[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023155542A1 - 多孔结构磷化镍@碳负极材料的制备方法及其应用 - Google Patents

多孔结构磷化镍@碳负极材料的制备方法及其应用 Download PDF

Info

Publication number
WO2023155542A1
WO2023155542A1 PCT/CN2022/135947 CN2022135947W WO2023155542A1 WO 2023155542 A1 WO2023155542 A1 WO 2023155542A1 CN 2022135947 W CN2022135947 W CN 2022135947W WO 2023155542 A1 WO2023155542 A1 WO 2023155542A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel
preparation
precipitate
sodium
negative electrode
Prior art date
Application number
PCT/CN2022/135947
Other languages
English (en)
French (fr)
Inventor
谢英豪
余海军
李爱霞
张学梅
李长东
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
湖南邦普汽车循环有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司, 湖南邦普汽车循环有限公司 filed Critical 广东邦普循环科技有限公司
Priority to HU2400173A priority Critical patent/HUP2400173A1/hu
Priority to DE112022002496.8T priority patent/DE112022002496T5/de
Priority to GB2314014.8A priority patent/GB2619643B/en
Publication of WO2023155542A1 publication Critical patent/WO2023155542A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • C25B11/031Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5805Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/08Other phosphides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/08Other phosphides
    • C01B25/088Other phosphides containing plural metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the embodiment of the present application relates to the technical field of lithium/sodium ion battery negative electrode materials, such as a preparation method and application of a porous nickel phosphide@carbon negative electrode material.
  • Lithium/sodium ion battery has been used as a new type of alternative energy due to its comprehensive performance advantages such as high energy density, high voltage, and long life.
  • the anode materials currently used in the market are mainly graphite carbon, but due to its own defects, it can no longer meet the growing demand for high-efficiency lithium/sodium-ion batteries. It is urgent to find anode materials with higher capacity and better stability. The performance of lithium/sodium-ion batteries has been further improved. Transition metal phosphides and sulfides have much higher theoretical capacity than graphite carbon, suitable voltage platform and environmental friendliness, and are ideal lithium/sodium ion battery anode materials.
  • transition metal phosphides have attracted the interest of researchers due to their important applications in industrial fields such as magnetic refrigeration and petroleum catalytic desulfurization and hydrogenation. And because of its stable cycle reversibility, high charge-discharge theoretical specific capacity, and good safety performance, it is an ideal choice for the anode material of new lithium/sodium ion batteries.
  • Ni 3 P, NiP 2 , and NiP 3 which are rich in phosphorus sources, have all been used in lithium-ion battery anode materials.
  • transition metal phosphides As a new high-performance ion battery anode material, transition metal phosphides have attracted extensive attention due to their advantages of high theoretical capacity and abundant sources. However, when metal phosphides are used as anode materials for ionic secondary batteries, the obvious volume expansion and contraction effect will occur with the intercalation and extraction of ions, resulting in faster capacity decline and poor rate performance.
  • the embodiments of the present application aim to solve at least one of the technical problems existing in the above related technologies. For this reason, the embodiment of the present application proposes a preparation method and application of a porous nickel phosphide@carbon negative electrode material.
  • a kind of preparation method of porous structure nickel phosphide@carbon negative electrode material comprising the following steps:
  • S1 Mix the nickel salt solution with the precipitating agent for reaction, and pass carbon dioxide gas to control the reaction pH to 10.8-11.5, age after the reaction, and separate the solid and liquid to obtain the precipitate;
  • the precipitating agent is sodium hydroxide, four A mixed solution of sodium hydroxyaluminate and sodium persulfate;
  • step S1 the concentration of the nickel salt solution is 1-2 mol/L, and in the precipitant, the concentration of sodium tetrahydroxyaluminate is 0.05-0.2 mol/L, hydrogen The concentration of sodium oxide is 3-6mol/L, and the concentration of sodium persulfate is 1-2mol/L.
  • the mixing method is to add in parallel, and the molar ratio of nickel and aluminum is 10: (1-2) to control The flow of the nickel salt solution and the precipitation agent.
  • the nickel salt solution is at least one of nickel sulfate, nickel chloride or nickel nitrate solutions.
  • step S1 after obtaining the precipitate through solid-liquid separation, washing and drying the precipitate are also included.
