溶液であってもよく、当該培養液から膜技術等により抽出した抽出物であってもよい。なお、植物病害抵抗性誘導剤の剤型は、液状であってもよいし、例えばスプレードライなどの技術により液状の植物病害抵抗性誘導剤を乾燥させて得られる粉状であってもよい。また、植物病害抵抗性誘導剤の植物への適用方法は、例えば、植物又は土壌への噴霧、潅水、又は、混合などであってもよい。より具体的には、例えば、植物体1個体あたり数ミリリットルを週1回程度、植物体の根元に添加してもよいし、葉面散布してもよい。
 以下、実施例にて本開示の改変シアノバクテリア、改変シアノバクテリアの製造方法、植物病害抵抗性誘導剤、植物病害抵抗性誘導方法、及び植物病害抵抗性誘導剤の製造方法について具体的に説明するが、本開示は以下の実施例のみに何ら限定されるものではない。
 以下の実施例では、シアノバクテリアの外膜を細胞壁から部分的に脱離させる方法として、SLHドメイン保持型外膜タンパク質をコードするslr1841遺伝子の発現抑制(実施例1)、及び細胞壁-ピルビン酸修飾酵素をコードするslr0688遺伝子の発現抑制(実施例2)を行い、2種類の改変シアノバクテリアを製造した。そして、これらの改変シアノバクテリアのタンパク質の分泌生産性の測定と、分泌された菌体内産生物質(ここでは、タンパク質及び細胞内代謝産物)の同定とを行った。なお、本実施例で使用したシアノバクテリア種は、Synechocystis sp. PCC 6803(以下、単に、「シアノバクテリア」と呼ぶ)である。
 (実施例1)
 実施例1では、SLHドメイン保持型外膜タンパク質をコードするslr1841遺伝子の発現が抑制された改変シアノバクテリアを製造した。
 (1)slr1841遺伝子の発現が抑制されたシアノバクテリア改変株の構築
 遺伝子発現抑制法として、CRISPR(Clustered Regularly Interspaced Short Palindromic Repeat)干渉法を用いた。本方法では、dCas9タンパク質をコードする遺伝子(以下、dCas9遺伝子という)と、slr1841_sgRNA(single-guide Ribonucleic Acid)遺伝子とを、シアノバクテリアの染色体DNAに導入することにより、slr1841遺伝子の発現を抑制することができる。
 本方法による遺伝子発現抑制の仕組みは次の通りである。
 まず、ヌクレアーゼ活性を欠損したCas9タンパク質(dCas9)と、slr1841遺伝子の塩基配列に相補的に結合するsgRNA(slr1841_sgRNA)とが、複合体を形成する。
 次に、この複合体がシアノバクテリアの染色体DNA上のslr1841遺伝子を認識し、slr1841遺伝子と特異的に結合する。この結合が立体障害となることにより、slr1841遺伝子の転写が阻害される。その結果、シアノバクテリアのslr1841遺伝子の発現が抑制される。
 以下、上記の2つの遺伝子の各々をシアノバクテリアの染色体DNAに導入する方法を具体的に説明する。
 (1-1)dCas9遺伝子の導入
 Synechocystis LY07株(以下、LY07株ともいう)(非特許文献7参照)の染色体DNAを鋳型として、dCas9遺伝子及びdCas9遺伝子の発現制御のためのオペレーター遺伝子、並びに、遺伝子導入の目印となるスペクチノマイシン耐性マーカー遺伝子を、表1に記載のプライマーpsbA1-Fw(配列番号13)及びpsbA1-Rv(配列番号14)を用いてPCR(Polymerase Chain Reaction)法により増幅した。なお、LY07株では、上記の3つの遺伝子が連結した状態で染色体DNA上のpsbA1遺伝子に挿入されているため、1つのDNA断片としてPCR法により増幅することができる。ここでは、得られたDNA断片を「psbA1::dCas9カセット」と表記する。In-Fusion PCRクローニング法(登録商標)を用いて、psbA1::dCas9カセットをpUC19プラスミドに挿入し、pUC19-dCas9プラスミドを得た。
Figure JPOXMLDOC01-appb-T000001
 得られたpUC19-dCas9プラスミド1μgとシアノバクテリア培養液(菌体濃度OD730=0.5程度)を混合し、自然形質転換によりpUC19-dCas9プラスミドをシアノバクテリアの細胞内に導入した。形質転換された細胞を20 μg/mLのスペクチノマイシンを含むBG-11寒天培地上で生育させることにより、選抜した。選抜された細胞では、染色体DNA上のpsbA1遺伝子と、pUC19-dCas9プラスミド上のpsbA1上流断片領域及びpsbA1下流断片領域との間で相同組み換えが起こっている。これにより、psbA1遺伝子領域にdCas9カセットが挿入されたSynechocystis dCas9株を得た。なお、用いたBG-11培地の組成は表2の通りである。
Figure JPOXMLDOC01-appb-T000002
 (1-2)slr1841_sgRNA遺伝子の導入
 CRISPR干渉法では、sgRNA遺伝子上のprotospacerと呼ばれる領域に、標的配列と相補的な約20塩基の配列を導入することにより、sgRNAが標的遺伝子に特異的に結合する。本実施例で用いたprotospacer配列は表3に示される。
Figure JPOXMLDOC01-appb-T000003
 Synechocystis LY07株では、sgRNA遺伝子(protospacer領域を除く)とカナマイシン耐性マーカー遺伝子とが連結した形で、染色体DNA上のslr2030-slr2031遺伝子に挿入されている。したがって、当該sgRNA遺伝子をPCR法により増幅する際に用いるプライマーにslr1841遺伝子(配列番号7)と相補的なprotospacer配列(配列番号21)を付与することにより、slr1841を特異的に認識するsgRNA (slr1841_sgRNA)を容易に得ることができる。
