WO2023060992A1 - 正极边角料回收合成高安全性正极材料的方法和应用 - Google Patents
正极边角料回收合成高安全性正极材料的方法和应用 Download PDFInfo
- Publication number
- WO2023060992A1 WO2023060992A1 PCT/CN2022/108665 CN2022108665W WO2023060992A1 WO 2023060992 A1 WO2023060992 A1 WO 2023060992A1 CN 2022108665 W CN2022108665 W CN 2022108665W WO 2023060992 A1 WO2023060992 A1 WO 2023060992A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- positive electrode
- scrap
- filtrate
- safety
- lithium
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 39
- 239000007774 positive electrode material Substances 0.000 title claims abstract description 31
- 230000002194 synthesizing effect Effects 0.000 title claims abstract description 15
- 238000004064 recycling Methods 0.000 title claims abstract description 14
- 239000000463 material Substances 0.000 title abstract description 19
- 239000002699 waste material Substances 0.000 claims abstract description 36
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 34
- 229910052731 fluorine Inorganic materials 0.000 claims abstract description 29
- 239000000706 filtrate Substances 0.000 claims abstract description 26
- 239000002243 precursor Substances 0.000 claims abstract description 17
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims abstract description 16
- 239000002033 PVDF binder Substances 0.000 claims abstract description 16
- 229910001416 lithium ion Inorganic materials 0.000 claims abstract description 16
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims abstract description 16
- 238000001354 calcination Methods 0.000 claims abstract description 15
- 238000006243 chemical reaction Methods 0.000 claims abstract description 14
- 239000007788 liquid Substances 0.000 claims abstract description 10
- -1 aluminum ions Chemical class 0.000 claims abstract description 8
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims abstract description 7
- 239000003513 alkali Substances 0.000 claims abstract description 7
- 239000011737 fluorine Substances 0.000 claims abstract description 7
- 238000001556 precipitation Methods 0.000 claims abstract description 7
- 229910003002 lithium salt Inorganic materials 0.000 claims abstract description 6
- 159000000002 lithium salts Chemical class 0.000 claims abstract description 6
- 239000002253 acid Substances 0.000 claims abstract description 5
- 239000003638 chemical reducing agent Substances 0.000 claims abstract description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 4
- 239000001301 oxygen Substances 0.000 claims abstract description 4
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 4
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 claims description 16
- 239000007787 solid Substances 0.000 claims description 12
- 238000010438 heat treatment Methods 0.000 claims description 9
- 230000008569 process Effects 0.000 claims description 9
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims description 8
- 235000021190 leftovers Nutrition 0.000 claims description 8
- KFDQGLPGKXUTMZ-UHFFFAOYSA-N [Mn].[Co].[Ni] Chemical compound [Mn].[Co].[Ni] KFDQGLPGKXUTMZ-UHFFFAOYSA-N 0.000 claims description 7
- 229910052744 lithium Inorganic materials 0.000 claims description 5
- 239000000203 mixture Substances 0.000 claims description 5
- 239000002244 precipitate Substances 0.000 claims description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 4
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 4
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 claims description 4
- 229910052723 transition metal Inorganic materials 0.000 claims description 4
- 150000003624 transition metals Chemical class 0.000 claims description 4
- 239000008139 complexing agent Substances 0.000 claims description 3
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 claims description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 2
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 claims description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 2
- 229910021529 ammonia Inorganic materials 0.000 claims description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 claims description 2
- 239000004202 carbamide Substances 0.000 claims description 2
- QHGJSLXSVXVKHZ-UHFFFAOYSA-N dilithium;dioxido(dioxo)manganese Chemical compound [Li+].[Li+].[O-][Mn]([O-])(=O)=O QHGJSLXSVXVKHZ-UHFFFAOYSA-N 0.000 claims description 2
- 235000019253 formic acid Nutrition 0.000 claims description 2
- 239000008103 glucose Substances 0.000 claims description 2
- 229920000642 polymer Polymers 0.000 claims description 2
- 229910001415 sodium ion Inorganic materials 0.000 claims description 2
- 150000002500 ions Chemical class 0.000 abstract description 8
- 238000000926 separation method Methods 0.000 abstract description 6
- 239000003792 electrolyte Substances 0.000 abstract description 4
- 238000009831 deintercalation Methods 0.000 abstract description 3
- 238000002156 mixing Methods 0.000 abstract description 3
- 150000001768 cations Chemical class 0.000 abstract description 2
- 238000009830 intercalation Methods 0.000 abstract description 2