  • step S1 the aging time is 1-2 hours.
  • step S2 the mass ratio of the anhydrous sodium hypophosphite to the precipitate is (8-15):1.
  • the heating temperature of the tube furnace is 300-400° C.; the heating time of the tube furnace is 120-180 min. Further, the heating rate of the tube furnace is 2-5° C./min.
  • step S2 after taking out the precipitate, it is first cooled to below 10°C, and the temperature of the sodium hydroxide solution is 2-8°C.
  • step S2 the concentration of the sodium hydroxide solution is 0.1-2 mol/L; the soaking time is 10-25 min.
  • the organic matter is at least one of sucrose, glucose or lactose.
  • step S3 the carbonization temperature is 500-800°C; the carbonization time is 1-12h.
  • the present application also provides the application of the preparation method in sodium-ion batteries or lithium-ion batteries.
  • nickel oxyhydroxide doped with aluminum is first prepared, and then reacted with sodium hypophosphite to obtain nickel aluminum phosphide. After soaking in cold sodium hydroxide, a porous nickel phosphide negative electrode material is obtained. After further carbonization, the target product porous structure nickel phosphide@carbon negative electrode material can be obtained.
  • Al(OH) 3 +PH 3 AlP+3H 2 O;
  • AlP+NaOH+ 3H2O Na[Al(OH) 4 ]+ PH3 .
  • the negative electrode material prepared in the embodiment of the present application is nanoscale, with a particle size of 10-100 nm, and has a porous structure.
  • its internal porous structure can not only buffer the volume change brought about by the charging and discharging process, but also It can increase the contact area between the electrode and the electrolyte, and has high capacity, excellent cycle and rate performance.
  • a supporting carbon skeleton structure is formed inside and outside the particles, thereby further improving the strength and conductivity of the particles.
  • Fig. 1 is an SEM image of the porous nickel phosphide@carbon negative electrode material prepared in Example 1 of the present application.
  • Precipitating agent is prepared, and the precipitating agent is a mixed solution of sodium hydroxide, sodium tetrahydroxyaluminate, and sodium persulfate, wherein the concentration of sodium tetrahydroxyaluminate is 0.05mol/L, and the concentration of sodium hydroxide is 3mol/L, the concentration of sodium persulfate is 1mol/L;
  • step (7) After the reaction in step (7), take out the precipitate and cool it below 10°C, and add it to a sodium hydroxide solution with a temperature of 2-8°C and a concentration of 0.1mol/L for 25 minutes;
  • Precipitating agent is prepared, and precipitating agent is the mixed solution of sodium hydroxide, sodium tetrahydroxyaluminate, sodium persulfate, wherein, the concentration of sodium tetrahydroxyaluminate is 0.1mol/L, and the concentration of sodium hydroxide is 5mol/L, the concentration of sodium persulfate is 1.5mol/L;
  • step (7) After the reaction in step (7), take out the precipitate and cool it below 10°C, and add it to a sodium hydroxide solution with a temperature of 2-8°C and a concentration of 1mol/L for 15 minutes;
  • Precipitating agent is prepared, and the precipitating agent is a mixed solution of sodium hydroxide, sodium tetrahydroxyaluminate, and sodium persulfate, wherein the concentration of sodium tetrahydroxyaluminate is 0.2mol/L, and the concentration of sodium hydroxide is 6mol/L, the concentration of sodium persulfate is 2mol/L;
  • step (7) After the reaction in step (7), take out the precipitate and cool it below 10°C, and add it to a sodium hydroxide solution with a temperature of 2-8°C and a concentration of 2mol/L for 10 minutes;
  • This comparative example has prepared a kind of nickel phosphide by hydrothermal method, and concrete process is:
  • Ni 2 P black powdery nickel phosphide
  • the electrochemical performance of the examples is significantly better than that of the comparative examples, this is because the negative electrode materials of the examples have a porous structure, and during the charging and discharging process, the internal porous structure can buffer the volume brought by the charging and discharging process.
  • the change can increase the contact area between the electrode and the electrolyte, which has high capacity, excellent cycle and rate performance.
  • the negative electrode material of the embodiment is also subjected to carbonization treatment, and a supporting carbon skeleton structure is formed inside and outside the particles, which can further improve the strength and conductivity of the particles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本文公布一种多孔结构磷化镍@碳负极材料的制备方法及其应用,包括将镍盐溶液与沉淀剂混合进行反应,通入二氧化碳气体反应得到沉淀物,将沉淀物置于管式炉的下风口处,取无水次亚磷酸钠置于管式炉的上风口处,管式炉加热,取出沉淀物并浸泡于氢氧化钠溶液中,得到多孔磷化镍,将多孔磷化镍与有机物混合进行碳化反应,即得多孔结构磷化镍@碳负极材料。本申请制得的负极材料具有多孔结构,在充放电过程中,其内部多孔结构既可以缓冲充放电过程中带来的体积变化又可以增大电极与电解液的接触面积,具有高的容量、优良的循环和倍率性能。