 まず、LY07株の染色体DNAを鋳型とし、表1に記載のプライマーslr2030-Fw(配列番号15)及びsgRNA_slr1841-Rv(配列番号16)のセット、並びに、sgRNA_slr1841-Fw(配列番号17)及びslr2031-Rv(配列番号18)のセットを用いて2つのDNA断片をPCR法により増幅した。
 続いて、上記のDNA断片の混合溶液を鋳型として、表1に記載のプライマーslr2030-Fw(配列番号15)とslr2031-Rv(配列番号18)とを用いてPCR法により増幅することにより、(i)slr2030遺伝子断片、(ii)slr1841_sgRNA、(iii)カナマイシン耐性マーカー遺伝子、(iv)slr2031遺伝子断片が順に連結したDNA断片(slr2030-2031::slr1841_sgRNA)を得た。In-Fusion PCRクローニング法(登録商標)を用いて、slr2030-2031::slr1841_sgRNAをpUC19プラスミドに挿入し、pUC19-slr1841_sgRNAプラスミドを得た。
 上記(1-1)と同様の方法でpUC19-slr1841_sgRNAプラスミドをSynechocystis dCas9株に導入し、形質転換された細胞を30μg/mLカナマイシンを含むBG-11寒天培地上で選抜した。これにより、染色体DNA上のslr2030-slr2031遺伝子にslr1841_sgRNAが挿入された形質転換体Synechocystis dCas9 slr1841_sgRNA株(以下、slr1841抑制株ともいう)を得た。
 (1-3)slr1841遺伝子の抑制
 上記dCas9遺伝子及びslr1841_sgRNA遺伝子は、アンヒドロテトラサイクリン(aTc)の存在下で発現誘導されるようにプロモーター配列が設計されている。本実施例では、培地中に終濃度1μg/mL aTcを添加することによりslr1841遺伝子の発現を抑制した。
 (実施例2)
 実施例2では、下記の手順により、細胞壁-ピルビン酸修飾酵素をコードするslr0688遺伝子の発現が抑制された改変シアノバクテリアを得た。
 (2)slr0688遺伝子の発現が抑制されたシアノバクテリア改変株の構築
 上記(1-2)と同様の手順により、slr0688遺伝子(配列番号4)と相補的なprotospacer配列(配列番号22)を含むsgRNA遺伝子をSynechocystis dCas9株に導入し、Synechocystis dCas9 slr0688_sgRNA株を得た。なお、表1に記載のプライマーslr2030-Fw(配列番号15)及びsgRNA_slr0688-Rv(配列番号19)のセット、並びに、sgRNA_slr0688-Fw(配列番号20)及びslr2031-Rv(配列番号18)のセットを用いたことと、(i)slr2030遺伝子断片、(ii)slr0688_sgRNA、(iii)カナマイシン耐性マーカー遺伝子、(iv)slr2031遺伝子断片が順に連結したDNA断片(slr2030-2031::slr0688_sgRNA)をIn-Fusion PCRクローニング法(登録商標)を用いて、pUC19プラスミドに挿入し、pUC19-slr0688_sgRNAプラスミドを得たこと以外は、上記(1-2)と同様の条件で行った。
 さらに、上記(1-3)と同様の手順により、slr0688遺伝子の発現を抑制した。
 (比較例1)
 比較例1では、実施例1の(1-1)と同様の手順により、Synechocystis dCas9株を得た。
 続いて、実施例1、実施例2及び比較例1で得られた菌株について、それぞれ、細胞表層の状態の観察及びタンパク質の分泌生産性試験を行った。以下、詳細について説明する。
 (3)菌株の細胞表層の状態の観察
 実施例1で得られた改変シアノバクテリアSynechocystis dCas9 slr1841_sgRNA株(つまり、slr1841抑制株)、実施例2で得られた改変シアノバクテリアSynechocystis dCas9slr0688_sgRNA株(以下、slr0688抑制株ともいう)、及び、比較例1で得られた改変シアノバクテリアSynechocystis dCas9株(以下、Control株という)のそれぞれの超薄切片を作製し、電子顕微鏡を用いて細胞表層の状態(言い換えると、外膜構造)を観察した。
 (3-1)菌株の培養
 初発菌体濃度OD730=0.05となるように、実施例1のslr1841抑制株を、1μg/mL aTcを含むBG-11培地に接種し、光量100μmol/m2/s、30℃の条件下で5日間振盪培養した。なお、実施例2のslr0688抑制株及び比較例1のControl株も実施例1と同様の条件で培養した。
 (3-2)菌株の超薄切片の作製
 上記(3-1)で得られた培養液を、室温にて2,500gで10分間遠心分離し、実施例1のslr1841抑制株の細胞を回収した。次いで、細胞を-175℃の液体プロパンで急速凍結した後、2%グルタルアルデヒド及び1%タンニン酸を含むエタノール溶液を用いて-80℃で2日間固定した。固定後の細胞をエタノールにより脱水処理し、脱水した細胞を酸化プロピレンに浸透させたあと、樹脂(Quetol-651)溶液中に沈めた。その後60℃で48時間静置し、樹脂を硬化させて、細胞を樹脂で包埋した。樹脂中の細胞を、ウルトラミクロトーム(Ultracut)を用いて70nmの厚さに薄切し、超薄切片を作成した。この超薄切片を、2%酢酸ウラン及び1%クエン酸鉛溶液を用いて染色して、実施例1のslr1841抑制株の透過型電子顕微鏡の試料を準備した。なお、実施例2のslr0688抑制株及び比較例1のControl株についてもそれぞれ同様の操作を行い、透過型電子顕微鏡の試料を準備した。