- 230000002687 intercalation Effects 0.000 abstract description 2
- 230000005012 migration Effects 0.000 abstract description 2
- 238000013508 migration Methods 0.000 abstract description 2
- 230000002195 synergetic effect Effects 0.000 abstract description 2
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 21
- 230000000052 comparative effect Effects 0.000 description 19
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 12
- 239000010406 cathode material Substances 0.000 description 11
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 8
- 230000032683 aging Effects 0.000 description 8
- 238000011056 performance test Methods 0.000 description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 230000035484 reaction time Effects 0.000 description 7
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 6
- 238000003756 stirring Methods 0.000 description 6
- 239000006230 acetylene black Substances 0.000 description 5
- 239000011230 binding agent Substances 0.000 description 5
- 239000006258 conductive agent Substances 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- PQVSTLUFSYVLTO-UHFFFAOYSA-N ethyl n-ethoxycarbonylcarbamate Chemical compound CCOC(=O)NC(=O)OCC PQVSTLUFSYVLTO-UHFFFAOYSA-N 0.000 description 4
- GLXDVVHUTZTUQK-UHFFFAOYSA-M lithium hydroxide monohydrate Substances [Li+].O.[OH-] GLXDVVHUTZTUQK-UHFFFAOYSA-M 0.000 description 4
- 229940040692 lithium hydroxide monohydrate Drugs 0.000 description 4
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000004146 energy storage Methods 0.000 description 3
- 239000011572 manganese Substances 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- 229910018626 Al(OH) Inorganic materials 0.000 description 2
- 229910018085 Al-F Inorganic materials 0.000 description 2
- 229910018179 Al—F Inorganic materials 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 235000011114 ammonium hydroxide Nutrition 0.000 description 2
- 238000007580 dry-mixing Methods 0.000 description 2
- 239000011267 electrode slurry Substances 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 230000002572 peristaltic effect Effects 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 239000007790 solid phase Substances 0.000 description 2
- 229910052596 spinel Inorganic materials 0.000 description 2
- 239000011029 spinel Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229910013733 LiCo Inorganic materials 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- 229910010707 LiFePO 4 Inorganic materials 0.000 description 1
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 1
- 229910013716 LiNi Inorganic materials 0.000 description 1
- 229910013870 LiPF 6 Inorganic materials 0.000 description 1
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000000498 ball milling Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- YNQRWVCLAIUHHI-UHFFFAOYSA-L dilithium;oxalate Chemical compound [Li+].[Li+].[O-]C(=O)C([O-])=O YNQRWVCLAIUHHI-UHFFFAOYSA-L 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 239000002440 industrial waste Substances 0.000 description 1
- 230000037427 ion transport Effects 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 1
- 229910052808 lithium carbonate Inorganic materials 0.000 description 1
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 description 1
- 229910002102 lithium manganese oxide Inorganic materials 0.000 description 1
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 description 1
- VLXXBCXTUVRROQ-UHFFFAOYSA-N lithium;oxido-oxo-(oxomanganiooxy)manganese Chemical compound [Li+].[O-][Mn](=O)O[Mn]=O VLXXBCXTUVRROQ-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 239000007773 negative electrode material Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000011163 secondary particle Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/54—Reclaiming serviceable parts of waste accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/502—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese for non-aqueous cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/523—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron for non-aqueous cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/5825—Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/84—Recycling of batteries or fuel cells
Definitions
- the invention belongs to the technical field of batteries, and in particular relates to a method and application of recycling and synthesizing high-safety positive electrode materials from positive electrode leftover materials.
- lithium-ion batteries have become the mainstream product of secondary batteries at this stage, widely used in portable electronic devices such as smartphones and notebook computers, and promote the industrial upgrading and transformation of new energy vehicles and large-scale energy storage.
- the most widely used positive electrode materials in lithium-ion batteries are the following: layered lithium cobaltate (LiCoO 2 ) and nickel cobalt manganese acid (LiCo x Ni y Mn z O 2 ), spinel lithium manganate (LiMn 2 O 4 ) and lithium iron phosphate (LiFePO 4 ).