Description

多孔结构磷化镍@碳负极材料的制备方法及其应用 技术领域
本申请实施例涉及锂/钠离子电池负极材料技术领域,例如一种多孔结构磷化镍@碳负极材料的制备方法及其应用。
背景技术
锂/钠离子电池得益于其高能量密度、高电压、高寿命等综合性能优势,已经作为一种新型的替代性能源。市场上目前应用的负极材料主要以石墨碳为主,可是由于其自身性质的缺陷,已经不能满足高效锂/钠离子电池不断增长的需求,亟需寻找容量更高稳定性更好的负极材料使锂/钠离子电池的性能进一步提升。过渡金属磷化物、硫化物具有远高于石墨碳的理论容量、合适的电压平台和环境友好性,是非常理想的锂/钠离子电池负极材料。
其中,过渡金属磷化物由于在磁制冷、石油催化脱硫加氢等工业领域的重要应用吸引了研究者的兴趣。又因稳定的循环可逆性、较高的充放电理论比容量、较好的安全性能,是新型锂/钠离子电池负极材料的理想之选。如磷源丰富的Ni 3P、NiP 2、NiP 3均已应用于锂离子电池负极材料。有学者使用水热-微乳液法得到了六方相Ni 2P和四方相Ni 12P 5,但此方法制备的颗粒分散性差,尺寸大、导电性差、形貌和结构不可控等因素,在充放电循环时会产生严重的体积膨胀,严重影响其电化学和循环性能。
作为新型高性能离子电池负极材料,过渡金属磷化物由于具有理论容量较高以及来源丰富的优点而受到广泛关注。然而,金属磷化物在作为离子二次电池的负极材料时,随着离子的嵌入和脱出会产生明显的体积膨胀收缩效应,引起较快的容量衰退和较差的倍率性能。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请实施例旨在至少解决上述相关技术中存在的技术问题之一。为此,本申请实施例提出一种多孔结构磷化镍@碳负极材料的制备方法及其应用。
根据本申请的一个方面,提出了一种多孔结构磷化镍@碳负极材料的制备 方法,包括以下步骤:
S1:将镍盐溶液与沉淀剂混合进行反应,并通入二氧化碳气体控制反应pH为10.8-11.5,反应结束后进行陈化,固液分离得到沉淀物;所述沉淀剂为氢氧化钠、四羟基合铝酸钠和过硫酸钠的混合溶液;
S2:将所述沉淀物置于管式炉的下风口处,取无水次亚磷酸钠置于所述管式炉的上风口处,所述管式炉加热一段时间,取出所述沉淀物并浸泡于氢氧化钠溶液中,固液分离得到多孔磷化镍;
S3:将所述多孔磷化镍与有机物混合,在隔绝氧气下进行碳化反应,即得所述多孔结构磷化镍@碳负极材料。
在本申请的一些实施方式中,步骤S1中,所述镍盐溶液的浓度为1-2mol/L,所述沉淀剂中,四羟基合铝酸钠的浓度为0.05-0.2mol/L、氢氧化钠的浓度为3-6mol/L、过硫酸钠的浓度为1-2mol/L,所述混合的方式为并流加入,以镍和铝的摩尔比为10:(1-2)来控制所述镍盐溶液与所述沉淀剂的流量。
在本申请的一些实施方式中,步骤S1中,所述镍盐溶液为硫酸镍、氯化镍或硝酸镍的溶液中的至少一种。
在本申请的一些实施方式中,步骤S1中,固液分离得到所述沉淀物后,还包括将所述沉淀物进行洗涤和干燥。
在本申请的一些实施方式中,步骤S1中,所述陈化的时间为1-2h。
在本申请的一些实施方式中,步骤S2中,所述无水次亚磷酸钠与所述沉淀物的质量比为(8-15):1。
在本申请的一些实施方式中,步骤S2中,所述管式炉加热的温度为300-400℃;所述管式炉加热的时间为120-180min。进一步地,所述管式炉加热的升温速度为2-5℃/min。
在本申请的一些实施方式中,步骤S2中,取出所述沉淀物后先冷却至10℃以下,所述氢氧化钠溶液的温度为2-8℃。
在本申请的一些实施方式中,步骤S2中,所述氢氧化钠溶液的浓度为0.1-2mol/L;所述浸泡的时间为10-25min。
在本申请的一些实施方式中,步骤S3中,所述有机物为蔗糖、葡萄糖或乳糖中的至少一种。
在本申请的一些实施方式中,步骤S3中,所述碳化的温度为500-800℃; 所述碳化的时间为1-12h。