 (3-3)電子顕微鏡による観察
 透過型電子顕微鏡(JEOL JEM-1400Plus)を用いて、加速電圧100kV下で、上記(3-2)で得られた超薄切片の観察を行った。観察結果を図3~図8に示す。
 まず、実施例1のslr1841抑制株について説明する。図3は、実施例1のslr1841抑制株のTEM(Transmission Electron Microscope)像である。図4は、図3の破線領域Aの拡大像である。図4の(a)は、図3の破線領域Aの拡大TEM像であり、図4の(b)は、図4の(a)の拡大TEM像を描写した図である。
 図3に示されるように、実施例1のslr1841抑制株では、外膜が細胞壁から部分的に剥離し(つまり、外膜が部分的に剥がれ落ち)、かつ、外膜が部分的に撓んでいた。
 細胞表層の状態をより詳細に確認するために、破線領域Aを拡大観察したところ、図4の(a)及び図4の(b)に示されるように、外膜が部分的に剥がれ落ちた部分(図中の一点破線領域a1及びa2)を確認できた。また、一点破線領域a1の傍に外膜が大きく撓んだ部分を確認できた。この部分は、外膜と細胞壁との結合が弱められた部分であり、培養液が外膜からペリプラズム内に浸透したため、外膜が外側に膨張されて、撓んだと考えられる。
 続いて、実施例2のslr0688抑制株について説明する。図5は、実施例2のslr0688抑制株のTEM像である。図6は、図5の破線領域Bの拡大像である。図6の(a)は、図5の破線領域Bの拡大TEM像であり、図6の(b)は、図6の(a)の拡大TEM像を描写した図である。
 図5に示されるように、実施例2のslr0688抑制株では、外膜が細胞壁から部分的に剥離し、かつ、外膜が部分的に撓んでいた。また、slr0688抑制株では、外膜が部分的に細胞壁から脱離していることが確認できた。
 細胞表層の状態をより詳細に確認するために、破線領域Bを拡大観察したところ、図6の(a)及び図6の(b)に示されるように、外膜が大きく撓んだ部分(図中の一点破線領域b1)、及び、外膜が部分的に剥がれ落ちた部分(図中の一点破線領域b2及びb3)を確認できた。また、一点破線領域b1、b2及びb3それぞれの近傍に外膜が細胞壁から脱離している部分を確認できた。
 続いて、比較例1のControl株について説明する。図7は、比較例1のControl株のTEM像である。図8は、図7の破線領域Cの拡大像である。図8の(a)は、図7の破線領域Cの拡大TEM像であり、図8の(b)は、図8の(a)の拡大TEM像を描写した図である。
 図7に示されるように、比較例1のControl株の細胞表層は整っており、内膜、細胞壁、外膜、及びS層が順に積層された状態を保っていた。つまり、Control株では、実施例1及び2のように外膜が細胞壁から脱離した部分、外膜が細胞壁から剥離した(つまり、剥がれ落ちた)部分、及び、外膜が撓んだ部分は見られなかった。
 (4)タンパク質の分泌生産性試験
 実施例1のslr1841抑制株、実施例2のslr0688抑制株、及び、比較例1のControl株をそれぞれ培養し、細胞外に分泌されたタンパク質量(以下、分泌タンパク質量ともいう)を測定した。培養液中のタンパク質量により、上記の菌株それぞれのタンパク質の分泌生産性を評価した。なお、タンパク質の分泌生産性とは、細胞内で産生されたタンパク質を細胞外に分泌することにより、タンパク質を生産する能力をいう。以下、具体的な方法について説明する。
 (4-1)菌株の培養
 実施例1のslr1841抑制株を上記(3-1)と同様の方法で培養した。培養は、独立して3回行った。なお、実施例2及び比較例1の菌株についても実施例1の菌株と同様の条件で培養した。
 (4-2)細胞外に分泌されたタンパク質の定量
 上記(4-1)で得られた培養液を、室温にて2,500gで10分間遠心分離し、培養上清を得た。得られた培養上清を、ポアサイズ0.22μmのメンブレンフィルターを用いてろ過し、実施例1のslr1841抑制株の細胞を完全に除去した。ろ過後の培養上清に含まれる総タンパク質量をBCA(Bicinchoninic Acid)法により定量した。この一連の操作を、独立して培養した3つの培養液のそれぞれについて行い、実施例1のslr1841抑制株の細胞外に分泌されたタンパク質量の平均値及び標準偏差を求めた。なお、実施例2及び比較例1の菌株についても、それぞれ、同様の条件で3つの培養液のタンパク質の定量を行い、3つの培養液中のタンパク質量の平均値及び標準偏差を求めた。
 結果を図9に示す。図9は、実施例1、実施例2及び比較例1の改変シアノバクテリアの培養上清中のタンパク質量(n=3、エラーバー=SD)を示すグラフである。
 図9に示されるように、実施例1のslr1841抑制株及び実施例2のslr0688抑制株のいずれも、比較例1のControl株と比較して培養上清中に分泌されたタンパク質量(mg/L)が約25倍向上していた。
 データの記載を省略するが、培養液の吸光度(730nm)を測定し、菌体乾燥重量1gあたりの分泌タンパク質量(mg protein/g cell dry weight)を算出したところ、実施例1のslr1841抑制株及び実施例2のslr0688抑制株のいずれも、菌体乾燥重量1gあたりの分泌タンパク質量(mg protein/g cell dry weight)は、比較例1のControl株と比較して、約36倍向上していた。
