WO2022186220A1 - 植物酸性インベルターゼ活性化剤、その製造方法、及び、植物酸性インベルターゼ活性化方法 - Google Patents
植物酸性インベルターゼ活性化剤、その製造方法、及び、植物酸性インベルターゼ活性化方法 Download PDFInfo
- Publication number
- WO2022186220A1 WO2022186220A1 PCT/JP2022/008662 JP2022008662W WO2022186220A1 WO 2022186220 A1 WO2022186220 A1 WO 2022186220A1 JP 2022008662 W JP2022008662 W JP 2022008662W WO 2022186220 A1 WO2022186220 A1 WO 2022186220A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- outer membrane
- cell wall
- protein
- invertase
- cyanobacteria
- Prior art date
Links
- 108010051210 beta-Fructofuranosidase Proteins 0.000 title claims abstract description 232
- 235000011073 invertase Nutrition 0.000 title claims abstract description 230
- 239000012190 activator Substances 0.000 title claims abstract description 109
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 62
- 238000000034 method Methods 0.000 title claims description 56
- 230000003213 activating effect Effects 0.000 title claims description 54
- 239000001573 invertase Substances 0.000 title abstract description 16
- 230000002378 acidificating effect Effects 0.000 title abstract description 5
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 360
- 102000004169 proteins and genes Human genes 0.000 claims abstract description 223
- 241000192700 Cyanobacteria Species 0.000 claims abstract description 204
- 239000012528 membrane Substances 0.000 claims abstract description 169
- 210000002421 cell wall Anatomy 0.000 claims abstract description 154
- 241001464430 Cyanobacterium Species 0.000 claims abstract description 70
- 230000028327 secretion Effects 0.000 claims abstract description 44
- 230000004913 activation Effects 0.000 claims abstract description 26
- 210000004027 cell Anatomy 0.000 claims description 214
- 108090000790 Enzymes Proteins 0.000 claims description 84
- 102000004190 Enzymes Human genes 0.000 claims description 84
- 101710116435 Outer membrane protein Proteins 0.000 claims description 40
- 239000002773 nucleotide Substances 0.000 claims description 15
- 125000003729 nucleotide group Chemical group 0.000 claims description 15
- 239000002344 surface layer Substances 0.000 claims description 12
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 claims description 3
- 125000003275 alpha amino acid group Chemical group 0.000 claims 8
- 235000018102 proteins Nutrition 0.000 description 208
- 241000196324 Embryophyta Species 0.000 description 207
- 210000004379 membrane Anatomy 0.000 description 162
- 239000000126 substance Substances 0.000 description 107
- 230000000052 comparative effect Effects 0.000 description 82
- 229940076788 pyruvate Drugs 0.000 description 68
- 230000006870 function Effects 0.000 description 59
- 235000000346 sugar Nutrition 0.000 description 48
- 101001000653 Chlamydia pneumoniae Probable outer membrane protein pmp1 Proteins 0.000 description 41
- 239000002207 metabolite Substances 0.000 description 41
- 230000014509 gene expression Effects 0.000 description 39
- LCTONWCANYUPML-UHFFFAOYSA-N Pyruvic acid Chemical compound CC(=O)C(O)=O LCTONWCANYUPML-UHFFFAOYSA-N 0.000 description 34
- 230000000694 effects Effects 0.000 description 32
- 150000001413 amino acids Chemical group 0.000 description 31
- 235000013399 edible fruits Nutrition 0.000 description 31
- 230000002829 reductive effect Effects 0.000 description 29
- 241000220223 Fragaria Species 0.000 description 23
- 241000192584 Synechocystis Species 0.000 description 21
- 229940107700 pyruvic acid Drugs 0.000 description 18
- 239000000243 solution Substances 0.000 description 18
- 230000001976 improved effect Effects 0.000 description 17
- 239000012228 culture supernatant Substances 0.000 description 15
- 230000002950 deficient Effects 0.000 description 15
- 239000001963 growth medium Substances 0.000 description 15
- 235000016623 Fragaria vesca Nutrition 0.000 description 14
- 235000011363 Fragaria x ananassa Nutrition 0.000 description 14
- 241000219315 Spinacia Species 0.000 description 14
- 239000012634 fragment Substances 0.000 description 14
- 230000003834 intracellular effect Effects 0.000 description 14
- 241000894007 species Species 0.000 description 14
- 235000009337 Spinacia oleracea Nutrition 0.000 description 13
- 230000012010 growth Effects 0.000 description 12
- 239000013612 plasmid Substances 0.000 description 12
- 238000012360 testing method Methods 0.000 description 12
- 241000192581 Synechocystis sp. Species 0.000 description 11
- 239000013611 chromosomal DNA Substances 0.000 description 11
- 230000005540 biological transmission Effects 0.000 description 10
- 230000004048 modification Effects 0.000 description 10
- 238000012986 modification Methods 0.000 description 10
- 230000006798 recombination Effects 0.000 description 10
- 238000005215 recombination Methods 0.000 description 10
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 9
- LCTONWCANYUPML-UHFFFAOYSA-M Pyruvate Chemical compound CC(=O)C([O-])=O LCTONWCANYUPML-UHFFFAOYSA-M 0.000 description 9
- 230000007423 decrease Effects 0.000 description 9
- 230000001766 physiological effect Effects 0.000 description 9
- 108090000765 processed proteins & peptides Proteins 0.000 description 9
- 235000021012 strawberries Nutrition 0.000 description 9
- 230000001629 suppression Effects 0.000 description 9
- 108020004414 DNA Proteins 0.000 description 8
- MSFSPUZXLOGKHJ-UHFFFAOYSA-N Muraminsaeure Natural products OC(=O)C(C)OC1C(N)C(O)OC(CO)C1O MSFSPUZXLOGKHJ-UHFFFAOYSA-N 0.000 description 8
- 108010013639 Peptidoglycan Proteins 0.000 description 8
- 238000003917 TEM image Methods 0.000 description 8
- 230000001276 controlling effect Effects 0.000 description 8
- 238000005259 measurement Methods 0.000 description 8
- 238000003752 polymerase chain reaction Methods 0.000 description 8
- 230000003248 secreting effect Effects 0.000 description 8
- 239000002689 soil Substances 0.000 description 8
- 238000013518 transcription Methods 0.000 description 8
- 230000035897 transcription Effects 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 241000894006 Bacteria Species 0.000 description 7
- 210000000170 cell membrane Anatomy 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 7
- 238000001000 micrograph Methods 0.000 description 7
- 101150093858 psbA1 gene Proteins 0.000 description 7
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 6
- 108091006146 Channels Proteins 0.000 description 6
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 6
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 6
- 244000068988 Glycine max Species 0.000 description 6
- 235000010469 Glycine max Nutrition 0.000 description 6
- 229930006000 Sucrose Natural products 0.000 description 6
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 6
- 241000192560 Synechococcus sp. Species 0.000 description 6
- 238000012258 culturing Methods 0.000 description 6
- 238000000605 extraction Methods 0.000 description 6
- 239000008103 glucose Substances 0.000 description 6
- 239000003550 marker Substances 0.000 description 6
- 239000002609 medium Substances 0.000 description 6
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 239000008188 pellet Substances 0.000 description 6
- 210000001322 periplasm Anatomy 0.000 description 6
- 102000004196 processed proteins & peptides Human genes 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 239000002904 solvent Substances 0.000 description 6
- 239000005720 sucrose Substances 0.000 description 6
- 241000192542 Anabaena Species 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 5
- 241000192707 Synechococcus Species 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 230000002401 inhibitory effect Effects 0.000 description 5
- 235000015097 nutrients Nutrition 0.000 description 5
- 239000005416 organic matter Substances 0.000 description 5
- 238000011002 quantification Methods 0.000 description 5
- 238000001269 time-of-flight mass spectrometry Methods 0.000 description 5
- 102000034573 Channels Human genes 0.000 description 4
- 229920000742 Cotton Polymers 0.000 description 4
- 241000065719 Crocosphaera Species 0.000 description 4
- 108091028043 Nucleic acid sequence Proteins 0.000 description 4
- 240000007594 Oryza sativa Species 0.000 description 4
- 235000007164 Oryza sativa Nutrition 0.000 description 4
- 101100245405 Parasynechococcus marenigrum (strain WH8102) psbA2 gene Proteins 0.000 description 4
- 241000179979 Pleurocapsa Species 0.000 description 4
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 4
- 240000008042 Zea mays Species 0.000 description 4
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 4
- 238000005251 capillar electrophoresis Methods 0.000 description 4
- 235000013339 cereals Nutrition 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 238000012217 deletion Methods 0.000 description 4
- 230000037430 deletion Effects 0.000 description 4
- VHJLVAABSRFDPM-QWWZWVQMSA-N dithiothreitol Chemical compound SC[C@@H](O)[C@H](O)CS VHJLVAABSRFDPM-QWWZWVQMSA-N 0.000 description 4
- 238000001962 electrophoresis Methods 0.000 description 4
- 230000007613 environmental effect Effects 0.000 description 4
- 229930027917 kanamycin Natural products 0.000 description 4
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 4
- 229960000318 kanamycin Drugs 0.000 description 4
- 229930182823 kanamycin A Natural products 0.000 description 4
- 239000010410 layer Substances 0.000 description 4
- 150000002632 lipids Chemical class 0.000 description 4
- 230000008635 plant growth Effects 0.000 description 4
- 229920001184 polypeptide Polymers 0.000 description 4
- 230000001737 promoting effect Effects 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 235000009566 rice Nutrition 0.000 description 4
- 229920002477 rna polymer Polymers 0.000 description 4
- 230000002103 transcriptional effect Effects 0.000 description 4
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- 101710145411 Acid beta-fructofuranosidase Proteins 0.000 description 3
- 241000424622 Anabaena cylindrica PCC 7122 Species 0.000 description 3
- 108091033409 CRISPR Proteins 0.000 description 3
- 241000192685 Calothrix Species 0.000 description 3
- 229930091371 Fructose Natural products 0.000 description 3
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 3
- 241000192701 Microcystis Species 0.000 description 3
- 241000192656 Nostoc Species 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 150000001450 anions Chemical class 0.000 description 3
- 230000001580 bacterial effect Effects 0.000 description 3
- AFYNADDZULBEJA-UHFFFAOYSA-N bicinchoninic acid Chemical compound C1=CC=CC2=NC(C=3C=C(C4=CC=CC=C4N=3)C(=O)O)=CC(C(O)=O)=C21 AFYNADDZULBEJA-UHFFFAOYSA-N 0.000 description 3
- 229910052796 boron Inorganic materials 0.000 description 3
- 150000001768 cations Chemical class 0.000 description 3
- 230000036978 cell physiology Effects 0.000 description 3
- 238000010367 cloning Methods 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 210000000805 cytoplasm Anatomy 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 3
- 239000011536 extraction buffer Substances 0.000 description 3
- 235000019253 formic acid Nutrition 0.000 description 3
- 229960002737 fructose Drugs 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 229910001410 inorganic ion Inorganic materials 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- PGLTVOMIXTUURA-UHFFFAOYSA-N iodoacetamide Chemical compound NC(=O)CI PGLTVOMIXTUURA-UHFFFAOYSA-N 0.000 description 3
- 238000001294 liquid chromatography-tandem mass spectrometry Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 244000005700 microbiome Species 0.000 description 3
- 238000006011 modification reaction Methods 0.000 description 3
- 239000012466 permeate Substances 0.000 description 3
- 230000029553 photosynthesis Effects 0.000 description 3
- 238000010672 photosynthesis Methods 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 238000012827 research and development Methods 0.000 description 3
- 230000000717 retained effect Effects 0.000 description 3
- BTURAGWYSMTVOW-UHFFFAOYSA-M sodium dodecanoate Chemical compound [Na+].CCCCCCCCCCCC([O-])=O BTURAGWYSMTVOW-UHFFFAOYSA-M 0.000 description 3
- 238000006467 substitution reaction Methods 0.000 description 3
- 238000013519 translation Methods 0.000 description 3
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 2
- WHBMMWSBFZVSSR-UHFFFAOYSA-N 3-hydroxybutyric acid Chemical compound CC(O)CC(O)=O WHBMMWSBFZVSSR-UHFFFAOYSA-N 0.000 description 2
- ALYNCZNDIQEVRV-UHFFFAOYSA-N 4-aminobenzoic acid Chemical compound NC1=CC=C(C(O)=O)C=C1 ALYNCZNDIQEVRV-UHFFFAOYSA-N 0.000 description 2
- 229920001817 Agar Polymers 0.000 description 2
- 241000192531 Anabaena sp. Species 0.000 description 2
- 238000010446 CRISPR interference Methods 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- 239000005715 Fructose Substances 0.000 description 2
- 210000000712 G cell Anatomy 0.000 description 2
- NYHBQMYGNKIUIF-UUOKFMHZSA-N Guanosine Chemical compound C1=NC=2C(=O)NC(N)=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O NYHBQMYGNKIUIF-UUOKFMHZSA-N 0.000 description 2
- 108090000862 Ion Channels Proteins 0.000 description 2
- 102000004310 Ion Channels Human genes 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 241000215457 Leptolyngbya Species 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- 101710163270 Nuclease Proteins 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 2
- 235000016383 Zea mays subsp huehuetenangensis Nutrition 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- OIRDTQYFTABQOQ-KQYNXXCUSA-N adenosine Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O OIRDTQYFTABQOQ-KQYNXXCUSA-N 0.000 description 2
- 239000008272 agar Substances 0.000 description 2
- 235000001014 amino acid Nutrition 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000002869 basic local alignment search tool Methods 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000037396 body weight Effects 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 239000007853 buffer solution Substances 0.000 description 2
- 230000004663 cell proliferation Effects 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 210000002808 connective tissue Anatomy 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 235000005822 corn Nutrition 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 239000005350 fused silica glass Substances 0.000 description 2
- 238000003306 harvesting Methods 0.000 description 2
- 238000002744 homologous recombination Methods 0.000 description 2
- 230000006801 homologous recombination Effects 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000000415 inactivating effect Effects 0.000 description 2
- 230000002779 inactivation Effects 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- ZXEKIIBDNHEJCQ-UHFFFAOYSA-N isobutanol Chemical compound CC(C)CO ZXEKIIBDNHEJCQ-UHFFFAOYSA-N 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 235000009973 maize Nutrition 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 230000035772 mutation Effects 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 108020004707 nucleic acids Proteins 0.000 description 2
- 150000007523 nucleic acids Chemical class 0.000 description 2
- 102000039446 nucleic acids Human genes 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- YBYRMVIVWMBXKQ-UHFFFAOYSA-N phenylmethanesulfonyl fluoride Chemical compound FS(=O)(=O)CC1=CC=CC=C1 YBYRMVIVWMBXKQ-UHFFFAOYSA-N 0.000 description 2
- 230000000243 photosynthetic effect Effects 0.000 description 2
- 238000004382 potting Methods 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 230000004853 protein function Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- UNFWWIHTNXNPBV-WXKVUWSESA-N spectinomycin Chemical compound O([C@@H]1[C@@H](NC)[C@@H](O)[C@H]([C@@H]([C@H]1O1)O)NC)[C@]2(O)[C@H]1O[C@H](C)CC2=O UNFWWIHTNXNPBV-WXKVUWSESA-N 0.000 description 2
- 229960000268 spectinomycin Drugs 0.000 description 2
- ATHGHQPFGPMSJY-UHFFFAOYSA-N spermidine Chemical compound NCCCCNCCCN ATHGHQPFGPMSJY-UHFFFAOYSA-N 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 150000008163 sugars Chemical class 0.000 description 2
- UMGDCJDMYOKAJW-UHFFFAOYSA-N thiourea Chemical compound NC(N)=S UMGDCJDMYOKAJW-UHFFFAOYSA-N 0.000 description 2
- 230000005945 translocation Effects 0.000 description 2
- 238000004627 transmission electron microscopy Methods 0.000 description 2
- 210000003934 vacuole Anatomy 0.000 description 2
- TUSDEZXZIZRFGC-UHFFFAOYSA-N 1-O-galloyl-3,6-(R)-HHDP-beta-D-glucose Natural products OC1C(O2)COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC1C(O)C2OC(=O)C1=CC(O)=C(O)C(O)=C1 TUSDEZXZIZRFGC-UHFFFAOYSA-N 0.000 description 1
- MSWZFWKMSRAUBD-IVMDWMLBSA-N 2-amino-2-deoxy-D-glucopyranose Chemical compound N[C@H]1C(O)O[C@H](CO)[C@@H](O)[C@@H]1O MSWZFWKMSRAUBD-IVMDWMLBSA-N 0.000 description 1
- MSWZFWKMSRAUBD-CBPJZXOFSA-N 2-amino-2-deoxy-D-mannopyranose Chemical compound N[C@@H]1C(O)O[C@H](CO)[C@@H](O)[C@@H]1O MSWZFWKMSRAUBD-CBPJZXOFSA-N 0.000 description 1
- 240000002900 Arthrospira platensis Species 0.000 description 1
- 235000016425 Arthrospira platensis Nutrition 0.000 description 1
- 241000193738 Bacillus anthracis Species 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 239000002126 C01EB10 - Adenosine Substances 0.000 description 1
- 101001000626 Chlamydia pneumoniae Probable outer membrane protein pmp2 Proteins 0.000 description 1
- MIKUYHXYGGJMLM-GIMIYPNGSA-N Crotonoside Natural products C1=NC2=C(N)NC(=O)N=C2N1[C@H]1O[C@@H](CO)[C@H](O)[C@@H]1O MIKUYHXYGGJMLM-GIMIYPNGSA-N 0.000 description 1
- 241000195493 Cryptophyta Species 0.000 description 1
- RGHNJXZEOKUKBD-UHFFFAOYSA-N D-gluconic acid Natural products OCC(O)C(O)C(O)C(O)C(O)=O RGHNJXZEOKUKBD-UHFFFAOYSA-N 0.000 description 1
- NYHBQMYGNKIUIF-UHFFFAOYSA-N D-guanosine Natural products C1=2NC(N)=NC(=O)C=2N=CN1C1OC(CO)C(O)C1O NYHBQMYGNKIUIF-UHFFFAOYSA-N 0.000 description 1
- 239000001263 FEMA 3042 Substances 0.000 description 1
- 108700039691 Genetic Promoter Regions Proteins 0.000 description 1
- 241001464795 Gloeobacter violaceus Species 0.000 description 1
- RGHNJXZEOKUKBD-SQOUGZDYSA-N Gluconic acid Natural products OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)=O RGHNJXZEOKUKBD-SQOUGZDYSA-N 0.000 description 1
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 1