本申请还提供所述的制备方法在钠离子电池或锂离子电池中的应用。
根据本申请实施例的一种优选的实施方式,至少具有以下有益效果:
1、本申请实施例首先通过制备掺杂铝的羟基氧化镍,再与次亚磷酸钠反应得到磷化镍铝,经冷的氢氧化钠浸泡后,得到多孔结构的磷化镍负极材料,经进一步碳化,即得目标产物多孔结构磷化镍@碳负极材料。
2、在制备掺杂铝的羟基氧化镍时,通过四羟基合铝酸钠混合氢氧化钠与过硫酸钠,一方面,直接制备羟基氧化镍的同时,另一方面,使铝以氢氧化铝的形式进行共沉淀,达到镍、铝的原子级混合;反应方程式如下:
2Ni 2++S 2O 8 2-+6OH -=2NiOOH+2SO 4 2-+2H 2O;
2[Al(OH) 4] -+CO 2=2Al(OH) 3+CO 3 2-+H 2O。
3、次亚磷酸钠加热产生磷化氢,磷化氢与掺杂铝的羟基氧化镍反应得到的磷化镍铝,通过在冷的氢氧化钠溶液,利用磷化铝易溶解的特性,去除铝,从而使镍原子周围空出原子空位,利于负极材料充放电反应时的体积膨胀;反应方程式如下:
5NaH 2PO 2=2PH 3+2H 2+Na 4P 2O 7+NaPO 3
4NiOOH+3H 2+2PH 3=2Ni 2P+8H 2O;
Al(OH) 3+PH 3=AlP+3H 2O;
AlP+NaOH+3H 2O=Na[Al(OH) 4]+PH 3
4、本申请实施例制得的负极材料为纳米级,粒径为10-100nm,且具有多孔结构,在充放电过程中,其内部多孔结构既可以缓冲充放电过程中带来的体积变化又可以增大电极与电解液的接触面积,具有高的容量、优良的循环和倍率性能。另外,通过碳化处理,使颗粒内部及外部形成支撑性的碳骨架结构,从而进一步提升颗粒强度和导电性。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图说明
附图用来提供对本文技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本文的技术方案,并不构成对本文技术方案的限制。
下面结合附图和实施例对本申请做进一步的说明,其中:
图1为本申请实施例1制备的多孔结构磷化镍@碳负极材料SEM图。
具体实施方式
以下将结合实施例对本申请的构思及产生的技术效果进行清楚、完整地描述,以充分地理解本申请的目的、特征和效果。显然,所描述的实施例只是本申请的一部分实施例,而不是全部实施例,基于本申请的实施例,本领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,均属于本申请保护的范围。
实施例1
本实施例制备了一种多孔结构磷化镍@碳负极材料,具体过程为:
(1)配制1mol/L的硫酸镍溶液;
(2)配制沉淀剂,沉淀剂为氢氧化钠、四羟基合铝酸钠、过硫酸钠的混合溶液,其中,四羟基合铝酸钠的浓度为0.05mol/L,氢氧化钠的浓度为3mol/L,过硫酸钠的浓度为1mol/L;
(3)将硫酸镍溶液与沉淀剂并流加入到反应釜中,并通入二氧化碳气体控制反应pH为11.5,以镍和铝的摩尔比为10:2来控制镍盐溶液与沉淀剂的流量;
(4)反应结束后,陈化1h,固液分离,得到沉淀物;
(5)将沉淀物洗涤、干燥后,置于管式炉的下风口处;
(6)取无水次亚磷酸钠置于管式炉的上风口处,无水次亚磷酸钠与沉淀物的质量比为8:1;
(7)将管式炉以2℃/min的升温速度,升温至300℃,持续180min;
(8)步骤(7)反应结束后,将沉淀物取出冷却至10℃以下,并加入到温度为2-8℃、浓度为0.1mol/L的氢氧化钠溶液中浸泡25min;
(9)固液分离后,用去离子水洗涤沉淀物,并干燥,得到多孔磷化镍;
(10)将多孔磷化镍与蔗糖溶液混合,隔绝氧气,在500℃下反应2h,得到粒径为10-100nm的多孔结构磷化镍@碳负极材料。
实施例2