 また、図9に示されるように、SLHドメイン保持型外膜タンパク質をコードする遺伝子(slr1841)の発現を抑制した実施例1のslr1841抑制株よりも、細胞壁-ピルビン酸修飾酵素をコードする遺伝子(slr0688)の発現を抑制した実施例2のslr0688抑制株の方が、培養上清中に分泌されたタンパク質量が多かった。これは、外膜中のSLHドメイン保持型外膜タンパク質(Slr1841)の数よりも細胞壁表面の共有結合型の糖鎖の数の方が多いことが関係していると考えられる。つまり、実施例2のslr0688抑制株の方が、実施例1のslr1841抑制株よりも外膜と細胞壁との結合量及び結合力がより低下したため、分泌されたタンパク質量が実施例1のslr1841抑制株よりも多くなったと考えられる。
 以上の結果より、外膜と細胞壁との結合に関連するタンパク質の機能を抑制することにより、シアノバクテリアの外膜と細胞壁との結合が部分的に弱められ、外膜が細胞壁から部分的に脱離することが確認できた。外膜と細胞壁との結合が弱まることにより、シアノバクテリアの細胞内で産生されたタンパク質が細胞外に漏出しやすくなることも確認できた。したがって、本実施の形態に係る改変シアノバクテリア及びその製造方法によれば、タンパク質の分泌生産性が大きく向上することが示された。
 (5)分泌されたタンパク質の同定
 続いて、上記(4-2)で得られた培養上清中に含まれる分泌タンパク質を、LC-MS/MSにより同定した。方法を以下に説明する。
 (5-1)試料調製
 培養上清の液量に対して8倍量の冷アセトンを加え、20℃で2時間静置後、20,000gで15分間遠心分離し、タンパク質の沈殿物を得た。この沈殿物に100mM Tris pH8.5、0.5%ドデカン酸ナトリウム(SDoD)を加え、密閉式超音波破砕機によってタンパク質を溶解した。タンパク質濃度1μg/mLに調整後、終濃度10mMのジチオスレイトール(DTT)を添加して50℃で30分間静置した。続いて、終濃度30mMのヨードアセトアミド(IAA)を添加し、室温(遮光)で30分間静置した。IAAの反応を止めるために、終濃度60mMのシステインを添加して室温で10分間静置した。トリプシン400ngを添加して37℃で一晩静置し、タンパク質をペプチド断片化した。5%TFA(Trifluoroacetic Acid)を加えた後、室温にて15,000gで10分間遠心分離し、上清を得た。この作業によりSDoDが除去された。C18スピンカラムを用いて脱塩後、遠心エバポレーターにより試料を乾固した。その後、3%アセトニトリル、0.1%ギ酸を加え、密閉式超音波破砕機を用いて試料を溶解した。ペプチド濃度200ng/μLになるように調製した。
 (5-2)LC-MS/MS分析
 上記(5-1)で得られた試料をLC-MS/MS装置(UltiMate 3000 RSLCnano LC System) を用いて以下の条件で解析を実施した。
 試料注入量:200ng
 カラム:CAPCELL CORE MP 75μm×250mm
 溶媒:A溶媒は0.1%ギ酸水溶液、B溶媒は0.1%ギ酸+80%アセトニトリル
 グラジエントプログラム:試料注入4分後にB溶媒8%、27分後にB溶媒44%、28分後にB溶媒80%、34分後に測定終了
 (5-3)データ解析
 得られたデータは以下の条件で解析し、タンパク質及びペプチドの同定ならびに定量値の算出を行った。
 ソフトウェア:Scaffold DIA
 データベース:UniProtKB/Swiss Prot database (Synechocystis sp. PCC 6803)
 Fragmentation:HCD
 Precursor Tolerance:8ppm
 Fragment Tolerance:10ppm
 Data Acquisition Type:Overlapping DIA
 Peptide Length:8-70
 Peptide Charge:2-8
 Max Missed Cleavages:1
 Fixed Modification:Carbamidomethylation
 Peptide FDR:1%以下
 同定されたタンパク質のうち相対定量値が最も大きかった30種類のタンパク質のうち、明らかな酵素活性を持つと予想されるものを表4に示す。
Figure JPOXMLDOC01-appb-T000004
 これら6種類のタンパク質は、全て、実施例1のslr1841抑制株及び実施例2のslr0688抑制株の培養上清のそれぞれに含まれていた。これらのタンパク質の全てにおいて、ペリプラズム(外膜と内膜との間隙を指す)移行シグナルが保持されていた。この結果により、実施例1及び実施例2の改変株では、外膜が細胞壁から部分的に脱離することによってペリプラズム内のタンパク質が外膜の外(つまり、菌体外)に漏出しやすくなることが確認できた。したがって、本実施の形態に係る改変シアノバクテリアは、タンパク質の分泌生産性が大幅に向上していることが示された。
 (6)分泌された細胞内代謝産物の同定
 (6-1)試料調製
 改変シアノバクテリアの培養上清80μlに対し内部標準物質の濃度を1,000μMとなるよう調整した20μlの水溶液を加えて攪拌し、限外ろ過後、測定に供した。
 (6-2)CE(Capillary Electrophoresis)-TOFMS(Time-Of-Flight Mass Spectrometry)分析
 本試験ではカチオンモード、及び、アニオンモードの測定を以下に示す条件で行った。
 [カチオンモード]