- 239000007995 HEPES buffer Substances 0.000 description 1
- 206010021033 Hypomenorrhoea Diseases 0.000 description 1
- 208000015580 Increased body weight Diseases 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 241000218922 Magnoliophyta Species 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 241000192710 Microcystis aeruginosa Species 0.000 description 1
- 241000909283 Negativicutes Species 0.000 description 1
- LRBQNJMCXXYXIU-PPKXGCFTSA-N Penta-digallate-beta-D-glucose Natural products OC1=C(O)C(O)=CC(C(=O)OC=2C(=C(O)C=C(C=2)C(=O)OC[C@@H]2[C@H]([C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)O2)OC(=O)C=2C=C(OC(=O)C=3C=C(O)C(O)=C(O)C=3)C(O)=C(O)C=2)O)=C1 LRBQNJMCXXYXIU-PPKXGCFTSA-N 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 102000045595 Phosphoprotein Phosphatases Human genes 0.000 description 1
- 108700019535 Phosphoprotein Phosphatases Proteins 0.000 description 1
- 108010010522 Phycobilisomes Proteins 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- 101100408844 Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1) oprB gene Proteins 0.000 description 1
- 238000012228 RNA interference-mediated gene silencing Methods 0.000 description 1
- 101150042050 Slh gene Proteins 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 241001453296 Synechococcus elongatus Species 0.000 description 1
- 241000192593 Synechocystis sp. PCC 6803 Species 0.000 description 1
- 241001313706 Thermosynechococcus Species 0.000 description 1
- 241001313699 Thermosynechococcus elongatus Species 0.000 description 1
- 241001504076 Thermosynechococcus elongatus BP-1 Species 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 229920004890 Triton X-100 Polymers 0.000 description 1
- 239000013504 Triton X-100 Substances 0.000 description 1
- 102000004142 Trypsin Human genes 0.000 description 1
- 108090000631 Trypsin Proteins 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Natural products NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- ABUBSBSOTTXVPV-UHFFFAOYSA-H [U+6].CC([O-])=O.CC([O-])=O.CC([O-])=O.CC([O-])=O.CC([O-])=O.CC([O-])=O Chemical compound [U+6].CC([O-])=O.CC([O-])=O.CC([O-])=O.CC([O-])=O.CC([O-])=O.CC([O-])=O ABUBSBSOTTXVPV-UHFFFAOYSA-H 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 229960005305 adenosine Drugs 0.000 description 1
- 238000005273 aeration Methods 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 229960004050 aminobenzoic acid Drugs 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- MSWZFWKMSRAUBD-UHFFFAOYSA-N beta-D-galactosamine Natural products NC1C(O)OC(CO)C(O)C1O MSWZFWKMSRAUBD-UHFFFAOYSA-N 0.000 description 1
- HOQPTLCRWVZIQZ-UHFFFAOYSA-H bis[[2-(5-hydroxy-4,7-dioxo-1,3,2$l^{2}-dioxaplumbepan-5-yl)acetyl]oxy]lead Chemical compound [Pb+2].[Pb+2].[Pb+2].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O.[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O HOQPTLCRWVZIQZ-UHFFFAOYSA-H 0.000 description 1
- 210000004899 c-terminal region Anatomy 0.000 description 1
- 210000000692 cap cell Anatomy 0.000 description 1
- 238000007623 carbamidomethylation reaction Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 210000002390 cell membrane structure Anatomy 0.000 description 1
- 229930002875 chlorophyll Natural products 0.000 description 1
- 235000019804 chlorophyll Nutrition 0.000 description 1
- ATNHDLDRLWWWCB-AENOIHSZSA-M chlorophyll a Chemical compound C1([C@@H](C(=O)OC)C(=O)C2=C3C)=C2N2C3=CC(C(CC)=C3C)=[N+]4C3=CC3=C(C=C)C(C)=C5N3[Mg-2]42[N+]2=C1[C@@H](CCC(=O)OC\C=C(/C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)[C@H](C)C2=C5 ATNHDLDRLWWWCB-AENOIHSZSA-M 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 238000012272 crop production Methods 0.000 description 1
- 238000012136 culture method Methods 0.000 description 1
- 125000004093 cyano group Chemical group *C#N 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 238000011033 desalting Methods 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 210000005069 ears Anatomy 0.000 description 1
- 238000000635 electron micrograph Methods 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 238000006911 enzymatic reaction Methods 0.000 description 1
- DEFVIWRASFVYLL-UHFFFAOYSA-N ethylene glycol bis(2-aminoethyl)tetraacetic acid Chemical compound OC(=O)CN(CC(O)=O)CCOCCOCCN(CC(O)=O)CC(O)=O DEFVIWRASFVYLL-UHFFFAOYSA-N 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000003337 fertilizer Substances 0.000 description 1
- 238000007380 fibre production Methods 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 239000013505 freshwater Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000009368 gene silencing by RNA Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000000174 gluconic acid Substances 0.000 description 1
- 235000012208 gluconic acid Nutrition 0.000 description 1
- 229960002442 glucosamine Drugs 0.000 description 1
- 239000007952 growth promoter Substances 0.000 description 1
- 229940029575 guanosine Drugs 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- -1 iron) (e.g. Chemical class 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 125000003473 lipid group Chemical group 0.000 description 1
- 238000009630 liquid culture Methods 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 230000002906 microbiologic effect Effects 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000002715 modification method Methods 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 238000002703 mutagenesis Methods 0.000 description 1
- 231100000350 mutagenesis Toxicity 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 235000015816 nutrient absorption Nutrition 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 210000002306 phycobilisome Anatomy 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 235000019833 protease Nutrition 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000002741 site-directed mutagenesis Methods 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229940063673 spermidine Drugs 0.000 description 1
- 229940082787 spirulina Drugs 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 235000015523 tannic acid Nutrition 0.000 description 1
- 229920002258 tannic acid Polymers 0.000 description 1
- LRBQNJMCXXYXIU-NRMVVENXSA-N tannic acid Chemical compound OC1=C(O)C(O)=CC(C(=O)OC=2C(=C(O)C=C(C=2)C(=O)OC[C@@H]2[C@H]([C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)O2)OC(=O)C=2C=C(OC(=O)C=3C=C(O)C(O)=C(O)C=3)C(O)=C(O)C=2)O)=C1 LRBQNJMCXXYXIU-NRMVVENXSA-N 0.000 description 1
- 229940033123 tannic acid Drugs 0.000 description 1
- OFVLGDICTFRJMM-WESIUVDSSA-N tetracycline Chemical compound C1=CC=C2[C@](O)(C)[C@H]3C[C@H]4[C@H](N(C)C)C(O)=C(C(N)=O)C(=O)[C@@]4(O)C(O)=C3C(=O)C2=C1O OFVLGDICTFRJMM-WESIUVDSSA-N 0.000 description 1
- 229930101283 tetracycline Natural products 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 210000002377 thylakoid Anatomy 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- 108700012359 toxins Proteins 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- 239000012588 trypsin Substances 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N63/00—Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates
- A01N63/20—Bacteria; Substances produced thereby or obtained therefrom
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01P—BIOCIDAL, PEST REPELLANT, PEST ATTRACTANT OR PLANT GROWTH REGULATORY ACTIVITY OF CHEMICAL COMPOUNDS OR PREPARATIONS
- A01P21/00—Plant growth regulators
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/12—Unicellular algae; Culture media therefor
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P1/00—Preparation of compounds or compositions, not provided for in groups C12P3/00 - C12P39/00, by using microorganisms or enzymes
- C12P1/04—Preparation of compounds or compositions, not provided for in groups C12P3/00 - C12P39/00, by using microorganisms or enzymes by using bacteria
Definitions
- the present disclosure relates to a method for producing a plant acid invertase activator, which is a natural metabolite having the effect of activating plant acid invertase, a plant acid invertase activator, and a method for activating plant acid invertase.
- Invertase activity control by genetic recombination is known as one of the methods for controlling cell physiology (Non-Patent Document 1).
- Invertase is an enzyme that decomposes sucrose (so-called sucrose) into glucose and fructose, and is deeply involved in the translocation, distribution and accumulation of sucrose produced by photosynthesis in leaves to various plant organs.
- sucrose sucrose
- Invertase is roughly divided into neutral invertase and acidic invertase according to its optimum pH.
- acid invertase There are two types of acid invertase: cell wall invertase localized in the cell wall and vacuolar invertase localized in the vacuole.
- Non-Patent Document 2 discloses that cotton fiber production of cotton is enhanced by activating vacuolar invertase using gene recombination technology.
- Non-Patent Document 3 discloses that vacuolar invertase activity is essential for the growth of rice ears.
- Non-Patent Documents 4 and 5 show that the yield of soybean and corn is increased by activating the cell wall invertase of corn and soybean by genetic recombination technology, and the sugar content of each grain is increased. is disclosed. For these reasons, the development of a technique for improving the productivity of crops by artificially activating acid invertase is expected.
- the present disclosure provides a method for simply and efficiently producing a plant acid invertase activating substance that activates plant acid invertase.
- the present disclosure provides a plant acid invertase activator capable of efficiently activating plant acid invertase, and a method for activating plant acid invertase.
- the total amount of proteins involved in binding between the outer membrane and the cell wall in cyanobacteria is 30% or more and 70% or less of the total amount of the proteins in the parent strain.
- a plant acid invertase activator that activates plant acid invertase can be produced simply and efficiently.
- the plant acid invertase activator of the present disclosure it is possible to effectively activate plant acid invertase.
- the method for activating plant acid invertase of the present disclosure by using the plant acid invertase activator of the present disclosure in plants, it is possible to effectively activate acid invertase in plants.
- FIG. 1 is a flow chart showing an example of a method for producing a plant acid invertase activator according to an embodiment.
- FIG. 2 is a diagram schematically showing the cell surface layer of cyanobacteria.
- 3 is a transmission electron microscope image of an ultra-thin section of the modified cyanobacteria of Example 1.
- FIG. 4 is an enlarged image of the dashed line area A in FIG. 5 is a transmission electron microscope image of an ultra-thin section of the modified cyanobacteria of Example 2.
- FIG. FIG. 6 is an enlarged image of the dashed line area B in FIG. 7 is a transmission electron microscope image of an ultra-thin section of the modified cyanobacteria of Comparative Example 1.
- FIG. 10 is a graph showing average values of acid invertase activity of spinach cultivated in Example 3 and Comparative Example 2.
- FIG. 11 is a graph showing the average dry weight of aboveground parts per spinach cultivated in Example 3 and Comparative Example 2; 12 is a graph showing average values of acid invertase activity of strawberries cultivated in Example 4 and Comparative Example 3.
- FIG. 13 is a graph showing the average number of fruits per strawberry cultivated in Example 4 and Comparative Example 3.
- FIG. 14 is a graph showing the average fruit weight per strawberry cultivated in Example 4 and Comparative Example 3.
- FIG. 15 is a graph showing the average sugar content per strawberry cultivated in Example 4 and Comparative Example 3.
- FIG. FIG. 16 is a diagram showing the state of representative fruits in Example 4 and Comparative Example 3, respectively.
- FIG. 17 is an electropherogram showing the amounts of proteins involved in binding between the outer membrane and the cell wall in the modified cyanobacteria of Examples 1, 2, Comparative Examples 1, 4 and 5; 18 is a transmission electron microscope image of an ultra-thin section of the modified cyanobacteria of Comparative Example 4.
- FIG. 19 is an enlarged view of the dashed line area D in FIG. 18.
- FIG. 20 is a transmission electron microscope image of an ultra-thin section of the modified cyanobacteria of Comparative Example 5.
- FIG. 20 is a transmission electron microscope image of an ultra-thin section of the modified cyanobacteria of Comparative Example 5.
- FIG. 21 is an enlarged view of the dashed line area E in FIG. 20.
- FIG. 22 is a graph showing the amount of protein in the culture medium of the modified cyanobacteria of Examples 1, 2, Comparative Examples 1, 4 and 5.
- FIG. 23 is a graph showing amounts of pyruvic acid covalently bound to cell wall-bound sugar chains of modified cyanobacteria of Example 2 and Comparative Example 1.
- Non-Patent Document 2 reports that elongation of cotton fibers is promoted by highly expressing the cotton vacuole invertase gene using the 35S promoter.
- Non-Patent Document 4 reports that cell wall invertase is activated by suppressing the expression of a gene that inhibits soybean cell wall invertase activity by RNA (ribonucleic acid) interference. Specifically, by applying this technology to soybeans, it was reported that the weight per soybean grain increased, the harvested weight per plant increased, and the sugar content per soybean grain increased. It is
- Non-Patent Document 5 reports that the yield of maize is increased by highly expressing the maize cell wall invertase gene using the 35S promoter. It has also been reported that the sugar content per grain increases.
- Cyanobacteria also called cyanobacteria or blue-green algae
- Cyanobacteria are a group of eubacteria that split water through photosynthesis to produce oxygen and use the energy obtained to fix CO2 in the air.
- Cyanobacteria can also fix atmospheric nitrogen (N 2 ), depending on the species. In this way, cyanobacteria can obtain most of the raw materials (that is, nutrients) and energy necessary for the growth of the cells from air, water, and light. Cyanobacteria can be cultured.
- cyanobacteria are known to grow quickly and use light efficiently as a characteristic of cyanobacteria.
- cyanobacteria are easy to genetically manipulate, so we used cyanobacteria among photosynthetic microorganisms.
- Active research and development is being carried out on material production. For example, production of fuels such as ethanol, isobutanol, alkanes, and fatty acids (Patent Document 1: Japanese Patent No. 6341676) has been reported as an example of substance production using cyanobacteria.
- Patent Document 1 Japanese Patent No. 634167666
- research and development is also being conducted on the production of substances that serve as nutrients for living organisms.
- Non-Patent Document 8 Jie Zhou et al. ., “Discovery of a super-strong promoter enable efficient production of heterologous proteins in cyanobacteria”, Scientific Reports, Nature Research, 2014, Vol.4, Article No.4500).
- cyanobacterial cells cyanobacterial cells
- desired compounds and proteins can be produced in cyanobacterial cells (hereinafter also referred to as cells).
- the desired compounds and proteins produced in the cells of cyanobacteria are difficult to be secreted outside the cells, so it is necessary to disrupt the cells of the cyanobacteria and extract the desired compounds and proteins produced in the cells.
- Cyanobacterial cell walls and cell membrane structures determine the permeability of proteins and intracellular metabolites, but it is easy to artificially modify cell membranes and cell wall structures to improve the ability to secrete and produce proteins and intracellular metabolites. is not.
- Non-Patent Documents 6 and 7 deletion of the slr1841 gene or slr0688 gene, which is involved in the adhesion between the outer membrane of cyanobacteria and the cell wall and contributes to the structural stability of the cell surface, It has been described that the ability of cyanobacterial cells to proliferate is lost.
- the present inventors diligently studied the optimal structural modification method of the cell membrane and cell wall to increase the secretory production ability of proteins and intracellular metabolites while maintaining the growth ability of cyanobacterial cells.
- the present inventors diligently studied the optimal structural modification method of the cell membrane and cell wall to increase the secretory production ability of proteins and intracellular metabolites while maintaining the growth ability of cyanobacterial cells.
- proteins produced in the cells of cyanobacteria by suppressing the total amount of proteins involved in binding between the outer membrane of cyanobacteria and the cell wall to 30% to 70% of the total amount of the proteins in the parent strain, proteins produced in the cells of cyanobacteria and It was found that intracellular metabolites are more likely to be secreted extracellularly.
- desired compounds and proteins produced within the cyanobacteria and intracellular metabolites are released outside the cells.
- cyanobacterial secretions have the effect of activating acid invertase on multiple crop species.
- the extracellularly secreted substance that activates the plant acid invertase that is, the plant acid invertase activator
- the physiological activity of the plant acid invertase activator is less likely to be impaired. Invertase can be activated.
- a plant acid invertase activator containing a substance having the effect of activating acid invertase can be easily and , can be efficiently manufactured.
- the plant acid invertase activator of the present disclosure it is possible to effectively activate plant acid invertase.
- the method for activating plant acid invertase of the present disclosure by using the plant acid invertase activator of the present disclosure in plants, it is possible to effectively activate acid invertase in plants.
