[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019194609A1 - 리튬 이차전지용 양극 활물질의 제조방법, 리튬 이차전지용 양극 활물질, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지 - Google Patents

리튬 이차전지용 양극 활물질의 제조방법, 리튬 이차전지용 양극 활물질, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지 Download PDF

Info

Publication number
WO2019194609A1
WO2019194609A1 PCT/KR2019/004018 KR2019004018W WO2019194609A1 WO 2019194609 A1 WO2019194609 A1 WO 2019194609A1 KR 2019004018 W KR2019004018 W KR 2019004018W WO 2019194609 A1 WO2019194609 A1 WO 2019194609A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
lithium secondary
secondary battery
coating
doping
Prior art date
Application number
PCT/KR2019/004018
Other languages
English (en)
French (fr)
Inventor
박상민
채화석
박신영
박홍규
강성훈
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190031933A external-priority patent/KR102313092B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2020547418A priority Critical patent/JP7134550B2/ja
Priority to US17/040,787 priority patent/US12074307B2/en
Priority to EP19780677.1A priority patent/EP3753905A4/en
Priority to CN201980020204.2A priority patent/CN111867979B/zh
Publication of WO2019194609A1 publication Critical patent/WO2019194609A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for producing a cathode active material for a lithium secondary battery, a cathode active material for a lithium secondary battery, a cathode for a lithium secondary battery and a lithium secondary battery including the same.
  • lithium secondary battery has attracted attention as a driving power source for portable devices because of its light weight and high energy density. Accordingly, research and development efforts for improving the performance of lithium secondary batteries have been actively conducted.
  • the lithium secondary battery is oxidized when lithium ions are inserted / desorbed from the positive electrode and the negative electrode in a state in which an organic electrolyte or a polymer electrolyte is charged between a positive electrode and a negative electrode made of an active material capable of intercalation and deintercalation of lithium ions. Electrical energy is produced by the reduction reaction.
  • Lithium cobalt oxide (LiCoO 2 ) is mainly used as a positive electrode active material of a lithium secondary battery.
  • lithium manganese oxides such as LiMnO 2 having a layered crystal structure and LiMn 2 O 4 having a spinel crystal structure, and lithium nickel oxide (LiNiO 2) ) Is also being considered.
  • LiCoO 2 is most frequently used because of its excellent life characteristics and charging and discharging efficiency, but it has a disadvantage in that its price competitiveness is limited because the low temperature safety and cobalt used as a raw material are expensive materials due to resource limitations. Have.
  • Lithium manganese oxides such as LiMnO 2 and LiMn 2 O 4 have the advantages of excellent thermal safety, low cost, and easy synthesis, but have a problem of small capacity, poor high temperature characteristics, and low conductivity.
  • lithium nickel oxides such as LiNiO 2 are relatively inexpensive and exhibit high discharge capacity, they exhibit rapid phase transition of the crystal structure due to the volume change accompanying charge and discharge cycles, and are stable when exposed to air and moisture. There is a problem that this is sharply lowered.
  • lithium composite transition metal oxides in which a part of nickel is substituted with other transition metals such as manganese and cobalt have been proposed as substitute materials.
  • the lithium composite transition metal oxide containing nickel in a high content has the advantage that the cycle characteristics and capacity characteristics are relatively good, but even in this case, the cycle characteristics rapidly decrease when used for a long period of time, Problems such as swelling and deterioration of thermal safety due to low chemical stability have not been sufficiently solved.
  • One object of the present invention is to provide a method of manufacturing a cathode active material for a lithium secondary battery having improved capacity characteristics, cycle characteristics, and improved durability by controlling the content ratio of the doping element and the coating element of the cathode active material.
  • another object of the present invention is to provide a cathode active material for a lithium secondary battery having improved capacity characteristics, cycle characteristics, and improved durability by controlling the content ratio of the doping element and the coating element.
  • another object of the present invention is to provide a lithium secondary battery positive electrode and a lithium secondary battery including the above-described positive electrode active material for lithium secondary batteries.
  • the present invention is a group consisting of a transition metal hydroxide including a transition metal including nickel (Ni), cobalt (Co) and manganese (Mn), a raw material containing lithium and Al, Mg, Co, V, Ti, Zr and W Preparing a lithium composite transition metal oxide doped with the doping element by mixing a doping raw material including at least one doping element selected from the first baking treatment; And a coating raw material including the lithium composite transition metal oxide and at least one coating element selected from the group consisting of Al, Mg, Co, Ti, Zr, and B, followed by a second calcination treatment to form the lithium composite transition metal oxide.
  • a transition metal hydroxide including a transition metal including nickel (Ni), cobalt (Co) and manganese (Mn), a raw material containing lithium and Al, Mg, Co, V, Ti, Zr and W
  • Preparing a lithium composite transition metal oxide doped with the doping element by mixing a doping raw material including at least one doping
  • the present invention is at least one selected from the group consisting of transition metals including nickel (Ni), cobalt (Co) and manganese (Mn) and Al, Mg, Co, V, Ti, Zr and W doped therein
  • a lithium composite transition metal oxide containing a doping element of and a coating layer formed on the lithium composite transition metal oxide, the coating layer comprising at least one coating element selected from the group consisting of Al, Mg, Co, Ti, Zr, and B.
  • the ratio of the weight of a doping element is 0.3-7,
  • the positive electrode active material for lithium secondary batteries is provided.
  • the present invention provides a cathode for a lithium secondary battery including the cathode active material for a lithium secondary battery described above.
  • the present invention provides a lithium secondary battery comprising the positive electrode for a lithium secondary battery described above.
  • the method of manufacturing a cathode active material for a lithium secondary battery of the present invention includes a doping and coating process by first and second firings, and the ratio of the weight of the doping element to the weight of the coating element in the cathode active material is adjusted to 0.3 to 7. Accordingly, it is possible to improve the high temperature life characteristics and resistance increase of the lithium composite transition metal oxide, in particular, the lithium composite transition metal oxide having a high nickel content, and to realize a high level of capacity characteristics and high temperature storage characteristics.
  • the terms “comprise”, “comprise” or “have” are intended to indicate that there is a feature, number, step, component, or combination thereof, that is, one or more other features, It should be understood that it does not exclude in advance the possibility of the presence or addition of numbers, steps, components, or combinations thereof.
  • % means weight percent unless otherwise indicated.
  • Method for producing a cathode active material for a lithium secondary battery is a transition metal hydroxide, a lithium-containing raw material and Al, Mg, Co, including a transition metal containing nickel (Ni), cobalt (Co) and manganese (Mn)
  • Preparing a lithium composite transition metal oxide doped with the doping element by mixing and firstly baking a doping raw material including at least one doping element selected from the group consisting of V, Ti, Zr, and W; And a coating raw material including the lithium composite transition metal oxide and at least one coating element selected from the group consisting of Al, Mg, Co, Ti, Zr, and B, followed by a second calcination treatment to form the lithium composite transition metal oxide.
  • a cathode active material for a lithium secondary battery in which a coating layer including the coating element is formed thereon, wherein a ratio of the weight of the doping element to the weight of the coating element in the cathode active material for lithium secondary battery is 0.3 to 7;
  • the doping raw material and the coating raw material are added.
  • a cathode active material including a doping element doped therein and a coating element-containing coating layer coated on the surface may be manufactured by the first and second firing processes, and the coating
  • the weight ratio of the element and the doping element is adjusted to a specific range, indicating high structural stability and thermal stability of the active material. Therefore, it is possible to exhibit excellent capacity expression and high temperature cycle characteristics of the battery, and in particular, it can exhibit excellent structural stability and thermal stability in nickel high content lithium composite transition metal oxide or lithium high content lithium composite transition metal oxide. Capacity expression, high temperature cycle characteristics can be realized.
  • Method for producing a cathode active material for a lithium secondary battery is a transition metal hydroxide, a lithium-containing raw material and Al containing at least two or more transition metals selected from the group consisting of nickel (Ni), cobalt (Co) and manganese (Mn)
  • Doping element material comprising at least one doping element selected from the group consisting of Mg, Co, V, Ti, Zr and W is mixed and subjected to first firing to prepare a lithium composite transition metal oxide doped with the doping element It includes a step.
  • the transition metal hydroxide includes a transition metal including nickel (Ni), cobalt (Co) and manganese (Mn).
  • the transition metal hydroxide may be a high content nickel (High-Ni) transition metal hydroxide having a content of nickel (Ni) of 70 mol% or more among all the transition metal elements contained in the transition metal hydroxide. More preferably, the content of nickel (Ni) in the total transition metal element may be 75 mol% or more. As described in the present invention, the use of a transition metal hydroxide of high content nickel (High-Ni) having a content of nickel (Ni) of 70 mol% or more in the entire transition metal element may ensure higher capacity.
  • the transition metal hydroxide may be, for example, a compound represented by Formula 1 below.
  • a + b + c 1, 0.7 ⁇ a ⁇ 1, 0 ⁇ b ⁇ 0.3, and 0 ⁇ c ⁇ 0.3.
  • Ni may be included in an amount corresponding to a, for example, 0.7 ⁇ a ⁇ 1, more specifically 0.75 ⁇ a ⁇ 1.
  • the Ni content in the transition metal hydroxide of Formula 1 is 0.7 or more, the amount of Ni sufficient to contribute to charging and discharging in the cathode active material including the same may be ensured, thereby increasing the capacity of the battery.
  • Co may be included in an amount corresponding to b, that is, 0 ⁇ b ⁇ 0.3.
  • the content of Co in the transition metal hydroxide of Formula 1 exceeds 0.3, there is a fear of increased cost.
  • the Co may be included in a content of 0.05 ⁇ b ⁇ 0.2 more specifically.
  • Mn may ensure lifetime characteristics and structural stability. In consideration of such an effect, the Mn may be included in an amount corresponding to c, that is, 0 ⁇ c ⁇ 0.3. When c in the transition metal hydroxide of Formula 1 exceeds 0.3, there is a concern that the output characteristics and the charge / discharge efficiency of the battery may be lowered, and Mn may be included in an amount of 0.05 ⁇ c ⁇ 0.2.
  • the transition metal hydroxide may be co-precipitated with a metal solution containing at least two or more transition metal-containing raw materials selected from the group consisting of nickel (Ni) -containing raw materials, cobalt (Co) -containing raw materials and manganese (Mn) -containing raw materials. It can manufacture.
  • the nickel (Ni) -containing raw material may be, for example, nickel-containing acetates, nitrates, sulfates, halides, sulfides, hydroxides, oxides or oxyhydroxides. Specifically, Ni (OH) 2 , NiO, NiOOH, NiCO 3 ⁇ 2Ni (OH) 2 ⁇ 4H 2 O, NiC 2 O 2 ⁇ 2H 2 O, Ni (NO 3 ) 2 ⁇ 6H 2 O, NiSO 4 , NiSO 4 ⁇ 6H 2 O, fatty acid nickel salts, nickel halides Or a combination thereof, but is not limited thereto.
  • the cobalt-containing raw material may be cobalt-containing acetate, nitrate, sulfate, halide, sulfide, hydroxide, oxide or oxyhydroxide, and the like.
  • Co (OH) 2 CoOOH, Co (OCOCH 3 ) 2. 4H 2 O, Co (NO 3 ) 2 6H 2 O, Co (SO 4 ) 2 ⁇ 7H 2 O or a combination thereof, but is not limited thereto.
  • the manganese (Mn) -containing raw material may be, for example, manganese-containing acetates, nitrates, sulfates, halides, sulfides, hydroxides, oxides, oxyhydroxides, or combinations thereof, specifically Mn 2 O 3 , MnO 2 Manganese oxides such as Mn 3 O 4 and the like; Manganese salts such as MnCO 3 , Mn (NO 3 ) 2 , MnSO 4 , MnSO 4 .H 2 O, manganese acetate, dicarboxylic acid manganese salt, manganese citrate, fatty acid manganese salt; Manganese oxy hydroxide, manganese chloride or a combination thereof, but is not limited thereto.
  • the metal solution is an organic solvent capable of uniformly mixing nickel (Ni) -containing raw material, cobalt (Co) -containing raw material and / or manganese (Mn) -containing raw material with a solvent, specifically water or water (eg For example, it may be prepared by adding to a mixed solvent of alcohol or the like, or by mixing an aqueous solution of a nickel (Ni) -containing raw material, a cobalt (Co) -containing raw material and / or a manganese (Mn) -containing raw material. have.
  • the transition metal hydroxide may be prepared by co-precipitation reaction by adding an ammonium cation-containing complex forming agent and a basic compound to the metal solution.
  • the ammonium cation-containing complex former may be, for example, NH 4 OH, (NH 4 ) 2 SO 4 , NH 4 NO 3 , NH 4 Cl, CH 3 COONH 4 , NH 4 CO 3, or a combination thereof. It is not limited to this.
  • the ammonium cation-containing complex forming agent may be used in the form of an aqueous solution, wherein a solvent may be a mixture of water or an organic solvent (specifically, alcohol, etc.) that can be mixed with water uniformly.
  • the basic compound may be a hydroxide of an alkali metal or an alkaline earth metal such as NaOH, KOH, or Ca (OH) 2 , a hydrate thereof, or a combination thereof.
  • the basic compound may also be used in the form of an aqueous solution, and as the solvent, a mixture of water or an organic solvent (specifically, alcohol, etc.) that can be uniformly mixed with water may be used.
  • the basic compound is added to adjust the pH of the reaction solution, the pH of the metal solution may be added in an amount of 9 to 14.
  • the coprecipitation reaction may be performed at a temperature of 25 ° C. to 70 ° C. under an inert atmosphere such as nitrogen or argon.
  • the lithium-containing raw material may be lithium-containing carbonate (for example, lithium carbonate), hydrate (for example, lithium hydroxide I hydrate (LiOH ⁇ H 2 O), etc.), hydroxide (for example, lithium hydroxide, etc.), nitrate ( Examples thereof include lithium nitrate (LiNO 3 ) and the like, chlorides (for example, lithium chloride (LiCl) and the like) and the like, and one or a mixture of two or more thereof may be used.
  • lithium-containing carbonate for example, lithium carbonate
  • hydrate for example, lithium hydroxide I hydrate (LiOH ⁇ H 2 O), etc.
  • hydroxide for example, lithium hydroxide, etc.
  • nitrate examples thereof include lithium nitrate (LiNO 3 ) and the like, chlorides (for example, lithium chloride (LiCl) and the like) and the like, and one or a mixture of two or more thereof may be used.
  • the doping raw material is a material which is mixed with the above-described transition metal hydroxide and lithium-containing raw material to be first baked and supplies a doping element to be doped in the positive electrode active material.
  • the doping raw material includes at least one doping element selected from the group consisting of Al, Mg, Co, V, Ti, Zr and W.
  • the doping element is doped inside the lithium composite transition metal oxide by the first firing to be described later, and the structural stability of the lithium composite transition metal oxide, in particular Ni high content lithium composite transition metal oxide and / or Li high content lithium composite transition metal oxide Thermal stability can be further improved.
  • the doping raw material is preferably at least one doping element selected from the group consisting of Zr, Co and Al, more preferably at least one doping element selected from the group consisting of Zr and Al, more preferably Zr Most preferably, Zr and Al may be included, and when the positive electrode active material or the lithium composite transition metal oxide is doped with the aforementioned doping element, the structural stability and the passion stability improvement effect of the active material are further improved.