 装置:Agilent CE-TOFMS system
 Capillary: Fused silica capillary i.d. 50μm×80cm
 測定条件:
  Run buffer: Cation buffer solution (p/n: H3301-1001)
  CE voltage: Positive, 30kV
  MS ionization: ESI positive
  MS scan range: m/z 50-1,000
 [アニオンモード]
 装置:Agilent CE-TOFMS system
 Capillary: Fused silica capillary i.d. 50μm×80cm
 測定条件:
  Run buffer: Anion buffer solution (p/n: H3301-1001)
  CE voltage: Positive, 30kV
  MS ionization: ESI negative
  MS scan range: m/z 50-1,000
 (6-3)データ処理
 CE-TOFMSで検出されたピークは、自動積分ソフトウェアMasterHands(登録商標) ver.2.17.1.11を用いて、シグナル/ノイズ比3以上のピークを自動検出した。検出されたピークに対して、各代謝産物固有の質量電荷比(m/z)と泳動時間の値を元に、HMT(ヒューマン・メタボローム・テクノロジーズ(株))の代謝物質ライブラリに登録された全物質の値と照合して、改変シアノバクテリアの培養上清に含まれる代謝産物を検索した。検索のための許容誤差は、泳動時間で+/-0.5min、m/zで+/-10ppmとした。同定された各代謝産物について100μMの一点検量として濃度を算出した。同定された主要な代謝産物を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 これら12種類の細胞内代謝産物は、全て、実施例1のslr1841抑制株及び実施例2のslr0688抑制株の培養上清のそれぞれに含まれていた。データは載せていないが、比較例1のControl株の培養上清には、これらの代謝産物は含まれていなかった。この結果により、実施例1及び実施例2の改変株では、外膜が細胞壁から部分的に脱離することによって細胞内代謝産物が外膜の外(つまり、菌体外)に漏出しやすくなることが確認できた。
 (7)病害抵抗性誘導試験
 続いて、改変シアノバクテリアの分泌物(ここでは、改変シアノバクテリアの培養上清)の植物病害抵抗性効果を評価するために、以下の植物栽培試験及び遺伝子発現調査を実施した。遺伝子発現調査では、植物栽培試験で栽培された植物における病害抵抗性に関与する遺伝子の発現変動を調べることにより植物病害抵抗性誘導剤の効果を評価した。なお、改変シアノバクテリアは、実施例2のslr0688抑制株であり、上記の(4-1)と同様に、菌株の培養は、独立して3回行った。つまり、実施例3及び4では、実施例2の改変シアノバクテリアの培養上清を植物病害抵抗性誘導剤として使用した。
 (7-1)植物栽培試験
 (7-1-1)トマト栽培試験
 トマト栽培試験では、以下の方法でミニトマトを栽培した。まず、栽培用プランター(22cm×16cm)に、市販の培養土を入れ、プランターあたり3粒のトマトの種子を播種した。栽培は、室内温度が23℃、白色光源の光量子束密度が250μmol/m2/sで、明条件16時間及び暗条件8時間の条件で行った。栽培開始からおよそ1週間後、子葉が展開した段階で間引きし、各プランターにおける個体サイズを揃えた。また、50日に1回、市販の化学肥料(窒素全量6%、水溶性リン酸10%、水溶性カリウム5%、水溶性苦土0.05%、水溶性マンガン0.001%、水溶性ホウ素0.005%を含む原液の500倍希釈液)を各プランターあたり500mL施用した。
 (実施例3)
 実施例3では、上記のように、各プランターの個体サイズを揃え、ミニトマト苗の定植後に水で20倍に希釈した植物病害耐性誘導剤をトマト1株あたり10mL、2週間に1度の頻度で葉面散布した。
 (比較例2)
 比較例2では、病害抵抗性誘導剤の代わりに、水を使用したこと以外、実施例3と同様に行った。
 (7-1-2)ホウレンソウ栽培試験
 まず、栽培用ポット(12cm×10cm)に、市販の培養土入れ、ポットあたり3粒のホウレンソウの種子を播種した。栽培は、室内温度が23℃、白色光源の光量子束密度が100μmol/m2/sで、明条件10時間及び暗条件14時間の条件で行った。栽培開始からおよそ1週間後、子葉が展開した段階で間引きし、各ポットにおける個体サイズを揃えた。
 (実施例4)
 実施例4では、上記のように、各ポットの個体サイズを揃え、播種後2週間後に水で20倍に希釈した植物病害耐性誘導剤を目視で葉が濡れる程度に葉面散布した。
 (比較例3)
 比較例3では、病害抵抗性誘導剤の代わりに、水を使用したこと以外、実施例4と同様に行った。
 (7-2)遺伝子発現調査