- the total amount of proteins involved in binding between the outer membrane and the cell wall in cyanobacteria is suppressed to 30 to 70% of the total amount of the proteins in the parent strain. and causing said modified cyanobacteria to secrete a secretion involved in the activation of plant acid invertase.
- the binding between the cell wall and the outer membrane (for example, the amount and strength of binding) is partially reduced, and the outer membrane partially detaches from the cell wall, without impairing the cell proliferation ability. easier to release.
- proteins and metabolites produced within the cells (hereinafter also referred to as substances produced within the cells) are likely to leak out of the outer membrane, that is, out of the cells.
- proteins and metabolites produced within the modified cyanobacteria are more likely to be secreted outside the cells, making it unnecessary to extract substances produced within the cells, such as by crushing the cells. Therefore, a plant acid invertase activator containing modified cyanobacterial secretions can be produced simply and efficiently.
- the growth ability of the cells will be impaired, and if it exceeds 70%, it will be produced in the cells. protein cannot be leaked out of the cell.
- the extraction process for the intracellularly produced substances is not required, it is less likely that the physiological activity and yield of the intracellularly produced substances will decrease. Therefore, among the intracellularly produced substances of the modified cyanobacteria, a decrease in physiological activity and a decrease in yield of substances involved in the activation of plant acid invertase (that is, plant acid invertase activating substances) are less likely to occur. As a result, the secretion of the modified cyanobacteria has an improved effect related to activation of plant acid invertase (hereinafter also referred to as plant acid invertase activation effect).
- the modified cyanobacteria can be repeatedly used to produce the intracellularly produced substances. can be done. Therefore, it is not necessary to prepare new modified cyanobacteria each time the plant acid invertase activator is produced. Therefore, according to the method for producing a plant acid invertase activator according to one aspect of the present disclosure, a plant acid invertase activator can be produced simply and efficiently.
- the protein involved in the binding between the outer membrane and the cell wall is an SLH (Surface Layer Homology) domain-retaining outer membrane protein and a cell wall - at least one pyruvate modifying enzyme.
- SLH Surface Layer Homology
- modified cyanobacteria for example, (i) an enzyme that catalyzes pyruvate modification of SLH domain-retaining outer membrane proteins that bind to the cell wall and sugar chains bound to the surface of the cell wall (that is, cell wall-pyruvate modification or (ii) expression of at least one of an SLH domain-retaining outer membrane protein and a cell wall-pyruvate modifying enzyme is inhibited. Therefore, the binding (that is, binding amount and binding strength) between the SLH domain of the SLH domain-retaining outer membrane protein in the outer membrane and the covalent sugar chain on the surface of the cell wall is reduced.
- the modified cyanobacteria This makes it easier for the outer membrane to detach from the cell wall at the portion where the bond between the outer membrane and the cell wall is weakened.
- the binding between the outer membrane and the cell wall is reduced, so that the outer membrane becomes easier to partially detach from the cell wall.
- Substances produced in the cells are likely to leak out of the cells.
- the modified cyanobacteria have improved secretion productivity for extracellularly secreting the plant acid invertase activating substance produced in the cells.
- the modified cyanobacteria can be caused to efficiently secrete the plant acid invertase activator, so that the plant acid invertase activator can be produced.
- the plant acid invertase activator containing can be efficiently produced.
- the SLH domain-retaining outer membrane protein comprises Slr1841 consisting of the amino acid sequence shown in SEQ ID NO: 1, and the amino acid sequence shown in SEQ ID NO: 2.
- NIES970_09470 consisting of NIES970_09470,
- Anacy_3458 consisting of the amino acid sequence shown in SEQ ID NO: 3, or any of these SLH domain-retaining outer membrane proteins with an amino acid sequence identical to 50% or more.
- modified cyanobacteria for example, (i) any of the SLH domain-retaining outer membrane proteins shown in SEQ ID NOs: 1 to 3 above, or any of these SLH domain-retaining outer membrane proteins and amino acid sequences 50% or more identical protein function is suppressed, or (ii) any SLH domain-retaining outer membrane protein shown in SEQ ID NOs: 1 to 3 above or any of these SLH domain-retaining types The expression of proteins whose amino acid sequences are more than 50% identical to the outer membrane protein is suppressed.
- the modified cyanobacterium (i) the function of the SLH domain-retaining outer membrane protein in the outer membrane or a protein having a function equivalent to the SLH domain-retaining outer membrane protein is suppressed, or (ii) the outer membrane The expression level of the SLH domain-retaining outer membrane protein or a protein having a function equivalent to the SLH domain-retaining outer membrane protein is decreased.
- the binding domain for example, the SLH domain
- the binding domain for binding the outer membrane to the cell wall has reduced binding amount and binding strength to the cell wall, so that the outer membrane partially detaches from the cell wall. easier.
- the plant acid invertase activator produced in the modified cyanobacteria is easily secreted outside the cells, so that the plant An acid invertase activator can be efficiently produced.
- the cell wall-pyruvate modifying enzyme comprises Slr0688 consisting of the amino acid sequence shown by SEQ ID NO: 4, and the amino acid sequence shown by SEQ ID NO: 5.
- Synpcc7942_1529, Anacy_1623 which consists of the amino acid sequence shown in SEQ ID NO: 6, or a protein whose amino acid sequence is 50% or more identical to any of these cell wall-pyruvate modifying enzymes.
- the modified cyanobacteria for example, (i) any of the cell wall-pyruvate modifying enzymes shown in SEQ ID NOS: 4 to 6 above, or any of these cell wall-pyruvate modifying enzymes and 50% of the amino acid sequence or (ii) any of the cell wall-pyruvate modifying enzymes shown in SEQ ID NOS: 4 to 6 above or any of these cell wall-pyruvate modifying enzymes
- the expression of proteins with 50% or more amino acid sequence identity is suppressed.
- the function of the cell wall-pyruvate modifying enzyme or a protein having a function equivalent to the enzyme is suppressed, or (ii) the function of the cell wall-pyruvate modifying enzyme or a protein equivalent to the enzyme is suppressed.
- Expression levels of functional proteins are reduced.
- the covalent sugar chains on the surface of the cell wall are less likely to be modified with pyruvic acid, so the binding amount and binding strength of the sugar chains on the cell wall to the SLH domain of the SLH domain-retaining outer membrane protein in the outer membrane is reduced.
- the covalent sugar chains on the surface of the cell wall are less likely to be modified with pyruvate, which weakens the binding force between the cell wall and the outer membrane, making it easier for the outer membrane to partially detach from the cell wall.
- pyruvate which weakens the binding force between the cell wall and the outer membrane, making it easier for the outer membrane to partially detach from the cell wall.
- intracellularly-produced substances are more likely to leak out of the cells, and plant acid invertase-activating substances produced within the cells are also more likely to leak out of the cells.
- the plant acid invertase activator produced in the modified cyanobacteria is easily secreted outside the cells, so that the plant An acid invertase activator can be efficiently produced.
- a gene that expresses a protein involved in binding between the outer membrane and the cell wall may be deleted or inactivated.
- the modified cyanobacteria As a result, in the modified cyanobacteria, the expression of a protein involved in the binding between the cell wall and the outer membrane is suppressed, or the function of the protein is suppressed. volume and binding strength) are partially reduced. As a result, in the modified cyanobacteria, the outer membrane tends to partially detach from the cell wall, so intracellularly produced substances such as proteins and metabolites produced in the cell are released outside the outer membrane, that is, outside the cell. Easier to leak. Therefore, the modified cyanobacterium has improved secretion productivity of the plant acid invertase activator produced in the cells.
- the gene that expresses a protein involved in binding between the outer membrane and the cell wall is a gene encoding an SLH domain-retaining outer membrane protein, and at least one gene encoding a cell wall-pyruvate modifying enzyme.
- the modified cyanobacteria at least one of the gene encoding the SLH domain-retaining outer membrane protein and the gene encoding the cell wall-pyruvate modifying enzyme is deleted or inactivated. Therefore, in the modified cyanobacterium, for example, (i) expression of at least one of SLH domain-retaining outer membrane protein and cell wall-pyruvate modifying enzyme is suppressed, or (ii) SLH domain-retaining outer membrane protein and cell wall - at least one function of the pyruvate modifying enzyme is inhibited.
- the binding that is, binding amount and binding strength
- the binding between the outer membrane and the cell wall is reduced, making it easier for the outer membrane to partially detach from the cell wall. easier to do.
- the modified cyanobacteria can be caused to efficiently secrete a plant acid invertase activator. It can be manufactured efficiently.
- the gene encoding the SLH domain-retaining outer membrane protein is slr1841 consisting of the nucleotide sequence shown in SEQ ID NO: 7, SEQ ID NO: 8 It may be nies970_09470 consisting of the nucleotide sequence shown, anacy_3458 consisting of the nucleotide sequence shown in SEQ ID NO: 9, or a gene having a nucleotide sequence identical to any of these genes by 50% or more.
- the modified cyanobacteria genes encoding any of the SLH domain-retaining outer membrane proteins shown in SEQ ID NOs: 7 to 9 above, or genes that are 50% or more identical to the nucleotide sequence of any of these genes is deleted or inactivated. Therefore, in the modified cyanobacteria, (i) the expression of any of the above SLH domain-retaining outer membrane proteins or proteins having functions equivalent to any of these proteins is suppressed, or (ii) the above The function of any SLH domain-retaining outer membrane protein or a protein having a function equivalent to any of these proteins is suppressed. As a result, in the modified cyanobacteria, the binding domain (e.g.
- the plant acid invertase activator produced in the modified cyanobacteria is more likely to leak out of the cells. An acid invertase activator can be efficiently produced.
- the gene encoding the cell wall-pyruvate modifying enzyme is represented by slr0688 and SEQ ID NO: 11 consisting of the base sequence represented by SEQ ID NO: 10.
- synpcc7942_1529 consisting of the nucleotide sequence shown in SEQ ID NO: 12, anacy_1623 consisting of the nucleotide sequence shown in SEQ ID NO: 12, or a gene having a nucleotide sequence identical to any of these genes by 50% or more.
- the nucleotide sequence is 50% or more identical to the gene encoding any of the cell wall-pyruvate modifying enzymes shown in SEQ ID NOS: 10 to 12 above or the nucleotide sequence of the gene encoding any of these enzymes. is deleted or inactivated. Therefore, in the modified cyanobacterium, (i) the expression of any of the above cell wall-pyruvate modifying enzymes or proteins having functions equivalent to any of these enzymes is suppressed, or (ii) any of the above The function of any cell wall-pyruvate modifying enzyme or a protein having a function equivalent to any of these enzymes is inhibited.
- the covalent sugar chains on the surface of the cell wall are less likely to be modified with pyruvic acid, so the binding amount and binding strength of the sugar chains on the cell wall to the SLH domain of the SLH domain-retaining outer membrane protein in the outer membrane is reduced.
- the amount of pyruvic acid modification of the sugar chains that bind the cell wall to the outer membrane is reduced. becomes easier to leave.
- the proteins and metabolites produced within the cells are likely to leak out of the cells, and the plant acid invertase activating substance produced within the cells is also likely to leak out of the cells.
- the plant acid invertase activator produced in the modified cyanobacteria is more likely to leak out of the cells.
- An acid invertase activator can be efficiently produced.
- the plant acid invertase activator suppresses the total amount of proteins involved in binding between the outer membrane and the cell wall in cyanobacteria to 30% or more and 70% or less of the total amount of the proteins in the parent strain. contains secretions of modified cyanobacteria that have been described.
- the binding between the cell wall and the outer membrane (that is, the amount and strength of binding) is partially reduced, and the outer membrane partially detaches from the cell wall, without impairing the ability of the cells to proliferate. easier to release. Therefore, in modified cyanobacteria, proteins and metabolites produced within the cells (that is, substances produced within the cells) tend to leak out of the outer membrane (that is, out of the cells). This makes it easier for the modified cyanobacteria to extracellularly secrete the proteins and metabolites produced within the cells, thereby eliminating the need for extracting substances produced within the cells, such as by crushing the cells.
- a plant acid invertase activator containing modified cyanobacterial secretions can be produced simply and efficiently.
- the bioactivity and yield of the intracellularly produced substance are less likely to decrease. Therefore, among the intracellularly produced substances of the modified cyanobacteria, the substances involved in the activation of plant acid invertase (hereinafter also referred to as plant acid invertase activating substance) are less likely to have decreased physiological activity and decreased yield. This makes it possible to obtain a plant acid invertase activator with improved plant acid invertase activation effect. Therefore, the plant acid invertase activator according to one aspect of the present disclosure can effectively activate plant acid invertase.
- the method for activating plant acid invertase uses the plant acid invertase activator for plants.
- plant acid invertase is effectively activated by using a plant acid invertase activator with improved plant acid invertase activation effect in the plant.
- each figure is not necessarily a strict illustration.
- substantially the same configurations are denoted by the same reference numerals, and redundant description may be omitted or simplified.
- the numerical range does not represent only a strict meaning, but includes a substantially equivalent range, such as measuring the amount of protein (eg, number or concentration, etc.) or its range.
- both the fungal body and the cell represent a single cyanobacterial individual.
- nucleotide sequences and amino acid sequences is calculated by the BLAST (Basic Local Alignment Search Tool) algorithm. Specifically, it is calculated by performing pairwise analysis with the BLAST program available on the website of NCBI (National Center for Biotechnology Information) (https://blast.ncbi.nlm.nih.gov/Blast.cgi). be. Information on cyanobacterial genes and proteins encoded by the genes are published, for example, in the above-mentioned NCBI database and Cyanobase (http://genome.microbedb.jp/cyanobase/). From these databases, it is possible to obtain the amino acid sequences of the proteins of interest and the base sequences of the genes encoding those proteins.
- NCBI National Center for Biotechnology Information
- the plant acid invertase activator contains secretions involved in the activation of plant acid invertase, and has the effect of activating plant acid invertase.
- invertase is an enzyme that catabolizes sucrose into reducing sugars such as glucose and fructose in plants.
- acid invertase contributes to the utilization of sucrose in plants and its catabolism to reducing sugar, a form of storage sugar. Therefore, the plant acid invertase activator according to the present embodiment can promote plant growth and accumulation of storage sugars in fruits and the like by activating plant acid invertase. becomes. Therefore, the plant acid invertase activator according to the present embodiment can efficiently promote the production of agricultural products, for example, by using them in agricultural products.
- promoting the growth of plants means increasing the number of leaves, stems, buds, flowers, or fruits of plants, thickening the stems or trunks, and increasing the height.
- promoting the growth of the plant the plant body and its fruit root increase, and the number of fruits increases.
- plant acid invertase contributes to the control of plant diseases, the improvement of nutrient absorption, and the improvement of plant quality, such as increasing the sugar content of fruits. Therefore, plant acid invertase activators are effective for improving plant quality such as increased yield of crops, increased body weight of crops and fruits, high sugar content of fruits, reduction of physiological disorders, and reduction of diseases for multiple crop species. can be effectively improved.
- plants include garden trees, flowering plants, lawns, roadside trees, etc., and forest trees that are rarely fertilized.
- the plant acid invertase activator is such that the total amount of proteins involved in binding between the outer membrane and the cell wall in cyanobacteria (hereinafter also referred to as binding-related proteins) is 30% of the total amount of the proteins in the parent strain.
- binding-related proteins proteins involved in binding between the outer membrane and the cell wall in cyanobacteria
- the total amount of the binding-related protein is suppressed to 30% of the total amount of the protein in the parent strain means that 70% of the total amount of the protein in the parent strain is lost and 30% remains.
- the secretions include secretions involved in the activation of plant acid invertase.
- the secretions contain proteins and metabolites produced within the cells of the modified cyanobacteria (that is, substances produced within the cells).
- the intracellularly produced substance includes a substance involved in the activation of plant acid invertase (that is, a plant acid invertase activating substance).
- Plant acid invertase activating substances include, for example, peptidases, nucleases, or organic matter-degrading enzymes such as phosphatase, DNA metabolism-related substances such as adenosine or guanosine, and nucleic acids such as p-aminobenzoic acid or spermidine (for example, DNA or RNA). They are intracellular molecules involved in promoting synthesis, ketone bodies such as 3-hydroxybutyric acid, or organic acids such as gluconic acid. The modified cyanobacterial secretion may be a mixture of these plant acid invertase activators.
- FIG. 1 is a flow chart showing an example of a method for producing a plant acid invertase activator according to this embodiment.
- the total amount of proteins involved in binding between the outer membrane and the cell wall in cyanobacteria is suppressed to 30% or more and 70% or less of the total amount of the proteins in the parent strain. (step S01); and causing the modified cyanobacterium to secrete a secretion involved in the activation of plant acid invertase (step S02).
- the modified cyanobacterial secretion contains proteins and metabolites produced within the modified cyanobacterium (that is, intracellular products). These intracellularly produced substances include substances involved in the activation of plant acid invertase (that is, plant acid invertase activating substances).
- the modified cyanobacteria are prepared.
- Preparing the modified cyanobacteria refers to adjusting the state of the modified cyanobacteria so that the modified cyanobacteria can secrete secretions.
- Preparing a modified cyanobacterium may be, for example, genetically modifying a parent cyanobacterium (so-called parent strain) to produce a modified cyanobacterium, and microbial cells are prepared from a lyophilized modified cyanobacterium or a glycerol stock. It may be restoration, or recovery of the modified cyanobacteria that have finished secreting the plant acid invertase activating substance in step S02.