本实施例制备了一种多孔结构磷化镍@碳负极材料,具体过程为:
(1)配制1.5mol/L的氯化镍溶液;
(2)配制沉淀剂,沉淀剂为氢氧化钠、四羟基合铝酸钠、过硫酸钠的混合溶液,其中,四羟基合铝酸钠的浓度为0.1mol/L,氢氧化钠的浓度为5mol/L,过硫酸钠的浓度为1.5mol/L;
(3)将氯化镍溶液与沉淀剂并流加入到反应釜中,并通入二氧化碳气体控制反应pH为11.1,以镍和铝的摩尔比为10:1来控制镍盐溶液与沉淀剂的流量;
(4)反应结束后,陈化1h,固液分离,得到沉淀物;
(5)将沉淀物洗涤、干燥后,置于管式炉的下风口处;
(6)取无水次亚磷酸钠置于管式炉的上风口处,无水次亚磷酸钠与沉淀物的质量比为11:1;
(7)将管式炉以3℃/min的升温速度,升温至350℃,持续150min;
(8)步骤(7)反应结束后,将沉淀物取出冷却至10℃以下,并加入到温度为2-8℃、浓度为1mol/L的氢氧化钠溶液中浸泡15min;
(9)固液分离后,用去离子水洗涤沉淀物,并干燥,得到多孔磷化镍;
(10)将多孔磷化镍与葡萄糖溶液混合,隔绝氧气,在600℃下反应6h,得到粒径为10-100nm的多孔结构磷化镍@碳负极材料。
实施例3
本实施例制备了一种多孔结构磷化镍@碳负极材料,具体过程为:
(1)配制2mol/L的硝酸镍溶液;
(2)配制沉淀剂,沉淀剂为氢氧化钠、四羟基合铝酸钠、过硫酸钠的混合溶液,其中,四羟基合铝酸钠的浓度为0.2mol/L,氢氧化钠的浓度为6mol/L,过硫酸钠的浓度为2mol/L;
(3)将硝酸镍溶液与沉淀剂并流加入到反应釜中,并通入二氧化碳气体控制反应pH为10.8,以镍和铝的摩尔比为10:1来控制镍盐溶液与沉淀剂的流量;
(4)反应结束后,陈化2h,固液分离,得到沉淀物;
(5)将沉淀物洗涤、干燥后,置于管式炉的下风口处;
(6)取无水次亚磷酸钠置于管式炉的上风口处,无水次亚磷酸钠与沉淀物的质量比为13:1;
(7)将管式炉以5℃/min的升温速度,升温至400℃,持续120min;
(8)步骤(7)反应结束后,将沉淀物取出冷却至10℃以下,并加入到温度为2-8℃、浓度为2mol/L的氢氧化钠溶液中浸泡10min;
(9)固液分离后,用去离子水洗涤沉淀物,并干燥,得到多孔磷化镍;
(10)将多孔磷化镍与溶液混合,隔绝氧气,在800℃下反应12h,得到粒径为10-100nm的多孔结构磷化镍@碳负极材料。
对比例
本对比例用水热法制备了一种磷化镍,具体过程为:
将硝酸镍与次磷酸钠混合,得到悬浮溶液,置于60℃水浴中陈化2h,超声30min,再将液体倒入水热反应釜中,在120℃下反应12h后取出,静置分层,得到黑色固体,用去离子水和乙醇溶液洗涤,过滤,滤饼在60℃下干燥,得到黑色粉末状磷化镍(Ni 2P)。
试验例
取实施例1-3制得的负极材料和对比例磷化镍分别制备锂离子电池负极极片,以金属锂片为正极,并组装成CR2025扣式电池,在充放电电压为0.01-3V,电流密度为100mA/g(0.1C)下进行测试,结果如表1所示。
表1
Figure PCTCN2022135947-appb-000001
从表1可知,实施例的电化学性能明显优于对比例,这是由于实施例的负极材料具有多孔结构,在充放电过程中,其内部多孔结构既可以缓冲充放电过程中带来的体积变化又可以增大电极与电解液的接触面积,具有高的容量、优良的循环和倍率性能。并且实施例的负极材料还经过碳化处理,颗粒内部及外部形成支撑性的碳骨架结构,能够进一步提升颗粒强度和导电性。
上面结合附图对本申请实施例作了详细说明,但是本申请不限于上述实施 例,在所属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本申请宗旨的前提下作出各种变化。此外,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。

Claims (10)

  1. 一种多孔结构磷化镍@碳负极材料的制备方法,其中,包括以下步骤:
    S1:将镍盐溶液与沉淀剂混合进行反应,并通入二氧化碳气体控制反应pH为10.8-11.5,反应结束后进行陈化,固液分离得到沉淀物;所述沉淀剂为氢氧化钠、四羟基合铝酸钠和过硫酸钠的混合溶液;
    S2:将所述沉淀物置于管式炉的下风口处,取无水次亚磷酸钠置于所述管式炉的上风口处,所述管式炉加热一段时间,取出所述沉淀物并浸泡于氢氧化钠溶液中,固液分离得到多孔磷化镍;
    S3:将所述多孔磷化镍与有机物混合,在隔绝氧气下进行碳化反应,即得所述多孔结构磷化镍@碳负极材料。
  2. 根据权利要求1所述的制备方法,其中,步骤S1中,所述镍盐溶液的浓度为1-2mol/L,所述沉淀剂中,四羟基合铝酸钠的浓度为0.05-0.2mol/L、氢氧化钠的浓度为3-6mol/L、过硫酸钠的浓度为1-2mol/L,所述混合的方式为并流加入,以镍和铝的摩尔比为10:(1-2)来控制所述镍盐溶液与所述沉淀剂的流量。
  3. 根据权利要求1所述的制备方法,其中,步骤S1中,所述镍盐溶液为硫酸镍、氯化镍或硝酸镍的溶液中的至少一种。
  4. 根据权利要求1所述的制备方法,其中,步骤S1中,固液分离得到所述沉淀物后,还包括将所述沉淀物进行洗涤和干燥。
  5. 根据权利要求1所述的制备方法,其中,步骤S2中,所述无水次亚磷酸钠与所述沉淀物的质量比为(8-15):1。
  6. 根据权利要求1所述的制备方法,其中,步骤S2中,所述管式炉加热的温度为300-400℃;所述管式炉加热的时间为120-180min。
  7. 根据权利要求1所述的制备方法,其中,步骤S2中,取出所述沉淀物后先冷却至10℃以下,所述氢氧化钠溶液的温度为2-8℃。
  8. 根据权利要求1所述的制备方法,其中,步骤S2中,所述氢氧化钠溶液的浓度为0.1-2mol/L;所述浸泡的时间为10-25min。
  9. 根据权利要求1所述的制备方法,其中,步骤S3中,所述有机物为蔗糖、葡萄糖或乳糖中的至少一种。
  10. 权利要求1-9任一项所述的制备方法在钠离子电池或锂离子电池中的应用。
PCT/CN2022/135947 2022-02-17 2022-12-01 多孔结构磷化镍@碳负极材料的制备方法及其应用 WO2023155542A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
HU2400173A HUP2400173A1 (hu) 2022-02-17 2022-12-01 Eljárás porózus szerkezetû nikkel-foszfid@szén anódanyag elõállítására és alkalmazása
DE112022002496.8T DE112022002496T5 (de) 2022-02-17 2022-12-01 Verfahren zur Herstellung eines porös strukturierten Nickelphosphid@Kohlenstoff-Anodenmaterials und dessen Verwendung
GB2314014.8A GB2619643B (en) 2022-02-17 2022-12-01 Preparation method for nickel phosphide@carbon negative electrode material having porous structure, and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210146358.XA CN114639805B (zh) 2022-02-17 2022-02-17 多孔结构磷化镍@碳负极材料的制备方法及其应用
CN202210146358.X 2022-02-17

Publications (1)

Publication Number Publication Date
WO2023155542A1 true WO2023155542A1 (zh) 2023-08-24

Family

ID=81946775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/135947 WO2023155542A1 (zh) 2022-02-17 2022-12-01 多孔结构磷化镍@碳负极材料的制备方法及其应用

Country Status (5)

Country Link
CN (1) CN114639805B (zh)
DE (1) DE112022002496T5 (zh)
GB (1) GB2619643B (zh)
HU (1) HUP2400173A1 (zh)
WO (1) WO2023155542A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114639805B (zh) * 2022-02-17 2024-05-10 广东邦普循环科技有限公司 多孔结构磷化镍@碳负极材料的制备方法及其应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180087163A1 (en) * 2015-03-31 2018-03-29 INL-International Iberian Nanotechnology Laboratory Method for manufacturing of a porous electrode material
CN109319753A (zh) * 2018-11-26 2019-02-12 同济大学 一种三维有序大孔镍铁磷化物材料及其制备和应用
CN112072095A (zh) * 2020-09-23 2020-12-11 中南大学 一种碳纳米管复合多孔球形磷化镍负极材料及其制备方法
CN112779586A (zh) * 2020-12-23 2021-05-11 华南理工大学 一种具有纳米管阵列结构的磷化镍及其制备方法与应用
CN114639805A (zh) * 2022-02-17 2022-06-17 广东邦普循环科技有限公司 多孔结构磷化镍@碳负极材料的制备方法及其应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109524637A (zh) * 2018-09-30 2019-03-26 肇庆市华师大光电产业研究院 一种锂硫电池多孔自支撑柔性电极材料及其制备方法
CN110093619B (zh) * 2019-06-03 2021-01-05 西南交通大学 一种可控相磷化镍粉末材料及其制备方法和构成的电极
CN110379647B (zh) * 2019-08-14 2021-04-30 河北工业大学 一种纳米多孔镍/氧化镍负载超薄氢氧化钴纳米片柔性电极材料的制备方法
CN112044459B (zh) * 2020-09-10 2022-02-18 中山大学 类石榴状多孔镍基磷化物纳米结构材料及其制备方法与应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180087163A1 (en) * 2015-03-31 2018-03-29 INL-International Iberian Nanotechnology Laboratory Method for manufacturing of a porous electrode material
CN109319753A (zh) * 2018-11-26 2019-02-12 同济大学 一种三维有序大孔镍铁磷化物材料及其制备和应用
CN112072095A (zh) * 2020-09-23 2020-12-11 中南大学 一种碳纳米管复合多孔球形磷化镍负极材料及其制备方法
CN112779586A (zh) * 2020-12-23 2021-05-11 华南理工大学 一种具有纳米管阵列结构的磷化镍及其制备方法与应用
CN114639805A (zh) * 2022-02-17 2022-06-17 广东邦普循环科技有限公司 多孔结构磷化镍@碳负极材料的制备方法及其应用