 実施例3及び比較例2で栽培されたミニトマトについては、播種100日後に葉を切り取り、実施例4及び比較例3で栽培されたホウレンソウについては、播種20日後に葉を切り取り、Nucleospin(登録商標)RNA plantキット(タカラバイオ社製)を用いてTotal RNAを調製した。このTotal RNAを、TruSeq(登録商標) Standard mRNA LT Sample Prep Kit(Illumina社製)で処理してライブラリを作成し、作成されたライブラリをNovaSeq(登録商標)次世代シークエンサー(Illumina社製)によりTranscriptome sequencing を行った。具体的には、次世代シークエンサーで比較例(未処理群)及び実施例(処理群)のサンプルに対してRNA-Seqを行うことで、未処理群と処理群との比較において発現量の異なる転写物(遺伝子)を検出した。そして、検出された遺伝子の中から、植物の病害耐性に関与する遺伝子(以下、植物病害抵抗性関連遺伝子という)として植物一般に広く存在するNPR1(Nonexpressor of Pathogenesis-Related 1)遺伝子、TGA遺伝子及びPR-1(Pathogenesis-Related-1)遺伝子の発現量を解析することで、植物病害抵抗性関連遺伝子の発現変動を調査した。
 (結果)
 実施例3及び実施例4の植物病害抵抗性関連遺伝子の発現量解析の結果を表6に示す。また、表6に記載の※1~※8に対応する病害抵抗性遺伝子のNCBI-gene IDを表7に示す。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 表6には、実施例3の発現量解析の結果として、比較例2のミニトマトの植物病害抵抗性関連遺伝子の発現量(転写レベルともいう)に対する、実施例3のミニトマトの植物病害抵抗性関連遺伝子の発現量(転写レベル)の相対値が示されている。また、表6には、実施例4の発現量解析の結果として、比較例3で栽培されたホウレンソウの植物病害抵抗性関連遺伝子の発現量(転写レベル)に対する、実施例4で栽培されたホウレンソウの植物病害抵抗性関連遺伝子の発現量(転写レベル)の相対値が示されている。表6に示されるように、本開示の植物病害抵抗性誘導剤を施用したミニトマト(実施例3)、及び、ホウレンソウ(実施例4)は、NPR1遺伝子、TGA遺伝子、及びPR-1遺伝子の発現量が少なくとも2倍以上に増加したことが確認された。具体的には、NPR1遺伝子の発現量は、ミニトマト(実施例3)もホウレンソウ(実施例4)も2倍に増加した。また、TGA遺伝子の発現量は、ミニトマト(実施例3)では、15倍近くまで増加し、ホウレンソウ(実施例4)では、4倍~53倍に増加していた。また、PR-1遺伝子3の発現量は、ミニトマト(実施例3)では2倍に増加し、ホウレンソウ(実施例4)では、3倍~4倍に増加していた。
 上述したように、NPR1遺伝子、TGA遺伝子、及びPR-1遺伝子は、植物一般に広く存在し、病害抵抗性を向上させることが知られている。上記の結果から、本開示の病害抵抗性誘導剤が種々の植物に適用可能な汎用的な効果を有し、かつ、病害抵抗性関連遺伝子を顕著に活性化することが示唆される。したがって、本開示の植物病害抵抗性誘導剤は、効果的に植物の病害抵抗性を誘導することができることが確認できた。
 本開示の植物病害抵抗性誘導剤及び植物病害抵抗性誘導方法によれば、効果的に植物の病害抵抗性を誘導することができるため、植物の病害に対する抵抗性を向上することができる。また、本開示の植物病害抵抗性誘導剤の製造方法によれば、シアノバクテリアを培養すればその分泌物を含む植物病害抵抗性誘導剤を製造することができるため、植物病害抵抗性誘導剤を容易に、かつ、効率よく製造することができる。したがって、本開示によれば、植物の病害に対する抵抗性を高めることができるため、作物の増収及び高品質化が期待できる。
 1 内膜
 2 ペプチドグリカン
 3 糖鎖
 4 細胞壁
 5 外膜
 6 SLHドメイン保持型外膜タンパク質
 7 SLHドメイン
 8 有機物チャネルタンパク質
 9 細胞壁-ピルビン酸修飾酵素

Claims (11)

  1.  シアノバクテリアの分泌物を含む、
     植物病害抵抗性誘導剤。
  2.  前記シアノバクテリアは、外膜と細胞壁との結合に関与するタンパク質の機能が抑制又は喪失されている改変シアノバクテリアである、
     請求項1に記載の植物病害抵抗性誘導剤。
  3.  前記外膜と前記細胞壁との結合に関与するタンパク質は、SLH(Surface Layer Homology)ドメイン保持型外膜タンパク質、及び、細胞壁-ピルビン酸修飾酵素からなる群から選択される少なくとも1つである、
     請求項2に記載の植物病害抵抗性誘導剤。
  4.  前記SLHドメイン保持型外膜タンパク質は、
     配列番号1で示されるアミノ酸配列からなるSlr1841、
     配列番号2で示されるアミノ酸配列からなるNIES970_09470、
     配列番号3で示されるアミノ酸配列からなるAnacy_3458、又は、
     これらのいずれかのSLHドメイン保持型外膜タンパク質とアミノ酸配列が50%以上同一であるタンパク質である、
     請求項3に記載の植物病害抵抗性誘導剤。
  5.  前記細胞壁-ピルビン酸修飾酵素は、
     配列番号4で示されるアミノ酸配列からなるSlr0688、
     配列番号5で示されるアミノ酸配列からなるSynpcc7942_1529、
     配列番号6で示されるアミノ酸配列からなるAnacy_1623、又は、
     これらのいずれかの細胞壁-ピルビン酸修飾酵素とアミノ酸配列が50%以上同一であるタンパク質である、
     請求項3に記載の植物病害抵抗性誘導剤。
  6.  前記シアノバクテリアは、前記外膜と前記細胞壁との結合に関与するタンパク質を発現させる遺伝子が欠失又は不活性化されている改変シアノバクテリアである、
     請求項1に記載の植物病害抵抗性誘導剤。
  7.  前記外膜と細胞壁との結合に関与するタンパク質を発現させる遺伝子は、SLHドメイン保持型外膜タンパク質をコードする遺伝子、及び、細胞壁-ピルビン酸修飾酵素をコードする遺伝子からなる群から選択される少なくとも1つである、