- the modified cyanobacteria are made to secrete secretions that are involved in plant growth promotion.
- the total amount of proteins involved in binding between the outer membrane and the cell wall in cyanobacteria is suppressed to 30% or more and 70% or less of the total amount of the proteins in the parent strain.
- the binding (eg, amount and strength of binding) between the cell wall and the outer membrane is partially reduced, and the outer membrane becomes easier to partially detach from the cell wall without impairing the proliferation ability. Therefore, proteins and metabolites produced within the cells are easily secreted outside the outer membrane (that is, outside the cells).
- These intracellularly produced substances also include substances involved in the activation of plant acid invertase. Therefore, in step S02, by culturing the modified cyanobacteria under predetermined conditions, intracellularly produced substances involved in the activation of plant acid invertase are secreted outside the cells.
- Cultivation of cyanobacteria can generally be carried out based on liquid culture using BG-11 medium (see Table 2) or a modified method thereof. Therefore, culture of modified cyanobacteria may be performed as well.
- the cyanobacterial culture period for producing the plant acid invertase activator may be any period as long as it is possible to accumulate proteins and metabolites at high concentrations under conditions in which the cells are sufficiently grown. , 1 to 3 days, or 4 to 7 days.
- the culture method may be, for example, aeration and stirring culture or shaking culture.
- the modified cyanobacteria produce proteins and metabolites (i.e. intracellularly produced substances) within the cells and secrete the intracellularly produced substances into the culture medium.
- the intracellularly produced substance includes an intracellularly produced substance (that is, a plant acid invertase activating substance) involved in the activation of plant acid invertase.
- the culture solution is filtered or centrifuged to remove solids such as cells (i.e., bacterial cells) from the culture solution, and the culture supernatant is obtained. may be recovered.
- a secretion containing an intracellularly produced substance (that is, a plant acid invertase activator) involved in the activation of plant acid invertase is modified cyano Since it is secreted extracellularly from bacteria, it is not necessary to disrupt the cells to recover the plant acid invertase activator. Therefore, the modified cyanobacteria remaining after recovery of the plant acid invertase activator can be repeatedly used to produce the plant acid invertase activator.
- the method for collecting the plant acid invertase activating substance secreted into the culture medium is not limited to the above examples. good.
- the plant acid invertase-activating substance that has permeated the permeable membrane may be recovered.
- the plant acid invertase activating substance can be recovered from the culture solution while culturing the modified cyanobacteria, eliminating the need to remove the modified cyanobacteria from the culture solution. Therefore, the plant acid invertase activator can be produced more simply and efficiently.
- the modified cyanobacteria it is possible to reduce the damage and stress received by the modified cyanobacteria by eliminating the need to collect the cells from the culture solution and crush the cells. Therefore, the secretion productivity of the plant acid invertase activator of the modified cyanobacterium is less likely to decrease, and the modified cyanobacterium can be used for a longer period of time.
- a plant acid invertase activator can be obtained simply and efficiently by using the modified cyanobacteria of the present embodiment.
- Cyanobacteria also called cyanobacteria or cyanobacteria, are a group of prokaryotic organisms that capture light energy with chlorophyll, electrolyze water with the energy obtained, and perform photosynthesis while generating oxygen. Cyanobacteria are rich in diversity, and in terms of cell shape, for example, there are unicellular species such as Synechocystis sp. PCC 6803 and filamentous species such as Anabaena sp. As for habitat, there are thermophilic species such as Thermosynechococcus elongatus, marine species such as Synechococcus elongatus, and freshwater species such as Synechocystis.
- Microcystis aeruginosa which have gas vesicles and produce toxins
- Gloeobacter violaceus which lacks thylakoids but have proteins called phycobilisomes, which are light-harvesting antennas in the plasma membrane, have unique characteristics. Many species are also included.
- Fig. 2 is a diagram schematically showing the cell surface layer of cyanobacteria.
- the cell surface layer of cyanobacteria is composed of, in order from the inside, a plasma membrane (also called inner membrane 1), peptidoglycan 2, and an outer membrane 5, which is a lipid membrane forming the outermost layer of the cell.
- a plasma membrane also called inner membrane 1
- peptidoglycan 2 and an outer membrane 5, which is a lipid membrane forming the outermost layer of the cell.
- Sugar chains 3 composed of glucosamine, mannosamine, etc. are covalently bound to peptidoglycan 2, and pyruvic acid is bound to these covalently bound sugar chains 3 (Non-Patent Document 8: Jurgens and Weckesser, 1986, J. Bacteriol., 168:568-573).
- the cell wall 4 including the peptidoglycan 2 and the covalent sugar chain 3 is referred to.
- the gap between the plasma membrane (that is, the inner membrane 1) and the outer membrane 5 is called a periplasm, and the decomposition of proteins or the formation of three-dimensional structures, the decomposition of lipids or nucleic acids, or the uptake of extracellular nutrients, etc.
- the SLH domain-retaining outer membrane protein 6 (for example, Slr1841 in the figure) is composed of the C-terminal region embedded in the lipid membrane (also called outer membrane 5) and the N-terminal SLH domain 7 protruding from the lipid membrane. It is widely distributed in bacteria belonging to the Negativicutes class, which is a group of cyanobacteria and Gram-negative bacteria (Non-Patent Document 9: Kojima et al., 2016, Biosci.Biotech.Biochem., 10:1954-1959).
- Non Patent Document 10 Kowata et al., 2017, J. Bacteriol., 199: e00371-17.
- covalent sugar chain 3 in peptidoglycan 2 must be modified with pyruvate (Non-Patent Document 11: Kojima et al., 2016, J. Biol. Chem., 291:20198-20209).
- Examples of genes encoding SLH domain-retaining outer membrane protein 6 include slr1841 or slr1908 retained by Synechocystis sp. PCC 6803, and oprB retained by Anabaena sp.
- cell wall-pyruvate modification enzyme 9 An enzyme that catalyzes the pyruvate modification reaction of the covalent sugar chain 3 in peptidoglycan 2 (hereinafter referred to as cell wall-pyruvate modification enzyme 9) was identified in the Gram-positive bacterium Bacillus anthracis and named CsaB.
- Non-Patent Document 12 Mesnage et al., 2000, EMBO J., 19:4473-4484.
- CsaB Non-Patent Document 12: Mesnage et al., 2000, EMBO J., 19:4473-4484.
- cyanobacteria whose genome nucleotide sequences have been published, many species possess genes encoding homologous proteins having an amino acid sequence identity of 30% or more with CsaB. Examples include slr0688 held by Synechocystis sp. PCC 6803 and syn7502_03092 held by Synechococcus sp.
- cyanobacteria photosynthetically fixed CO 2 is converted into precursors of various amino acids and intracellular molecules through multistep enzymatic reactions. Using them as raw materials, proteins and metabolites are synthesized in the cytoplasm of cyanobacteria. Some of these proteins and metabolites function within the cytoplasm, and others are transported from the cytoplasm to the periplasm and function within the periplasm. However, no cases of cyanobacteria that actively secrete proteins and metabolites outside the cell have been reported to date.
- cyanobacteria Because cyanobacteria have high photosynthetic ability, they do not necessarily need to take in organic matter from the outside as nutrients. Therefore, cyanobacteria have very few channel proteins in the outer membrane 5 that allow permeation of organic matter, such as the organic matter channel protein 8 (eg, Slr1270) in FIG. For example, in Synechocystis sp. PCC 6803, organic matter channel protein 8, which allows organic matter to permeate, is present in only about 4% of the total protein content of outer membrane 5. On the other hand, cyanobacteria are permeable only to inorganic ions, such as SLH domain-retaining outer membrane protein 6 (e.g., Slr1841) in Fig.
- inorganic ions such as SLH domain-retaining outer membrane protein 6 (e.g., Slr1841) in Fig.
- the outer membrane 5 has many ion channel proteins that allow For example, in Synechocystis sp. PCC 6803, ion channel proteins permeable to inorganic ions account for approximately 80% of the total protein content of outer membrane 5 .
- Non-Patent Document 6 and Non-Patent Document 7 disclose that deletion of the slr1841 gene or slr0688 gene, which is involved in the adhesion between the outer membrane and the cell wall and contributes to the structural stability of the cell surface layer, increases the cell proliferation ability. stated to be lost.
- the total amount of proteins involved in binding between the outer membrane 5 and the cell wall 4 in cyanobacteria is 30% or more and 70% or less of the total amount of the proteins in the parent strain.
- binding-related proteins proteins involved in binding between the outer membrane 5 and the cell wall 4 in cyanobacteria
- the total amount of the binding-related protein is suppressed to 30% of the total amount of the protein in the parent strain means that 70% of the total amount of the protein in the parent strain is lost and 30% remains.
- the modified cyanobacteria has improved secretory productivity of intracellularly produced substances that secrete intracellularly produced proteins and metabolites extracellularly.
- intracellularly produced substances include intracellularly produced substances involved in the activation of plant acid invertase (that is, plant acid invertase activating substances).
- the modified cyanobacteria also improve the secretion productivity of the plant acid invertase activator, which secretes the plant acid invertase activator produced in the cell to the outside of the cell.
- the modified cyanobacteria can be used repeatedly even after the plant acid invertase activator is recovered.
- production means that the modified cyanobacteria produce proteins and metabolites inside the cells, and secretory production means that the produced proteins and metabolites are secreted outside the cells.
- the protein involved in binding between the outer membrane 5 and the cell wall 4 may be at least one of the SLH domain-retaining outer membrane protein 6 and the cell wall-pyruvate modifying enzyme 9, for example.
- the function of at least one of SLH domain-retaining outer membrane protein 6 and cell wall-pyruvate modifying enzyme 9 is suppressed.
- SLH domain-retaining outer membrane protein 6 and cell wall-pyruvate modifying enzyme 9 may be suppressed, and (ii) SLH domain-retaining protein that binds to cell wall 4
- At least one of the expression of the outer membrane protein 6 and the expression of the enzyme that catalyzes the pyruvate modification reaction of the sugar chain bound on the surface of the cell wall 4 that is, the cell wall-pyruvate modification enzyme 9) may be suppressed.
- the outer membrane 5 is easily detached from the cell wall 4 at the portion where these bonds are weakened.
- intracellularly produced substances such as proteins and metabolites present in the cell of the modified cyanobacterium, particularly in the periplasm, are released outside the cell (outside the outer membrane 5). Easier to leak.
- the modified cyanobacteria have improved secretion productivity for extracellularly secreting the plant acid invertase activating substance produced in the cells.
- the outer membrane 5 is partially detached from the cell wall 4 by suppressing the function of at least one binding-related protein of the SLH domain-retaining outer membrane protein 6 and the cell wall-pyruvate modifying enzyme 9.
- cyanobacteria will be described more specifically.
- a cyanobacterium before suppressing at least one of the expression of SLH domain-retaining outer membrane protein 6 and the expression of cell wall-pyruvate modifying enzyme 9, which is the parent microorganism of the modified cyanobacterium in this embodiment (herein , “parent strain” or “parent cyanobacteria”) is not particularly limited and may be any kind of cyanobacteria.
- the parent cyanobacterium may be of the genera Synechocystis, Synechococcus, Anabaena, or Thermosynechococcus, among others Synechocystis sp. PCC 6803, Synechococcus sp.
- Thermosynechococcus elongatus BP-1 good too.
- the parent strain may be a wild cyanobacterium or a modified cyanobacterium that is equivalent to a wild cyanobacterium before suppressing the total amount of binding-related proteins to 30% or more and 70% or less. of binding-associated proteins.
- the amino acid sequences of the SLH domain-retaining outer membrane protein 6 and the enzyme that catalyzes the cell wall-pyruvate modification reaction (that is, the cell wall-pyruvate modification enzyme 9) in these parent cyanobacteria, and the genes encoding these binding-related proteins The base sequence and the position of the gene on the chromosomal DNA or plasmid can be confirmed with the above-mentioned NCBI database and Cyanobase.
- the SLH domain-retaining outer membrane protein 6 and the cell wall-pyruvate modifying enzyme 9 whose functions are suppressed in the modified cyanobacterium according to the present embodiment can be used in any parent cyanobacterium as long as they are possessed by the parent cyanobacterium. and are not limited by the locations of the genes encoding them (for example, on chromosomal DNA or on plasmids).
- the SLH domain-retaining outer membrane protein 6 may be Slr1841, Slr1908, or Slr0042 when the parent cyanobacterium belongs to the genus Synechocystis, or may be NIES970_09470 when the parent cyanobacterium belongs to the genus Synechococcus. If the parent cyanobacteria belong to the genus Anabaena, it may be Anacy_5815 or Anacy_3458. If the parent cyanobacterium belongs to the genus Leptolyngbya, it may be A0A1Q8ZE23_9CYAN.
- the parent cyanobacterium belongs to the genus Crocosphaera, it may be B1WRN6_CROS5 or the like, and if the parent cyanobacterium belongs to the genus Pleurocapsa, it may be K9TAE4_9CYAN or the like.
- SLH domain-retaining outer membrane protein 6 is, for example, Synechocystis sp. PCC 6803 Slr1841 (SEQ ID NO: 1), Synechococcus sp. NIES-970 NIES970_09470 (SEQ ID NO: 2), or Anabaena cylindrica PCC 7122 Anacy_3458 (SEQ ID NO: 3) or the like. Also, proteins having 50% or more of the same amino acid sequence as these SLH domain-retaining outer membrane proteins 6 may be used.
- modified cyanobacteria for example, (i) any SLH domain-retaining outer membrane protein 6 shown in SEQ ID NOs: 1 to 3 above, or any of these SLH domain-retaining outer membrane proteins 6 and amino acids The function of the protein whose sequence is 50% or more identical may be suppressed, and (ii) any SLH domain-retaining outer membrane protein 6 shown in SEQ ID NOs: 1 to 3 above or any of these SLHs The expression of a protein whose amino acid sequence is 50% or more identical to that of domain-retained outer membrane protein 6 may be suppressed.
- the function of the SLH domain-retaining outer membrane protein 6 in the outer membrane 5 or a protein having a function equivalent to the SLH domain-retaining outer membrane protein 6 is suppressed, or (ii) ) The expression level of the SLH domain-retaining outer membrane protein 6 in the outer membrane 5 or a protein having a function equivalent to that of the SLH domain-retaining outer membrane protein 6 is reduced.
- the binding domain for example, SLH domain 7
- the binding domain for binding the outer membrane 5 to the cell wall 4 reduces the amount and strength of binding to the cell wall 4. becomes easier to partially detach from
- intracellularly produced substances easily leak out of the cells, so that plant acid invertase activating substances produced in the cells also easily leak out of the cells.
- the amino acid sequences of a protein are 30% or more identical, there is a high degree of homology in the three-dimensional structure of the protein, and there is a high possibility that it will have the same function as the protein in question. Therefore, as the SLH domain-retaining outer membrane protein 6 whose function is suppressed, for example, the amino acid sequence of any of the SLH domain-retaining outer membrane proteins 6 shown in the above SEQ ID NOs: 1 to 3, 40% or more, Consisting of an amino acid sequence having preferably 50% or more, more preferably 60% or more, still more preferably 70% or more, even more preferably 80% or more, still more preferably 90% or more identity, and sharing the cell wall 4 It may be a protein or polypeptide that has a function of binding to the conjugated sugar chain 3 .
- the cell wall-pyruvate modifying enzyme 9 may be Slr0688 or the like when the parent cyanobacterium belongs to the genus Synechocystis, or may be Syn7502_03092 or Synpcc7942_1529 or the like when the parent cyanobacterium belongs to the genus Synechococcus. If the cyanobacteria belong to the genus Anabaena, it may be ANA_C20348 or Anacy_1623. If the parent cyanobacteria belongs to the genus Microcystis, it may be CsaB (NCBI access ID: TRU80220).
- CsaB NCBI access ID: WP_107667006.1
- parent cyanobacteria if the parent cyanobacteria is of the genus Spirulina, it may be CsaB (NCBI access ID: WP_026079530.1) or the like, and the parent cyanobacteria CsaB (NCBI access ID: WP_096658142.1), etc., if the parent cyanobacterium belongs to the genus Calothrix, and CsaB (NCBI access ID: WP_099068528.1), etc.
- the parent cyanobacterium belongs to the genus Nostoc , If the parent cyanobacteria is the genus Crocosphaera, it may be CsaB (NCBI access ID: WP_012361697.1) or the like, and if the parent cyanobacteria is the genus Pleurocapsa, it may be CsaB (NCBI access ID: WP_036798735) or the like. good too.
- the cell wall-pyruvate modifying enzyme 9 is, for example, Slr0688 (SEQ ID NO: 4) of Synechocystis sp. PCC 6803, Synpcc7942_1529 (SEQ ID NO: 5) of Synechococcus sp. Anacy_1623 (sequence number 6) etc. may be sufficient.
- proteins having 50% or more of the same amino acid sequence as these cell wall-pyruvate modifying enzymes 9 may be used.
- the function of proteins that are 50% or more identical may be suppressed
- any cell wall-pyruvate modifying enzyme 9 shown in SEQ ID NOS: 4-6 above or any of these cell wall-pyruvate The expression of a protein whose amino acid sequence is 50% or more identical to that of modifying enzyme 9 may be suppressed.
- the function of the cell wall-pyruvate modifying enzyme 9 or a protein having a function equivalent to the enzyme is suppressed, or (ii) the cell wall-pyruvate modifying enzyme 9 or the enzyme Expression levels of proteins with equivalent functions are reduced.