- LiCoO 2 layered lithium cobaltate
- NiCo x Ni y Mn z O 2 nickel cobalt manganese acid
- spinel lithium manganate LiMn 2 O 4
- lithium iron phosphate LiFePO 4
- positive electrode material for power batteries its safety is particularly important. Therefore, the development of positive electrode materials mainly focuses on seeking electrode materials with high energy density, high power density, environmental friendliness, low price and high safety performance.
- the current process route of waste lithium-ion battery recycling is to refine and recycle the metal in the positive electrode material and the graphite in the negative electrode material, but the process line is complicated and the recovery rate is not high.
- the present invention aims to solve at least one of the technical problems in the above-mentioned prior art. For this reason, the present invention proposes a method and application of recycling and synthesizing high-safety positive electrode materials from positive electrode scraps, which can synthesize the required positive electrode materials from waste materials in one step, can optimize the recovery rate, and can also save costs.
- a method for recycling and synthesizing high-safety positive electrode materials from positive electrode scraps comprising the following steps:
- the fluorine source is PVDF.
- the fluorine source can be the solid phase obtained by the solid-liquid separation in step S1.
- the solid phase obtained from the solid-liquid separation in step S1 should also contain conductive agent acetylene black, but in step S4, the conductive agent acetylene black (C) can be converted into CO 2 gas, has no effect on the material.
- the positive electrode scrap is one of the positive scrap of the discarded lithium ion battery, the scrap of the positive electrode of the discarded sodium ion battery, or the scrap of the positive electrode of the lithium polymer battery. More preferably, it is waste lithium ion battery positive electrode scraps.
- the waste lithium-ion battery positive electrode scrap is one of waste nickel-cobalt-manganese ternary positive electrode scrap, waste lithium iron phosphate scrap, waste lithium cobalt oxide scrap, or waste lithium manganese oxide scrap. More preferably, it is waste nickel-cobalt-manganese ternary positive electrode scraps.
- the waste nickel-cobalt-manganese ternary positive electrode scrap is one of NCM811, NCM523, NCM622 or NCM334, more preferably NCM811.
- the acid is one or more of hydrochloric acid, sulfuric acid or citric acid, more preferably sulfuric acid.
- the reducing agent is one of glucose, hydrogen peroxide or formic acid. Hydrogen peroxide is more preferred.
- step S2 the molar ratio of aluminum ions to other transition metals in the second filtrate is (0.01-0.03):(1-1.05).
- the remaining amount of aluminum ions can be controlled by adjusting the pH value and precipitation time.
- the alkali is one of potassium hydroxide, sodium hydroxide or lithium hydroxide, more preferably sodium hydroxide.
- the specific process of the precipitation reaction in step S3 is: first add alkali and complexing agent, and then Add the second filtrate dropwise, control the pH and temperature to react for a period of time, then stop feeding, age, separate solid and liquid, wash the precipitate, and dry to obtain the precursor.
- the alkali is one or more of potassium hydroxide, sodium hydroxide or lithium hydroxide, preferably sodium hydroxide; optionally, the reaction temperature is 30-70°C, preferably 50°C Optionally, the reaction time is 12-24h, preferably 20h; Optionally, the pH is 10-12, preferably 11; Optionally, the washing is sequentially washed with distilled water and ethanol solution , the concentration of the ethanol solution is preferably 30-99.5%; optionally, the drying is vacuum drying at 50-70°C for 6-18h, preferably at 60°C for 12h; optionally, the aging The time is 12-48h.
- the specific process of the precipitation reaction in step S3 is: adding the second filtrate into the reactor, and controlling After reacting for a period of time, keep the temperature of the reactor and the stirring rate constant, and carry out aging, then separate the materials in the reactor, wash and dry the solids, and obtain the precursor.
- the temperature is 170-190° C.
- the reaction time is 10-13 hours
- the aging time is 12-48 hours. More preferably, the aging time is 24 hours.
- the complexing agent is one of ammonia or urea. Ammonia water is more preferable.
- the lithium salt is one or more of lithium hydroxide, lithium carbonate or lithium oxalate, more preferably lithium hydroxide.