     請求項6に記載の植物病害抵抗性誘導剤。
  8.  前記SLHドメイン保持型外膜タンパク質をコードする遺伝子は、
     配列番号7で示される塩基配列からなるslr1841、
     配列番号8で示される塩基配列からなるnies970_09470、
     配列番号9で示される塩基配列からなるanacy_3458、又は、
     これらのいずれかの遺伝子と塩基配列が50%以上同一である遺伝子である、
     請求項7に記載の植物病害抵抗性誘導剤。
  9.  前記細胞壁-ピルビン酸修飾酵素をコードする遺伝子は、
     配列番号10で示される塩基配列からなるslr0688、
     配列番号11で示される塩基配列からなるsynpcc7942_1529、
     配列番号12で示される塩基配列からなるanacy_1623、又は、
     これらのいずれかの遺伝子と塩基配列が50%以上同一である遺伝子である、
     請求項7に記載の植物病害抵抗性誘導剤。
  10.  シアノバクテリアの分泌物を含む植物病害抵抗性誘導剤を用いる、
     植物病害抵抗性誘導方法。
  11.  シアノバクテリアを準備するステップと、
     前記シアノバクテリアに植物の病害抵抗性の誘導に関与する分泌物を分泌させるステップと、
     を含む、
     植物病害抵抗性誘導剤の製造方法。
PCT/JP2023/019242 2022-06-20 2023-05-24 植物病害抵抗性誘導剤、植物病害抵抗性誘導方法、及び、植物病害抵抗性誘導剤の製造方法 WO2023248690A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022099144 2022-06-20
JP2022-099144 2022-06-20

Publications (1)

Publication Number Publication Date
WO2023248690A1 true WO2023248690A1 (ja) 2023-12-28

Family

ID=89379790

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/019242 WO2023248690A1 (ja) 2022-06-20 2023-05-24 植物病害抵抗性誘導剤、植物病害抵抗性誘導方法、及び、植物病害抵抗性誘導剤の製造方法

Country Status (1)

Country Link
WO (1) WO2023248690A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012046758A1 (ja) * 2010-10-07 2012-04-12 味の素株式会社 イネ科植物病害抵抗性増強剤およびそれを用いたイネ科植物の病害防除法
JP2012211124A (ja) * 2011-03-24 2012-11-01 National Agriculture & Food Research Organization 青枯病抵抗性誘導剤及び青枯病防除方法
JP2013082661A (ja) * 2011-02-24 2013-05-09 Univ Of Tokyo プラントアクティベーター
WO2021132110A1 (ja) * 2019-12-23 2021-07-01 パナソニックIpマネジメント株式会社 植物成長促進剤の製造方法、植物成長促進剤、及び、植物成長促進方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012046758A1 (ja) * 2010-10-07 2012-04-12 味の素株式会社 イネ科植物病害抵抗性増強剤およびそれを用いたイネ科植物の病害防除法
JP2013082661A (ja) * 2011-02-24 2013-05-09 Univ Of Tokyo プラントアクティベーター
JP2012211124A (ja) * 2011-03-24 2012-11-01 National Agriculture & Food Research Organization 青枯病抵抗性誘導剤及び青枯病防除方法
WO2021132110A1 (ja) * 2019-12-23 2021-07-01 パナソニックIpマネジメント株式会社 植物成長促進剤の製造方法、植物成長促進剤、及び、植物成長促進方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Glutathione in Plant Growth, Development, and Stress Tolerance", 1 January 2017, SPRINGER INTERNATIONAL PUBLISHING, Cham, ISBN: 978-3-319-66682-2, article GULLNER GÁBOR, ZECHMANN BERND, KÜNSTLER ANDRÁS, KIRÁLY LÓRÁNT: "Chapter 15: The Signaling Roles of Glutathione in Plant Disease Resistance", pages: 331 - 357, XP009551260, DOI: 10.1007/978-3-319-66682-2_15 *