- the covalent sugar chains 3 on the surface of the cell wall 4 are less likely to be modified with pyruvic acid. 5 becomes easier to partially detach from the cell wall 4.
- intracellularly produced substances easily leak out of the cells, so that plant acid invertase activating substances produced in the cells also easily leak out of the cells.
- the amino acid sequences of proteins are 30% or more identical, they are likely to have functions equivalent to those of the protein. Therefore, as the cell wall-pyruvate modifying enzyme 9 whose function is suppressed, for example, the amino acid sequence of any of the cell wall-pyruvate modifying enzymes 9 shown in the above SEQ ID NOs: 4 to 6 and 40% or more, preferably 50% or more, more preferably 60% or more, still more preferably 70% or more, even more preferably 80% or more, and still more preferably 90% or more of amino acid sequence identity, and peptidoglycan 2 of cell wall 4 It may be a protein or polypeptide having a function of catalyzing the reaction of modifying the covalent sugar chain 3 with pyruvate.
- suppressing the function of the SLH domain-retaining outer membrane protein 6 means suppressing the ability of the protein to bind to the cell wall 4, suppressing the transport of the protein to the outer membrane 5, Alternatively, it is to suppress the ability of the protein to function embedded in the outer membrane 5 .
- suppressing the function of the cell wall-pyruvate modifying enzyme 9 means suppressing the function of the protein to modify the covalently bound sugar chain 3 of the cell wall 4 with pyruvate.
- Means for suppressing the functions of these proteins are not particularly limited as long as they are means commonly used for suppressing protein functions.
- the means include, for example, deleting or inactivating the gene encoding SLH domain-retaining outer membrane protein 6 and the gene encoding cell wall-pyruvate modifying enzyme 9, inhibiting transcription of these genes, Inhibition of translation of transcription products of these genes, or administration of inhibitors that specifically inhibit these proteins may be used.
- the modified cyanobacteria are composed of the outer membrane 5 and the cell wall 4, and as a result, expression of proteins involved in binding between the cell wall 4 and the outer membrane 5 is suppressed in the modified cyanobacteria. Since the function of the protein is suppressed, the binding (that is, binding amount and binding strength) between the cell wall 4 and the outer membrane 5 is partially reduced. As a result, in the modified cyanobacteria, the outer membrane 5 is likely to partially detach from the cell wall 4, so that the outer membrane 5 of the modified cyanobacteria is free from intracellularly produced substances such as proteins and metabolites produced in the cells. It becomes easy to leak out to the outside, that is, to the outside of the bacterial body.
- the modified cyanobacterium has improved secretory productivity of the plant acid invertase activator, which is produced in the cell and secretes the plant acid invertase activator outside the cell.
- the modified cyanobacteria can be repeatedly used to produce the plant acid invertase activating substance even after the substance is recovered.
- the gene that expresses the protein involved in binding between the outer membrane 5 and the cell wall 4 is, for example, at least one of the gene encoding the SLH domain-retaining outer membrane protein 6 and the gene encoding the cell wall-pyruvate modifying enzyme 9. There may be. In the modified cyanobacterium, at least one of the gene encoding SLH domain-retaining outer membrane protein 6 and the gene encoding cell wall-pyruvate modifying enzyme 9 is deleted or inactivated.
- modified cyanobacteria for example, (i) expression of at least one of SLH domain-retaining outer membrane protein 6 and cell wall-pyruvate modifying enzyme 9 is suppressed, or (ii) SLH domain-retaining outer membrane protein 6 and at least one function of cell wall-pyruvate modifying enzyme 9 are inhibited. Therefore, the binding (that is, binding amount and binding force) between the SLH domain 7 of the SLH domain-retaining outer membrane protein 6 in the outer membrane 5 and the covalently bound sugar chain 3 on the surface of the cell wall 4 is reduced. This makes it easier for the outer membrane 5 to detach from the cell wall 4 at the portion where the bond between the outer membrane 5 and the cell wall 4 is weakened.
- the outer membrane 5 becomes easier to partially detach from the cell wall 4, so that proteins and metabolites produced in the bacterium are released into the bacterium. It easily leaks out of the body. As a result, the plant acid invertase activating substance produced inside the modified cyanobacteria is also likely to leak out of the cells.
- a gene encoding SLH domain-retaining outer membrane protein 6 and at least one transcription of the gene encoding cell wall-pyruvate modifying enzyme 9 may be repressed.
- the gene encoding the SLH domain-retaining outer membrane protein 6 may be slr1841, slr1908, or slr0042 when the parent cyanobacterium belongs to the genus Synechocystis, or nies970_09470 when it belongs to the genus Synechococcus. If the parent cyanobacteria belong to the genus Anabaena, it may be anacy_5815 or anacy_3458.If the parent cyanobacteria belong to the genus Microcystis, it may be A0A0F6U6F8_MICAE.
- the parent cyanobacterium belongs to the genus Leptolyngbya, it may be A0A1Q8ZE23_9CYAN, etc. If the parent cyanobacteria belongs to the genus Calothrix, it may be A0A1Z4R6U0_9CYAN, etc. If the parent cyanobacteria belongs to the genus Nostoc, it may be A0A1C0VG86_9NOSO, etc.
- the parent cyanobacterium belongs to the genus Crocosphaera, it may be B1WRN6_CROS5 or the like, and if the parent cyanobacterium belongs to the genus Pleurocapsa, it may be K9TAE4_9CYAN or the like.
- the nucleotide sequences of these genes can be obtained from the NCBI database or Cyanobase mentioned above.
- the gene encoding SLH domain-retaining outer membrane protein 6 is Synechocystis sp. PCC 6803 slr1841 (SEQ ID NO: 7), Synechococcus sp. NIES-970 nies970_09470 (SEQ ID NO: 8), Anabaena cylindrica PCC 7122 anacy_3458 (SEQ ID NO: 9), or genes whose amino acid sequences are 50% or more identical to these genes.
- the nucleotide sequence is 50% or more identical to the gene encoding any of the SLH domain-retaining outer membrane proteins 6 shown in SEQ ID NOs: 7 to 9 above, or any of these genes. Genes are deleted or inactivated. Therefore, in the modified cyanobacteria, (i) the expression of any of the above SLH domain-retaining outer membrane protein 6 or a protein having a function equivalent to any of these proteins is suppressed, or (ii) the above The function of any SLH domain-retaining outer membrane protein 6 or a protein having a function equivalent to any of these proteins is suppressed.
- the binding domain for example, SLH domain 7
- the binding domain for example, SLH domain 7
- the proteins and metabolites produced within the cells are likely to leak out of the cells, and the plant acid invertase activating substance produced within the cells is also likely to leak out of the cells.
- any of the genes encoding the SLH domain-retaining outer membrane protein 6 shown in the above SEQ ID NOs: 7 to 9 A base sequence having 40% or more, preferably 50% or more, more preferably 60% or more, still more preferably 70% or more, even more preferably 80% or more, and still more preferably 90% or more identity with the base sequence It may be a gene that encodes a protein or polypeptide that has a function of binding to the covalently-linked sugar chain 3 on the cell wall 4 .
- the gene encoding cell wall-pyruvate modifying enzyme 9 may be slr0688 or the like when the parent cyanobacterium belongs to the genus Synechocystis, or syn7502_03092 or synpcc7942_1529 or the like when the parent cyanobacterium belongs to the genus Synechococcus. If the parent cyanobacteria is the genus Anabaena, it may be ana_C20348 or anacy_1623. If the parent cyanobacteria is the genus Microcystis, it may be csaB(NCBI access ID: TRU80220).
- the parent cyanobacterium belongs to the genus Cynahothese, it may be csaB (NCBI access ID: WP_107667006.1).
- the parent cyanobacteria is the genus Calothrix, it may be csaB (NCBI access ID: WP_096658142.1), etc.
- the parent cyanobacteria is the genus Nostoc, csaB (NCBI access ID: WP_099068528.1), etc.
- csaB NCBI access ID: WP_012361697.1
- csaB NCBI access ID: WP_036798735
- the parent cyanobacteria is the genus Pleurocapsa etc.
- the nucleotide sequences of these genes can be obtained from the NCBI database or Cyanobase mentioned above.
- the gene encoding cell wall-pyruvate modifying enzyme 9 is slr0688 (SEQ ID NO: 10) of Synechocystis sp. PCC 6803, synpcc7942_1529 (SEQ ID NO: 11) of Synechococcus sp. PCC 7942, or Anabaena cylindrica PCC 7122 anacy_1623 (SEQ ID NO: 12).
- genes whose base sequences are 50% or more identical to these genes may also be used.
- the modified cyanobacteria 50% or more of the base sequence of the gene encoding any of the cell wall-pyruvate modifying enzymes 9 shown in the above SEQ ID NOs: 10 to 12 or the genes encoding any of these enzymes Identical genes are deleted or inactivated. Therefore, in the modified cyanobacteria, (i) the expression of any of the above cell wall-pyruvate modifying enzymes 9 or proteins having functions equivalent to any of these enzymes is suppressed, or (ii) the above The function of any cell wall-pyruvate modifying enzyme 9 or a protein having a function equivalent to any of these enzymes is inhibited.
- the base sequences of genes encoding proteins are 30% or more identical, it is highly likely that a protein with a function equivalent to that of the protein will be expressed. Therefore, as a gene encoding cell wall-pyruvate modifying enzyme 9 whose function is suppressed, for example, the base sequence of any of the genes encoding cell wall-pyruvate modifying enzyme 9 shown in SEQ ID NOs: 10 to 12 above and 40% or more, preferably 50% or more, more preferably 60% or more, still more preferably 70% or more, even more preferably 80% or more, still more preferably 90% or more, consisting of a base sequence having an identity, Moreover, it may be a gene encoding a protein or polypeptide having a function of catalyzing a reaction in which the covalent sugar chain 3 of the peptidoglycan 2 on the cell wall 4 is modified with pyruvic acid.
- the method for producing modified cyanobacteria includes a step of suppressing the total amount of proteins involved in binding between outer membrane 5 and cell wall 4 in cyanobacteria to 30% or more and 70% or less of the total amount of the proteins in the parent strain.
- the protein involved in binding between the outer membrane 5 and the cell wall 4 may be at least one of the SLH domain-retaining outer membrane protein 6 and the cell wall-pyruvate modifying enzyme 9, for example.
- the means for suppressing the function of the protein is not particularly limited, but for example, deletion or inactivation of the gene encoding the SLH domain-retaining outer membrane protein 6 and the gene encoding the cell wall-pyruvate modifying enzyme 9 inhibiting transcription of these genes, inhibiting translation of transcription products of these genes, or administering inhibitors that specifically inhibit these proteins.
- Means for deleting or inactivating the gene include, for example, introduction of mutations to one or more bases on the base sequence of the gene, substitution of the base sequence with other base sequences, or modification of other base sequences. It may be insertion or deletion of part or all of the nucleotide sequence of the gene.
- Means for inhibiting the transcription of the gene include, for example, mutagenesis of the promoter region of the gene, inactivation of the promoter by substitution with another base sequence or insertion of another base sequence, or CRISPR interference method (non- Patent Document 13: Yao et al., ACS Synth. Biol., 2016, 5:207-212).
- Specific techniques for the introduction of mutation or substitution or insertion of base sequences may be, for example, UV irradiation, site-directed mutagenesis, homologous recombination, or the like.
- the means for inhibiting translation of the transcription product of the gene may be, for example, RNA interference method.
- a modified cyanobacterium may be produced by suppressing the function of a protein involved in binding between the outer membrane 5 and the cell wall 4 in cyanobacteria by using any of the above means.
- the binding that is, binding amount and binding force
- the binding that is, binding amount and binding force
- the outer membrane 5 is partially removed from the cell wall 4. easily detached.
- intracellularly produced substances such as proteins and metabolites produced in the cells are likely to leak out of the outer membrane 5 (that is, out of the cells).
- Substances involved in the activation of that is, plant acid invertase activating substances
- the plant acid invertase activating substance produced in the cells leaks out of the cells, so the cells are crushed to recover the substance. you don't have to.
- the modified cyanobacteria are cultured under appropriate conditions, and then the plant acid invertase activating substance secreted into the culture medium can be recovered. It is also possible to recover the material. Therefore, by using the modified cyanobacterium obtained by the present production method, it is possible to efficiently produce a microbiological plant acid invertase activating substance. Therefore, according to the method for producing a modified cyanobacterium according to the present embodiment, it is possible to provide a modified cyanobacterium with high utilization efficiency that can be repeatedly used even after the plant acid invertase activator is recovered.
- the method for activating plant acid invertase according to the present embodiment uses the plant acid invertase activator described above for a plant.
- the plant acid invertase activator according to the present embodiment is a plant acid invertase activator having a plant acid invertase activating effect.
- plant acid invertase can be effectively activated.
- the above plant acid invertase activator may be used as it is, or after being concentrated or diluted.
- concentration of the plant acid invertase activator and the application method are appropriately adjusted according to the type of plant, the nature of the soil, the purpose, etc. may decide.
- the plant acid invertase activator may be, for example, the culture medium of the modified cyanobacteria itself, or a solution obtained by removing the cells of the modified cyanobacteria from the culture medium. may be an extract obtained by extracting by membrane technology or the like.
- the desired substance may be an enzyme that decomposes nutrients in the soil, or a substance that solubilizes insoluble substances in the soil (e.g., metals such as iron) (e.g., a substance that has a chelating effect).
- a substance that has a chelating effect e.g., it may be a substance that improves the intracellular physiological activity of plants.
- the method of applying the plant acid invertase activator to the plant may be, for example, spraying the plant, spraying the soil, watering or mixing, or mixing in hydroponic solution. For example, several milliliters of the plant acid invertase activator per individual plant may be added to the root of the plant about once a week.
- the modified cyanobacteria the method for producing the modified cyanobacteria, and the method for producing the plant acid invertase activator of the present disclosure will be specifically described in Examples, but the present disclosure is in no way limited only to the following Examples. not a thing
- cyanobacteria As a method for partially detaching the outer membrane of cyanobacteria from the cell wall, expression suppression of the slr1841 gene encoding an SLH domain-retaining outer membrane protein (Example 1) and cell wall-pyruvic acid modification Expression of the slr0688 gene encoding the enzyme was suppressed (Example 2) to produce two types of modified cyanobacteria. Then, the protein secretion productivity of these modified cyanobacteria was measured, and the secreted intracellular substances (here, proteins and intracellular metabolites) were identified.
- the cyanobacterial species used in this example is Synechocystis sp. PCC 6803 (hereinafter simply referred to as "cyanobacteria").
- Example 1 a modified cyanobacterium was produced in which the expression of the slr1841 gene, which encodes an SLH domain-retaining outer membrane protein, was suppressed.
- the mechanism of gene expression suppression by this method is as follows.
- a complex is formed between the nuclease-deficient Cas9 protein (dCas9) and the sgRNA (slr1841_sgRNA) that complementarily binds to the base sequence of the slr1841 gene.
- dCas9 nuclease-deficient Cas9 protein
- slr1841_sgRNA sgRNA
- this complex recognizes the slr1841 gene on the cyanobacterial chromosomal DNA and binds specifically to the slr1841 gene.
- the steric hindrance of this binding inhibits transcription of the slr1841 gene.
- the expression of the cyanobacterial slr1841 gene is suppressed.
- the degree of suppression of the slr1841 gene can be controlled by controlling the transcriptional activity of slr1841_sgRNA.
- psbA1::dCas9 cassette The psbA1::dCas9 cassette was inserted into the pUC19 plasmid using the In-Fusion PCR Cloning Method®, resulting in the pUC19-dCas9 plasmid.
- sgRNA specifically binds to the target gene by introducing a sequence of about 20 bases complementary to the target sequence into the region called protospacer on the sgRNA gene. do.
- the protospacer sequences used in this example are shown in Table 3.
- the sgRNA gene (excluding the protospacer region) and the kanamycin resistance marker gene are linked and inserted into the slr2030-slr2031 gene on the chromosomal DNA (non-patent document 13). Therefore, the sgRNA (slr1841_sgRNA ) can be easily obtained. In addition, the degree of suppression of the slr1841 gene can be controlled by controlling the transcriptional activity of slr1841_sgRNA.
- the primers slr2030-Fw (SEQ ID NO: 15) and slr2031-Rv (SEQ ID NO: 18) listed in Table 1 were used for amplification by PCR, resulting in ( A DNA fragment (slr2030-2031::slr1841_sgRNA) was obtained in which i) the slr2030 gene fragment, (ii) slr1841_sgRNA, (iii) the kanamycin resistance marker gene, and (iv) the slr2031 gene fragment were linked in this order.
- the slr2030-2031::slr1841_sgRNA was inserted into the pUC19 plasmid using the In-Fusion PCR Cloning Method® to obtain the pUC19-slr1841_sgRNA plasmid.
- the pUC19-slr1841_sgRNA plasmid was introduced into the Synechocystis dCas9 strain in the same manner as in (1-1) above, and the transformed cells were selected on BG-11 agar medium containing 30 ⁇ g/mL kanamycin.
- a transformant Synechocystis dCas9 slr1841_sgRNA strain (hereinafter also referred to as slr1841 suppressor strain) in which slr1841_sgRNA was inserted into the slr2030-slr2031 gene on the chromosomal DNA was obtained.
- the promoter sequences of the dCas9 gene and slr1841_sgRNA gene are designed so that their expression is induced in the presence of anhydrotetracycline (aTc).