- step S4 the molar ratio of the precursor, lithium salt and PVDF is (1-2):1:(0.01-0.1). More preferably, it is 1.05:1:0.04.
- step S4 the calcination is carried out in two stages: the temperature of the first stage of calcination is 400-500°C, the temperature of the second stage of calcination is 900-1200°C, and the temperature rise of the two stages of calcination
- the rate is 2-7° C./min; preferably, the time for the first stage of calcination is 3-5 hours, and the time for the second stage of calcination is 8-24 hours.
- the invention also provides the application of the high-safety cathode material prepared by the method in aerospace batteries.
- the present invention uses waste positive electrode leftovers to recycle and synthesize high-performance and high-safety Al and F co-doped positive electrode materials.
- the preparation method is simple to operate, the reaction conditions are mild, and it is suitable for industrial production.
- F ions replace O ions, and the Al-F bond has a higher covalent bond than other metals with O.
- the binding energy of the material stabilizes the crystal structure of the material, slows down the release of active oxygen at high temperature, improves the structural stability of the material at high temperature, effectively inhibits the structural damage caused by the reaction between the positive electrode and the electrolyte at high temperature, and improves the initial reaction time. temperature and slow down the release of heat, thereby improving safety. In addition, it also reduces cation mixing, enhances the ion migration kinetics of lithium ion deintercalation and intercalation, significantly improves the ion transport rate, and has excellent electrochemical performance.
- the method provided by the present invention has no pollution to the environment, uses the aluminum foil of waste positive electrode scraps as the Al source and the recycled binder PVDF as the F source, can effectively recycle industrial waste, reduce production costs, and optimize the recycling industry.
- Fig. 1 is the rate performance test chart of embodiment 1, 2, 3 and comparative example 1;
- Fig. 2 is the rate performance test figure of embodiment 4, 5 and embodiment 1;
- Fig. 3 is the 1C cycle performance test figure of embodiment 1 and comparative example 1;
- Fig. 4 is the safety performance diagram of embodiment 1, 2, 3 and comparative example 1;
- Fig. 5 is the safety performance figure of embodiment 1 and comparative example 1,2;
- Fig. 6 is the safety performance figure of embodiment 1, 6 and comparative example 3;
- Fig. 7 is the EDS diagram of the element content of the Al and F co-doped NCM ternary cathode material obtained in Example 1;
- FIG. 8 is a SEM image of the Al and F co-doped NCM ternary cathode material obtained in Example 1.
- FIG. 8 is a SEM image of the Al and F co-doped NCM ternary cathode material obtained in Example 1.
- a method for recycling and synthesizing Al and F co-doped cathode materials from waste ternary scrap, the specific process is:
- step (3) Mix the precursor, lithium hydroxide monohydrate and the filter residue collected in step (1) at a molar ratio of 1:1.05:0.03 using a ball mill to mix evenly, and place the ball-milled solid powder in a tube furnace under pure oxygen conditions ( 50sccm (50mL/min), heat up to 450°C at a heating rate of 5°C/min, burn at a constant temperature of 450°C for 4 hours, then raise the temperature to 900°C at a heating rate of 5°C/min, calcine at a constant temperature for 12 hours, and then cool with the furnace , grind, and finally obtain Al and F co-doped NCM ternary cathode material LiNi 0.8 Co 0.1 Mn 0.09 Al 0.01 O 1.94 F 0.06 .
- Figure 7 is the EDS diagram of the element content of the Al and F co-doped NCM ternary cathode material obtained in this example. It can be seen that the material has been doped with Al and F, and due to sintering under pure oxygen conditions, all carbon is converted into CO 2 Gas, no C element exists in the material.
- Figure 8 is the SEM image of the Al and F co-doped NCM ternary positive electrode material obtained in this example. It can be seen from the figure that the material is a spherical secondary particle with a diameter of about 4 ⁇ m composed of small nanometer primary particles. The spherical shape is composed of multiple nanoparticles closely connected, showing a porous structure with high porosity, which is conducive to the deintercalation reaction of Li + , and has better structural stability, thereby improving thermal stability.