KAORI SENDA , MASAKI IWABUCHI , KENICHI OGAWA: "Involvement of Glutathione in PR-1 Expression in Arabidopsis thaliana", JAPANESE SOCIETY OF PLANT PHYSIOLOGISTS 2003 ANNUAL MEETING AND 43RD SYMPOSIUM ABSTRACTS, JAPAN SOCIETY OF PLANT PHYSIOLOGISTS, JP, 27 March 2023 (2023-03-27), JP, pages 175, XP009551774, DOI: 10.14841/jspp.2003.0.175.0 *
SENDA KAORI, OGAWA KEN’ICHI: "Induction of PR-1 Accumulation Accompanied by Runaway Cell Death in the lsd1 Mutant of Arabidopsis is Dependent on Glutathione Levels but Independent of the Redox State of Glutathione", PLANT AND CELL PHSIOLOGY, OXFORD UNIVERSITY PRESS, UK, vol. 45, no. 11, 15 November 2004 (2004-11-15), UK , pages 1578 - 1585, XP093118851, ISSN: 0032-0781, DOI: 10.1093/pcp/pch179 *

Similar Documents

Publication Publication Date Title
JP7450189B2 (ja) 植物成長促進剤の製造方法、植物成長促進剤、及び、植物成長促進方法
KR20190104056A (ko) 식물 형질 개선을 위한 방법 및 조성물
JP2021500906A (ja) 窒素を固定する操作された微生物を改良するための方法および組成物
KR20200087166A (ko) 식물 특성 개선을 위한 질소 고정 표적화용 유전자 표적
US20220325312A1 (en) Modified cyanobacterium, modified cyanobacterium production method, and protein production method
US20220275033A1 (en) Modified cyanobacterium, modified cyanobacterium production method, and protein production method
KR101825439B1 (ko) 염산 처리에 의한 그람양성 박테리아 고스트의 제조 방법
US20210112739A1 (en) Plant microbial preparations, compositions and formulations comprising same and uses thereof
JP2024045256A (ja) 農作物の栽培方法
WO2023248690A1 (ja) 植物病害抵抗性誘導剤、植物病害抵抗性誘導方法、及び、植物病害抵抗性誘導剤の製造方法
WO2022186217A1 (ja) 植物成長促進剤の製造方法、植物成長促進剤、及び、植物成長促進方法
JP2023182951A (ja) トマト果実の高糖度化方法、トマト果実の高糖度化剤及びその製造方法
JP2022102901A (ja) 植物高品質化剤の製造方法、植物高品質化剤、及び、植物高品質化方法
WO2022186220A1 (ja) 植物酸性インベルターゼ活性化剤、その製造方法、及び、植物酸性インベルターゼ活性化方法
KR102211740B1 (ko) 파에오닥틸룸 트리코르누툼(Phaeodactylum tricornutum)의 신규 프로모터 HASP1와 이의 신호 펩타이드 및 이의 용도
JP2022102889A (ja) 作物収量向上剤の製造方法、作物収量向上剤、及び、作物収量向上方法
JP2022134729A (ja) 植物高品質化剤の製造方法、植物高品質化剤、及び、植物高品質化方法
JP2022134817A (ja) 作物収量向上剤の製造方法、作物収量向上剤、及び、作物収量向上方法
WO2024024427A1 (ja) シアノバクテリアの外膜剥離の判定方法、シアノバクテリアの外膜剥離の判定装置、及び、プログラム
CN106749591B (zh) 来源于象耳豆根结线虫的Mesp1蛋白及其编码基因和应用
US20240084245A1 (en) Modified cyanobacterium, modified cyanobacterium production method, and protein production method
CN114561405B (zh) 木霉菌Harzianolide的合成基因簇在制备提高植物灰霉病抗性制剂中的应用
CN1100143C (zh) 白纹病的控制
CN102367451A (zh) 一种提高水稻香味物质含量的基因真核重组质粒及应用
Preininger et al. Long-living Azotobacter-Chlamydomonas association as a model system for plant-microbe interactions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23826878

Country of ref document: EP

Kind code of ref document: A1