- aTc anhydrotetracycline
- the expression of the slr1841 gene was suppressed by adding a final concentration of 1 ⁇ g/mL aTc to the medium.
- Example 1 the total amount of proteins involved in the binding between the outer membrane and the cell wall in cyanobacteria was reduced from the parent strain (Synechocystis dCas9 strain, Comparative Example 1 described later) to ), a modified cyanobacterial Synechocystis dCas9 slr1841_sgRNA strain (so-called slr1841-suppressing strain) was obtained, which was suppressed by about 30% compared to the amount of the protein in ).
- the proteins involved in binding between the outer membrane and the cell wall are slr1841, slr1908 and slr0042. The results of measuring the amount of proteins involved in binding between the outer membrane and the cell wall will be described later in (8-1).
- Example 2 a modified cyanobacterium in which the expression of the slr0688 gene encoding a cell wall-pyruvate modifying enzyme was suppressed was obtained by the following procedure.
- the set of primers slr2030-Fw (SEQ ID NO: 15) and sgRNA_slr0688-Rv (SEQ ID NO: 19) and the set of sgRNA_slr0688-Fw (SEQ ID NO: 20) and slr2031-Rv (SEQ ID NO: 18) described in Table 1 were used.
- In-Fusion PCR was performed on a DNA fragment (slr2030-2031::slr0688_sgRNA) in which (i) the slr2030 gene fragment, (ii) slr0688_sgRNA, (iii) the kanamycin resistance marker gene, and (iv) the slr2031 gene fragment were linked in order.
- the procedure was performed under the same conditions as in (1-2) above, except that it was inserted into the pUC19 plasmid using the cloning method (registered trademark) to obtain the pUC19-slr0688_sgRNA plasmid.
- the degree of suppression of the slr0688 gene can be controlled by controlling the transcriptional activity of slr0688_sgRNA.
- Example 2 the amount of the protein involved in the binding of the outer membrane and the cell wall in cyanobacteria increased without impairing the growth ability of the parent strain (Synechocystis dCas9 strain, Comparative Example 1 described later). ), a modified cyanobacterial Synechocystis dCas9 slr0688_sgRNA strain (hereinafter also referred to as slr0688-suppressed strain) was obtained, which was suppressed to about 50%.
- the protein involved in binding between the outer membrane and the cell wall is slr0688.
- the results of measuring the amount of pyruvic acid which is related to the amount of protein involved in binding between the outer membrane and the cell wall, will be described later in (8-4).
- Example 3 (3-1) Cultivation of strain
- the slr1841-suppressed strain of Example 1 was inoculated into BG-11 medium containing 1 ⁇ g/mL aTc so that the initial cell concentration OD730 was 0.05, and the light intensity was 100 ⁇ mol/m 2 /s. , shaking culture for 5 days at 30°C.
- the slr0688-suppressed strain of Example 2 and the control strain of Comparative Example 1 were also cultured under the same conditions as in Example 1.
- FIG. 3 is a TEM (Transmission Electron Microscope) image of the slr1841-suppressed strain of Example 1.
- FIG. 4 is an enlarged image of the dashed line area A in FIG.
- FIG. 4(a) is an enlarged TEM image of the dashed line area A in FIG. 3
- FIG. 4(b) depicts the enlarged TEM image of FIG. 4(a).
- the outer membrane was partially detached from the cell wall (that is, the outer membrane was partially peeled off) and the outer membrane was partially flexed. board.
- FIG. 5 is a TEM image of the slr0688-suppressed strain of Example 2.
- FIG. 6 is an enlarged image of the dashed line area B in FIG.
- FIG. 6(a) is an enlarged TEM image of the dashed line area B in FIG. 5
- FIG. 6(b) is a drawing depicting the enlarged TEM image of FIG. 6(a).
- FIG. 7 is a TEM image of the Control strain of Comparative Example 1.
- FIG. 8 is an enlarged image of the dashed line area C in FIG.
- FIG. 8(a) is an enlarged TEM image of the dashed line area C in FIG. 7
- FIG. 8(b) is a drawing depicting the enlarged TEM image of FIG. 8(a).
- the cell surface layer of the Control strain of Comparative Example 1 was well-ordered, and the inner membrane, cell wall, outer membrane, and S layer were stacked in order.
- the portion where the outer membrane detached from the cell wall as in Examples 1 and 2 the portion where the outer membrane detached from the cell wall (that is, peeled off), and the portion where the outer membrane flexed was not seen.
- the slr1841-suppressed strain of Example 1, the slr0688-suppressed strain of Example 2, and the Control strain of Comparative Example 1 were cultured, respectively, and the amount of extracellularly secreted protein (hereinafter referred to as secretion (also referred to as protein content) was measured.
- secretion also referred to as protein content
- the protein secretion productivity of each of the above strains was evaluated based on the amount of protein in the culture medium.
- the protein secretion productivity refers to the ability to produce a protein by secreting the protein produced in the cell to the outside of the cell. A specific method will be described below.
- Example 1 Culture of strain The slr1841-suppressed strain of Example 1 was cultured in the same manner as in (3-1) above. Culturing was performed three times independently. The strains of Example 2 and Comparative Example 1 were also cultured under the same conditions as the strain of Example 1.
- both the slr1841-suppressed strain of Example 1 and the slr0688-suppressed strain of Example 2 compared the amount of protein secreted into the culture supernatant (mg/ L) was about 25 times better.
- the absorbance (730 nm) of the culture solution was measured, and the amount of secreted protein per 1 g of bacterial cell dry weight (mg protein/g cell dry weight) was calculated. and the slr0688-suppressed strain of Example 2, the amount of secreted protein per 1 g of cell dry weight (mg protein/g cell dry weight) was improved by about 36 times compared to the Control strain of Comparative Example 1. rice field.
- the gene encoding the cell wall-pyruvate modifying enzyme (slr1841) was more likely than the slr1841-suppressed strain of Example 1 in which the expression of the gene encoding the SLH domain-retaining outer membrane protein (slr1841) was suppressed.
- slr0688 expression was suppressed, the slr0688-suppressed strain of Example 2 had a larger amount of protein secreted into the culture supernatant. This is thought to be related to the fact that the number of covalent sugar chains on the cell wall surface is greater than the number of SLH domain-retaining outer membrane protein (Slr1841) in the outer membrane.
- the slr0688-suppressed strain of Example 2 had a lower binding amount and binding force between the outer membrane and the cell wall than the slr1841-suppressed strain of Example 1, so the amount of secreted protein was reduced to that of the slr1841-suppressed strain of Example 1. Presumably more than stocks.
- IAA iodoacetamide
- cysteine was added at a final concentration of 60 mM, and the mixture was allowed to stand at room temperature for 10 minutes.
- 400 ng of trypsin was added and allowed to stand overnight at 37° C. to fragment the protein into peptides.
- TFA Trifluoroacetic Acid
- the sample was dried using a centrifugal evaporator. After that, 3% acetonitrile and 0.1% formic acid were added, and the sample was dissolved using a closed ultrasonic crusher. A peptide concentration of 200 ng/ ⁇ L was prepared.
- Table 4 shows the 30 proteins with the highest relative quantification values among the identified proteins that are expected to have clear enzymatic activity.
- Example 3 After aligning the individual size of each pot as described above, 5 mL of culture supernatant of modified cyanobacteria (hereinafter referred to as secretion of modified cyanobacteria) per strain is added to the roots of spinach once a week. added. After cultivating for 40 days, the dry weight of the aboveground part was measured after harvesting, and the average value and standard deviation (SD) were obtained. In addition, the acid invertase activity was measured by the method shown below, and the average value and standard deviation (SD) were determined.
- the modified cyanobacteria are the slr1841-suppressed strain of Example 1 and the slr0688-suppressed strain of Example 2.
- the extraction buffer consists of the following composition.
- HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid)-KOH pH7.4
- MgCl2 1mM EDTA (ethylenediaminetetraacetic acid)
- EGTA ethyleneglycol-bis( ⁇ -aminoehylether)-tetraacetic acid
- PMSF phenmethylsulphonyl-fluoride
- DTT dithiothreitol
- Triton X-100 200 mL/L glycerol 5mM thiourea
- Example 3 was repeated except that water was used instead of the secretion of the modified cyanobacteria.
- FIGS. 10 and 11 The results of Example 3 and Comparative Example 2 are shown in FIGS. 10 and 11.
- FIG. 10 is a graph showing average values of acid invertase activity of spinach cultivated in Example 3 and Comparative Example 2.
- FIG. 11 is a graph showing the average dry weight of above-ground parts (referred to as average plant weight) per spinach plant cultivated in Example 3 and Comparative Example 2.
- FIG. 10 is a graph showing average values of acid invertase activity of spinach cultivated in Example 3 and Comparative Example 2.
- FIG. 11 is a graph showing the average dry weight of above-ground parts (referred to as average plant weight) per spinach plant cultivated in Example 3 and Comparative Example 2.
- FIG. 10 is a graph showing average values of acid invertase activity of spinach cultivated in Example 3 and Comparative Example 2.
- FIG. 11 is a graph showing the average dry weight of above-ground parts (referred to as average plant weight) per spinach plant cultivated in Example 3 and Comparative Example 2.
- the acid invertase activity of the spinach cultivated in Example 3 was approximately 2.3 times higher than that of Comparative Example 2.
- the strain weight of the spinach cultivated in Example 3 increased by about 1.4 times compared to Comparative Example 1.
- the acid invertase of the spinach is activated, and the activation of the acid invertase promotes the growth of spinach and increases the body weight. confirmed.
- Example 4 During the cultivation period, 5 mL of modified cyanobacterial secretion per strain was added to the roots once a week. Strawberry fruits were harvested in order from red and mature ones, and the number of harvested fruits was recorded. Also, the weight and sugar content (Brix value) of the harvested fruit were measured, and their average value and standard deviation (SD) were determined. In addition, acid invertase activity was measured in the same manner as in Example 3, except that several fruits were used. Here, the amount of glucose produced by 1 g of fruit in 1 hour is defined as acid invertase activity.
- the modified cyanobacteria are the slr1841-suppressed strain of Example 1 and the slr0688-suppressed strain of Example 2.
- Example 4 Example 4 was repeated except that water was used instead of the secretion of the modified cyanobacteria.
- FIGS. 12 to 16 The results of Example 4 and Comparative Example 3 are shown in FIGS. 12 to 16.
- FIG. 12 is a graph showing average values of acid invertase activity of strawberries cultivated in Example 4 and Comparative Example 3.
- FIG. 13 is a graph showing the average number of fruits per strawberry cultivated in Example 4 and Comparative Example 3.
- FIG. 14 is a graph showing the average fruit weight per strawberry cultivated in Example 4 and Comparative Example 3.
- FIG. 15 is a graph showing the average sugar content per strawberry cultivated in Example 4 and Comparative Example 3.
- FIG. 12 is a graph showing average values of acid invertase activity of strawberries cultivated in Example 4 and Comparative Example 3.
- FIG. 13 is a graph showing the average number of fruits per strawberry cultivated in Example 4 and Comparative Example 3.
- FIG. 14 is a graph showing the average fruit weight per strawberry cultivated in Example 4 and Comparative Example 3.
- FIG. 15 is a graph showing the average sugar content per strawberry cultivated in Example 4 and Comparative Example 3.
- FIG. 12 is
- FIG. 16 shows photographs of representative fruits in order to visually show the state of the fruits in Example 4 and Comparative Example 3.
- the phytoacid invertase activity of strawberries cultivated in Example 3 was approximately 2.3 times higher than in Comparative Example 1.
- Example 4 the average number of fruits per plant harvested in Example 4 increased by about 1.4 times compared to Comparative Example 3.
- Example 4 there was no significant difference in the average fruit weight of the strawberries harvested in Example 4.
- the strawberries cultivated in Example 4 had an average fruit weight equivalent to that of Comparative Example 3, although the number of fruits harvested per strain was large.
- the average sugar content (Brix sugar content) of the strawberries harvested in Example 4 was about 1.1 times higher than in Comparative Example 3.
- the strawberries cultivated in Example 4 had a high average sugar content, although the number of harvested fruits was large.
- the strawberry fruits harvested in Example 4 and Comparative Example 3 did not differ in appearance such as size, shape, and color.
- the strawberries cultivated in Example 4 were similar in fruit size and the like to those in Comparative Example 3, although the number of fruits harvested was large.
- the plant acid invertase activator promotes growth, increases yield, increases body weight, and improves the sugar content of fruits for a plurality of crop species. It was confirmed that there was an effect such as an increase.
- Comparative Example 4 a modified cyanobacterium lacking slr1908 (hereinafter also referred to as slr1908-deficient strain) was obtained based on the description in Non-Patent Document 6.
- Comparative Example 5 a modified cyanobacterium lacking slr0042 (hereinafter also referred to as slr0042-deficient strain) was obtained based on the description in Non-Patent Document 7.
- FIG. 17 shows the results of electrophoresis showing the respective amounts of proteins (slr1841, slr1908, and slr0042) involved in binding to the cell wall.
- FIG. 17(a) is an electropherogram showing the amounts of proteins involved in the binding between the outer membrane and the cell wall in the modified cyanobacteria of Example 1, Example 2, Comparative Example 1, Comparative Example 4, and Comparative Example 5. be.
- FIG. 17(b) is an enlarged view of the dashed line area Z.
- FIG. The band intensity (darkness and thickness) in the electrophoretic photographs shown in FIGS. 17(a) and 17(b) represents the amount of each protein.
- A is a molecular weight marker
- B is an electrophoretic image of Comparative Example 1
- C is Comparative Example 10
- D is Example 1
- E is an electrophoretic image of Comparative Example 9.
- Band intensities were quantified using ImageJ software.
- the slr1841-suppressed strain of Example 1 showed that the total amount of proteins involved in binding between the outer membrane and the cell wall (slr1841, slr1908, and slr0042) was lower than that of the parent strain due to suppression of slr1841 protein expression. It is reduced to about 30% compared to the Control strain of Comparative Example 1.
- the amount of slr1841 protein is increased.
- the total amount is increased by about 10% compared to the Control strain of Comparative Example 1, which is the parent strain.
- the phenomenon that loss of any one outer membrane protein results in an increase in another similar outer membrane protein is a common phenomenon in other bacteria.
- FIG. 18 is a transmission electron microscope image of an ultra-thin section of the modified cyanobacteria of Comparative Example 4.
- FIG. 19 is an enlarged view of the dashed line area D in FIG. 18.
- FIG. 18 and 19 the cell surface layer of the slr1908-deficient strain of Comparative Example 4 was well-ordered, and the inner membrane, cell wall, outer membrane, and S layer were laminated in order. That is, the outer membrane structure of the slr1908-deficient strain of Comparative Example 4 was almost the same as that of the Control strain of Comparative Example 1, which is the parent strain.
- FIG. 20 is a transmission electron microscope image of an ultra-thin section of the modified cyanobacteria of Comparative Example 5.
- FIG. 21 is an enlarged view of the dashed line area E in FIG. 20.
- the cell surface layer of the slr0042-deficient strain of Comparative Example 5 was well-ordered, and the inner membrane, cell wall, outer membrane, and S layer were laminated in order. That is, the outer membrane structure of the slr0042-deficient strain of Comparative Example 5 was almost the same as that of the Control strain of Comparative Example 1, which is the parent strain.
- FIG. 22 is a graph showing the amount of protein in the culture medium of the modified cyanobacteria of Examples 1, 2, Comparative Examples 1, 4 and 5.
- FIG. 22 As shown in FIG. 22, the slr1841-suppressed strain of Example 1 and the slr0688-suppressed strain of Example 2 secrete and produce a large amount of protein in the culture medium. and the slr0042-deficient strain of Comparative Example 5 did not secrete and produce proteins in the culture medium.
- FIG. 18 shows the results of quantification of the amount of pyruvic acid.
- 23 is a graph showing amounts of pyruvic acid covalently bound to cell wall-bound sugar chains of modified cyanobacteria of Example 2 and Comparative Example 1.
- the slr0688-suppressed strain of Example 2 had a reduced amount of pyruvic acid of about 50% compared to the Control strain of Comparative Example 1, which is the parent strain. From this, it is considered that the amount of the cell wall-pyruvate modifying enzyme, which is a protein involved in binding between the outer membrane and the cell wall, is also suppressed to about 50% of that in the parent strain.
- the present disclosure it is possible to provide a modified cyanobacterium with improved secretion productivity of a plant acid invertase activator substance.