  • the dose of the doping raw material may be appropriately adjusted in consideration of the content and content ratio of the doping element in the positive electrode active material to be described later.
  • the doping raw material may include at least one first doping element selected from the group consisting of Co and Zr and at least one second doping element selected from the group consisting of Al, Mg, V, and W.
  • first doping element selected from the group consisting of Co and Zr
  • second doping element selected from the group consisting of Al, Mg, V, and W.
  • the first doping element may be preferably Zr
  • the second doping element may be preferably Al, thereby maximizing the aforementioned effects.
  • the doping raw material may include the first doping element and the second doping element in a weight ratio of 30:70 to 70:30, preferably 40:60 to 60:40, and in the above-described range, lithium
  • the effect of reducing the movement resistance of the ions, improving the capacity and output according to the durability, and more preferably may be realized.
  • the transition metal hydroxide, the lithium-containing raw material and the doping raw material may be mixed and first calcined to produce a lithium composite transition metal oxide doped with the doping element.
  • the doping element is doped into the lithium composite transition metal oxide, so that the structural stability and thermal properties of the lithium composite transition metal oxide, in particular, Ni high content lithium composite transition metal oxide and / or Li high content lithium composite transition metal oxide Stability can be further improved to prevent the collapse of the active material structure, and the bonding force between the transition metal and oxygen is improved, thereby preventing oxygen desorption and improving electrolyte side reaction prevention. Accordingly, the lithium composite transition metal oxide according to the present invention can improve excellent capacity expression and high temperature cycle characteristics of the active material.
  • the lithium composite transition metal oxide may be a lithium composite transition metal oxide in which the ratio (Li / Me) of the number of moles of lithium (Li) to the total number of moles of the transition metal is 1 or more, and thus the content of doping elements and coating elements to be described later. Along with the ratio, the capacity characteristics and output characteristics of the battery can be improved.
  • the lithium composite transition metal oxide may have a ratio of the number of moles of lithium (Li) to the total number of moles of the transition metal (Li / Me) of 1 to 1.15, more specifically 1.05 to 1.1.
  • (Li / Me) is in the above-mentioned range, it is good in terms of excellent capacity and output characteristics of the battery.
  • the first firing may be performed at 700 ° C to 900 ° C, more preferably at 730 ° C to 850 ° C, and most preferably at 750 ° C to 830 ° C.
  • first firing temperature is in the above-described range, sufficient reaction of the mixture can be achieved and uniform growth of the particles is possible.
  • the first firing may be performed at the temperature for 6 hours to 15 hours, preferably 8 hours to 12 hours.
  • the first firing may be performed in an oxygen atmosphere.
  • mass transfer and reactivity may be promoted to uniformly doping the cathode active material, and the amount of unreacted lithium remaining in the mixture may be reduced.
  • washing the lithium composite transition metal oxide after the first firing is performed. It may further include.
  • the washing process can be used without limitation washing methods known in the art, specifically, may be performed by mixing the lithium composite transition metal oxide and water.
  • Method for producing a cathode active material for a lithium secondary battery according to the present invention is a mixture of a coating raw material containing the lithium composite transition metal oxide and at least one coating element selected from the group consisting of Al, Mg, Co, Ti, Zr and B. And preparing a cathode active material for a lithium secondary battery in which a coating layer including the coating element is formed on the lithium composite transition metal oxide by performing a second baking treatment.
  • the method of manufacturing a cathode active material for a lithium secondary battery may form a coating layer including the coating element on a lithium composite transition metal oxide by further performing a coating layer forming process by a second firing in addition to a doping process. Accordingly, the chemical stability of the surface of the active material may be further improved, the structure collapse due to the instability of the active material may be prevented, and the movement of lithium ions may be facilitated to improve output characteristics.
  • the coating element contained in the coating layer may be oxidized preferentially to the transition metal in the lithium composite transition metal oxide, thereby effectively preventing side reactions of the lithium composite transition metal oxide and the electrolyte, and reducing the migration resistance of lithium ions. The rise can be prevented.
  • the coating raw material may include at least one coating element selected from the group consisting of Al, Mg, Co, Ti, Zr and B, preferably at least one selected from the group consisting of Al, Co and B. It may include a coating element, more preferably may include at least one coating element selected from the group consisting of Al and B, more preferably includes a coating element of B, most preferably Al and B can do.
  • the coating raw material may include a first coating element including at least one selected from the group consisting of Mg, Co, Ti, Zr, and B and a second coating element consisting of Al.
  • a first coating element including at least one selected from the group consisting of Mg, Co, Ti, Zr, and B
  • a second coating element consisting of Al As the second coating element made of Al is used together with the first coating element as the coating raw material, the effect of preventing structural collapse of the active material through surface protection of the active material may be further improved.
  • the first coating element may be at least one selected from the group consisting of Co and B, more preferably B.
  • the coating raw material may include the first coating element and the second coating element in a weight ratio of 30:70 to 70:30, preferably 40:60 to 60:40, and when in the above range Surface protection and structural stability of the effect can be more preferably implemented.
  • the coating raw material may be adjusted in consideration of the coating element content and content ratio when forming a coating layer on the lithium composite transition metal oxide.
  • the second firing may be carried out, for example, at 200 ° C to 500 ° C, preferably at 250 ° C to 400 ° C.
  • the second firing temperature is in the above-described range, smooth and sufficient formation of the coating layer is possible.
  • the second firing may be performed at a corresponding temperature for 3 hours to 12 hours, preferably 5 hours to 10 hours.
  • the second firing may be performed in an air or oxygen atmosphere, thereby facilitating material movement and reactivity, thereby enabling smooth formation of the coating layer.
  • the ratio of the weight of the doping element to the weight of the coating element in the cathode active material for lithium secondary batteries is 0.3 to 7, preferably 0.4 to 4.5, more preferably
  • the doping raw material and the coating raw material is added to be 0.6 to 4.3, most preferably 1.5 to 3.5.
  • the coating layer When the ratio of the weight of the doping element to the weight of the coating element is less than 0.3, the coating layer may be excessively formed, thereby increasing the surface resistance of the positive electrode active material. Accordingly, the charge and discharge efficiency may decrease, and the output characteristics may be deteriorated.
  • the ratio of the weight of the doping element to the weight of the coating element is greater than 7, there is a fear of reducing the high temperature storage characteristics and durability due to the relatively excessive amount of doping, the charge and discharge capacity may be reduced.
  • the ratio of the weight of the doping element to the weight of the coating element according to the present invention is adjusted in consideration of the content of the coating element contained in the coating raw material to be added during the preparation of the positive electrode active material and the content of the doping element contained in the doping raw material Can be implemented.
  • the doping raw material so that the content of the doping element is 2,500ppm to 14,000ppm, preferably 3,000ppm to 9,000ppm with respect to the total weight of the positive electrode active material for lithium secondary battery.
  • the substance can be added.
  • the content of the coating element is 1,000 ppm to 9,400 ppm, preferably 1,500 ppm to 9,000 ppm, more preferably based on the total weight of the cathode active material for lithium secondary battery.
  • the coating raw material may be added so as to be 1,500 ppm to 5,000 ppm.
  • the content of the doping element and / or coating element included in the cathode active material for a lithium secondary battery, and the content ratio thereof may be adjusted, for example, in consideration of the amount of the doping raw material and the coating raw material in preparation.
  • the above-described content or content ratio may be measured or calculated through, for example, inductively coupled plasma mass spectrometry (ICP-OES), but is not limited thereto.
  • ICP-OES inductively coupled plasma mass spectrometry
  • the average particle diameter (D 50 ) of the positive electrode active material for the lithium secondary battery may be 5 ⁇ m to 30 ⁇ m, preferably 10 ⁇ m to 20 ⁇ m, more preferably 14 ⁇ m to 18 ⁇ m, in the range of the active material rolling process. It is preferable from the viewpoint of the rollability and energy density improvement of the.
  • the average particle diameter (D 50 ) may be defined as a particle size corresponding to 50% of the volume accumulation amount in the particle size distribution curve.
  • the average particle diameter D 50 may be measured using, for example, a laser diffraction method.
  • the measuring method of the average particle diameter (D 50 ) of the positive electrode active material is dispersed in the dispersion medium particles in a dispersion medium, and then introduced into a commercially available laser diffraction particle size measuring apparatus (for example, Microtrac MT 3000) to After irradiating an ultrasonic wave of 28 kHz with an output of 60 W, an average particle diameter D 50 corresponding to 50% of the volume accumulation amount in the measuring device can be calculated.
  • the present invention also provides a cathode active material for a lithium secondary battery.
  • the cathode active material for a lithium secondary battery is at least one selected from the group consisting of transition metals including nickel (Ni), cobalt (Co) and manganese (Mn) and Al, Mg, Co, V, Ti, Zr and W doped therein.
  • Lithium composite transition metal oxide containing one doping element and a coating layer formed on the lithium composite transition metal oxide, the coating layer comprising at least one coating element selected from the group consisting of Al, Mg, Co, Ti, Zr, and B.
  • the ratio of the weight of a doping element is 0.3-7.
  • the positive electrode active material for a lithium secondary battery may be prepared according to the above-described method for preparing a positive electrode active material for a lithium secondary battery, a lithium composite transition metal oxide, a coating layer, and a manufacturing method, a component, and a content thereof doped with the doping element therein. As mentioned above.
  • the doping element is at least one selected from the group consisting of Al, Mg, Co, V, Ti, Zr and W, preferably at least one selected from the group consisting of Zr, Co and Al, more preferably Zr and Al At least one selected from the group consisting of, more preferably Zr, most preferably Zr and Al may be included, and when the above-mentioned doping element is included in the positive electrode active material, the structural stability and passion stability improvement effect of the active material is further Is improved.
  • the doping element may include at least one first doping element selected from the group consisting of Co and Zr and at least one second doping element selected from the group consisting of Al, Mg, V, and W.
  • first doping element may be preferably Zr
  • second doping element may be preferably Al, thereby maximizing the aforementioned effects.
  • the doping element may include the first doping element and the second doping element in a weight ratio of 30:70 to 70:30, preferably 40:60 to 60:40, and when in the above-described range, lithium ions
  • the effect of reducing the resistance of movement, the capacity and the effect of improving the output according to the improved durability can be more preferably implemented.
  • the doping element may be included in an amount of 2,500 ppm to 14,000 ppm, preferably 3,000 ppm to 9,000 ppm with respect to the total weight of the cathode active material for the lithium secondary battery.
  • the coating element is at least one selected from the group consisting of Al, Mg, Co, Ti, Zr and B, preferably at least one selected from the group consisting of Al, Co and B, more preferably Al and B At least one selected from the group, more preferably B, most preferably Al and B.
  • the coating element may include a first coating element including at least one selected from the group consisting of Mg, Co, Ti, Zr, and B and a second coating element consisting of Al.
  • a first coating element including at least one selected from the group consisting of Mg, Co, Ti, Zr, and B
  • a second coating element consisting of Al As the second coating element made of Al is used together with the first coating element as the coating element, the effect of preventing structural collapse of the active material through surface protection of the active material may be further improved.
  • the first coating element may be at least one selected from the group consisting of Co and B, more preferably B.
  • the coating element may include the first coating element and the second coating element in a weight ratio of 30:70 to 70:30, preferably 40:60 to 60:40, and when in the above range, Surface protection and structural stability improvement effect can be implemented more preferably.
  • the coating element may be included in an amount of 1,000 ppm to 9,400 ppm, preferably 1,500 ppm to 9,000 ppm, and more preferably 1,500 ppm to 5,000 ppm, based on the total weight of the cathode active material for the lithium secondary battery.
  • the content of the coating element and the doping element in the cathode active material is controlled at a specific ratio, indicating high structural stability and thermal stability of the active material. Therefore, it is possible to exhibit excellent capacity expression and high temperature cycle characteristics of the battery, and in particular, it can exhibit excellent structural stability and thermal stability in nickel high content lithium composite transition metal oxide or lithium high content lithium composite transition metal oxide. Capacity expression, high temperature cycle characteristics can be realized.
  • the present invention provides a lithium secondary battery positive electrode comprising the positive electrode active material for the lithium secondary battery.
  • the positive electrode for a lithium secondary battery is formed on the positive electrode current collector and the positive electrode current collector, and includes a positive electrode active material layer containing the positive electrode active material for the lithium secondary battery.
  • the positive electrode current collector is not particularly limited as long as it has conductivity without causing chemical changes to the battery, and is, for example, stainless steel, aluminum, nickel, titanium, calcined carbon, or aluminum or stainless steel.
  • the surface-treated with carbon, nickel, titanium, silver, etc. can be used for the surface.
  • the positive electrode current collector may have a thickness of about 3 to 500 ⁇ m, and may form fine irregularities on the surface of the positive electrode current collector to increase the adhesion of the positive electrode active material.
  • it can be used in various forms, such as a film, a sheet, a foil, a net, a porous body, a foam, a nonwoven body.
  • the cathode active material layer may include a conductive material and a binder together with the cathode active material for a lithium secondary battery described above.
  • the conductive material is used to impart conductivity to the electrode, and in the battery constituted, any conductive material may be used as long as it has electronic conductivity without causing chemical change.
  • any conductive material may be used as long as it has electronic conductivity without causing chemical change.
  • Specific examples thereof include graphite such as natural graphite and artificial graphite; Carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, summer black and carbon fiber; Metal powder or metal fibers such as copper, nickel, aluminum, and silver; Conductive whiskeys such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Or conductive polymers such as polyphenylene derivatives, and the like, or a mixture of two or more kinds thereof may be used.