- a method for recovering and synthesizing Al and F co-doped positive electrode materials from waste ternary scrap the difference from Example 1 is the molar ratio of the precursor, lithium hydroxide monohydrate and the filter residue collected in step (1) The ratio is 1:1.05:0.01; during the calcination process, first raise the temperature to 450°C with a heating rate of 5°C/min, and then burn at a constant temperature of 450°C for 4 hours, then raise the temperature to 700°C, with a heating rate of 5°C/min, and calcine at a constant temperature for 8 hours.
- a method for recovering and synthesizing Al and F co-doped positive electrode materials from waste ternary scrap the difference from Example 1 is the molar ratio of the precursor, lithium hydroxide monohydrate and the filter residue collected in step (1) The ratio is 1:1.05:0.02; during the calcination process, the temperature is first raised to 450°C at a heating rate of 5°C/min, and then fired at a constant temperature of 450°C for 4 hours, then heated to 1200°C at a heating rate of 5°C/min, and calcined at a constant temperature for 24 hours.
- a method for recovering and synthesizing Al and F co-doped positive electrode materials from waste ternary scrap the difference from Example 1 is that the pH in the control reactor is 10 in step (2), the temperature in the reactor is 30°C, and the reaction time is At 12 hours, the aging time is 12 hours.
- a method for recovering and synthesizing Al and F co-doped positive electrode materials from waste ternary scrap the difference from Example 1 is that the pH in the control reactor is 12 in step (2), the temperature in the reactor is 70°C, and the reaction time is At 24 hours, the aging time is 48 hours.
- a method for recovering and synthesizing Al and F co-doped lithium iron phosphate cathode materials from waste lithium iron phosphate scrap, the specific process is:
- step (1) The precursor, lithium hydroxide monohydrate, and the PVDF collected in step (1) are mixed uniformly by ball milling at a molar ratio of 1:1.05:0.04, and the solid powder that has been ball-milled is placed in a tube furnace under pure oxygen conditions (50 sccm That is, at 50mL/min), heat up to 450°C with a heating rate of 5°C/min, burn at a constant temperature of 450°C for 4 hours, then heat up to 850°C with a heating rate of 5°C/min, and calcine at a constant temperature for 12 hours, then cool with the furnace. Grinding finally obtains the target Al and F co-doped lithium iron phosphate positive electrode material.
- step (3) does not add PVDF to obtain an Al-doped ternary positive electrode material.
- step (1) completely precipitates Al ions without doping aluminum, and step (3) does not add PVDF to obtain an undoped ternary cathode material.
- step (1) completely precipitates Al ions without doping aluminum, and step (3) does not add PVDF to obtain no Doped lithium iron phosphate cathode material.
- the positive electrode materials obtained in Examples 1-6 and Comparative Examples 1-3 were made into button batteries in the following way: the positive electrode material was used as the positive electrode active material, and the mass ratio of the conductive agent acetylene black and the binder PVDF was 80:10 : 10 for weighing; then fully stir and mix the conductive agent acetylene black and the positive electrode material evenly, add the adhesive PVDF after dry mixing evenly, add N-methylpyrrolidone to form a slurry after dry mixing evenly, and control the slurry
- the solid content of the material is 40%, the viscosity of the slurry is 4500cps, and the positive electrode slurry is obtained; the positive electrode slurry is coated on the aluminum foil, rolled on the rolling roller, and the electrode is obtained after punching; the above electrode is used as the positive electrode, Lithium metal was used as the negative electrode, and the electrolyte was 1.0mol/L LiPF 6 -EC+DMC (volume ratio 1:1), and a button cell was assembled in a dry
- the coin cells were charged to 4.4V, then disassembled, each positive electrode and 0.10mL electrolyte were used for DSC testing, so that the DSC results could simulate the actual heat release.
- FIG. 1 is a rate performance test diagram of Examples 1, 2, 3 and Comparative Example 1. It can be seen from the figure that compared to the Al-doped electrode (Comparative Example 1), the Al and F co-doped samples (Example 1, 2, 3) all provide higher Capacitance, and better rate performance, wherein embodiment 1 has the best rate performance.
- FIG. 2 is a rate performance test diagram of Examples 4, 5 and Example 1. It can be seen from the figure that Example 1 has higher capacitance than Example 4 and 5 at rates of 0.1C and 10C, and also has better rate performance.