- the modified cyanobacteria of the present disclosure by culturing the modified cyanobacteria of the present disclosure, the above substances can be produced efficiently. For example, by adding the substance to the soil, acid invertase in plants can be activated, thereby improving crop production. can be improved.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Biotechnology (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Microbiology (AREA)
- General Engineering & Computer Science (AREA)
- Plant Pathology (AREA)
- Biochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Environmental Sciences (AREA)
- Pest Control & Pesticides (AREA)
- Virology (AREA)
- Biomedical Technology (AREA)
- Botany (AREA)
- Dentistry (AREA)
- Agronomy & Crop Science (AREA)
- Mycology (AREA)
- Medicinal Chemistry (AREA)
- Tropical Medicine & Parasitology (AREA)
- Cell Biology (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Description
背景技術で述べたように、限られた耕作地の中で効率よく農作物を生産するための技術が求められている。そのための手法として、植物の酸性インベルターゼを活性化させる技術が期待されている。
本開示の一態様の概要は、以下の通りである。
本明細書において、塩基配列及びアミノ酸配列の同一性は、BLAST(Basic Local Alignment Search Tool)アルゴリズムによって計算される。具体的には、NCBI(National Center for Biotechnology Information)(https://blast.ncbi.nlm.nih.gov/Blast.cgi)のウェブサイトで利用できるBLASTプログラムにてペアワイズ解析を行うことにより算出される。シアノバクテリアの遺伝子及び当該遺伝子がコードするタンパク質に関する情報は、例えば上述のNCBIデータベース及びCyanobase(http://genome.microbedb.jp/cyanobase/)において公開されている。これらのデータベースから、目的のタンパク質のアミノ酸配列及びそれらのタンパク質をコードする遺伝子の塩基配列を取得することができる。
まず、本実施の形態に係る植物酸性インベルターゼ活性化剤について説明する。植物酸性インベルターゼ活性化剤は、植物の酸性インベルターゼの活性化に関与する分泌物を含み、植物の酸性インベルターゼを活性化させる効果を有する。上述したように、インベルターゼは、植物体においてショ糖をブドウ糖及び果糖などの還元糖に異化する酵素である。特に、酸性インベルターゼは、植物体におけるショ糖の利用、及び、貯蔵糖の一形態である還元糖への異化に寄与する。したがって、本実施の形態に係る植物酸性インベルターゼ活性化剤は、植物の酸性インベルターゼを活性化させることにより、植物の成長を促進させ、かつ、果実などへの貯蔵糖の蓄積を促進させることが可能となる。したがって、本実施の形態に係る植物酸性インベルターゼ活性化剤は、例えば農作物に使用されることにより、効率良く農作物の生産を増進させることができる。
続いて、本実施の形態に係る植物酸性インベルターゼ活性化剤の製造方法について図1を参照しながら説明する。図1は、本実施の形態に係る植物酸性インベルターゼ活性化剤の製造方法の一例を示すフローチャートである。
シアノバクテリアは、藍藻又は藍色細菌とも呼ばれ、クロロフィルで光エネルギーを捕集し、得たエネルギーで水を電解して酸素を発生しながら光合成をおこなう原核生物の一群である。シアノバクテリアは、多様性に富んでおり、例えば、細胞形状ではSynechocystis sp. PCC 6803のような単細胞性の種及びAnabaena sp. PCC 7120のような多細胞が連なった糸状性の種がある。生育環境についても、Thermosynechococcus elongatusのような好熱性の種、Synechococcus elongatusのような海洋性の種、Synechocystisのような淡水性の種がある。また、Microcystis aeruginosaのようにガス小胞を持ち毒素を産生する種、及び、チラコイドを持たずに原形質膜に集光アンテナであるフィコビリソームと呼ばれるタンパク質を有するGloeobacter violaceusのように、独自の特徴をもつ種も多数挙げられる。
続いて、本実施の形態における改変シアノバクテリアについて図2を参照しながら説明する。
続いて、本実施の形態における改変シアノバクテリアの製造方法について説明する。改変シアノバクテリアの製造方法は、シアノバクテリアにおいて外膜5と細胞壁4との結合に関与するタンパク質の総量が、親株における当該タンパク質の総量の30%以上70%以下に抑制させるステップを含む。
本実施の形態に係る植物酸性インベルターゼ活性化方法は、上記の植物酸性インベルターゼ活性化剤を植物に使用する。上述したように、本実施の形態に係る植物酸性インベルターゼ活性化剤は、植物酸性インベルターゼ活性化効果を有する植物酸性インベルターゼ活性化剤であるため、上記の植物酸性インベルターゼ活性化剤を植物に使用することにより、効果的に植物の酸性インベルターゼを活性化させることができる。
実施例1では、SLHドメイン保持型外膜タンパク質をコードするslr1841遺伝子の発現が抑制された改変シアノバクテリアを製造した。
遺伝子発現抑制法として、CRISPR(Clustered Regularly Interspaced Short Palindromic Repeat)干渉法を用いた。本方法では、dCas9タンパク質をコードする遺伝子(以下、dCas9遺伝子という)と、slr1841_sgRNA(single-guide Ribonucleic Acid)遺伝子とを、シアノバクテリアの染色体DNAに導入することにより、slr1841遺伝子の発現を抑制することができる。また、slr1841_sgRNAの転写活性を制御することにより、slr1841遺伝子の抑制の程度をコントロールすることができる。
Synechocystis LY07株(以下、LY07株ともいう)(非特許文献13参照)の染色体DNAを鋳型として、dCas9遺伝子及びdCas9遺伝子の発現制御のためのオペレーター遺伝子、並びに、遺伝子導入の目印となるスペクチノマイシン耐性マーカー遺伝子を、表1に記載のプライマーpsbA1-Fw(配列番号13)及びpsbA1-Rv(配列番号14)を用いてPCR(Polymerase chain reaction)法により増幅した。なお、LY07株では、上記の3つの遺伝子が連結した状態で染色体DNA上のpsbA1遺伝子に挿入されているため、1つのDNA断片としてPCR法により増幅することができる。ここでは、得られたDNA断片を「psbA1::dCas9カセット」と表記する。In-Fusion PCRクローニング法(登録商標)を用いて、psbA1::dCas9カセットをpUC19プラスミドに挿入し、pUC19-dCas9プラスミドを得た。
CRISPR干渉法では、sgRNA遺伝子上のprotospacerと呼ばれる領域に、標的配列と相補的な約20塩基の配列を導入することにより、sgRNAが標的遺伝子に特異的に結合する。本実施例で用いたprotospacer配列は表3に示される。
上記dCas9遺伝子及びslr1841_sgRNA遺伝子は、アンヒドロテトラサイクリン(aTc)の存在下で発現誘導されるようにプロモーター配列が設計されている。本実施例では、培地中に終濃度1μg/mL aTcを添加することによりslr1841遺伝子の発現を抑制した。
実施例2では、下記の手順により、細胞壁-ピルビン酸修飾酵素をコードするslr0688遺伝子の発現が抑制された改変シアノバクテリアを得た。
上記(1-2)と同様の手順により、slr0688遺伝子(配列番号4)と相補的なprotospacer配列(配列番号22)を含むsgRNA遺伝子をSynechocystis dCas9株に導入し、Synechocystis dCas9 slr0688_sgRNA株を得た。なお、表1に記載のプライマーslr2030-Fw(配列番号15)及びsgRNA_slr0688-Rv(配列番号19)のセット、並びに、sgRNA_slr0688-Fw(配列番号20)及びslr2031-Rv(配列番号18)のセットを用いたことと、(i)slr2030遺伝子断片、(ii)slr0688_sgRNA、(iii)カナマイシン耐性マーカー遺伝子、(iv)slr2031遺伝子断片が順に連結したDNA断片(slr2030-2031::slr0688_sgRNA)をIn-Fusion PCRクローニング法(登録商標)を用いて、pUC19プラスミドに挿入し、pUC19-slr0688_sgRNAプラスミドを得たこと以外は、上記(1-2)と同様の条件で行った。また、slr0688_sgRNAの転写活性を制御することにより、slr0688遺伝子の抑制の程度をコントロールすることができる。
比較例1では、実施例1の(1-1)と同様の手順により、Synechocystis dCas9株を得た。
実施例1で得られた改変シアノバクテリアSynechocystis dCas9 slr1841_sgRNA株(つまり、slr1841抑制株)、実施例2で得られた改変シアノバクテリアSynechocystis dCas9slr0688_sgRNA株(いわゆる、slr0688抑制株)、及び、比較例1で得られた改変シアノバクテリアSynechocystis dCas9株(以下、Control株という)のそれぞれの超薄切片を作製し、電子顕微鏡を用いて細胞表層の状態(言い換えると、外膜構造)を観察した。
初発菌体濃度OD730=0.05となるように、実施例1のslr1841抑制株を、1μg/mL aTcを含むBG-11培地に接種し、光量100μmol/m2/s、30℃の条件下で5日間振盪培養した。なお、実施例2のslr0688抑制株及び比較例1のControl株も実施例1と同様の条件で培養した。
上記(3-1)で得られた培養液を、室温にて2,500gで10分間遠心分離し、実施例1のslr1841抑制株の細胞を回収した。次いで、細胞を-175℃の液体プロパンで急速凍結した後、2%グルタルアルデヒド及び1%タンニン酸を含むエタノール溶液を用いて-80℃で2日間固定した。固定後の細胞をエタノールにより脱水処理し、脱水した細胞を酸化プロピレンに浸透させたあと、樹脂(Quetol-651)溶液中に沈めた。その後60℃で48時間静置し、樹脂を硬化させて、細胞を樹脂で包埋した。樹脂中の細胞を、ウルトラミクロトーム(Ultracut)を用いて70nmの厚さに薄切し、超薄切片を作製した。この超薄切片を、2%酢酸ウラン及び1%クエン酸鉛溶液を用いて染色して、実施例1のslr1841抑制株の透過型電子顕微鏡の試料を準備した。なお、実施例2のslr0688抑制株及び比較例1のControl株についてもそれぞれ同様の操作を行い、透過型電子顕微鏡の試料を準備した。
透過型電子顕微鏡(JEOL JEM-1400Plus)を用いて、加速電圧100kV下で、上記(3-2)で得られた超薄切片の観察を行った。観察結果を図3~図8に示す。
実施例1のslr1841抑制株、実施例2のslr0688抑制株、及び、比較例1のControl株をそれぞれ培養し、細胞外に分泌されたタンパク質量(以下、分泌タンパク質量ともいう)を測定した。培養液中のタンパク質量により、上記の菌株それぞれのタンパク質の分泌生産性を評価した。なお、タンパク質の分泌生産性とは、細胞内で産生されたタンパク質を細胞外に分泌することにより、タンパク質を生産する能力をいう。以下、具体的な方法について説明する。
実施例1のslr1841抑制株を上記(3-1)と同様の方法で培養した。培養は、独立して3回行った。なお、実施例2及び比較例1の菌株についても実施例1の菌株と同様の条件で培養した。
上記(4-1)で得られた培養液を、室温にて2,500gで10分間遠心分離し、培養上清を得た。得られた培養上清を、ポアサイズ0.22μmのメンブレンフィルターを用いてろ過し、実施例1のslr1841抑制株の細胞を完全に除去した。ろ過後の培養上清に含まれる総タンパク質量をBCA(Bicinchoninic Acid)法により定量した。この一連の操作を、独立して培養した3つの培養液のそれぞれについて行い、実施例1のslr1841抑制株の細胞外に分泌されたタンパク質量の平均値及び標準偏差を求めた。なお、実施例2及び比較例1の菌株についても、それぞれ、同様の条件で3つの培養液のタンパク質の定量を行い、3つの培養液中のタンパク質量の平均値及び標準偏差を求めた。
続いて、上記(4-2)で得られた培養上清中に含まれる分泌タンパク質を、LC-MS/MSにより同定した。方法を以下に説明する。
培養上清の液量に対して8倍量の冷アセトンを加え、20℃で2時間静置後、20,000gで15分間遠心分離し、タンパク質の沈殿物を得た。この沈殿物に100mM Tris pH8.5、0.5%ドデカン酸ナトリウム(SDoD)を加え、密閉式超音波破砕機によってタンパク質を溶解した。タンパク質濃度1μg/mLに調整後、終濃度10mMのジチオスレイトール(DTT)を添加して50℃で30分間静置した。続いて、終濃度30mMのヨードアセトアミド(IAA)を添加し、室温(遮光)で30分間静置した。IAAの反応を止めるために、終濃度60mMのシステインを添加して室温で 10分間静置した。トリプシン400 ngを添加して37℃で一晩静置し、タンパク質をペプチド断片化した。5%TFA(Trifluoroacetic Acid)を加えた後、室温にて15,000gで10分間遠心分離し、上清を得た。この作業によりSDoDが除去された。C18スピンカラムを用いて脱塩後、遠心エバポレーターにより試料を乾固した。その後、3%アセトニトリル、0.1%ギ酸を加え、密閉式超音波破砕機を用いて試料を溶解した。ペプチド濃度200ng/μLになるように調製した。
上記(5-1)で得られた試料をLC-MS/MS装置(UltiMate 3000 RSLCnano LC System) を用いて以下の条件で解析を実施した。
カラム:CAPCELL CORE MP 75μm×250mm
溶媒:A溶媒は0.1%ギ酸水溶液、B溶媒は0.1%ギ酸+80%アセトニトリル
グラジエントプログラム:試料注入4分後にB溶媒8%、27分後にB溶媒44%、28分後にB溶媒80%、34分後に測定終了
得られたデータは以下の条件で解析し、タンパク質及びペプチドの同定ならびに定量値の算出を行った。
データベース:UniProtKB/Swiss Prot database ( Synechocystis sp. PCC 6803)
Fragmentation:HCD
Precursor Tolerance:8ppm
Fragment Tolerance:10ppm
Data Acquisition Type:Overlapping DIA
Peptide Length:8-70
Peptide Charge:2-8
Max Missed Cleavages:1
Fixed Modification:Carbamidomethylation
Peptide FDR: 1%以下
(6-1)試料調製
改変シアノバクテリアの培養上清80μlに対し内部標準物質の濃度を1,000μMとなるよう調整した20μlの水溶液を加えて攪拌し、限外ろ過後、測定に供した。
本試験ではカチオンモード、及び、アニオンモードの測定を以下に示す条件で行った。
装置:Agilent CE-TOFMS system
Capillary: Fused silica capillary i.d. 50μm×80cm
測定条件:
Run buffer: Cation buffer solution (p/n: H3301-1001)
CE voltage: Positive, 30kV
MS ionization: ESI positive
MS scan range: m/z 50-1,000
[アニオンモード]
装置:Agilent CE-TOFMS system
Capillary: Fused silica capillary i.d. 50μm×80cm
測定条件:
Run buffer: Anion buffer solution (p/n: H3301-1001)
CE voltage: Positive, 30kV
MS ionization: ESI negative
MS scan range: m/z 50-1,000
CE-TOFMSで検出されたピークは、自動積分ソフトウェアMasterHands(登録商標) ver.2.17.1.11を用いて、シグナル/ノイズ比3以上のピークを自動検出した。検出されたピークに対して、各代謝産物固有の質量電荷比(m/z)と泳動時間の値を元に、HMT(ヒューマン・メタボローム・テクノロジーズ(株))の代謝物質ライブラリに登録された全物質の値と照合して、改変シアノバクテリアの培養上清に含まれる代謝産物を検索した。検索のための許容誤差は、泳動時間で+/-0.5min、m/zで+/-10ppmとした。同定された各代謝産物について100μMの一点検量として濃度を算出した。同定された主要な代謝産物を表5に示す。
続いて、改変シアノバクテリアの分泌物(ここでは、改変シアノバクテリアの培養上清)の植物酸性インベルターゼ活性化効果を評価するために、以下の植物栽培試験を実施した。具体的には、葉菜類生産に対する効果を評価するために、ホウレン草の栽培試験を実施した。また、果実生産に対する効果を評価するために、イチゴの栽培試験を実施した。以下、これらの栽培試験についてそれぞれ説明する。
まず、栽培用ポット(12cm×10cm)に、市販の培養土入れ、ポットあたり3粒のホウレン草の種子を播種した。栽培は、室内温度が23℃、白色光源の光量子束密度が200μmol/m2/sで、明条件10時間及び暗条件14時間の条件で40日間行った。その間、各ポットに、50mLの蒸留水を2日おきに給水した。栽培開始からおよそ1週間後、子葉が展開した段階で間引きし、各ポットにおける個体サイズを揃えた。
上記のように、各ポットの個体サイズを揃えた後、改変シアノバクテリアの培養上清(以下、改変シアノバクテリアの分泌物と呼ぶ)を1株あたり5mL、1週間に1回、ホウレン草の根元に添加した。40日間栽培し、収穫後に地上部乾重量を測定し、その平均値及び標準偏差(SD)を求めた。また、下記に示す方法で酸性インベルターゼ活性を測定し、その平均値及び標準偏差(SD)を求めた。なお、改変シアノバクテリアは、実施例1のslr1841抑制株及び実施例2のslr0688抑制株である。
葉長10cm程度の葉を各株から数枚切り取り、重量を測定した。葉を液体窒素で凍結したあと、乳鉢ですりつぶした。ここに、下記の抽出バッファーを3mL加え、ガラスホモジナイザーを用いてホモジナイズし、抽出液を調製した。この抽出液20μLを、180μLの酸性インベルターゼ反応用溶液(50mM sodium acetate pH4.3、0.1M sucroseから成る)に加え、30℃で1時間静置し、抽出液と酸性インベルターゼ反応溶液とを反応させた。その後、85℃で3分間インキュベートすることにより反応停止させた。この反応の間に生成されたグルコース量を市販のグルコース定量キットを用いて定量した。この値から、葉重量1gが1時間に生成するグルコース量を酸性インベルターゼ活性として算出し、その平均値及び標準偏差(SD)を求めた。
抽出バッファーは、下記組成から成る。
5mM MgCl2
1mM EDTA(ethylenediaminetetraacetic acid)
1mM EGTA(ethyleneglycol-bis(β-aminoehylether)-tetraacetic acid)
1mM PMSF(phenmethylsulphonyl-fluoride)
5mM DTT(dithiothreitol)
1mL/L Triton X-100
200mL/L glycerol
5mM thiourea
改変シアノバクテリアの分泌物の代わりに、水を使用したこと以外、実施例3と同様に行った。
実施例3及び比較例2の結果を図10及び図11に示す。図10は、実施例3及び比較例2で栽培されたホウレン草の酸性インベルターゼ活性の平均値を示すグラフである。図11は、実施例3及び比較例2で栽培されたホウレン草1株あたりの地上部乾燥重量の平均値(平均株重量という)を示すグラフである。
葉数約9枚、株長約7cmのイチゴ苗を市販の培養土を入れた栽培用ポット(12cm×10cm)に定植した。栽培は、明期温度が20℃、暗期温度が15℃、白色光源の光量子束密度が200μmol/m2/sで、明条件14時間及び暗条件10時間の条件で150日間行った。その間、各ポットに、50mLの蒸留水を1日おきに給水した。また、50日に1回、市販の化学肥料(窒素全量6%、水溶性リン酸10%、水溶性カリウム5%、水溶性苦土0.05%、水溶性マンガン0.001%、及び、水溶性ホウ素0.005%を含む原液の500倍希釈液)を各ポットあたり100mL施用した。