  • the conductive material may typically be included in an amount of 1 to 30% by weight based on the total weight of the positive electrode active material layer.
  • the binder serves to improve adhesion between the positive electrode active material particles and the adhesion between the positive electrode active material and the positive electrode current collector.
  • Specific examples include polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinyl alcohol, polyacrylonitrile, carboxymethyl cellulose (CMC).
  • the binder may be included in an amount of 1 to 30 wt% based on the total weight of the cathode active material layer.
  • the lithium secondary battery positive electrode may be manufactured according to a conventional positive electrode manufacturing method except for using the positive electrode active material described above.
  • the composition for forming a cathode active material layer including the cathode active material and optionally, a binder and a conductive material may be coated on a cathode current collector, followed by drying and rolling.
  • the type and content of the cathode active material, the binder, and the conductive material are as described above.
  • the solvent may be a solvent generally used in the art, and may include dimethyl sulfoxide (DMSO), isopropyl alcohol, N-methylpyrrolidone (NMP), acetone or acetone. Water, and the like, one of these alone or a mixture of two or more thereof may be used.
  • the amount of the solvent is sufficient to dissolve or disperse the positive electrode active material, the conductive material, and the binder in consideration of the coating thickness of the slurry and the production yield, and to have a viscosity that can exhibit excellent thickness uniformity during application for the production of the positive electrode. Do.
  • the lithium secondary battery positive electrode may be manufactured by casting the composition for forming the positive electrode active material layer on a separate support, and then laminating the film obtained by peeling from the support onto a positive electrode current collector.
  • the present invention provides an electrochemical device including the positive electrode for a lithium secondary battery.
  • the electrochemical device may be specifically a battery or a capacitor, and more specifically, may be a lithium secondary battery.
  • the lithium secondary battery specifically includes a positive electrode, a negative electrode positioned to face the positive electrode, a separator and an electrolyte interposed between the positive electrode and the negative electrode, and the positive electrode is the same as the positive electrode for a lithium secondary battery described above.
  • the lithium secondary battery may further include a battery container for accommodating the electrode assembly of the positive electrode, the negative electrode, and the separator, and a sealing member for sealing the battery container.
  • the negative electrode includes a negative electrode current collector and a negative electrode active material layer positioned on the negative electrode current collector.
  • the negative electrode current collector is not particularly limited as long as it has high conductivity without causing chemical change in the battery.
  • the negative electrode current collector may be formed on a surface of copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper, or stainless steel. Surface-treated with carbon, nickel, titanium, silver, and the like, aluminum-cadmium alloy and the like can be used.
  • the negative electrode current collector may have a thickness of about 3 to 500 ⁇ m, and like the positive electrode current collector, fine concavities and convexities may be formed on the surface of the current collector to enhance the bonding force of the negative electrode active material.
  • it can be used in various forms, such as a film, a sheet, a foil, a net, a porous body, a foam, a nonwoven body.
  • the negative electrode active material layer optionally includes a binder and a conductive material together with the negative electrode active material.
  • the negative electrode active material layer is coated with a negative electrode active material, and optionally a composition for forming a negative electrode including a binder and a conductive material on a negative electrode current collector and dried, or casting the negative electrode forming composition on a separate support It can also be produced by laminating a film obtained by peeling from this support onto a negative electrode current collector.
  • a compound capable of reversible intercalation and deintercalation of lithium may be used.
  • Specific examples include carbonaceous materials such as artificial graphite, natural graphite, graphitized carbon fibers, and amorphous carbon;
  • Metallic compounds capable of alloying with lithium such as Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si alloys, Sn alloys or Al alloys;
  • a composite including the metallic compound and the carbonaceous material such as a Si-C composite or a Sn-C composite, and any one or a mixture of two or more thereof may be used.
  • a metal lithium thin film may be used as the anode active material.
  • the carbon material both low crystalline carbon and high crystalline carbon can be used. Soft crystalline carbon and hard carbon are typical low crystalline carbon, and high crystalline carbon is amorphous, plate, scaly, spherical or fibrous natural graphite or artificial graphite, Kish graphite (Kish) graphite, pyrolytic carbon, mesophase pitch based carbon fiber, meso-carbon microbeads, mesophase pitches and petroleum or coal tar pitch High-temperature calcined carbon such as derived cokes is typical.
  • the binder and the conductive material may be the same as described above in the positive electrode.
  • the separator is to separate the negative electrode and the positive electrode and to provide a passage for the movement of lithium ions, if it is usually used as a separator in a lithium secondary battery can be used without particular limitation, in particular for ion transfer of the electrolyte It is desirable to have a low resistance against the electrolyte and excellent electrolytic solution-moisture capability.
  • a porous polymer film for example, a porous polymer film made of a polyolefin-based polymer such as ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer and ethylene / methacrylate copolymer, or the like Laminate structures of two or more layers may be used.
  • a porous nonwoven fabrics such as nonwoven fabrics made of high melting point glass fibers, polyethylene terephthalate fibers and the like may be used.
  • a coated separator containing a ceramic component or a polymer material may be used to secure heat resistance or mechanical strength, and may be optionally used as a single layer or a multilayer structure.
  • the electrolyte used in the present invention includes an organic liquid electrolyte, an inorganic liquid electrolyte, a solid polymer electrolyte, a gel polymer electrolyte, a solid inorganic electrolyte, a molten inorganic electrolyte, and the like, which can be used in manufacturing a lithium secondary battery. It doesn't happen.
  • the electrolyte may include an organic solvent and a lithium salt.
  • the organic solvent may be used without particular limitation as long as it can serve as a medium through which ions involved in the electrochemical reaction of the battery can move.
  • the organic solvent may be an ester solvent such as methyl acetate, ethyl acetate, ⁇ -butyrolactone or ⁇ -caprolactone; Ether solvents such as dibutyl ether or tetrahydrofuran; Ketone solvents such as cyclohexanone; Aromatic hydrocarbon solvents such as benzene and fluorobenzene; Dimethylcarbonate (DMC), diethylcarbonate (DEC), methylethylcarbonate (MEC), ethylmethylcarbonate (EMC), ethylene carbonate (EC), propylene carbonate, Carbonate solvents such as PC); Alcohol solvents such as ethyl alcohol and isopropyl alcohol; Nitriles such as R-CN (R is a C2 to C20 linear, branched or cyclic hydrocarbon group, which may include a
  • carbonate-based solvents are preferable, and cyclic carbonates having high ionic conductivity and high dielectric constant (for example, ethylene carbonate or propylene carbonate) that can improve the charge and discharge performance of a battery, and low viscosity linear carbonate compounds (for example, a mixture of ethyl methyl carbonate, dimethyl carbonate or diethyl carbonate and the like is more preferable.
  • the cyclic carbonate and the chain carbonate may be mixed and used in a volume ratio of about 1: 1 to about 1: 9, so that the performance of the electrolyte may be excellent.
  • the lithium salt may be used without particular limitation as long as it is a compound capable of providing lithium ions used in a lithium secondary battery.
  • the lithium salt is LiPF 6 , LiClO 4 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAl0 4 , LiAlCl 4 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiN (C 2 F 5 SO 3 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) 2 .
  • LiCl, LiI, or LiB (C 2 O 4 ) 2 and the like can be used.
  • the concentration of the lithium salt is preferably used within the range of 0.1 to 2.0M. When the concentration of the lithium salt is included in the above range, since the electrolyte has an appropriate conductivity and viscosity, it can exhibit excellent electrolyte performance, and lithium ions can move effectively.
  • the electrolyte includes, for example, haloalkylene carbonate-based compounds such as difluoro ethylene carbonate, pyridine, tri, etc. for the purpose of improving battery life characteristics, reducing battery capacity, and improving discharge capacity of the battery.
  • haloalkylene carbonate-based compounds such as difluoro ethylene carbonate, pyridine, tri, etc.
  • Ethyl phosphite triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphate triamide, nitrobenzene derivative, sulfur, quinone imine dye, N-substituted oxazolidinone, N, N-substituted imida
  • One or more additives such as zolidine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2-methoxy ethanol or aluminum trichloride may be included. In this case, the additive may be included in 0.1 to 5% by weight based on the total weight of the electrolyte.
  • the lithium secondary battery including the cathode active material for a lithium secondary battery according to the present invention exhibits excellent discharge capacity, output characteristics, and capacity retention rate, portable devices such as mobile phones, laptop computers, digital cameras, and hybrids It is useful in the field of electric vehicles such as a hybrid electric vehicle (HEV).
  • HEV hybrid electric vehicle
  • the present invention provides a battery module including the lithium secondary battery as a unit cell and a battery pack including the same.
  • the battery module or the battery pack is a power tool (Power Tool); Electric vehicles including electric vehicles (EVs), hybrid electric vehicles, and plug-in hybrid electric vehicles (PHEVs); Or it can be used as a power source for any one or more of the system for power storage.
  • Power Tool Electric vehicles including electric vehicles (EVs), hybrid electric vehicles, and plug-in hybrid electric vehicles (PHEVs); Or it can be used as a power source for any one or more of the system for power storage.
  • Transition metal hydroxide Ni 0.88 Co 0.09 Mn 0.03 (OH) 2 prepared by mixing and co-precipitating NiSO 4 ⁇ 6H 2 O, CoSO 4 ⁇ 7H 2 O, and MnSO 4 ⁇ H 2 O, LiOH as a raw material containing lithium, doped ZrO 2 and Al 2 O 3 were mixed as raw materials. At this time, the ratio Li / Me of the number of moles of lithium (Li) to the total number of moles of transition metals (nickel, cobalt and manganese) was adjusted to 1.07 to add a lithium-containing raw material, and Zr to the weight of the positive electrode active material for a lithium secondary battery described later. The doping raw material was added so as to be 2,000 ppm and Al 2,000 ppm.
  • the primary calcined product was mixed with ultrapure water in a weight ratio of 1: 1, washed with water for 20 minutes, and filtered with a reduced pressure filter. After filtration, drying was performed under vacuum at 130 ° C. to prepare a lithium composite transition metal oxide doped with Zr and Al.
  • the lithium composite transition metal oxide and H 3 BO 3 and Al (OH) 3 were mixed as a coating raw material.
  • the coating raw material was added so that B 1,000ppm, Al 1,000ppm relative to the weight of the positive electrode active material for a lithium secondary battery to be described later.
  • secondary baking was performed at 350 ° C. for 7 hours to prepare a cathode active material for lithium secondary battery (average particle diameter (D 50 ) 15 ⁇ m) having a coating layer including B and Al formed on the lithium composite transition metal oxide.
  • the ratio of the doping element weight / coating element weight was 2.
  • the positive electrode active material for lithium secondary batteries of Examples 2 to 11 and Comparative Examples 1 to 3 was prepared except that the doping raw material and the coating raw material were adjusted, and their kinds and dosages were adjusted.
  • the doping element, the content of the coating element, and the weight ratio thereof of Examples 1 to 8 and Comparative Examples 1 to 3 are shown in Table 1 below.
  • Each positive electrode active material, carbon black conductive material and PVdF binder prepared by Examples and Comparative Examples were mixed in an N-methylpyrrolidone solvent in a weight ratio of 96.5: 1.5: 2 in a positive electrode mixture ( Viscosity: 5000 mPa ⁇ s) was prepared, and applied to one surface of an aluminum current collector, dried at 130 ° C., followed by rolling to prepare a positive electrode.
  • the negative electrode used lithium metal.
  • An electrode assembly was manufactured between a cathode and an anode prepared as described above through a separator of porous polyethylene, the electrode assembly was placed in a case, and an electrolyte was injected into the case to prepare a lithium secondary battery half cell.
  • the positive electrode active material for lithium secondary batteries of the examples prepared by the method for preparing a positive electrode active material for lithium secondary batteries of the present invention exhibited better performance than the comparative examples in capacity retention.
  • the ratio of doping element weight to coating element weight in the active material is in a preferred range, and in Examples 1 and 2, in which the doping elements are Zr and Ar, and the coating elements are B and Al, the capacity retention rate is greater than those of Examples 3 to 11. Was rated better.
  • the increase rate of resistance at 30 cycles was calculated by the following equation.
  • the positive electrode active material for a lithium secondary battery according to the embodiments has a lower initial resistance and a lower rate of increase of resistance than the comparative examples.
  • Examples 1 and 2 in which the ratio of the weight of the doping element to the weight of the coating element in the active material is a preferred range, the doping elements are Zr and Ar, and the coating elements are B and Al, the initial resistance is greater than those of Examples 3 to 11. And it can be seen that the resistance increase rate is rather low.
  • Each lithium secondary battery half-cell manufactured using the respective positive electrode active materials prepared by the Examples and Comparative Examples was charged with a current of 0.2C and decomposed in a state of charge of 100% SOC.
  • the anode and a new electrolyte were added to the DSC measurement cell, and thermal stability was evaluated by differential scanning calorimetry (DSC) while increasing the temperature from 400 ° C to 10 ° C per minute.
  • DSC differential scanning calorimetry
  • the positive electrode active material for a lithium secondary battery according to the embodiments has a higher maximum peak value measured by DSC than in the case of the comparative examples, and thus it can be confirmed that the structural stability and thermal stability is excellent.
  • the DSC maximum peak temperature is lower than the examples, it can be seen that the thermal stability is not good.
  • the positive electrode active material for a lithium secondary battery according to the exemplary embodiments is generally superior in charge and discharge capacity and efficiency as compared with the comparative examples.
  • Comparative Examples 2 and 3 the charge and discharge capacity and efficiency are much lower than those in the Examples.
  • Comparative Example 1 the charge and discharge capacity and the efficiency are similar to those of the Examples, but as described above, Comparative Example 1 has a much lower performance than the Examples in terms of capacity retention, resistance characteristics, and thermal stability. You can see this is not good.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명에 따른 리튬 이차전지용 양극 활물질의 제조방법은 니켈(Ni), 코발트(Co) 및 망간(Mn)을 포함하는 전이금속을 포함하는 전이금속 수산화물, 리튬 함유 원료 물질 및 Al, Mg, Co, V, Ti, Zr 및 W로 이루어진 군에서 선택된 적어도 1종의 도핑 원소를 포함하는 도핑 원료 물질을 혼합하고 제1 소성 처리하여 상기 도핑 원소가 도핑된 리튬 복합 전이금속 산화물을 제조하는 단계; 및 상기 리튬 복합 전이금속 산화물 및 Al, Mg, Co, Ti, Zr 및 B로 이루어진 군에서 선택된 적어도 1종의 코팅 원소를 포함하는 코팅 원료 물질을 혼합하고 제2 소성 처리하여 상기 리튬 복합 전이금속 산화물 상에 상기 코팅 원소를 포함하는 코팅층이 형성된 리튬 이차전지용 양극 활물질을 제조하는 단계를 포함하고, 상기 리튬 이차전지용 양극 활물질 중 상기 코팅 원소의 중량 대비 상기 도핑 원소의 중량의 비율이 0.3 내지 7이 되도록 상기 도핑 원료 물질 및 상기 코팅 원료 물질을 투입한다.

Description

리튬 이차전지용 양극 활물질의 제조방법, 리튬 이차전지용 양극 활물질, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
관련출원과의 상호인용
본 출원은 2018년 4월 4일 자 한국 특허 출원 제10-2018-0039359호, 2019년 3월 20일 자 한국 특허 출원 제10-2019-0031933호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술 분야
본 발명은 리튬 이차전지용 양극 활물질의 제조방법, 리튬 이차전지용 양극 활물질, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지에 관한 것이다.
최근 휴대전화, 노트북 컴퓨터, 전기 자동차 등 전지를 사용하는 전자기구의 급속한 보급에 수반하여 소형 경량이면서도 상대적으로 고용량인 이차전지의 수요가 급속히 증대되고 있다. 특히, 리튬 이차전지는 경량이고 고에너지 밀도를 가지고 있어 휴대 기기의 구동 전원으로서 각광을 받고 있다. 이에 따라, 리튬 이차전지의 성능 향상을 위한 연구개발 노력이 활발하게 진행되고 있다.
리튬 이차전지는 리튬 이온의 삽입(intercalation) 및 탈리(deintercalation)가 가능한 활물질로 이루어진 양극과 음극 사이에 유기 전해액 또는 폴리머 전해액을 충전시킨 상태에서 리튬 이온이 양극 및 음극에서 삽입/탈리될 때의 산화와 환원 반응에 의해 전기 에너지가 생산된다.
리튬 이차전지의 양극 활물질로는 리튬 코발트 산화물(LiCoO2)이 주로 사용되고 있고, 그 외에 층상 결정구조의 LiMnO2, 스피넬 결정구조의 LiMn2O4 등의 리튬 망간 산화물과, 리튬 니켈 산화물(LiNiO2)의 사용도 고려되고 있다.
상기 양극 활물질들 중 LiCoO2은 수명 특성 및 충방전 효율이 우수하여 가장 많이 사용되고 있지만, 고온 안전성이 떨어지고, 원료로서 사용되는 코발트가 자원적 한계로 인해 고가의 물질이므로 가격 경쟁력에 한계가 있다는 단점을 가지고 있다.
LiMnO2, LiMn2O4 등의 리튬 망간 산화물은 열적 안전성이 우수하고 가격이 저렴하며 합성이 용이하다는 장점이 있지만, 용량이 작고 고온 특성이 열악하며 전도성이 낮다는 문제점이 있다.
또한, LiNiO2 등의 리튬 니켈 산화물은 비교적 값이 싸고 높은 방전용량의 전지 특성을 나타내고 있으나, 충방전 사이클에 동반하는 체적 변화에 따라 결정 구조의 급격한 상전이가 나타나고, 공기와 습기에 노출되었을 때 안정성이 급격히 저하되는 문제점이 있다.
이에, 최근에는 대체 물질로서 니켈의 일부를 망간, 코발트 등의 다른 전이금속으로 치환한 형태의 리튬 복합 전이금속 산화물이 제안되었다. 특히, 니켈을 고함량으로 포함하는 리튬 복합 전이금속 산화물의 경우 상대적으로 사이클 특성 및 용량 특성이 우수하다는 장점이 있지만, 이 경우에도 장기간 사용시에는 사이클 특성이 급격히 저하되고, 전지에서의 가스 발생에 의한 스웰링, 낮은 화학적 안정성에 따른 열적 안전성의 저하 등의 문제는 충분히 해결되지 못하고 있다.
따라서, 향상된 출력 및 사이클 특성을 발휘하면서도, 열적 안전성 문제를 해결할 수 있는 양극 활물질에 대한 필요성이 높은 실정이다.
[선행기술문헌]
[특허문헌]
한국등록특허 제10-1510940호
본 발명의 일 과제는 양극 활물질의 도핑 원소 및 코팅 원소의 함량비를 조절함으로써, 향상된 용량 특성, 사이클 특성을 가지며, 내구성을 개선한 리튬 이차전지용 양극 활물질의 제조방법을 제공하는 것이다.
또한, 본 발명의 다른 과제는 도핑 원소 및 코팅 원소의 함량비를 조절함으로써, 향상된 용량 특성, 사이클 특성을 가지며, 내구성을 개선한 리튬 이차전지용 양극 활물질을 제공하는 것이다.
또한, 본 발명의 또 다른 과제는 전술한 리튬 이차전지용 양극 활물질을 포함하는 리튬 이차전지용 양극 및 리튬 이차전지를 제공하는 것이다.
본 발명은 니켈(Ni), 코발트(Co) 및 망간(Mn)을 포함하는 전이금속을 포함하는 전이금속 수산화물, 리튬 함유 원료 물질 및 Al, Mg, Co, V, Ti, Zr 및 W로 이루어진 군에서 선택된 적어도 1종의 도핑 원소를 포함하는 도핑 원료 물질을 혼합하고 제1 소성 처리하여 상기 도핑 원소가 도핑된 리튬 복합 전이금속 산화물을 제조하는 단계; 및 상기 리튬 복합 전이금속 산화물 및 Al, Mg, Co, Ti, Zr 및 B로 이루어진 군에서 선택된 적어도 1종의 코팅 원소를 포함하는 코팅 원료 물질을 혼합하고 제2 소성 처리하여 상기 리튬 복합 전이금속 산화물 상에 상기 코팅 원소를 포함하는 코팅층이 형성된 리튬 이차전지용 양극 활물질을 제조하는 단계를 포함하고, 상기 리튬 이차전지용 양극 활물질 중 상기 코팅 원소의 중량 대비 상기 도핑 원소의 중량의 비율이 0.3 내지 7이 되도록 상기 도핑 원료 물질 및 상기 코팅 원료 물질을 투입하는, 리튬 이차전지용 양극 활물질의 제조방법을 제공한다.
또한, 본 발명은 니켈(Ni), 코발트(Co) 및 망간(Mn)을 포함하는 전이금속 및 내부에 도핑된 Al, Mg, Co, V, Ti, Zr 및 W로 이루어진 군에서 선택된 적어도 1종의 도핑 원소를 포함하는 리튬 복합 전이금속 산화물; 및 상기 리튬 복합 전이금속 산화물 상에 형성되며, Al, Mg, Co, Ti, Zr 및 B로 이루어진 군에서 선택된 적어도 1종의 코팅 원소를 포함하는 코팅층;을 포함하고, 상기 코팅 원소의 중량 대비 상기 도핑 원소의 중량의 비율은 0.3 내지 7인, 리튬 이차전지용 양극 활물질을 제공한다.
또한, 본 발명은 전술한 리튬 이차전지용 양극 활물질을 포함하는 리튬 이차전지용 양극을 제공한다.
또한, 본 발명은 전술한 리튬 이차전지용 양극을 포함하는 리튬 이차전지를 제공한다.
본 발명의 리튬 이차전지용 양극 활물질의 제조방법은 제1 및 제2 소성에 의한 도핑 및 코팅 공정을 포함하며, 양극 활물질 내 상기 코팅 원소 중량 대비 상기 도핑 원소 중량의 비율이 0.3 내지 7로 조절된다. 이에 따라 리튬 복합 전이금속 산화물, 특히 니켈 고함량의 리튬 복합 전이금속 산화물의 고온 수명 특성 및 저항증가를 개선할 수 있으며, 높은 수준의 용량 특성 및 고온저장 특성이 구현될 수 있다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 명세서에서 사용되는 용어는 단지 예시적인 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도는 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
본 명세서에서, "%"는 명시적인 다른 표시가 없는 한 중량%를 의미한다.
이하, 본 발명에 대해 구체적으로 설명한다.
리튬 이차전지용 양극 활물질의 제조방법
본 발명에 따른 리튬 이차전지용 양극 활물질의 제조방법은 니켈(Ni), 코발트(Co) 및 망간(Mn)을 포함하는 전이금속을 포함하는 전이금속 수산화물, 리튬 함유 원료 물질 및 Al, Mg, Co, V, Ti, Zr 및 W로 이루어진 군에서 선택된 적어도 1종의 도핑 원소를 포함하는 도핑 원료 물질을 혼합하고 제1 소성 처리하여 상기 도핑 원소가 도핑된 리튬 복합 전이금속 산화물을 제조하는 단계; 및 상기 리튬 복합 전이금속 산화물 및 Al, Mg, Co, Ti, Zr 및 B로 이루어진 군에서 선택된 적어도 1종의 코팅 원소를 포함하는 코팅 원료 물질을 혼합하고 제2 소성 처리하여 상기 리튬 복합 전이금속 산화물 상에 상기 코팅 원소를 포함하는 코팅층이 형성된 리튬 이차전지용 양극 활물질을 제조하는 단계를 포함하고, 상기 리튬 이차전지용 양극 활물질 중 상기 코팅 원소의 중량 대비 상기 도핑 원소의 중량의 비율이 0.3 내지 7이 되도록 상기 도핑 원료 물질 및 상기 코팅 원료 물질을 투입한다.
본 발명의 리튬 이차전지용 양극 활물질의 제조방법에 따르면 제1 및 제2 소성 공정에 의해 내부에 도핑된 도핑 원소 및 표면에 코팅된 코팅 원소 함유 코팅층을 포함하는 양극 활물질을 제조할 수 있으며, 상기 코팅 원소 및 도핑 원소의 중량비가 특정 범위로 조절되어, 활물질의 높은 구조적 안정성, 열적 안정성을 나타낸다. 따라서, 전지의 우수한 용량 발현, 고온 사이클 특성의 구현이 가능하며, 특히 니켈 고함량 리튬 복합 전이금속 산화물 또는 리튬 고함량 리튬 복합 전이금속 산화물에 있어 향상된 구조적 안정성 및 열적 안정성을 나타낼 수 있음과 동시에 우수한 용량 발현, 고온 사이클 특성 구현이 가능하다.
본 발명에 따른 리튬 이차전지용 양극 활물질의 제조방법은 니켈(Ni), 코발트(Co) 및 망간(Mn)으로 이루어진 군에서 선택된 적어도 2 이상의 전이금속을 포함하는 전이금속 수산화물, 리튬 함유 원료 물질 및 Al, Mg, Co, V, Ti, Zr 및 W로 이루어진 군에서 선택된 적어도 1종의 도핑 원소를 포함하는 도핑 원료 물질을 혼합하고 제1 소성 처리하여 상기 도핑 원소가 도핑된 리튬 복합 전이금속 산화물을 제조하는 단계를 포함한다.
상기 전이금속 수산화물은 니켈(Ni), 코발트(Co) 및 망간(Mn)을 포함하는 전이금속을 포함한다.
상기 전이금속 수산화물은 전이금속 수산화물에 함유된 전체 전이금속 원소 중 니켈(Ni)의 함량이 70몰% 이상인 고함량 니켈(High-Ni)의 전이금속 수산화물일 수 있다. 보다 바람직하게는 전체 전이금속 원소 중 니켈(Ni)의 함량이 75몰% 이상일 수 있다. 본 발명과 같이 전체 전이금속 원소 중 니켈(Ni)의 함량이 70몰% 이상인 고함량 니켈(High-Ni)의 전이금속 수산화물을 사용하면 보다 더 고용량 확보가 가능할 수 있다.
상기 전이금속 수산화물은 예를 들면 하기 화학식 1로 표시되는 화합물일 수 있다.
[화학식 1]
NiaCobMnc(OH)2
상기 화학식 1 중, a+b+c=1, 0.7≤a<1, 0<b≤0.3, 0<c≤0.3이다.
상기 화학식 1의 전이금속 수산화물에 있어서, Ni은 a에 해당하는 함량, 예를 들어, 0.7≤a<1, 보다 구체적으로 0.75≤a<1로 포함될 수 있다. 상기 화학식 1의 전이금속 수산화물 내 Ni의 함량이 0.7 이상의 조성이 되면, 이를 포함하여 제조된 양극 활물질에 있어서 충방전에 기여하기에 충분한 Ni량이 확보되므로, 전지의 고용량화를 도모할 수 있다.
상기 화학식 1의 전이금속 수산화물에 있어서, Co는 b에 해당하는 함량, 즉 0<b≤0.3으로 포함될 수 있다. 상기 화학식 1의 전이금속 수산화물 내 Co의 함량이 0.3를 초과할 경우 비용 증가의 우려가 있다. Co 포함에 따른 충방전 효율 개선의 현저함을 고려할 때, 상기 Co는 보다 구체적으로 0.05≤b≤0.2의 함량으로 포함될 수 있다.
상기 화학식 1의 전이금속 수산화물에 있어서, Mn은 수명 특성 및 구조 안정성을 확보할 수 있다. 이와 같은 효과를 고려할 때, 상기 Mn은 c에 해당하는 함량, 즉 0<c≤0.3의 함량으로 포함될 수 있다. 상기 화학식 1의 전이금속 수산화물 내 c가 0.3를 초과하면 오히려 전지의 출력 특성 및 충방전 효율이 저하될 우려가 있으며, 상기 Mn은 보다 구체적으로 0.05≤c≤0.2의 함량으로 포함될 수 있다.
상기 전이금속 수산화물은 니켈(Ni) 함유 원료 물질, 코발트(Co) 함유 원료 물질 및 망간(Mn) 함유 원료 물질로 이루어진 군에서 선택된 적어도 2 이상의 전이금속 함유 원료 물질을 포함하는 금속 용액을 공침 반응시켜 제조할 수 있다.
상기 니켈(Ni) 함유 원료 물질은 예를 들면, 니켈 함유 아세트산염, 질산염, 황산염, 할라이드, 황화물, 수산화물, 산화물 또는 옥시수산화물 등일 수 있으며, 구체적으로는, Ni(OH)2, NiO, NiOOH, NiCO3·2Ni(OH)2·4H2O, NiC2O2·2H2O, Ni(NO3)2·6H2O, NiSO4, NiSO4·6H2O, 지방산 니켈염, 니켈 할로겐화물 또는 이들의 조합일 수 있으나, 이에 한정되는 것은 아니다.
상기 코발트(Co) 함유 원료 물질은 코발트 함유 아세트산염, 질산염, 황산염, 할라이드, 황화물, 수산화물, 산화물 또는 옥시수산화물 등일 수 있으며, 구체적으로는 Co(OH)2, CoOOH, Co(OCOCH3)2ㆍ4H2O, Co(NO3)2ㆍ6H2O, Co(SO4)2ㆍ7H2O 또는 이들의 조합일 수 있으나, 이에 한정되는 것은 아니다.
상기 망간(Mn) 함유 원료 물질은 예를 들면, 망간 함유 아세트산염, 질산염, 황산염, 할라이드, 황화물, 수산화물, 산화물, 옥시수산화물 또는 이들의 조합일 수 있으며, 구체적으로는 Mn2O3, MnO2, Mn3O4 등과 같은 망간산화물; MnCO3, Mn(NO3)2, MnSO4, MnSO4·H2O, 아세트산 망간, 디카르복실산 망간염, 시트르산 망간, 지방산 망간염과 같은 망간염; 옥시 수산화망간, 염화 망간 또는 이들의 조합일 수 있으나, 이에 한정되는 것은 아니다.
상기 금속 용액은 니켈(Ni) 함유 원료 물질, 코발트(Co) 함유 원료 물질 및/또는 망간(Mn) 함유 원료 물질을 용매, 구체적으로는 물, 또는 물과 균일하게 혼합될 수 있는 유기 용매(예를 들면, 알코올 등)의 혼합 용매에 첨가하여 제조되거나, 또는 니켈(Ni) 함유 원료 물질, 코발트(Co) 함유 원료 물질 및/또는 망간(Mn) 함유 원료 물질의 수용액을 혼합하여 제조된 것일 수 있다.
상기 전이금속 수산화물은 상기 금속 용액에 암모늄 양이온 함유 착물 형성제와 염기성 화합물을 첨가하여 공침 반응시켜 제조되는 것일 수 있다.
상기 암모늄 양이온 함유 착물 형성제는, 예를 들면 NH4OH, (NH4)2SO4, NH4NO3, NH4Cl, CH3COONH4, NH4CO3 또는 이들의 조합일 수 있으나, 이에 한정되는 것은 아니다. 한편, 상기 암모늄 양이온 함유 착물 형성제는 수용액의 형태로 사용될 수도 있으며, 이때 용매로는 물, 또는 물과 균일하게 혼합 가능한 유기용매(구체적으로, 알코올 등)와 물의 혼합물이 사용될 수 있다.
상기 염기성 화합물은 NaOH, KOH 또는 Ca(OH)2 등과 같은 알칼리 금속 또는 알칼리 토금속의 수산화물, 이들의 수화물 또는 이들의 조합일 수 있다. 상기 염기성 화합물 역시 수용액의 형태로 사용될 수도 있으며, 이때 용매로는 물, 또는 물과 균일하게 혼합가능한 유기용매(구체적으로, 알코올 등)와 물의 혼합물이 사용될 수 있다. 상기 염기성 화합물은 반응 용액의 pH를 조절하기 위해 첨가되는 것으로, 금속 용액의 pH가 9 내지 14이 되는 양으로 첨가될 수 있다.
한편, 상기 공침 반응은 질소 또는 아르곤 등의 비활성 분위기하에서, 25℃ 내지 70℃의 온도에서 수행될 수 있다.
상기 리튬 함유 원료 물질은 리튬 함유 탄산염(예를 들어, 탄산리튬 등), 수화물(예를 들어 수산화리튬 I수화물(LiOH·H2O) 등), 수산화물(예를 들어 수산화리튬 등), 질산염(예를 들어, 질산리튬(LiNO3) 등), 염화물(예를 들어, 염화리튬(LiCl) 등) 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다.
상기 도핑 원료 물질은 상술한 전이금속 수산화물, 리튬 함유 원료 물질과 함께 혼합되어 제1 소성되며, 양극 활물질 내부에 도핑되는 도핑 원소를 공급하는 물질이다.
상기 도핑 원료 물질은 Al, Mg, Co, V, Ti, Zr 및 W로 이루어진 군에서 선택된 적어도 1종의 도핑 원소를 포함한다.
상기 도핑 원소는 후술할 제1 소성에 의해 리튬 복합 전이금속 산화물 내부에 도핑되어 리튬 복합 전이금속 산화물, 특히 Ni 고함량 리튬 복합 전이금속 산화물 및/또는 Li 고함량 리튬 복합 전이금속 산화물의 구조적 안정성 및 열적 안정성을 더욱 향상시킬 수 있다.
상기 도핑 원료 물질은, 바람직하게는 Zr, Co 및 Al로 이루어진 군에서 선택된 적어도 1종의 도핑 원소, 보다 바람직하게는 Zr 및 Al로 이루어진 군에서 선택된 적어도 1종의 도핑 원소, 보다 바람직하게는 Zr, 가장 바람직하게는 Zr 및 Al을 포함할 수 있으며, 상술한 도핑 원소로 양극 활물질 또는 리튬 복합 전이금속 산화물을 도핑될 때 활물질의 구조적 안정성 및 열정 안정성 향상 효과가 더욱 향상된다.
상기 도핑 원료 물질의 투입량은 후술할 양극 활물질 내 도핑 원소의 함량 및 함량 비율을 고려하여 적절히 조절될 수 있다.
상기 도핑 원료 물질은 Co 및 Zr로 이루어진 군에서 선택된 적어도 1종의 제1 도핑 원소 및 Al, Mg, V 및 W으로 이루어진 군에서 선택된 적어도 1종의 제2 도핑 원소를 포함할 수 있다. 상기 제1 도핑 원소가 상기 제2 도핑 원소와 함께 사용될 때 활물질의 용량 특성은 물론 고온 수명 특성을 더욱 향상시킬 수 있으며, 리튬 이온의 이동 저항을 감소시킴으로써 출력 특성 또한 향상시킬 수 있다. 상기 제1 도핑 원소는 바람직하게는 Zr일 수 있으며, 상기 제2 도핑 원소는 바람직하게는 Al일 수 있고, 이에 따라 전술한 효과를 극대화시킬 수 있다.
상기 도핑 원료 물질은 상기 제1 도핑 원소 및 상기 제2 도핑 원소를 30:70 내지 70:30의 중량비, 바람직하게는 40:60 내지 60:40로 포함할 수 있으며, 상술한 범위에 있을 때 리튬 이온의 이동 저항 저감 효과, 내구성 향상에 따른 용량 및 출력 향상 효과가 더욱 바람직하게 구현될 수 있다.
상기 전이금속 수산화물, 상기 리튬 함유 원료 물질 및 상기 도핑 원료 물질은 혼합되고 제1 소성 처리되어 상기 도핑 원소가 도핑된 리튬 복합 전이금속 산화물이 제조될 수 있다.
상기 제1 소성에 의해 상기 도핑 원소는 리튬 복합 전이금속 산화물 내부에 도핑되어 리튬 복합 전이금속 산화물, 특히 Ni 고함량 리튬 복합 전이금속 산화물 및/또는 Li 고함량 리튬 복합 전이금속 산화물의 구조적 안정성 및 열적 안정성을 더욱 향상시킬 수 있어 활물질 구조의 붕괴를 방지하며, 전이금속과 산소와의 결합력이 향상되어 산소 탈리 방지 효과가 향상되고 전해액 부반응 방지가 극대화될 수 있다. 이에 따라 본 발명에 따른 리튬 복합 전이금속 산화물은 활물질의 우수한 용량 발현 및 고온 사이클 특성을 향상시킬 수 있다.
상기 리튬 복합 전이금속 산화물은 전이금속의 총 몰수에 대한 리튬(Li)의 몰수의 비율 (Li/Me)이 1 이상인 리튬 복합 전이금속 산화물일 수 있으며, 이에 따라 후술할 도핑 원소 및 코팅 원소의 함량 비율과 함께 전지의 용량 특성, 출력 특성을 개선할 수 있다.
구체적으로 상기 리튬 복합 전이금속 산화물은 전이금속의 총 몰수에 대한 리튬(Li)의 몰수의 비율 (Li/Me)이 1 내지 1.15, 보다 구체적으로는 1.05 내지 1.1일 수 있다. 상기 (Li/Me)이 상술한 범위에 있을 때 전지의 우수한 용량 및 출력 특성 발현 측면에서 좋다.
상기 제1 소성은 700℃ 내지 900℃, 보다 바람직하게는 730℃ 내지 850℃, 가장 바람직하게는 750℃ 내지 830℃에서 수행될 수 있다. 제1 소성 온도가 상술한 범위일 때 혼합물의 충분한 반응이 이루어질 수 있고 입자의 균일한 성장이 가능하다.
상기 제1 소성은 해당 온도에서 6시간 내지 15시간, 바람직하게는 8시간 내지 12시간 동안 수행될 수 있다.
상기 제1 소성은 산소 분위기에서 수행될 수 있으며, 이 경우 물질 이동 및 반응성이 촉진되어 양극 활물질에 대한 균일한 도핑이 가능하며, 혼합물 내 반응하지 않은 잔류 리튬량을 감소시킬 수 있다.
본 발명의 리튬 이차전지용 양극 활물질의 제조방법은 상기 제조된 리튬 복합 전이금속 산화물에 잔류하는 불순물 또는 미반응 원료물질을 제거하는 측면에서, 상기 제1 소성 후 상기 리튬 복합 전이금속 산화물을 수세하는 단계를 더 포함할 수 있다.
상기 수세 공정은 당 분야에 공지된 수세 방법을 제한 없이 사용할 수 있으며, 구체적으로 상기 리튬 복합 전이금속 산화물과 물을 혼합하여 수행될 수 있다.
본 발명에 따른 리튬 이차전지용 양극 활물질의 제조방법은 상기 리튬 복합 전이금속 산화물 및 Al, Mg, Co, Ti, Zr 및 B로 이루어진 군에서 선택된 적어도 1종의 코팅 원소를 포함하는 코팅 원료 물질을 혼합하고 제2 소성 처리하여 상기 리튬 복합 전이금속 산화물 상에 상기 코팅 원소를 포함하는 코팅층이 형성된 리튬 이차전지용 양극 활물질을 제조하는 단계를 포함한다.
상기 리튬 이차전지용 양극 활물질의 제조방법은 도핑 공정에 더하여 제2 소성에 의한 코팅층 형성 공정을 더 수행함으로써 리튬 복합 전이금속 산화물 상에 상기 코팅 원소를 포함하는 코팅층을 형성할 수 있다. 이에 따라 활물질의 표면의 화학적 안정성을 더욱 향상시키며, 활물질의 불안정성에 따른 구조 붕괴를 방지하고, 리튬 이온의 이동을 용이하게 하여 출력 특성을 향상시킬 수 있다. 구체적으로, 상기 코팅층에 함유되는 코팅 원소는 상기 리튬 복합 전이금속 산화물 내 전이금속보다 우선적으로 산화될 수 있고, 이에 따라 리튬 복합 전이금속 산화물과 전해액의 부반응을 효과적으로 방지하며, 리튬 이온의 이동 저항의 상승을 방지할 수 있다.
상기 코팅 원료 물질은 Al, Mg, Co, Ti, Zr 및 B로 이루어진 군에서 선택된 적어도 1종의 코팅 원소를 포함할 수 있고, 바람직하게는 Al, Co 및 B로 이루어진 군에서 선택된 적어도 1종의 코팅 원소를 포함할 수 있으며, 보다 바람직하게는 Al 및 B로 이루어진 군에서 선택된 적어도 1종의 코팅 원소를 포함할 수 있고, 보다 바람직하게는 B, 가장 바람직하게는 Al 및 B의 코팅 원소를 포함할 수 있다.
상기 코팅 원료 물질은 Mg, Co, Ti, Zr 및 B로 이루어진 군에서 선택된 적어도 1종을 포함하는 제1 코팅 원소 및 Al으로 이루어진 제2 코팅 원소를 포함할 수 있다. 상기 코팅 원료 물질로서 Al으로 이루어진 제2 코팅 원소가 제1 코팅 원소와 함께 사용됨에 따라, 활물질의 표면 보호를 통한 활물질의 구조 붕괴 방지 효과가 더욱 개선될 수 있다. 상기 제1 코팅 원소는 바람직하게는 Co 및 B로 이루어진 군에서 선택된 적어도 1종, 보다 바람직하게는 B일 수 있다.
상기 코팅 원료 물질은 상기 제1 코팅 원소 및 상기 제2 코팅 원소를 30:70 내지 70:30의 중량비, 바람직하게는 40:60 내지 60:40로 포함할 수 있으며, 상술한 범위에 있을 때 활물질의 표면 보호, 구조적 안정성 향상 효과가 더욱 바람직하게 구현될 수 있다.
상기 코팅 원료 물질은 리튬 복합 전이금속 산화물 상에 코팅층 형성 시 코팅 원소 함량 및 함량 비율을 고려하여 투입량이 조절될 수 있다.
상기 제2 소성은 예를 들면 200℃ 내지 500℃, 바람직하게는 250℃ 내지 400℃에서 수행될 수 있다. 제2 소성 온도가 상술한 범위일 때 코팅층의 원활하고 충분한 형성이 가능하다.
상기 제2 소성은 해당온도에서 3시간 내지 12시간, 바람직하게는 5시간 내지 10시간 동안 수행될 수 있다.
상기 제2 소성은 공기 또는 산소 분위기에서 수행될 수 있으며, 이에 따라 물질 이동 및 반응성을 촉진시켜 코팅층의 원활한 형성이 가능하다.
본 발명에 따른 리튬 이차전지용 양극 활물질의 제조방법에 있어서, 상기 리튬 이차전지용 양극 활물질 중 상기 코팅 원소의 중량 대비 상기 도핑 원소의 중량의 비율이 0.3 내지 7, 바람직하게는 0.4 내지 4.5, 보다 바람직하게는 0.6 내지 4.3, 가장 바람직하게는 1.5 내지 3.5가 되도록 상기 도핑 원료 물질 및 상기 코팅 원료 물질을 투입한다.
상기 코팅 원소 중량 대비 상기 도핑 원소 중량의 비율이 0.3 미만이면 코팅층이 과도하게 형성되어 양극 활물질의 표면 저항이 증가될 우려가 있고, 이에 따라 충방전 효율 감소, 출력 특성 저하의 문제가 생길 수 있다. 상기 코팅 원소 중량 대비 상기 도핑 원소 중량의 비율이 7 초과이면 상대적으로 과도한 도핑량으로 인해 고온 저장 특성 감소, 내구성 저하의 우려가 있고, 충방전 용량이 감소할 수 있다.
본 발명에 따른 코팅 원소 중량 대비 상기 도핑 원소 중량의 비율은 양극 활물질 제조 시 투입되는 코팅 원료 물질에 포함된 코팅 원소의 함량 및 도핑 원료 물질 내 포함된 도핑 원소의 함량을 고려하여 이들의 투입량을 조절하여 구현될 수 있다.
본 발명에 따른 리튬 이차전지용 양극 활물질의 제조방법에 있어서, 상기 도핑 원소의 함량이 상기 리튬 이차전지용 양극 활물질 총 중량에 대해 2,500ppm 내지 14,000ppm, 바람직하게는 3,000ppm 내지 9,000ppm이 되도록 상기 도핑 원료 물질을 투입할 수 있다. 상술한 함량 범위로 도핑 원소가 상기 리튬 복합 전이금속 산화물 내에 도핑되도록 도핑 원료 물질을 투입할 때, 활물질의 구조적 안정성 및 열적 안정성 개선이 효과적으로 구현될 수 있다. 또한, 과소 또는 과량의 도핑으로 인한 전지의 충방전 용량 및 효율이 저하되는 현상이 방지될 수 있다.
본 발명에 따른 리튬 이차전지용 양극 활물질의 제조방법에 있어서, 상기 코팅 원소의 함량이 상기 리튬 이차전지용 양극 활물질 총 중량에 대해 1,000ppm 내지 9,400ppm, 바람직하게는 1,500ppm 내지 9,000ppm, 보다 바람직하게는 1,500ppm 내지 5,000ppm이 되도록 상기 코팅 원료 물질을 투입할 수 있다. 상술한 범위에 있을 때 활물질의 구조적 안정성 향상은 물론, 과도한 코팅층 형성으로 인한 저항 증가, 출력 감소 효과를 방지할 수 있다.
상기 리튬 이차전지용 양극 활물질에 포함된 도핑 원소 및/또는 코팅 원소의 함량, 이들의 함량 비율은 예를 들면, 제조 시 도핑 원료 물질, 코팅 원료 물질의 투입량을 함량을 고려하여 조절할 수 있다.
상술한 함량 또는 함량 비율은 예를 들면 유도 결합 플라즈마 질량분광법(ICP-OES)를 통해 측정 또는 계산될 수 있으나 이에 제한되는 것은 아니다.
상기 리튬 이차전지용 양극 활물질의 평균 입경(D50)은 5㎛ 내지 30㎛, 바람직하게는 10㎛ 내지 20㎛, 보다 바람직하게는 14㎛ 내지 18㎛일 수 있으며, 상기 범위일 때 활물질 압연 공정 시의 압연성 및 에너지 밀도 향상 측면에서 바람직하다.
본 발명에 있어서, 평균 입경(D50)은 입경 분포 곡선에서 체적 누적량의 50%에 해당하는 입경으로 정의할 수 있다. 상기 평균 입경(D50)은 예를 들어, 레이저 회절법(laser diffraction method)을 이용하여 측정할 수 있다. 예를 들어, 상기 양극 활물질의 평균 입경(D50)의 측정 방법은, 양극 활물질의 입자를 분산매 중에 분산시킨 후, 시판되는 레이저 회절 입도 측정 장치(예를 들어, Microtrac MT 3000)에 도입하여 약 28kHz의 초음파를 출력 60W로 조사한 후, 측정 장치에 있어서의 체적 누적량의 50%에 해당하는 평균 입경(D50)을 산출할 수 있다.
리튬 이차전지용 양극 활물질
또한, 본 발명은 리튬 이차전지용 양극 활물질을 제공한다.
상기 리튬 이차전지용 양극 활물질은 니켈(Ni), 코발트(Co) 및 망간(Mn)을 포함하는 전이금속 및 내부에 도핑된 Al, Mg, Co, V, Ti, Zr 및 W로 이루어진 군에서 선택된 적어도 1종의 도핑 원소를 포함하는 리튬 복합 전이금속 산화물; 및 상기 리튬 복합 전이금속 산화물 상에 형성되며, Al, Mg, Co, Ti, Zr 및 B로 이루어진 군에서 선택된 적어도 1종의 코팅 원소를 포함하는 코팅층;을 포함하고, 상기 코팅 원소의 중량 대비 상기 도핑 원소의 중량의 비율은 0.3 내지 7이다.
상기 리튬 이차전지용 양극 활물질은 전술한 리튬 이차전지용 양극 활물질의 제조방법에 따라 제조될 수 있으며, 내부에 상기 도핑 원소가 도핑된 리튬 복합 전이금속 산화물, 코팅층 및 이들의 제조방법, 성분, 함량 등은 전술하였다.
상기 도핑 원소는 Al, Mg, Co, V, Ti, Zr 및 W로 이루어진 군에서 선택된 적어도 1종, 바람직하게는 Zr, Co 및 Al로 이루어진 군에서 선택된 적어도 1종, 보다 바람직하게는 Zr 및 Al로 이루어진 군에서 선택된 적어도 1종, 보다 바람직하게는 Zr, 가장 바람직하게는 Zr 및 Al를 포함할 수 있으며, 상술한 도핑 원소를 양극 활물질에 포함할 때 활물질의 구조적 안정성 및 열정 안정성 향상 효과가 더욱 향상된다.
상기 도핑 원소는 Co 및 Zr로 이루어진 군에서 선택된 적어도 1종의 제1 도핑 원소 및 Al, Mg, V 및 W으로 이루어진 군에서 선택된 적어도 1종의 제2 도핑 원소를 포함할 수 있다. 상기 제1 도핑 원소가 상기 제2 도핑 원소와 함께 사용될 때 활물질의 용량 특성은 물론 고온 수명 특성을 더욱 향상시킬 수 있으며, 리튬 이온의 이동 저항을 감소시킴으로써 출력 특성 또한 향상시킬 수 있다. 상기 제1 도핑 원소는 바람직하게는 Zr일 수 있으며, 상기 제2 도핑 원소는 바람직하게는 Al일 수 있고, 이에 따라 전술한 효과를 극대화시킬 수 있다.
상기 도핑 원소는 상기 제1 도핑 원소 및 상기 제2 도핑 원소를 30:70 내지 70:30의 중량비, 바람직하게는 40:60 내지 60:40로 포함할 수 있으며, 상술한 범위에 있을 때 리튬 이온의 이동 저항 저감 효과, 내구성 향상에 따른 용량 및 출력 향상 효과가 더욱 바람직하게 구현될 수 있다.
상기 도핑 원소는 상기 리튬 이차전지용 양극 활물질 총 중량에 대해 2,500ppm 내지 14,000ppm, 바람직하게는 3,000ppm 내지 9,000ppm으로 포함될 수 있다.
상기 코팅 원소는 Al, Mg, Co, Ti, Zr 및 B로 이루어진 군에서 선택된 적어도 1종, 바람직하게는 Al, Co 및 B로 이루어진 군에서 선택된 적어도 1종, 보다 바람직하게는 Al 및 B로 이루어진 군에서 선택된 적어도 1종, 보다 바람직하게는 B, 가장 바람직하게는 Al 및 B을 포함할 수 있다.
상기 코팅 원소는 Mg, Co, Ti, Zr 및 B로 이루어진 군에서 선택된 적어도 1종을 포함하는 제1 코팅 원소 및 Al으로 이루어진 제2 코팅 원소를 포함할 수 있다. 상기 코팅 원소로서 Al으로 이루어진 제2 코팅 원소가 제1 코팅 원소와 함께 사용됨에 따라, 활물질의 표면 보호를 통한 활물질의 구조 붕괴 방지 효과가 더욱 개선될 수 있다. 상기 제1 코팅 원소는 바람직하게는 Co 및 B로 이루어진 군에서 선택된 적어도 1종, 보다 바람직하게는 B일 수 있다.
상기 코팅 원소는 상기 제1 코팅 원소 및 상기 제2 코팅 원소를 30:70 내지 70:30의 중량비, 바람직하게는 40:60 내지 60:40로 포함할 수 있으며, 상술한 범위에 있을 때 활물질의 표면 보호, 구조적 안정성 향상 효과가 더욱 바람직하게 구현될 수 있다.
상기 코팅 원소는 상기 리튬 이차전지용 양극 활물질 총 중량에 대해 1,000ppm 내지 9,400ppm, 바람직하게는 1,500ppm 내지 9,000ppm, 보다 바람직하게는 1,500ppm 내지 5,000ppm으로 포함될 수 있다.
본 발명의 리튬 이차전지용 양극 활물질은 양극 활물질 내의 코팅 원소와 도핑 원소의 함량이 특정 비율로 조절되어 활물질의 높은 구조적 안정성, 열적 안정성을 나타낸다. 따라서, 전지의 우수한 용량 발현, 고온 사이클 특성의 구현이 가능하며, 특히 니켈 고함량 리튬 복합 전이금속 산화물 또는 리튬 고함량 리튬 복합 전이금속 산화물에 있어 향상된 구조적 안정성 및 열적 안정성을 나타낼 수 있음과 동시에 우수한 용량 발현, 고온 사이클 특성 구현이 가능하다.
리튬 이차전지용 양극
또한, 본 발명은 상기 리튬 이차전지용 양극 활물질을 포함하는 리튬 이차전지용 양극을 제공한다.
구체적으로, 상기 리튬 이차전지용 양극은 양극 집전체 및 상기 양극 집전체 위에 형성되며, 상기 리튬 이차전지용 양극 활물질을 포함하는 양극 활물질층을 포함한다.
상기 리튬 이차전지용 양극에 있어서, 양극 집전체는 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소 또는 알루미늄이나 스테인레스 스틸 표면에 탄소, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 또, 상기 양극 집전체는 통상적으로 3 내지 500㎛의 두께를 가질 수 있으며, 상기 양극 집전체 표면 상에 미세한 요철을 형성하여 양극 활물질의 접착력을 높일 수도 있다. 예를 들어 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 양극 활물질층은 앞서 설명한 리튬 이차전지용 양극 활물질과 함께, 도전재 및 바인더를 포함할 수 있다.
상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성을 갖는 것이면 특별한 제한없이 사용가능하다. 구체적인 예로는 천연 흑연이나 인조 흑연 등의 흑연; 카본 블랙, 아세틸렌블랙, 케첸블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 또는 폴리페닐렌 유도체 등의 전도성 고분자 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 도전재는 통상적으로 양극 활물질 층 총 중량에 대하여 1 내지 30 중량%로 포함될 수 있다.
상기 바인더는 양극 활물질 입자들 간의 부착 및 양극 활물질과 양극 집전체와의 접착력을 향상시키는 역할을 한다. 구체적인 예로는 폴리비닐리덴플로라이드(PVDF), 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐알코올, 폴리아크릴로니트릴(polyacrylonitrile), 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 또는 이들의 다양한 공중합체 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 바인더는 양극 활물질 층 총 중량에 대하여 1 내지 30 중량%로 포함될 수 있다.
상기 리튬 이차전지용 양극은 상기한 양극 활물질을 이용하는 것을 제외하고는 통상의 양극 제조방법에 따라 제조될 수 있다. 구체적으로, 상기한 양극 활물질 및 선택적으로, 바인더 및 도전재를 포함하는 양극 활물질 층 형성용 조성물을 양극 집전체 상에 도포한 후, 건조 및 압연함으로써 제조될 수 있다. 이때 상기 양극 활물질, 바인더, 도전재의 종류 및 함량은 앞서 설명한 바와 같다.
상기 용매로는 당해 기술분야에서 일반적으로 사용되는 용매일 수 있으며, 디메틸셀폭사이드(dimethyl sulfoxide, DMSO), 이소프로필 알코올(isopropyl alcohol), N-메틸피롤리돈(NMP), 아세톤(acetone) 또는 물 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 용매의 사용량은 슬러리의 도포 두께, 제조 수율을 고려하여 상기 양극 활물질, 도전재 및 바인더를 용해 또는 분산시키고, 이후 양극제조를 위한 도포시 우수한 두께 균일도를 나타낼 수 있는 점도를 갖도록 하는 정도면 충분하다.
또, 다른 방법으로, 상기 리튬 이차전지용 양극은 상기 양극 활물질 층 형성용 조성물을 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 양극 집전체 상에 라미네이션함으로써 제조될 수도 있다.
리튬 이차전지
또한, 본 발명은 상기 리튬 이차전지용 양극을 포함하는 전기화학소자가 제공된다. 상기 전기화학소자는 구체적으로 전지 또는 커패시터 등일 수 있으며, 보다 구체적으로는 리튬 이차전지일 수 있다.
상기 리튬 이차전지는 구체적으로 양극, 상기 양극과 대향하여 위치하는 음극, 상기 양극과 음극 사이에 개재되는 세퍼레이터 및 전해질을 포함하며, 상기 양극은 앞서 설명한 리튬 이차전지용 양극과 같다. 또, 상기 리튬 이차전지는 상기 양극, 음극, 세퍼레이터의 전극 조립체를 수납하는 전지용기, 및 상기 전지용기를 밀봉하는 밀봉 부재를 선택적으로 더 포함할 수 있다.
상기 리튬 이차전지에 있어서, 상기 음극은 음극 집전체 및 상기 음극 집전체 상에 위치하는 음극 활물질층을 포함한다.
상기 음극 집전체는 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인레스 스틸의 표면에 탄소, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또, 상기 음극 집전체는 통상적으로 3 내지 500㎛의 두께를 가질 수 있으며, 양극 집전체와 마찬가지로, 상기 집전체 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있다. 예를 들어, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 음극 활물질층은 음극 활물질과 함께 선택적으로 바인더 및 도전재를 포함한다. 상기 음극 활물질층은 일례로서 음극 집전체 상에 음극 활물질, 및 선택적으로 바인더 및 도전재를 포함하는 음극 형성용 조성물을 도포하고 건조하거나, 또는 상기 음극 형성용 조성물을 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 음극 집전체 상에 라미네이션함으로써 제조될 수도 있다.
상기 음극 활물질로는 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물이 사용될 수 있다. 구체적인 예로는 인조흑연, 천연흑연, 흑연화 탄소섬유, 비정질탄소 등의 탄소질 재료; Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si합금, Sn합금 또는 Al합금 등 리튬과 합금화가 가능한 금속질 화합물; SiOβ(0 < β < 2), SnO2, 바나듐 산화물, 리튬 바나듐 산화물과 같이 리튬을 도프 및 탈도프할 수 있는 금속산화물; 또는 Si-C 복합체 또는 Sn-C 복합체과 같이 상기 금속질 화합물과 탄소질 재료를 포함하는 복합물 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 또한, 상기 음극활물질로서 금속 리튬 박막이 사용될 수도 있다. 또, 탄소재료는 저결정 탄소 및 고결정성 탄소 등이 모두 사용될 수 있다. 저결정성 탄소로는 연화탄소 (soft carbon) 및 경화탄소 (hard carbon)가 대표적이며, 고결정성 탄소로는 무정형, 판상, 인편상, 구형 또는 섬유형의 천연 흑연 또는 인조 흑연, 키시흑연 (Kish graphite), 열분해 탄소 (pyrolytic carbon), 액정피치계 탄소섬유 (mesophase pitch based carbon fiber), 탄소 미소구체 (meso-carbon microbeads), 액정피치 (Mesophase pitches) 및 석유와 석탄계 코크스 (petroleum or coal tar pitch derived cokes) 등의 고온 소성탄소가 대표적이다.
또, 상기 바인더 및 도전재는 앞서 양극에서 설명한 바와 동일한 것일 수 있다.
한편, 상기 리튬 이차전지에 있어서, 세퍼레이터는 음극과 양극을 분리하고 리튬 이온의 이동 통로를 제공하는 것으로, 통상 리튬 이차전지에서 세퍼레이터로 사용되는 것이라면 특별한 제한 없이 사용가능하며, 특히 전해질의 이온 이동에 대하여 저저항이면서 전해액 함습 능력이 우수한 것이 바람직하다. 구체적으로는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름 또는 이들의 2층 이상의 적층 구조체가 사용될 수 있다. 또 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포가 사용될 수도 있다. 또, 내열성 또는 기계적 강도 확보를 위해 세라믹 성분 또는 고분자 물질이 포함된 코팅된 세퍼레이터가 사용될 수도 있으며, 선택적으로 단층 또는 다층 구조로 사용될 수 있다.
또, 본 발명에서 사용되는 전해질로는 리튬 이차전지 제조 시 사용 가능한 유기계 액체 전해질, 무기계 액체 전해질, 고체 고분자 전해질, 겔형 고분자 전해질, 고체 무기 전해질, 용융형 무기 전해질 등을 들 수 있으며, 이들로 한정되는 것은 아니다.
구체적으로, 상기 전해질은 유기 용매 및 리튬염을 포함할 수 있다.
상기 유기 용매로는 전지의 전기 화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 할 수 있는 것이라면 특별한 제한없이 사용될 수 있다. 구체적으로 상기 유기 용매로는, 메틸 아세테이트(methyl acetate), 에틸 아세테이트(ethyl acetate), γ-부티로락톤(γ-butyrolactone), ε-카프로락톤(ε-caprolactone) 등의 에스테르계 용매; 디부틸 에테르(dibutyl ether) 또는 테트라히드로퓨란(tetrahydrofuran) 등의 에테르계 용매; 시클로헥사논(cyclohexanone) 등의 케톤계 용매; 벤젠(benzene), 플루오로벤젠(fluorobenzene) 등의 방향족 탄화수소계 용매; 디메틸카보네이트(dimethylcarbonate, DMC), 디에틸카보네이트(diethylcarbonate, DEC), 메틸에틸카보네이트(methylethylcarbonate, MEC), 에틸메틸카보네이트(ethylmethylcarbonate, EMC), 에틸렌카보네이트(ethylene carbonate, EC), 프로필렌카보네이트(propylene carbonate, PC) 등의 카보네이트계 용매; 에틸알코올, 이소프로필 알코올 등의 알코올계 용매; R-CN(R은 C2 내지 C20의 직쇄상, 분지상 또는 환 구조의 탄화수소기이며, 이중결합 방향 환 또는 에테르 결합을 포함할 수 있다) 등의 니트릴류; 디메틸포름아미드 등의 아미드류; 1,3-디옥솔란 등의 디옥솔란류; 또는 설포란(sulfolane)류 등이 사용될 수 있다. 이중에서도 카보네이트계 용매가 바람직하고, 전지의 충방전 성능을 높일 수 있는 높은 이온전도도 및 고유전율을 갖는 환형 카보네이트(예를 들면, 에틸렌카보네이트 또는 프로필렌카보네이트 등)와, 저점도의 선형 카보네이트계 화합물(예를 들면, 에틸메틸카보네이트, 디메틸카보네이트 또는 디에틸카보네이트 등)의 혼합물이 보다 바람직하다. 이 경우 환형 카보네이트와 사슬형 카보네이트는 약 1:1 내지 약 1:9의 부피비로 혼합하여 사용하는 것이 전해액의 성능이 우수하게 나타날 수 있다.
상기 리튬염은 리튬 이차전지에서 사용되는 리튬 이온을 제공할 수 있는 화합물이라면 특별한 제한 없이 사용될 수 있다. 구체적으로 상기 리튬염은, LiPF6, LiClO4, LiAsF6, LiBF4, LiSbF6, LiAl04, LiAlCl4, LiCF3SO3, LiC4F9SO3, LiN(C2F5SO3)2, LiN(C2F5SO2)2, LiN(CF3SO2)2. LiCl, LiI, 또는 LiB(C2O4)2 등이 사용될 수 있다. 상기 리튬염의 농도는 0.1 내지 2.0M 범위 내에서 사용하는 것이 좋다. 리튬염의 농도가 상기 범위에 포함되면, 전해질이 적절한 전도도 및 점도를 가지므로 우수한 전해질 성능을 나타낼 수 있고, 리튬 이온이 효과적으로 이동할 수 있다.
상기 전해질에는 상기 전해질 구성 성분들 외에도 전지의 수명특성 향상, 전지 용량 감소 억제, 전지의 방전 용량 향상 등을 목적으로 예를 들어, 디플루오로 에틸렌카보네이트 등과 같은 할로알킬렌카보네이트계 화합물, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사인산 트리아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올 또는 삼염화 알루미늄 등의 첨가제가 1종 이상 더 포함될 수도 있다. 이때 상기 첨가제는 전해질 총 중량에 대하여 0.1 내지 5 중량%로 포함될 수 있다.
상기와 같이 본 발명에 따른 리튬 이차전지용 양극 활물질을 포함하는 리튬 이차전지는 우수한 방전 용량, 출력 특성 및 용량 유지율을 안정적으로 나타내기 때문에, 휴대전화, 노트북 컴퓨터, 디지털 카메라 등의 휴대용 기기, 및 하이브리드 전기자동차(hybrid electric vehicle, HEV) 등의 전기 자동차 분야 등에 유용하다.
이에 따라, 본 발명은 상기 리튬 이차전지를 단위 셀로 포함하는 전지 모듈 및 이를 포함하는 전지팩을 제공한다.
상기 전지모듈 또는 전지팩은 파워 툴(Power Tool); 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차, 및 플러그인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV)를 포함하는 전기차; 또는 전력 저장용 시스템 중 어느 하나 이상의 중대형 디바이스 전원으로 이용될 수 있다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
실시예
실시예 1
NiSO4·6H2O, CoSO4·7H2O 및 MnSO4·H2O를 혼합하고 이를 공침시켜 제조된 전이금속 수산화물 Ni0.88 Co0.09 Mn0.03(OH)2, 리튬 함유 원료 물질로서 LiOH, 도핑 원료 물질로서 ZrO2 및 Al2O3를 혼합하였다. 이때, 전이금속(니켈, 코발트 및 망간)의 총 몰수에 대한 리튬(Li)의 몰수의 비율 Li/Me은 1.07로 조절하여 리튬 함유 원료 물질을 투입하였으며, 후술하는 리튬 이차전지용 양극 활물질 중량 대비 Zr 2,000ppm, Al 2,000ppm이 되도록 도핑 원료 물질을 투입하였다.
상기 혼합물을 780℃에서 8시간 동안 1차 소성시킨 후, 상기 1차 소성물을 초순수와 1:1의 중량비로 혼합하여 20분 동안 수세 후 감압 필터로 여과를 수행하였다. 여과 후 130℃, 진공 조건에서 건조를 수행하여 Zr 및 Al이 내부에 도핑된 리튬 복합 전이금속 산화물을 준비하였다.
상기 리튬 복합 전이금속 산화물과 코팅 원료 물질로서 H3BO3 및 Al(OH)3를 혼합하였다. 이때, 후술하는 리튬 이차전지용 양극 활물질 중량 대비 B 1,000ppm, Al 1,000ppm이 되도록 코팅 원료 물질을 투입하였다. 이후, 350℃에서 7시간 동안 2차 소성하여 상기 리튬 복합 전이금속 산화물 상에 B 및 Al를 포함하는 코팅층이 형성된 리튬 이차전지용 양극 활물질(평균 입경(D50) 15㎛)을 제조하였다.
상기 리튬 이차전지용 양극 활물질에 있어서, 도핑 원소 중량/코팅 원소 중량의 비율은 2였다.
실시예 2 내지 11 및 비교예 1 내지 3
도핑 원료 물질 및 코팅 원료 물질, 이들의 종류 및 투입량을 조절한 것을 제외하고는 실시예 2 내지 11 및 비교예 1 내지 3의 리튬 이차전지용 양극 활물질을 제조하였다.
실시예 1 내지 8 및 비교예 1 내지 3의 도핑 원소, 코팅 원소의 함량, 이들의 중량비를 하기 표 1에 나타내었다.
Figure PCTKR2019004018-appb-T000001
실험예
실시예들 및 비교예들에 의해 제조된 각각의 리튬 이차전지용 양극 활물질, 카본블랙 도전재 및 PVdF 바인더를 N-메틸피롤리돈 용매 중에서 중량비로 96.5:1.5:2의 비율로 혼합하여 양극 합재(점도: 5000mPa·s)을 제조하고, 이를 알루미늄 집전체의 일면에 도포한 후, 130℃에서 건조 후, 압연하여 양극을 제조하였다.
음극은 리튬 메탈을 사용하였다.
상기와 같이 제조된 양극과 음극 사이에 다공성 폴리에틸렌의 세퍼레이터를 개재하여 전극 조립체를 제조하고, 상기 전극 조립체를 케이스 내부에 위치시킨 후, 케이스 내부로 전해액을 주입하여 리튬 이차 전지 하프 셀을 제조하였다. 이때 전해액은 에틸렌카보네이트/디메틸카보네이트/에틸메틸카보네이트(EC/DMC/EMC의 혼합 부피비=3/4/3)로 이루어진 유기 용매에 1.0M 농도의 리튬헥사플루오로포스페이트(LiPF6)를 용해시켜 제조하였다.
실험예 1: 고온 수명 특성 평가
실시예들 및 비교예들에 의해 제조된 각각의 양극 활물질을 사용하여 상기와 같이 제조된 각 리튬 이차전지 하프 셀(half-cell)에 대해, 45℃에서 CCCV 모드로 0.3C, 4.25V가 될 때까지 충전(종료 전류 1/20C)하고, 0.3C의 정전류로 2.5V가 될 때까지 방전하여 30회 충방전 실험을 진행하였을 시의 용량 유지율을 측정하여 고온 수명 특성 평가를 진행하였다. 그 결과를 표 2에 나타내었다.
Figure PCTKR2019004018-appb-T000002
표 2를 참조하면, 본 발명의 리튬 이차전지용 양극 활물질의 제조방법에 의해 제조된 실시예들의 리튬 이차전지용 양극 활물질은 용량 유지율에서 모두 비교예들보다 우수한 성능을 나타내는 것을 확인할 수 있다.
활물질 내 코팅 원소 중량에 대한 도핑 원소 중량의 비율이 바람직한 범위이고, 도핑 원소가 Zr 및 Ar이고, 코팅 원소가 B 및 Al인 실시예 1 및 실시예 2의 경우, 실시예 3 내지 11보다 용량 유지율이 더 우수한 것으로 평가되었다.
실험예 2: 저항 및 저항 증가율 평가
실시예들 및 비교예들에 의해 제조된 각각의 양극 활물질을 사용하여 상기와 같이 제조된 각 리튬 이차전지 하프 셀(half-cell)에 대해, 45℃에서 0.3C/0.3C 30회 사이클 평가된 셀의 방전 저항을 계산하였다. 저항의 계산은 4.25V 만충전 셀을 0.3C로 60초 동안 방전시켰을 때 전압강하와 인가된 전류값을 기준으로 하였다. 표 3에 계산된 초기 저항값(1cycle)과 30cycle에서의 저항 증가율을 나타내었다.
30cycle에서의 저항 증가율은 하기 수학식 1에 의해 계산되었다.
[수학식 1]
30cycle에서의 저항 증가율(%) = (30cycle에서의 저항)/(1cycle에서의 저항) × 100
Figure PCTKR2019004018-appb-T000003
표 3을 참조하면, 실시예들에 따른 리튬 이차전지용 양극 활물질은 비교예들의 경우에 비해 초기 저항이 낮고, 저항 증가율 또한 낮은 것을 확인할 수 있다.
활물질 내 코팅 원소 중량에 대한 도핑 원소 중량의 비율이 바람직한 범위이고, 도핑 원소가 Zr 및 Ar이고, 코팅 원소가 B 및 Al인 실시예 1 및 실시예 2의 경우, 실시예 3 내지 11보다 초기 저항 및 저항 증가율이 다소 낮은 것을 확인할 수 있다.
실험예 3: 열적 안정성 평가
실시예들 및 비교예들에 의해 제조된 각각의 양극 활물질을 사용하여 제조된 각 리튬 이차전지 하프 셀(half-cell)에 대해, 0.2C의 전류로 충전하여 SOC 100%인 충전 상태에서 분해하고, DSC 측정용 셀에 양극과 새로운 전해액을 투입하고 분당 10℃씩 상온에서 400℃까지 승온하면서 시차주사열계량법(differential scanning calorimetry, DSC)에 의해 열 안정성을 평가하였다. 그 결과로서, 열류량이 최대인 최대 피크(Main peak)가 나타나는 온도를 하기 표 4에 나타내었다. 이 때, DSC 피크 값이 높을수록 열적 안정성이 우수한 것으로 평가할 수 있다.
Figure PCTKR2019004018-appb-T000004
표 4를 참조하면, 실시예들에 따른 리튬 이차전지용 양극 활물질은 비교예들의 경우에 비해 DSC에 의해 측정한 최대 피크 값이 높으며, 이에 따라 구조적 안정성 및 열적 안정성이 우수한 것을 확인할 수 있다.
그러나, 본 발명의 활물질 내 코팅 원소 중량에 대한 도핑 원소 중량의 비율 범위를 벗어나는 비교예들의 경우, DSC 최대 피크 온도가 실시예들보다 낮으며, 이에 따라 열적 안정성이 좋지 못함을 확인할 수 있다.
실험예 4: 충방전 특성 평가
실시예들 및 비교예들에 의해 제조된 각각의 양극 활물질을 사용하여 상기와 같이 제조된 각 리튬 이차전지 하프 셀(half-cell)에 대해, 상온(25℃)에서 2.5 - 4.25V 전압범위에서 0.2C/0.2C의 조건으로 충방전을 실시한 후 초기 충방전 특성을 평가하여 그 결과를 표 5에 나타내었다.
Figure PCTKR2019004018-appb-T000005
표 5를 참조하면, 실시예들에 따른 리튬 이차전지용 양극 활물질은 비교예들의 경우에 비해 충방전 용량 및 효율이 대체적으로 우수한 것을 확인할 수 있다.
특히, 비교예 2 및 3의 경우 충방전 용량 및 효율이 실시예들의 경우에 비해 매우 저하된다. 비교예 1의 경우 충방전 용량 및 효율이 실시예들과 유사한 수준이나, 상술한 바와 같이 비교예 1은 용량 유지율, 저항 특성 및 열적 안정성이 실시예들보다 매우 저하되어 전체적으로 실시예들에 비해 성능이 좋지 못함을 확인할 수 있다.

Claims (17)

  1. 니켈(Ni), 코발트(Co) 및 망간(Mn)을 포함하는 전이금속을 포함하는 전이금속 수산화물, 리튬 함유 원료 물질 및 Al, Mg, Co, V, Ti, Zr 및 W로 이루어진 군에서 선택된 적어도 1종의 도핑 원소를 포함하는 도핑 원료 물질을 혼합하고 제1 소성 처리하여 상기 도핑 원소가 도핑된 리튬 복합 전이금속 산화물을 제조하는 단계; 및
    상기 리튬 복합 전이금속 산화물 및 Al, Mg, Co, Ti, Zr 및 B로 이루어진 군에서 선택된 적어도 1종의 코팅 원소를 포함하는 코팅 원료 물질을 혼합하고 제2 소성 처리하여 상기 리튬 복합 전이금속 산화물 상에 상기 코팅 원소를 포함하는 코팅층이 형성된 리튬 이차전지용 양극 활물질을 제조하는 단계를 포함하고,
    상기 리튬 이차전지용 양극 활물질 중 상기 코팅 원소의 중량 대비 상기 도핑 원소의 중량의 비율이 0.3 내지 7이 되도록 상기 도핑 원료 물질 및 상기 코팅 원료 물질을 투입하는, 리튬 이차전지용 양극 활물질의 제조방법.
  2. 청구항 1에 있어서, 상기 도핑 원소의 함량이 상기 리튬 이차전지용 양극 활물질 총 중량에 대해 2,500ppm 내지 14,000ppm이 되도록 상기 도핑 원료 물질을 투입하는, 리튬 이차전지용 양극 활물질의 제조방법.
  3. 청구항 1에 있어서, 상기 코팅 원소의 함량이 상기 리튬 이차전지용 양극 활물질 총 중량에 대해 1,000ppm 내지 9,400ppm이 되도록 상기 코팅 원료 물질을 투입하는, 리튬 이차전지용 양극 활물질의 제조방법.
  4. 청구항 1에 있어서, 상기 도핑 원료 물질은 Co 및 Zr로 이루어진 군에서 선택된 적어도 1종의 제1 도핑 원소 및 Al, Mg, V 및 W으로 이루어진 군에서 선택된 적어도 1종의 제2 도핑 원소를 포함하는, 리튬 이차전지용 양극 활물질의 제조방법.
  5. 청구항 4에 있어서, 상기 도핑 원료 물질은 상기 제1 도핑 원소 및 상기 제2 도핑 원소를 30:70 내지 70:30의 중량비로 포함하는, 리튬 이차전지용 양극 활물질의 제조방법.
  6. 청구항 1에 있어서, 상기 도핑 원료 물질은 Zr, Co 및 Al로 이루어진 군에서 선택된 적어도 1종의 도핑 원소를 포함하는, 리튬 이차전지용 양극 활물질의 제조방법.
  7. 청구항 1에 있어서, 상기 코팅 원료 물질은 Mg, Ti, Zr 및 B로 이루어진 군에서 선택된 적어도 1종의 제1 코팅 원소 및 Al으로 이루어진 제2 코팅 원소를 포함하는, 리튬 이차전지용 양극 활물질의 제조방법.
  8. 청구항 7에 있어서, 상기 코팅 원료 물질은 상기 제1 코팅 원소 및 상기 제2 코팅 원소를 30:70 내지 70:30의 중량비로 포함하는, 리튬 이차전지용 양극 활물질의 제조방법.
  9. 청구항 1에 있어서, 상기 코팅 원료 물질은 Al, Co 및 B로 이루어진 군에서 선택된 적어도 1종의 코팅 원소를 포함하는, 리튬 이차전지용 양극 활물질의 제조방법.
  10. 청구항 1에 있어서, 상기 전이금속 수산화물은 전이금속 수산화물에 함유된 전체 전이금속 원소 중 니켈(Ni)의 함량이 70몰% 이상인, 리튬 이차전지용 양극 활물질의 제조방법.
  11. 니켈(Ni), 코발트(Co) 및 망간(Mn)을 포함하는 전이금속 및 내부에 도핑된 Al, Mg, Co, V, Ti, Zr 및 W로 이루어진 군에서 선택된 적어도 1종의 도핑 원소를 포함하는 리튬 복합 전이금속 산화물; 및
    상기 리튬 복합 전이금속 산화물 상에 형성되며, Al, Mg, Co, Ti, Zr 및 B로 이루어진 군에서 선택된 적어도 1종의 코팅 원소를 포함하는 코팅층;을 포함하고,
    상기 코팅 원소의 중량 대비 상기 도핑 원소의 중량의 비율은 0.3 내지 7인, 리튬 이차전지용 양극 활물질.
  12. 청구항 11에 있어서, 상기 도핑 원소는 상기 리튬 이차전지용 양극 활물질 총 중량에 대해 2,500ppm 내지 14,000ppm으로 포함되는, 리튬 이차전지용 양극 활물질.
  13. 청구항 11에 있어서, 상기 코팅 원소는 상기 리튬 이차전지용 양극 활물질 총 중량에 대해 1,000ppm 내지 9,400ppm으로 포함되는, 리튬 이차전지용 양극 활물질.
  14. 청구항 11에 있어서, 상기 도핑 원소는 Co 및 Zr로 이루어진 군에서 선택된 적어도 1종의 제1 도핑 원소 및 Al, Mg, V 및 W으로 이루어진 군에서 선택된 적어도 1종의 제2 도핑 원소를 포함하는, 리튬 이차전지용 양극 활물질.
  15. 청구항 11에 있어서, 상기 코팅 원소는 Mg, Ti, Zr 및 B로 이루어진 군에서 선택된 적어도 1종의 제1 코팅 원소 및 Al으로 이루어진 제2 코팅 원소를 포함하는, 리튬 이차전지용 양극 활물질.
  16. 청구항 11의 리튬 이차전지용 양극 활물질을 포함하는, 리튬 이차전지용 양극.
  17. 청구항 16의 리튬 이차전지용 양극을 포함하는, 리튬 이차전지.
PCT/KR2019/004018 2018-04-04 2019-04-04 리튬 이차전지용 양극 활물질의 제조방법, 리튬 이차전지용 양극 활물질, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지 WO2019194609A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020547418A JP7134550B2 (ja) 2018-04-04 2019-04-04 リチウム二次電池用正極活物質の製造方法、リチウム二次電池用正極活物質、これを含むリチウム二次電池用正極及びリチウム二次電池
US17/040,787 US12074307B2 (en) 2018-04-04 2019-04-04 Method of preparing positive electrode active material for lithium secondary battery, positive electrode active material for lithium secondary battery, and positive electrode for lithium secondary battery and lithium secondary battery including the same
EP19780677.1A EP3753905A4 (en) 2018-04-04 2019-04-04 METHOD FOR MANUFACTURING CATHODE ACTIVE MATERIAL FOR LITHIUM SECONDARY BATTERY, CATHODE ACTIVE MATERIAL FOR A LITHIUM SECONDARY BATTERY, THIS INCLUDING CATHODE FOR A LITHIUM SECONDARY BATTERY
CN201980020204.2A CN111867979B (zh) 2018-04-04 2019-04-04 制备锂二次电池用正极活性材料的方法、锂二次电池用正极活性材料以及包含其的锂二次电池用正极和锂二次电池

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20180039359 2018-04-04
KR10-2018-0039359 2018-04-04
KR1020190031933A KR102313092B1 (ko) 2018-04-04 2019-03-20 리튬 이차전지용 양극 활물질의 제조방법, 리튬 이차전지용 양극 활물질, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
KR10-2019-0031933 2019-03-20

Publications (1)

Publication Number Publication Date
WO2019194609A1 true WO2019194609A1 (ko) 2019-10-10

Family

ID=68100887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/004018 WO2019194609A1 (ko) 2018-04-04 2019-04-04 리튬 이차전지용 양극 활물질의 제조방법, 리튬 이차전지용 양극 활물질, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지

Country Status (1)

Country Link
WO (1) WO2019194609A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114388723A (zh) * 2020-10-19 2022-04-22 上海科技大学 一种正极表面改性材料及其制备方法
US20220149346A1 (en) * 2020-11-09 2022-05-12 Sk Innovation Co., Ltd. Cathode active material for lithium secondary battery and lithium secondary battery including the same
CN115066398A (zh) * 2020-06-15 2022-09-16 株式会社Lg化学 制备正极活性材料的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140081663A (ko) * 2012-12-13 2014-07-01 주식회사 에코프로 리튬 이차 전지용 양극활물질의 제조 방법 및 이에 의하여 제조된 리튬 이차 전지용 양극활물질
KR101510940B1 (ko) 2012-06-08 2015-04-10 한양대학교 산학협력단 리튬 이차 전지용 양극활물질 전구체, 이를 이용하여 제조된 양극활물질 및 이를 포함하는 리튬 이차 전지
KR20160045029A (ko) * 2014-10-15 2016-04-26 주식회사 포스코 리튬 이차 전지용 양극 활물질, 및 이를 포함하는 리튬 이차 전지
KR20170075596A (ko) * 2015-12-23 2017-07-03 주식회사 포스코 리튬 이차 전지용 양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
KR20170075124A (ko) * 2015-12-22 2017-07-03 주식회사 포스코 리튬 이차 전지용 양극 활물질의 제조 방법 및 이를 포함하는 리튬 이차 전지
KR20170075437A (ko) * 2015-12-23 2017-07-03 주식회사 포스코 리튬 이차 전지용 양극 활물질의 제조 방법 및 이를 포함하는 리튬 이차 전지
KR20170076348A (ko) * 2015-12-24 2017-07-04 주식회사 포스코 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101510940B1 (ko) 2012-06-08 2015-04-10 한양대학교 산학협력단 리튬 이차 전지용 양극활물질 전구체, 이를 이용하여 제조된 양극활물질 및 이를 포함하는 리튬 이차 전지
KR20140081663A (ko) * 2012-12-13 2014-07-01 주식회사 에코프로 리튬 이차 전지용 양극활물질의 제조 방법 및 이에 의하여 제조된 리튬 이차 전지용 양극활물질
KR20160045029A (ko) * 2014-10-15 2016-04-26 주식회사 포스코 리튬 이차 전지용 양극 활물질, 및 이를 포함하는 리튬 이차 전지
KR20170075124A (ko) * 2015-12-22 2017-07-03 주식회사 포스코 리튬 이차 전지용 양극 활물질의 제조 방법 및 이를 포함하는 리튬 이차 전지
KR20170075596A (ko) * 2015-12-23 2017-07-03 주식회사 포스코 리튬 이차 전지용 양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
KR20170075437A (ko) * 2015-12-23 2017-07-03 주식회사 포스코 리튬 이차 전지용 양극 활물질의 제조 방법 및 이를 포함하는 리튬 이차 전지
KR20170076348A (ko) * 2015-12-24 2017-07-04 주식회사 포스코 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3753905A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115066398A (zh) * 2020-06-15 2022-09-16 株式会社Lg化学 制备正极活性材料的方法
CN115066398B (zh) * 2020-06-15 2024-08-02 株式会社Lg化学 制备正极活性材料的方法
US12126019B2 (en) 2020-06-15 2024-10-22 Lg Chem, Ltd. Method of preparing positive electrode active material
CN114388723A (zh) * 2020-10-19 2022-04-22 上海科技大学 一种正极表面改性材料及其制备方法
CN114388723B (zh) * 2020-10-19 2024-03-22 上海科技大学 一种正极表面改性材料及其制备方法
US20220149346A1 (en) * 2020-11-09 2022-05-12 Sk Innovation Co., Ltd. Cathode active material for lithium secondary battery and lithium secondary battery including the same

Similar Documents

Publication Publication Date Title
WO2019221497A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2020106024A1 (ko) 리튬 이차전지용 양극 활물질 및 이의 제조 방법
WO2019235885A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2017150945A1 (ko) 이차전지용 양극활물질의 전구체 및 이를 이용하여 제조된 양극활물질
WO2019172568A1 (ko) 양극 활물질, 그 제조 방법, 이를 포함하는 양극 및 이차전지
WO2016175597A1 (ko) 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 이차전지
WO2019103363A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2019050282A1 (ko) 리튬 이차전지용 양극 활물질, 이의 제조 방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2019168301A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2019059552A2 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2020145639A1 (ko) 양극 활물질, 상기 양극 활물질의 제조 방법, 상기 양극 활물질을 포함하는 양극 및 리튬 이차전지
WO2018160023A1 (ko) 리튬 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2021154021A1 (ko) 이차전지용 양극 활물질 전구체, 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2019059654A1 (ko) 이차전지용 양극 활물질 전구체, 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2019059647A2 (ko) 리튬 이차전지용 양극재, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2019212321A1 (ko) 양극 활물질의 세정 방법, 이를 포함하는 양극 활물질의 제조 방법 및 이에 의해 제조된 양극 활물질
WO2017095081A1 (ko) 이차전지용 양극활물질, 이를 포함하는 이차전지용 양극 및 이차전지
WO2019103461A2 (ko) 양극활물질 전구체, 그 제조 방법, 이를 이용해 제조된 양극 활물질, 양극 및 이차전지
WO2022169331A1 (ko) 리튬 이차 전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차 전지
WO2020085731A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2019017643A9 (ko) 리튬 이차전지용 양극, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2020004988A1 (ko) 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2020153701A1 (ko) 이차전지용 양극 활물질의 제조방법
WO2021187907A1 (ko) 리튬 이차전지용 양극재, 이를 포함하는 양극 및 리튬 이차전지
WO2016053051A1 (ko) 리튬 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19780677

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020547418

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019780677

Country of ref document: EP

Effective date: 20200914

NENP Non-entry into the national phase

Ref country code: DE