- FIG. 3 is a 1C cycle performance test graph of Example 1 and Comparative Example 1. It can be seen from the figure that the Al-F co-doped sample (Example 1) exhibits higher cycle performance than the Al-doped sample (Comparative Example 1).
- Fig. 4 is the safety performance diagram of embodiment 1, 2, 3 and comparative example 1. It can be seen from the figure that the samples (Example 1, 2, 3) co-doped with Al and F have higher initial exothermic temperature and lower heat release than the Al-doped samples, indicating that Al and F co-doped The safety performance of doping is better than that of Al doping, and Example 1 shows the best safety performance.
- Fig. 5 is the safety performance diagram of embodiment 1 and comparative examples 1 and 2. It can be seen from the figure that Al and F co-doped (Example 1) and Al-doped samples (Comparative Example 1) exhibited higher initial exothermic temperature and released Lower heat means better safety performance.
- Fig. 6 is the safety performance figure of embodiment 1, 6 and comparative example 3.
- the safety performance of the lithium iron phosphate sample (Example 6, Comparative Example 3) is better than that of the ternary NCM sample (Example 1), and the Al and F co-doped lithium iron phosphate (Example 6) is more Undoped lithium iron phosphate (comparative example 3) shows better safety performance.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
Claims (10)
- 一种正极边角料回收合成高安全性正极材料的方法,其特征在于,包括以下步骤:S1:向正极边角料中加入酸和还原剂溶解,固液分离得到第一滤液;S2:向所述第一滤液中加入碱调节pH反应一段时间,使大部分铝离子沉淀,固液分离得到第二滤液;S3:取所述第二滤液进行沉淀反应得到前驱体;S4:将所述前驱体、锂盐和氟源混合,在氧气氛围下煅烧,得到高安全性正极材料;其中,所述氟源为PVDF。
- 根据权利要求1所述的方法,其特征在于,所述正极边角料为废弃锂离子电池正极边角料、废弃钠离子电池正极边角料或锂聚合物电池正极边角料中的一种。
- 根据权利要求2所述的方法,其特征在于,所述废弃锂离子电池正极边角料为废镍钴锰三元正极边角料、废磷酸铁锂边角料、废钴酸锂边角料或废锰酸锂边角料中的一种。
- 根据权利要求3所述的方法,其特征在于,当所述废弃锂离子电池正极边角料为废镍钴锰三元正极边角料时,步骤S3中所述沉淀反应的具体过程为:先加入碱和络合剂,再滴加所述第二滤液,控制pH和温度反应一段时间,然后停止进料,陈化,固液分离,洗涤沉淀物,干燥,得到所述前躯体。
- 根据权利要求4所述的方法,其特征在于,所述络合剂为氨水或尿素中的一种。
- 根据权利要求1所述的方法,其特征在于,步骤S1中,所述还原剂为葡萄糖、过氧化氢或甲酸中的一种。
- 根据权利要求1所述的方法,其特征在于,步骤S2中,所述第二滤液中铝离子与其余过渡金属的摩尔比为(0.01-0.03):(1-1.05)。
- 根据权利要求1所述的方法,其特征在于,步骤S4中,所述前躯体、锂盐和PVDF的摩尔比为(1-2):1:(0.01-0.1)。
- 根据权利要求1所述的方法,其特征在于,步骤S4中,所述煅烧分两段进行: 第一段煅烧的温度为400-500℃,第二段煅烧的温度为900-1200℃,两段煅烧的升温速率为2-7℃/min;优选的,所述第一段煅烧的时间为3-5h,第二段煅烧的时间为8-24h。
- 权利要求1-9任一项所述的方法制得的高安全性正极材料在航空航天电池中的应用。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP22879939.1A EP4407748A1 (en) | 2021-10-12 | 2022-07-28 | Method for synthesizing high-safety positive electrode material by recycling positive electrode leftover materials, and application |