上記の栽培期間中、改変シアノバクテリアの分泌物を1株あたり5mL、1週間に1回、根元に添加した。イチゴ果実が赤く成熟したものから順に収穫し、収穫した果実数を記録した。また、収穫した果実の重量及び糖度(Brix値)を測定し、それらの平均値及び標準偏差(SD)を求めた。また、果実を数個使用する点以外、実施例3と同様の方法で、酸性インベルターゼ活性を測定した。ここでは、果実1gが1時間に生成するグルコース量を酸性インベルターゼ活性とする。なお、改変シアノバクテリアは、実施例1のslr1841抑制株及び実施例2のslr0688抑制株である。
改変シアノバクテリアの分泌物の代わりに、水を使用したこと以外、実施例4と同様に行った。
実施例4及び比較例3の結果を図12~図16に示す。図12は、実施例4及び比較例3で栽培されたイチゴの酸性インベルターゼ活性の平均値を示すグラフである。図13は、実施例4及び比較例3で栽培されたイチゴ1株あたりの平均果実数を示すグラフである。図14は、実施例4及び比較例3で栽培されたイチゴ1株あたりの平均果実重量を示すグラフである。図15は、実施例4及び比較例3で栽培されたイチゴ1株あたりの平均糖度を示すグラフである。
ホウレン草及びイチゴの栽培試験並びに酸性インベルターゼ活性測定の結果から、本実施の形態に係る植物酸性インベルターゼ活性化剤は、複数の作物種に対して、生育促進、増収、増体、及び、果実の糖度上昇などの効果を有することが確認できた。
以下に、非特許文献6および7に記載された従来例である比較例4および比較例5と、本実施の形態である実施例1および実施例2との比較結果について説明する。
比較例4では、非特許文献6の記載に基づいてslr1908を欠損させた改変シアノバクテリア(以下、slr1908欠損株ともいう)を得た。
比較例5では、非特許文献7の記載に基づいてslr0042を欠損させた改変シアノバクテリア(以下、slr0042欠損株ともいう)を得た。
実施例1のslr1841抑制株、実施例2のslr0688抑制株、比較例4のslr1908欠損株、および、比較例5のslr0042欠損株を上記(3-1)と同様の手順で培養したあと、培養液を5,000×gで10分間遠心し、菌体ペレットを得た。超音波破砕機にて菌体を破砕し、5,000×gで10分間遠心することにより未破砕の菌体を沈殿させ除去したあと、遠心上清をさらに20,000×gで30分間遠心して菌体由来膜画分ペレットを得た。この膜画分ペレットを2%SDS中で37℃、15分間インキュベートすることにより外膜以外の成分を可溶化させ、次に20,000×gで30分間遠心することにより、外膜画分ペレットを得た。上記(4-2)に記載のBCA法により外膜画分ペレットに含有されるタンパク質量を定量したあと、5μgタンパク質当量を電気泳動(SDS-PAGE)に供し、外膜ペレット画分に含まれるタンパク質成分を分析した。
比較例4および比較例5の改変シアノバクテリアの外膜の状態を上記(3)と同様の条件で透過電子顕微鏡を用いて観察した。観察結果を図18~図21に示す。
実施例1、実施例2、比較例1、比較例4及び比較例5の改変シアノバクテリアを培養した際の、培養上清中に分泌生産されるタンパク質量を上記(4-2)と同様に測定した。その結果を図22に示す。図22は、実施例1、実施例2、比較例1、比較例4及び比較例5の改変シアノバクテリアの培養液中のタンパク質の量を示すグラフである。図22に示されるように、実施例1のslr1841抑制株および実施例2のslr0688抑制株は、培養液中に多量のタンパク質を分泌生産しているが、比較例1のControl株、比較例4のslr0042欠損株、および、比較例5のslr0042欠損株は、培養液中に殆どタンパク質を分泌生産していないことが確認された。
実施例2の改変シアノバクテリア(つまり、slr0688抑制株)および比較例1の改変シアノバクテリア(つまり、Control株)の菌体由来膜画分ペレットを上記(8-1)と同様の方法で得た。これを2%SDS中で1時間煮沸したあと40,000×gで60分間遠心することにより、細胞壁画分を沈殿させた。細胞壁画分を0.5 M HClに懸濁し、100℃で30分間加水分解を行った。NaOHを添加しpHを7.0に調整したあと、この加水分解産物中に含まれるピルビン酸量を市販のピルビン酸定量キットを用いて定量した。ピルビン酸量の定量結果を図18に示す。図23は、実施例2及び比較例1の改変シアノバクテリアの細胞壁結合型糖鎖に共有結合しているピルビン酸の量を示すグラフである。図23に示されるように、実施例2のslr0688抑制株では、親株である比較例1のControl株に比べて、ピルビン酸量が約50%程度まで低下していることが確認された。このことから、外膜と細胞壁との結合に関与するタンパク質である細胞壁-ピルビン酸修飾酵素の量についても、親株における当該タンパク質の約50%程度に抑制されていると考えられる。
2 ペプチドグリカン
3 糖鎖
4 細胞壁
5 外膜
6 SLHドメイン保持型外膜タンパク質
7 SLHドメイン
8 有機物チャネルタンパク質
9 細胞壁-ピルビン酸修飾酵素
Claims (10)
- シアノバクテリアにおいて外膜と細胞壁との結合に関与するタンパク質の総量が、親株における当該タンパク質の総量の30~70%に抑制されている改変シアノバクテリアを準備するステップと、
前記改変シアノバクテリアに植物の酸性インベルターゼの活性化に関与する分泌物を分泌させるステップと、
を含む、
植物酸性インベルターゼ活性化剤の製造方法。 - 前記外膜と前記細胞壁との結合に関与するタンパク質は、SLH(Surface Layer Homology)ドメイン保持型外膜タンパク質、及び、細胞壁-ピルビン酸修飾酵素の少なくとも1つである、
請求項1に記載の植物酸性インベルターゼ活性化剤の製造方法。 - 前記SLHドメイン保持型外膜タンパク質は、
配列番号1で示されるアミノ酸配列からなるSlr1841、
配列番号2で示されるアミノ酸配列からなるNIES970_09470、
配列番号3で示されるアミノ酸配列からなるAnacy_3458、又は、
これらのいずれかのSLHドメイン保持型外膜タンパク質とアミノ酸配列が50%以上同一であるタンパク質である、
請求項2に記載の植物酸性インベルターゼ活性化剤の製造方法。 - 前記細胞壁-ピルビン酸修飾酵素は、
配列番号4で示されるアミノ酸配列からなるSlr0688、
配列番号5で示されるアミノ酸配列からなるSynpcc7942_1529、
配列番号6で示されるアミノ酸配列からなるAnacy_1623、又は、
これらのいずれかの細胞壁-ピルビン酸修飾酵素とアミノ酸配列が50%以上同一であるタンパク質である、
請求項2に記載の植物酸性インベルターゼ活性化剤の製造方法。 - 前記外膜と前記細胞壁との結合に関与するタンパク質を発現させる遺伝子が欠失又は不活性化されている、
請求項1に記載の植物酸性インベルターゼ活性化剤の製造方法。 - 前記外膜と前記細胞壁との結合に関与するタンパク質を発現させる遺伝子は、SLHドメイン保持型外膜タンパク質をコードする遺伝子、及び、細胞壁-ピルビン酸修飾酵素をコードする遺伝子の少なくとも1つである、
請求項5に記載の植物酸性インベルターゼ活性化剤の製造方法。 - 前記SLHドメイン保持型外膜タンパク質をコードする遺伝子は、
配列番号7で示される塩基配列からなるslr1841、
配列番号8で示される塩基配列からなるnies970_09470、
配列番号9で示される塩基配列からなるanacy_3458、又は、
これらのいずれかの遺伝子と塩基配列が50%以上同一である遺伝子である、
請求項6に記載の植物酸性インベルターゼ活性化剤の製造方法。 - 前記細胞壁-ピルビン酸修飾酵素をコードする遺伝子は、
配列番号10で示される塩基配列からなるslr0688、
配列番号11で示される塩基配列からなるsynpcc7942_1529、
配列番号12で示される塩基配列からなるanacy_1623、又は、
これらのいずれかの遺伝子と塩基配列が50%以上同一である遺伝子である、
請求項6に記載の植物酸性インベルターゼ活性化剤の製造方法。 - シアノバクテリアにおいて外膜と細胞壁との結合に関与するタンパク質の総量が、親株における当該タンパク質の総量の30~70%に抑制されている改変シアノバクテリアの分泌物を含む、
植物酸性インベルターゼ活性化剤。 - 請求項9に記載の植物酸性インベルターゼ活性化剤を植物に使用する、
植物酸性インベルターゼ活性化方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BR112023017317A BR112023017317A2 (pt) | 2021-03-04 | 2022-03-01 | Ativador de invertase ácida de plantas, método de produção do mesmo e método de ativação de invertase ácida de plantas |
JP2023503876A JPWO2022186220A1 (ja) | 2021-03-04 | 2022-03-01 | |
MX2023010084A MX2023010084A (es) | 2021-03-04 | 2022-03-01 | Activador de invertasa acida vegetal, metodo de produccion del mismo y metodo de activacion de invertasa acida vegetal. |
US18/457,500 US20240057613A1 (en) | 2021-03-04 | 2023-08-29 | Plant acidic invertase activator, production method thereof, and plant acidic invertase activation method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021034089 | 2021-03-04 | ||
JP2021-034089 | 2021-03-04 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/457,500 Continuation US20240057613A1 (en) | 2021-03-04 | 2023-08-29 | Plant acidic invertase activator, production method thereof, and plant acidic invertase activation method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022186220A1 true WO2022186220A1 (ja) | 2022-09-09 |
Family
ID=83154391
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/008662 WO2022186220A1 (ja) | 2021-03-04 | 2022-03-01 | 植物酸性インベルターゼ活性化剤、その製造方法、及び、植物酸性インベルターゼ活性化方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20240057613A1 (ja) |
JP (1) | JPWO2022186220A1 (ja) |
BR (1) | BR112023017317A2 (ja) |
MX (1) | MX2023010084A (ja) |
WO (1) | WO2022186220A1 (ja) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006124186A (ja) * | 2004-10-26 | 2006-05-18 | Tokyo Univ Of Agriculture & Technology | 生きた藍藻を含有する液体肥料の製造方法、ならびに生きた藍藻を含有する液体肥料 |
WO2021132110A1 (ja) * | 2019-12-23 | 2021-07-01 | パナソニックIpマネジメント株式会社 | 植物成長促進剤の製造方法、植物成長促進剤、及び、植物成長促進方法 |
-
2022
- 2022-03-01 JP JP2023503876A patent/JPWO2022186220A1/ja active Pending
- 2022-03-01 MX MX2023010084A patent/MX2023010084A/es unknown
- 2022-03-01 WO PCT/JP2022/008662 patent/WO2022186220A1/ja active Application Filing
- 2022-03-01 BR BR112023017317A patent/BR112023017317A2/pt unknown
-
2023
- 2023-08-29 US US18/457,500 patent/US20240057613A1/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006124186A (ja) * | 2004-10-26 | 2006-05-18 | Tokyo Univ Of Agriculture & Technology | 生きた藍藻を含有する液体肥料の製造方法、ならびに生きた藍藻を含有する液体肥料 |
WO2021132110A1 (ja) * | 2019-12-23 | 2021-07-01 | パナソニックIpマネジメント株式会社 | 植物成長促進剤の製造方法、植物成長促進剤、及び、植物成長促進方法 |
Non-Patent Citations (3)
Title |
---|
KOJIMA SEIJI, MURAMOTO KOJI, KUSANO TOMONOBU: "Outer Membrane Proteins Derived from Non-cyanobacterial Lineage Cover the Peptidoglycan of Cyanophora paradoxa Cyanelles and Serve as a Cyanelle Diffusion Channel", JOURNAL OF BIOLOGICAL CHEMISTRY, AMERICAN SOCIETY FOR BIOCHEMISTRY AND MOLECULAR BIOLOGY, US, vol. 291, no. 38, 29 June 2016 (2016-06-29), US , pages 20198 - 20209, XP055825633, ISSN: 0021-9258, DOI: 10.1074/jbc.M116.746131 * |
KOJIMA SEIJI, OKUMURA YASUAKI: "Outer membrane-deprived cyanobacteria liberate periplasmic and thylakoid luminal components that support the growth of heterotrophs", BIORXIV, 25 March 2020 (2020-03-25), pages 1 - 31, XP055825843, Retrieved from the Internet <URL:https://www.biorxiv.org/content/10.1101/2020.03.24.006684v1.full.pdf> [retrieved on 20210720], DOI: 10.1101/2020.03.24.006684 * |
KOWATA HIKARU: "Studies on molecular basis of cyanobacterial outer membrane function and its evolutionary relationship with primitive chloroplasts", THESIS, TOHOKU UNIVERSITY, 27 March 2018 (2018-03-27), Tohoku University , XP055825637, [retrieved on 20210719] * |
Also Published As
Publication number | Publication date |
---|---|
MX2023010084A (es) | 2023-09-08 |
JPWO2022186220A1 (ja) | 2022-09-09 |
BR112023017317A2 (pt) | 2023-09-26 |
US20240057613A1 (en) | 2024-02-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7450189B2 (ja) | 植物成長促進剤の製造方法、植物成長促進剤、及び、植物成長促進方法 | |
Yin et al. | Ectomycorrhizal fungus enhances drought tolerance of Pinus sylvestris var. mongolica seedlings and improves soil condition | |
US20220325312A1 (en) | Modified cyanobacterium, modified cyanobacterium production method, and protein production method | |
JP2024045256A (ja) | 農作物の栽培方法 | |
CN113604479A (zh) | 茶树hak4基因及其在提高植物钾吸收转运效率上的应用 | |
CN101289514B (zh) | 一种培育耐逆植物的方法及其专用dna片段 | |
WO2022186220A1 (ja) | 植物酸性インベルターゼ活性化剤、その製造方法、及び、植物酸性インベルターゼ活性化方法 | |
CN114107373A (zh) | 一种制备拟南芥自噬基因突变体的方法及应用 | |
WO2022186217A1 (ja) | 植物成長促進剤の製造方法、植物成長促進剤、及び、植物成長促進方法 | |
Msilini et al. | Responses of Arabidopsis thaliana to bicarbonate-induced iron deficiency | |
JP2022134729A (ja) | 植物高品質化剤の製造方法、植物高品質化剤、及び、植物高品質化方法 | |
JP2022134817A (ja) | 作物収量向上剤の製造方法、作物収量向上剤、及び、作物収量向上方法 | |
JP2022102901A (ja) | 植物高品質化剤の製造方法、植物高品質化剤、及び、植物高品質化方法 | |
JP2022102889A (ja) | 作物収量向上剤の製造方法、作物収量向上剤、及び、作物収量向上方法 | |
WO2023248690A1 (ja) | 植物病害抵抗性誘導剤、植物病害抵抗性誘導方法、及び、植物病害抵抗性誘導剤の製造方法 | |
JP2023182951A (ja) | トマト果実の高糖度化方法、トマト果実の高糖度化剤及びその製造方法 | |
CN110747208B (zh) | 一种木薯硝酸还原酶基因及其过量表达载体的构建和抗病应用 | |
CN109182359B (zh) | 一种梨抗寒基因PbrBAM3及其表达载体、应用和编码的蛋白质及应用 | |
CN102559631A (zh) | 小金海棠MxHA5蛋白及其编码基因与应用 | |
US20240084245A1 (en) | Modified cyanobacterium, modified cyanobacterium production method, and protein production method | |
CN116555322B (zh) | TtANXNL基因及其编码蛋白的应用 | |
AU2019208218B2 (en) | A herbal composition comprising antifungal protein derivatives | |
CN110832064B (zh) | 在真菌里氏木霉中恢复有性繁殖的方法 | |
KR100552618B1 (ko) | 아그로박테리움(Agrobacterium)을 이용한사과 '후지' 품종의 형질전환 | |
CN116425886A (zh) | 一种SOD-Harpin融合蛋白的制备方法及其应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22763274 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2023/010084 Country of ref document: MX |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202347058362 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023503876 Country of ref document: JP |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112023017317 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112023017317 Country of ref document: BR Kind code of ref document: A2 Effective date: 20230828 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22763274 Country of ref document: EP Kind code of ref document: A1 |