Also Published As

Publication number Publication date
DE112022002496T5 (de) 2024-03-14
GB2619643A (en) 2023-12-13
CN114639805B (zh) 2024-05-10
HUP2400173A1 (hu) 2024-06-28
GB2619643B (en) 2024-07-24
CN114639805A (zh) 2022-06-17
GB202314014D0 (en) 2023-11-01

Similar Documents

Publication Publication Date Title
CN110048118B (zh) 一种高镍型镍钴锰酸锂单晶前驱体及其制备方法和高镍型镍钴锰酸锂单晶正极材料
CN113659141B (zh) 一种SiO@Mg/C复合材料及其制备方法和应用
CN114162881B (zh) 一种阴离子原位掺杂高镍三元正极材料的制备方法
CN110492095A (zh) 一种锡掺杂的富锂锰基正极材料及其制备方法
CN112928246B (zh) 一种复合材料、其制备方法及应用
CN114436345B (zh) 一种锂离子电池三元正极材料及其制备方法
CN110581264B (zh) 一种高性能镍锌电池负极活性材料及其制备方法
CN106129348A (zh) 一种Al2O3包覆改性的镍锰酸锂正极材料及其制备方法
CN106450306A (zh) 一种磷化锡钠离子电池负极材料的制备方法与应用
WO2023155542A1 (zh) 多孔结构磷化镍@碳负极材料的制备方法及其应用
CN109686967A (zh) 一种富锂锰基正极材料及其制备方法
CN113772718B (zh) 一种SnS-SnS2@GO异质结构复合材料及其制备方法和应用
WO2022032749A1 (zh) 一种三维棒状钛酸钾材料的制备方法
CN109786709B (zh) 一种四氧化三铁/碳复合负极材料及其制备方法和用途
WO2023226550A1 (zh) 高导电性磷酸铁锂的制备方法及其应用
WO2023060992A1 (zh) 正极边角料回收合成高安全性正极材料的方法和应用
CN108539192B (zh) 一种不同形貌锂离子电池高压正极材料的制备方法
CN114890479B (zh) 一种水系锌离子电池正极材料及其制备方法和应用
CN114695886B (zh) 一种双元素掺杂锂离子电池高电压正极镍锰酸锂的复合材料及其制备方法、锂离子电池
CN111254282B (zh) 一种聚吡咯/磷掺杂石墨化碳复合导电膜电极的制备方法
CN115172704A (zh) 一种利用金属有机框架制备多孔碳磷酸铁锂正极材料的制备方法
CN114824243A (zh) 可快充的Co掺杂铌氧化物负极材料的制备方法
CN114695874A (zh) 一种低电压迟滞的o2型富锂锰基正极材料的合成方法
CN114368783B (zh) 一种镁离子电池正极材料的制备方法
CN111268749A (zh) 一种通过改变插层水分子含量来调控α-Ni(OH)2储锂性能的方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 202314014

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20221201

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22926846

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: P202390257

Country of ref document: ES

WWE Wipo information: entry into national phase

Ref document number: 112022002496

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: P2400173

Country of ref document: HU