MX2024004498A MX2024004498A (es) | 2021-10-12 | 2022-07-28 | Metodo para sintetizar material de catodo de alta seguridad reciclando materiales sobrantes de catodo y uso del material de catodo de alta seguridad. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111186036.X | 2021-10-12 | ||
CN202111186036.XA CN114069083B (zh) | 2021-10-12 | 2021-10-12 | 正极边角料回收合成高安全性正极材料的方法和应用 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023060992A1 true WO2023060992A1 (zh) | 2023-04-20 |
Family
ID=80234503
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/108665 WO2023060992A1 (zh) | 2021-10-12 | 2022-07-28 | 正极边角料回收合成高安全性正极材料的方法和应用 |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP4407748A1 (zh) |
CN (1) | CN114069083B (zh) |
MX (1) | MX2024004498A (zh) |
WO (1) | WO2023060992A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114069083B (zh) * | 2021-10-12 | 2024-07-09 | 广东邦普循环科技有限公司 | 正极边角料回收合成高安全性正极材料的方法和应用 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104868190A (zh) * | 2015-05-13 | 2015-08-26 | 中国科学院过程工程研究所 | 一种锂离子电池正极废料中金属的浸出及回收方法 |
CN105633500A (zh) * | 2016-02-22 | 2016-06-01 | 四川天齐锂业股份有限公司 | 利用回收锂离子电池材料制备三元正极材料前驱体的方法 |
CN105895879A (zh) * | 2016-05-20 | 2016-08-24 | 中国科学院青岛生物能源与过程研究所 | 一种氟掺杂碳包覆正极复合材料及其制备方法及应用 |
CN105990577A (zh) * | 2016-06-15 | 2016-10-05 | 电子科技大学 | 一种锂离子电池正极材料LiNi0.6-xCo0.2Mn0.2AlxO2-yFy及其制备方法 |
CN107653378A (zh) * | 2017-08-25 | 2018-02-02 | 金川集团股份有限公司 | 一种废旧镍钴锰锂离子电池中有价金属的回收方法 |
CN107994223A (zh) * | 2017-12-11 | 2018-05-04 | 广东工业大学 | 一种铝氟共掺杂改性的复合材料及其制备方法和应用 |
WO2018209164A1 (en) * | 2017-05-11 | 2018-11-15 | Worcester Polytechnic Institute | Method and apparatus for recycling lithium iron phosphate batteries |
CN109721043A (zh) * | 2018-12-29 | 2019-05-07 | 宁德时代新能源科技股份有限公司 | 一种回收制备磷酸铁锂正极材料的方法 |
CN112591737A (zh) * | 2020-12-16 | 2021-04-02 | 昆明理工大学 | 一种回收废旧锂离子电池负极石墨制备碳纳米角的方法 |
CN114069083A (zh) * | 2021-10-12 | 2022-02-18 | 广东邦普循环科技有限公司 | 正极边角料回收合成高安全性正极材料的方法和应用 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102347521A (zh) * | 2011-10-08 | 2012-02-08 | 佛山市邦普循环科技有限公司 | 一种电动汽车用动力型锰酸锂电池中锰和锂的回收方法 |
CN103199320B (zh) * | 2013-03-28 | 2015-05-27 | 四川天齐锂业股份有限公司 | 镍钴锰三元正极材料回收利用的方法 |
-
2021
- 2021-10-12 CN CN202111186036.XA patent/CN114069083B/zh active Active
-
2022
- 2022-07-28 MX MX2024004498A patent/MX2024004498A/es unknown
- 2022-07-28 WO PCT/CN2022/108665 patent/WO2023060992A1/zh active Application Filing
- 2022-07-28 EP EP22879939.1A patent/EP4407748A1/en active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104868190A (zh) * | 2015-05-13 | 2015-08-26 | 中国科学院过程工程研究所 | 一种锂离子电池正极废料中金属的浸出及回收方法 |
CN105633500A (zh) * | 2016-02-22 | 2016-06-01 | 四川天齐锂业股份有限公司 | 利用回收锂离子电池材料制备三元正极材料前驱体的方法 |
CN105895879A (zh) * | 2016-05-20 | 2016-08-24 | 中国科学院青岛生物能源与过程研究所 | 一种氟掺杂碳包覆正极复合材料及其制备方法及应用 |
CN105990577A (zh) * | 2016-06-15 | 2016-10-05 | 电子科技大学 | 一种锂离子电池正极材料LiNi0.6-xCo0.2Mn0.2AlxO2-yFy及其制备方法 |
WO2018209164A1 (en) * | 2017-05-11 | 2018-11-15 | Worcester Polytechnic Institute | Method and apparatus for recycling lithium iron phosphate batteries |
CN107653378A (zh) * | 2017-08-25 | 2018-02-02 | 金川集团股份有限公司 | 一种废旧镍钴锰锂离子电池中有价金属的回收方法 |
CN107994223A (zh) * | 2017-12-11 | 2018-05-04 | 广东工业大学 | 一种铝氟共掺杂改性的复合材料及其制备方法和应用 |
CN109721043A (zh) * | 2018-12-29 | 2019-05-07 | 宁德时代新能源科技股份有限公司 | 一种回收制备磷酸铁锂正极材料的方法 |
CN112591737A (zh) * | 2020-12-16 | 2021-04-02 | 昆明理工大学 | 一种回收废旧锂离子电池负极石墨制备碳纳米角的方法 |
CN114069083A (zh) * | 2021-10-12 | 2022-02-18 | 广东邦普循环科技有限公司 | 正极边角料回收合成高安全性正极材料的方法和应用 |
Also Published As
Publication number | Publication date |
---|---|
CN114069083B (zh) | 2024-07-09 |
EP4407748A1 (en) | 2024-07-31 |
MX2024004498A (es) | 2024-07-02 |
CN114069083A (zh) | 2022-02-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11855285B2 (en) | Full-gradient nickel cobalt manganese positive electrode material, ruthenium oxide coated material and preparation method thereof | |
CN102983326B (zh) | 一种球形锂镍钴复合氧化物正极材料的制备方法 | |
CN102694166B (zh) | 一种锂镍钴铝复合金属氧化物的制备方法 | |
Gao et al. | Recycling LiNi0. 5Co0. 2Mn0. 3O2 material from spent lithium-ion batteries by oxalate co-precipitation | |
CN104241626B (zh) | 锂离子电池钒酸锂负极材料的溶胶-凝胶制备方法 | |
CN103904321B (zh) | 锂离子电池负极材料锰酸锂的高温固相制备方法 | |
CN102386381A (zh) | 一种锂离子电池纳米级正极材料的制备方法 | |
CN109873140B (zh) | 一种锂离子电池石墨烯复合三元正极材料及其制备方法 | |
CN107069001B (zh) | 一种蜂窝状硫化锌/碳复合负极材料及其制备方法 | |
CN109119624B (zh) | 一种磷酸钛锂包覆富锂锰基正极材料的制备方法 | |
CN105070970A (zh) | 混合废碱性电池制备锂离子电池正极材料的方法 | |
CN110233261B (zh) | 一种单晶三元锂电池正极材料的制备方法及锂离子电池 | |
CN111342008A (zh) | 一种氟化钾掺杂富锂锰基材料及其制备方法和应用 | |
WO2024055519A1 (zh) | 一种磷酸锰铁锂的制备方法及其应用 | |
CN114094089A (zh) | 一种正极补锂添加剂及其制备和在锂离子电池正极补锂中的应用 | |
WO2023207247A1 (zh) | 一种多孔隙球形钴氧化物颗粒及其制备方法 | |
CN113735196A (zh) | 废旧三元前驱体的回收利用方法及回收得到的三元正极材料 | |
CN109802127B (zh) | 一种银掺杂四氧化三铁纳米复合材料的制备方法 | |
CN113772718B (zh) | 一种SnS-SnS2@GO异质结构复合材料及其制备方法和应用 | |
WO2023060992A1 (zh) | 正极边角料回收合成高安全性正极材料的方法和应用 | |
TWI550938B (zh) | 鋰離子電池正極材料及其製備方法 | |
CN114804235A (zh) | 一种高电压镍钴锰酸锂正极材料及其制备方法和应用 | |
CN115241435A (zh) | 一种层状Na3M2XO6氧化物包覆改性的锰酸钠正极材料及其制备方法 | |
WO2019104948A1 (zh) | 一种钼掺杂改性的锰酸锂复合材料、其制备方法及锂离子电池 | |
CN110620217A (zh) | 一种锌掺杂磷酸铁锂/碳复合材料及制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22879939 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2024/004498 Country of ref document: MX |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022879939 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2022879939 Country of ref document: EP Effective date: 20240423 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |