[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022145645A1 - 고체전해질이 코팅된 활물질, 전극 및 그를 이용한 전고체전지 - Google Patents

고체전해질이 코팅된 활물질, 전극 및 그를 이용한 전고체전지 Download PDF

Info

Publication number
WO2022145645A1
WO2022145645A1 PCT/KR2021/013791 KR2021013791W WO2022145645A1 WO 2022145645 A1 WO2022145645 A1 WO 2022145645A1 KR 2021013791 W KR2021013791 W KR 2021013791W WO 2022145645 A1 WO2022145645 A1 WO 2022145645A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
solid electrolyte
solid
state battery
chloride
Prior art date
Application number
PCT/KR2021/013791
Other languages
English (en)
French (fr)
Inventor
박건호
조우석
김경수
유지상
Original Assignee
한국전자기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전자기술연구원 filed Critical 한국전자기술연구원
Publication of WO2022145645A1 publication Critical patent/WO2022145645A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic

Definitions

  • the present invention relates to an all-solid-state battery, and more particularly, to an active material coated with a solid electrolyte that can improve the performance of an all-solid-state battery by expanding the ionic contact area between the active material and the solid electrolyte, an electrode, and an all-solid-state battery using the same it's about
  • Lithium secondary batteries have been widely commercialized because of their excellent energy density and output characteristics among various secondary batteries.
  • a lithium secondary battery (hereinafter referred to as a 'liquid-type secondary battery') including a liquid-type electrolyte containing an organic solvent is mainly used.
  • liquid type secondary battery the liquid electrolyte is decomposed by the electrode reaction, causing the battery to expand, and the risk of ignition due to leakage of the liquid electrolyte is pointed out.
  • a lithium secondary battery hereinafter referred to as an 'all-solid-state battery' to which a solid electrolyte having excellent stability is applied is attracting attention.
  • Sulfide-based solid electrolytes have a high ionic conductivity similar to that of conventional organic liquid electrolytes, and have excellent mechanical ductility, which is why they are attracting attention as solid electrolytes for bulk-type all-solid-state batteries.
  • an active material coated with a solid electrolyte In order to construct an all-solid-state battery having such excellent performance, it is preferable to use an active material coated with a solid electrolyte uniformly.
  • the sulfide-based solid electrolyte is easily oxidized on the surface of the active material, making it unsuitable for use as a coating layer.
  • An object of the present invention is to provide an active material coated with a solid electrolyte, an electrode, and an all-solid-state battery using the same, which can improve the performance of an all-solid-state battery by increasing the ionic contact area between the active material and the solid electrolyte.
  • the present invention provides a raw material active material; and a coating layer formed by coating the surface of the raw material with a chloride-based solid electrolyte.
  • the chloride-based solid electrolyte is Li 2-2x M 2 1+x X 4 (0 ⁇ x ⁇ 0.5, M 2 is at least among Be, Mg, Ca, Sr, Ba, Mn, Fe, Co, Ni, Cu and Zn one, and X may be at least one of F, Cl, and Br).
  • the chloride-based solid electrolyte is Li 3-x M 3 1-x M 4 x X 6 (0 ⁇ x ⁇ 1, M 3 is one of Sc, Y, Er, Yb, Cr, Fe and Co, M 4 is One of Ti, Zr, and Hf, and X may be at least one of F, Cl, and Br).
  • the coating layer may be formed by physically mixing the raw material active material and the chloride-based solid electrolyte.
  • the present invention also provides a raw material active material, an active material having a coating layer formed by coating the surface of the raw material active material with a chloride-based solid electrolyte; and a sulfide-based solid electrolyte; provides an electrode for an all-solid-state battery comprising.
  • the present invention provides an all-solid-state battery including the electrode.
  • the coating layer with the chloride-based solid electrolyte on the surface of the raw material active material as described above, the ionic contact area between the raw material active material and the solid electrolyte can be enlarged, thereby improving the performance of the all-solid-state battery.
  • an all-solid-state battery having an active material coated with a chloride-based solid electrolyte can provide improved atmospheric stability and high voltage stability.
  • FIG. 1 is a view showing an electrode for an all-solid-state battery including an active material coated with a chloride-based solid electrolyte on the surface of a raw active material according to the present invention.
  • FIG. 2 is a view showing an electrode for an all-solid-state battery in which a raw material active material and a solid electrolyte are mixed according to Comparative Example 1.
  • FIG. 3 is a graph showing the results of X-ray diffraction analysis of active materials according to Examples and Comparative Examples.
  • FIG. 1 is a view showing an electrode for an all-solid-state battery including an active material coated with a chloride-based solid electrolyte on the surface of a raw active material according to the present invention.
  • the electrode 100 for an all-solid-state battery according to the present invention includes an active material 40 .
  • the active material 40 includes a raw active material 10 and a coating layer 30 coated with a chloride-based solid electrolyte on the surface of the raw active material 10 . That is, the active material 40 according to the present invention has a structure in which the chloride-based solid electrolyte 30 is coated on the surface of the raw active material 10 .
  • a mechanical (physical) coating method using a mechanical (physical) mixer such as a corotatory mixer may be used as a method of forming the coating layer 30 on the raw material 10 .
  • the active material 40 on which the coating layer 30 is formed can be obtained by mixing the raw material 10 and the chloride-based solid electrolyte into a corotatory mixer.
  • the active material 40 for an all-solid-state battery according to the present invention will be described in detail as follows.
  • the raw material active material 10 an oxide-based active material having excellent mechanical strength may be used. And the chloride-based solid electrolyte has excellent mechanical ductility.
  • the coating layer 30 may be formed by coating the surface of the raw material active material 10 with the chloride-based solid electrolyte. That is, since the chloride-based solid electrolyte has higher electrochemical and oxidation stability than the sulfide-based solid electrolyte, it is suitable as the coating layer 30 for expanding the ionic contact area. And since the chloride-based solid electrolyte has excellent mechanical ductility as described above compared to the oxide-based or sulfide-based solid electrolyte, it is easy to apply the coating layer 30 on the surface of the raw material 10 even with a simple mechanical coating process. can be formed
  • Li 2-2x M 2 1+x X 4 (0 ⁇ x ⁇ 0.5, M 2 is at least among Be, Mg, Ca, Sr, Ba, Mn, Fe, Co, Ni, Cu and Zn) one, and X may be at least one of F, Cl, and Br).
  • Li 3-x M 3 1-x M 4 x X 6 (0 ⁇ x ⁇ 1, M 3 is one of Sc, Y, Er, Yb, Cr, Fe and Co, M 4 is one of Ti, Zr, and Hf, and X is at least one of F, Cl, and Br) may be used.
  • the electrode 100 may include the active material 40 according to the present invention and a sulfide-based solid electrolyte.
  • a sulfide-based solid electrolyte Li 10 GeP 2 S 12 , Li 3 PS 4 or Li 6 PS 5 Cl may be used, but is not limited thereto.
  • the electrode 100 may be manufactured so that the mass ratio of the raw material 10, the chloride-based solid electrolyte, and the sulfide-based solid electrolyte is 75: 3 to 20: 5 to 22.
  • the electrode 100 may further include a binder and a conductive material. Since the binder and the conductive material may be materials generally used for manufacturing the electrode 100 , a description thereof will be omitted.
  • the active material according to the present invention forms a coating layer with a chloride-based solid electrolyte on the surface of the raw material active material, thereby increasing the ionic contact area between the raw material active material and the solid electrolyte, thereby improving the performance of the all-solid-state battery.
  • an all-solid-state battery having an active material coated with a chloride-based solid electrolyte can provide improved atmospheric stability and high voltage stability.
  • active materials according to Examples and Comparative Examples were prepared.
  • the room temperature ionic conductivity of the Li 3 YCl 6 solid electrolyte synthesized through the AC-impedance method was confirmed to be 0.45 mS/cm.
  • An electrode according to Comparative Example 1 was prepared by mixing a raw material active material not coated with a chloride-based solid electrolyte and a Li 6 PS 5 Cl solid electrolyte in a mass ratio of 75 to 25.
  • the electrode 200 according to Comparative Example 1 may be displayed as shown in FIG. 2 .
  • 2 is a view showing an electrode 200 for an all-solid-state battery in which the raw material active material 10 and the solid electrolyte 20 according to Comparative Example 1 are mixed. That is, the electrode 200 according to Comparative Example 1 has a structure in which the solid electrolyte 20 particles are disposed between the raw material active material 10 particles.
  • an all-solid-state battery was manufactured by sequentially stacking a positive electrode, a solid electrolyte layer, and a negative electrode.
  • an all-solid-state battery was manufactured by sequentially stacking a positive electrode, a solid electrolyte layer, and a negative electrode.
  • An electrode was prepared by coating a chloride-based solid electrolyte and a raw material active material in a mass ratio of 75 to 8.33, and mixing it with a 16.67% Li 6 PS 5 Cl solid electrolyte.
  • the electrode was prepared by mixing with 11.76% Li 6 PS 5 Cl solid electrolyte.
  • an all-solid-state battery was manufactured by sequentially stacking a positive electrode, a solid electrolyte layer, and a negative electrode.
  • the chloride-based solid electrolyte and the raw material were coated in a mass ratio of 75 to 18.75, and then mixed with 6.25% Li 6 PS 5 Cl solid electrolyte to prepare an electrode.
  • an all-solid-state battery was manufactured by sequentially stacking a positive electrode, a solid electrolyte layer, and a negative electrode.
  • Table 1 summarizes the performance evaluation results of the all-solid-state batteries according to Comparative Example 1 and Examples 1-4.
  • the all-solid-state battery according to Examples 1 to 4 has an improved discharge capacity compared to the all-solid-state battery according to Comparative Example 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 고체전해질이 코팅된 활물질, 전극 및 그를 이용한 전고체전지에 관한 것으로, 활물질과 고체전해질 간의 이온접촉면적을 확대하여 전고체전지의 성능을 향상시키기 위한 것이다. 본 발명에 따른 전고체전지용 활물질은 원료 활물질과, 원료 활물질의 표면에 염화물계 고체전해질로 코팅하여 형성되는 코팅층을 포함한다.

Description

고체전해질이 코팅된 활물질, 전극 및 그를 이용한 전고체전지
본 발명은 전고체전지에 관한 것으로, 더욱 상세하게는 활물질과 고체전해질 간의 이온접촉면적을 확대하여 전고체전지의 성능을 향상시킬 수 있는 고체전해질이 코팅된 활물질, 전극 및 그를 이용한 전고체전지에 관한 것이다.
전기자동차 및 대용량 전력 저장장치의 요구가 높아지면서 이를 충족시키기 위한 다양한 전지의 개발이 이루어져 왔다.
리튬 이차전지는 다양한 이차전지 중에서 에너지밀도 및 출력 특성이 가장 우수하여 널리 상용화되었다. 리튬 이차전지로는 유기용매를 포함하는 액체 타입의 전해질을 포함하는 리튬 이차전지(이하 '액체 타입 이차전지'라 함)가 주로 사용되고 있다.
하지만 액체 타입 이차전지는 액체전해질이 전극 반응에 의해 분해되어 전지의 팽창을 야기하고 액체전해질의 누출에 의한 발화의 위험성이 지적되고 있다. 이러한 액체 타입 이차전지의 문제점을 해소하기 위해서, 안정성이 우수한 고체전해질을 적용한 리튬 이차전지(이하 '전고체전지'라 함)가 주목받고 있다.
고체전해질은 황화물계, 산화물계 및 염화물계로 나눌 수 있다. 황화물계 고체전해질이 산화물계 고체전해질과 비교하여 높은 리튬이온전도도를 가지고, 넓은 전압 범위에서 안정하기 때문에, 전고체전지용 고체전해질로 황화물계 고체전해질을 주로 사용하고 있다.
황화물계 고체전해질은 종래 유기계 액체전해질과 유사한 수준의 높은 이온전도도를 가지고 있고, 기계적인 연성이 우수해 벌크형 전고체전지용 고체전해질로 주목받고 있다
그러나 황화물계 고체전해질은 공기 중의 수분에 매우 취약하여 수분 접촉 시, 유독성 황화수소(H2S) 가스를 쉽게 발생시키는 문제가 있다. 또한 황화물계 고체전해질은 고전압 환경에 노출될 경우 황화 이온(S2-)이 쉽게 산화되어 그 화학적 특징이 변형되는 특성이 있다.
한편 액체전해질이 전지 내에서 쉽게 활물질을 적시는 것에 비해, 고체전해질은 기계적으로 변형이 어렵기 때문에, 활물질과 대면적 접촉을 이루기 어렵다는 문제가 있으며, 이는 전고체전지의 성능을 저해하는 요소로 작용하고 있다.
[선행기술문헌]
[특허문헌]
공개특허공보 제2019-0079135호(2019.07.05.)
이와 같이 우수한 성능의 전고체전지를 구성하기 위해서는, 고체전해질이 균일하게 코팅된 활물질을 사용하는 것이 바람직하다. 그러나 황화물계 고체전해질은 활물질의 표면에서 쉽게 산화되어 코팅층으로 사용하기 부적절하다.
따라서 우수한 전기화학적 및 산화 안정성을 가지면서도 적은 양으로도 충분한 이온접촉을 이룰 수 있는 고체전해질의 코팅 기술이 요구되고 있다.
본 발명의 목적은 활물질과 고체전해질 간의 이온접촉면적을 확대하여 전고체전지의 성능을 향상시킬 수 있는 고체전해질이 코팅된 활물질, 전극 및 그를 이용한 전고체전지를 제공하는 데 있다.
상기 목적을 달성하기 위하여, 본 발명은 원료 활물질; 및 상기 원료 활물질의 표면에 염화물계 고체전해질로 코팅하여 형성되는 코팅층;을 포함하는 전고체전지용 활물질을 제공한다.
상기 염화물계 고체전해질은 Li2-2xM2 1+xX4 (0≤x≤0.5, M2는 Be, Mg, Ca, Sr, Ba, Mn, Fe, Co, Ni, Cu 및 Zn 중에 적어도 하나이고, X는 F, Cl 및 Br 중에 적어도 하나) 일 수 있다.
상기 염화물계 고체전해질은 Li3-xM3 1-xM4 xX6 (0≤x<1, M3는 Sc, Y, Er, Yb, Cr, Fe 및 Co 중 하나이고, M4는 Ti, Zr 및 Hf 중 하나이고, X는 F, Cl 및 Br 중에 적어도 하나) 일 수 있다.
상기 원료 활물질은 LiCoO2, NCM계(Ni, Co 및 Mn 이외의 1종 이상의 도핑원소 포함), NCA계(Ni, Co 및 Al 이외의 1종 이상의 도핑원소 포함), LiMxMn2-xO4(M=Al, Ni, Cr, 고전압 스피넬 포함) 및 올리빈계(LiFePO4, LiMxFe1-xPO4(M=Ni, Co, Si))를 포함하는 그룹에서 선택되는 적어도 하나의 양극소재을 포함할 수 있다.
상기 코팅층은 상기 원료 활물질과 상기 염화물계 고체전해질을 물리적으로 혼합하여 형성할 수 있다.
본 발명은 또한, 원료 활물질, 상기 원료 활물질의 표면에 염화물계 고체전해질로 코팅하여 형성되는 코팅층을 구비하는 활물질; 및 황화물계 고체전해질;을 포함하는 전고체전지용 전극을 제공한다.
그리고 본 발명은 상기 전극을 포함하는 전고체전지를 제공한다.
본 발명에 따르면, 원료 활물질과 염화물계 고체전해질을 공자전 혼합기와 같은 기계적(물리적) 혼합기에 투입하여 균일하게 혼합함으로써, 원료 활물질의 표면에 염화물계 고체전해질로 코팅층을 형성할 수 있다.
이와 같이 원료 활물질의 표면에 염화물계 고체전해질로 코팅층을 형성함으로써, 원료 활물질과 고체전해질 간의 이온접촉면적을 확대하여 전고체전지의 성능을 향상시킬 수 있다.
그리고 코팅층의 소재로 염화물계 고체전해질을 사용함으로써, 염화물계 고체전해질이 코팅된 활물질을 구비하는 전고체전지는 향상된 대기안정성과 고전압 안정성을 제공할 수 있다.
도 1은 본 발명에 따른 원료 활물질의 표면에 염화물계 고체전해질이 코팅된 활물질을 포함하는 전고체전지용 전극을 보여주는 도면이다.
도 2는 비교예1에 따른 원료 활물질과 고체전해질이 혼합된 전고체전지용 전극을 보여주는 도면이다.
도 3은 실시예 및 비교예에 따른 활물질의 X선 회절 분석 결과를 보여주는 그래프이다.
도 4는 실시예 및 비교예에 따른 활물질의 FESEM 사진이다.
도 5는 실시예 및 비교예에 따른 활물질을 포함하는 전고체전지의 충방전 곡선을 보여주는 그래프이다.
하기의 설명에서는 본 발명의 실시예를 이해하는데 필요한 부분만이 설명되며, 그 이외 부분의 설명은 본 발명의 요지를 벗어나지 않는 범위에서 생략될 것이라는 것을 유의하여야 한다.
이하에서 설명되는 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념으로 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 바람직한 실시예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
이하, 첨부된 도면을 참조하여 본 발명의 실시예를 보다 상세하게 설명하고자 한다.
도 1은 본 발명에 따른 원료 활물질의 표면에 염화물계 고체전해질이 코팅된 활물질을 포함하는 전고체전지용 전극을 보여주는 도면이다.
도 1을 참조하면, 본 발명에 따른 전고체전지용 전극(100)은 활물질(40)을 포함한다. 여기서 활물질(40)은 원료 활물질(10)과, 원료 활물질(10)의 표면에 염화물계 고체전해질로 코팅된 코팅층(30)을 포함한다. 즉 본 발명에 따른 활물질(40)은 원료 활물질(10)의 표면에 염화물계 고체전해질(30)이 코팅된 구조를 갖는다.
원료 활물질(10)에 코팅층(30)을 형성하는 방법으로는 공자전 혼합기와 같은 기계적(물리적) 혼합기를 이용한 기계적(물리적) 코팅 방법이 사용될 수 있다. 공자전 혼합기에 원료 활물질(10)과 염화물계 고체전해질을 투입한 후 혼합하여 코팅층(30)이 형성된 활물질(40)을 얻을 수 있다.
이와 같은 본 발명에 따른 전고체전지용 활물질(40)에 대해서 구체적으로 설명하면 다음과 같다.
원료 활물질(10)로는 기계적 강도가 우수한 산화물계 활물질이 사용될 수 있다. 그리고 염화물계 고체전해질은 기계적 연성이 우수하다.
이와 같은 원료 활물질(10)과 염화물계 고체전해질의 기계적인 물성에 기인하여, 원료 활물질(10)의 표면에 염화물계 고체전해질을 코팅하여 코팅층(30)을 형성할 수 있다. 즉 염화물계 고체전해질은 황화물계 고체전해질에 비해 높은 전기화학적 및 산화 안정성을 갖고 있기 때문에, 이온접촉면적을 확대하기 위한 코팅층(30)으로 적합한다. 그리고 염화물계 고체전해질은 산화물계 또는 황화물계 고체전해질에 비해서, 전술된 바와 같이 우수한 기계적인 연성을 갖고 있기 때문에, 단순한 기계적인 코팅 공정으로도 쉽게 원료 활물질(10)의 표면에 코팅층(30)을 형성할 수 있다.
여기서 산화물계 활물질로는 LiCoO2, NCM계(Ni, Co 및 Mn 이외의 1종 이상의 도핑원소 포함), NCA계(Ni, Co 및 Al 이외의 1종 이상의 도핑원소 포함), LiMxMn2-xO4(M=Al, Ni, Cr, 고전압 스피넬 포함) 및 올리빈계(LiFePO4, LiMxFe1-xPO4(M=Ni, Co, Si))를 포함하는 그룹에서 선택되는 적어도 하나의 양극소재가 사용될 수 있다. 예컨대 산화물계 활물질로는 Li[NixMnyCoz]O2 (x+y+z=1)로 표시되는 산화물계 활물질이 사용될 수 있다.
염화물계 고체전해질로는 Li2-2xM2 1+xX4 (0≤x≤0.5, M2는 Be, Mg, Ca, Sr, Ba, Mn, Fe, Co, Ni, Cu 및 Zn 중에 적어도 하나이고, X는 F, Cl 및 Br 중에 적어도 하나)을 사용할 수 있다.
또는 염화물계 고체전해질로는 Li3-xM3 1-xM4 xX6 (0≤x<1, M3는 Sc, Y, Er, Yb, Cr, Fe 및 Co 중 하나이고, M4는 Ti, Zr 및 Hf 중 하나이고, X는 F, Cl 및 Br 중에 적어도 하나)을 사용할 수 있다.
이러하 본 발명에 따른 활물질(40)을 기반으로 전고체전지용 전극(100)을 제조할 수 있다. 제조된 전극(100)을 기반으로 전고체전지를 제조할 수 있다.
여기서 전극(100)은 본 발명에 따른 활물질(40)과 황화물계 고체전해질을 포함할 수 있다. 황화물계 고체전해질로는 Li10GeP2S12, Li3PS4 또는 Li6PS5Cl이 사용될 수 있으며, 이것에 한정되는 것은 아니다.
이러한 전극(100)은 원료 활물질(10), 염화물계 고체전해질 및 황화물계 고체전해질의 질량비가 75 : 3~20 : 5~22 이 되게 제조할 수 있다.
전극(100)은 바인더와 도전재를 더 포함할 수 있다. 바인더와 도전재는 일반적으로 전극(100)의 제조에 사용되는 소재가 사용될 수 있기 때문에, 이에 대한 설명은 생략한다.
이와 같이 본 발명에 따른 활물질은 원료 활물질의 표면에 염화물계 고체전해질로 코팅층을 형성함으로써, 원료 활물질과 고체전해질 간의 이온접촉면적을 확대하여 전고체전지의 성능을 향상시킬 수 있다.
그리고 코팅층의 소재로 염화물계 고체전해질을 사용함으로써, 염화물계 고체전해질이 코팅된 활물질을 구비하는 전고체전지는 향상된 대기안정성과 고전압 안정성을 제공할 수 있다.
[실시예 및 비교예]
실시예 및 비교예에 따른 활물질, 전극 및 전고체전지의 제조의 전체 단계는, 대기 중의 산소 또는 수분에 노출되지 않도록, 글로브박스 또는 드라이룸에서 진행하거나 불활성가스 분위기에 진행한다.
이와 같은 본 발명에 따른 활물질의 물리적인 특성 및 전기화학적인 특성을 확인하기 위해서, 실시예 및 비교예에 따른 활물질을 제조하였다.
염화물계 고체전해질
코팅층으로 사용할 Li3YCl6 고체전해질을 다음과 같이 합성하였다. 먼저 염화리튬(LiCl)과 염화이트륨(YCl3)을 3 대 1의 몰비로 지르코니아 용기에 지르코니아 볼과 밀폐한 후, 500 rpm의 조건에서 10 시간 동안 볼밀링 공정을 수행하여 Li3YCl6 고체전해질를 합성하였다.
교류-임피던스법을 통해 합성한 Li3YCl6 고체전해질의 상온 이온전도도는 0.45 mS/cm로 확인되었다.
비교예1
염화물계 고체전해질이 코팅되지 않은 원료 활물질과 Li6PS5Cl 고체전해질을 75 대 25의 질량비로 혼합하여 비교예1에 따른 전극을 제조하였다.
비교예1에 따른 전극(200)은 도 2와 같이 표시될 수 있다. 도 2는 비교예1에 따른 원료 활물질(10)과 고체전해질(20)이 혼합된 전고체전지용 전극(200)을 보여주는 도면이다. 즉 비교예1에 따른 전극(200)은 원료 활물질(10) 입자 사이에 고체전해질(20) 입자가 배치된 구조를 갖는다.
비교예1에 따른 전극(200)의 특성을 확인하기 위해, 양극, 고체전해질층 및 음극을 차례대로 적층하여 전고체전지를 제작하였다.
비교예1에 따른 전극(200)이 포함된 전고체전지의 충방전 실험결과 방전 용량은 152 mAh/g 으로 확인되었다.
실시예1
염화물계 고체전해질과 원료 활물질을 75 대 3.95의 질량비로 코팅한 뒤, 21.05%의 Li6PS5Cl 고체전해질과 혼합하여 전극을 제조하였다.
실시예1에 따른 전극의 특성을 확인하기 위해, 양극, 고체전해질층 및 음극을 차례대로 적층하여 전고체전지를 제작하였다.
실시예1에 따른 전극이 포함된 전고체전지의 충방전 실험결과 방전 용량은 166 mAh/g 으로 확인되었다.
실시예2
염화물계 고체전해질과 원료 활물질을 75 대 8.33의 질량비로 코팅한 뒤, 16.67%의 Li6PS5Cl 고체전해질과 혼합하여 전극을 제조하였다.
실시예2에 따른 전극의 특성을 확인하기 위해, 양극, 고체전해질층 및 음극을 차례대로 적층하여 전고체전지를 제작하였다.
실시예2에 따른 전극이 포함된 전고체전지의 충방전 실험결과 방전 용량은 173 mAh/g 으로 확인되었다.
실시예3
염화물계 고체전해질과 원료 활물질을 75 대 13.24의 질량비로 코팅한 뒤, 11.76%의 Li6PS5Cl 고체전해질과 혼합하여 전극을 제조하였다.
실시예3에 따른 전극의 특성을 확인하기 위해, 양극, 고체전해질층 및 음극을 차례대로 적층하여 전고체전지를 제작하였다.
실시예3에 따른 전극이 포함된 전고체전지의 충방전 실험결과 방전 용량은 179 mAh/g 으로 확인되었다.
실시예4
염화물계 고체전해질과 원료 활물질을 75 대 18.75의 질량비로 코팅한 뒤, 6.25%의 Li6PS5Cl 고체전해질과 혼합하여 전극을 제조하였다. 실시예4에 따른 전극의 특성을 확인하기 위해, 양극, 고체전해질층 및 음극을 차례대로 적층하여 전고체전지를 제작하였다.
실시예4에 따른 전극이 포함된 전고체전지의 충방전 실험결과 방전 용량은 175 mAh/g 으로 확인되었다.
비교예1 및 실시예1~4에 따른 전고체전지의 성능 평가 결과를 정리하면 표1과 같다.
Figure PCTKR2021013791-appb-T000001
실시예1~4에 따른 전고체전지가 비교예1에 따른 전고체전지에 비해서 방전용량이 개선된 것을 확인할 수 있다.
실시예1~4에 따른 전고체전지를 비교하면, 원료 활물질을 기준으로 염화물계 고체전해질의 질량비가 13.24%로 증가할 때 방전용량이 최대가 되고, 13.24%를 초과하여 18,85%가 되었을 때 방전용량이 감소하는 것을 확인할 수 있다.
도 3은 실시예 및 비교예에 따른 활물질의 X선 회절 분석 결과를 보여주는 그래프이다.
도 3을 참조하면, 실시예 및 비교예에 따른 활물질 모두 유사한 X선 회절 분석 결과에서 확인할 수 있는 바와 같이, 실시예1~4에 따른 기계적 코팅 과정 중 원료 활물질의 구조 변화가 없음을 확인할 수 있다.
도 4는 실시예 및 비교예에 따른 활물질의 FESEM 사진이다.
도 4를 참조하면, 실시예1~3에 따른 활물질에서 확인할 수 있는 바와 같이, 기계적 코팅 과정을 통해서 염화물계 고체전해질이 산화물계의 원료 활물질에 균일하게 코팅된 것을 확인할 수 있다.
도 5는 실시예 및 비교예에 따른 활물질을 포함하는 전고체전지의 충방전 곡선을 보여주는 그래프이다. 여기서 도 5는 비교예1 및 실시예4에 따른 전고체전지의 충방전 곡선이다.
도 5를 참조하면, 염화물계 고체전해질이 코팅된 실시예4에 따른 활물질을 사용하는 경우, 충전 초기에 고체전해질의 부반응이 일어나지 않으며, 활물질과 고체전해질 사이에 이온접촉면적이 향상됨에 따라, 비교예1에 따른 활물질과 비교하여, 개선된 방전 용량을 보이는 것을 확인할 수 있다.
한편, 본 명세서와 도면에 개시된 실시예들은 이해를 돕기 위해 특정 예를 제시한 것에 지나지 않으며, 본 발명의 범위를 한정하고자 하는 것은 아니다. 여기에 개시된 실시예들 이외에도 본 발명의 기술적 사상에 바탕을 둔 다른 변형예들이 실시 가능하다는 것은, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게는 자명한 것이다.
[부호의 설명]
10 : 원료 활물질
20 : 고체전해질
30 : 코팅층
40 : 활물질
100, 200 : 전극

Claims (13)

  1. 원료 활물질; 및
    상기 원료 활물질의 표면에 염화물계 고체전해질로 코팅하여 형성되는 코팅층;
    을 포함하는 전고체전지용 활물질.
  2. 제1항에 있어서,
    상기 염화물계 고체전해질은 Li2-2xM2 1+xX4 (0≤x≤0.5, M2는 Be, Mg, Ca, Sr, Ba, Mn, Fe, Co, Ni, Cu 및 Zn 중에 적어도 하나이고, X는 F, Cl 및 Br 중에 적어도 하나)인 것을 특징으로 하는 전고체전지용 활물질.
  3. 제1항에 있어서,
    상기 염화물계 고체전해질은 Li3-xM3 1-xM4 xX6 (0≤x<1, M3는 Sc, Y, Er, Yb, Cr, Fe 및 Co 중 하나이고, M4는 Ti, Zr 및 Hf 중 하나이고, X는 F, Cl 및 Br 중에 적어도 하나)인 것을 특징으로 하는 전고체전지용 활물질.
  4. 제1항에 있어서,
    상기 원료 활물질은 LiCoO2, NCM계(Ni, Co 및 Mn 이외의 1종 이상의 도핑원소 포함), NCA계(Ni, Co 및 Al 이외의 1종 이상의 도핑원소 포함), LiMxMn2-xO4(M=Al, Ni, Cr, 고전압 스피넬 포함) 및 올리빈계(LiFePO4, LiMxFe1-xPO4(M=Ni, Co, Si))를 포함하는 그룹에서 선택되는 적어도 하나의 양극소재을 포함하는 것을 특징으로 하는 전고체전지용 활물질.
  5. 제1항에 있어서,
    상기 코팅층은 상기 원료 활물질과 상기 염화물계 고체전해질을 물리적으로 혼합하여 형성하는 것을 특징으로 하는 전고체전지용 활물질.
  6. 원료 활물질, 상기 원료 활물질의 표면에 염화물계 고체전해질로 코팅하여 형성되는 코팅층을 구비하는 활물질; 및
    황화물계 고체전해질;
    을 포함하는 전고체전지용 전극.
  7. 제6항에 있어서,
    상기 염화물계 고체전해질은 Li2-2xM2 1+xX4 (0≤x≤0.5, M2는 Be, Mg, Ca, Sr, Ba, Mn, Fe, Co, Ni, Cu 및 Zn 중에 적어도 하나이고, X는 F, Cl 및 Br 중에 적어도 하나)인 것을 특징으로 하는 전고체전지용 전극.
  8. 제6항에 있어서,
    상기 염화물계 고체전해질은 Li3-xM3 1-xM4 xX6 (0≤x<1, M3는 Sc, Y, Er, Yb, Cr, Fe 및 Co 중 하나이고, M4는 Ti, Zr 및 Hf 중 하나이고, X는 F, Cl 및 Br 중에 적어도 하나)인 것을 특징으로 하는 전고체전지용 전극.
  9. 제6항에 있어서,
    상기 원료 활물질은 LiCoO2, NCM계(Ni, Co 및 Mn 이외의 1종 이상의 도핑원소 포함), NCA계(Ni, Co 및 Al 이외의 1종 이상의 도핑원소 포함), LiMxMn2-xO4(M=Al, Ni, Cr, 고전압 스피넬 포함) 및 올리빈계(LiFePO4, LiMxFe1-xPO4(M=Ni, Co, Si))를 포함하는 그룹에서 선택되는 적어도 하나의 양극소재를 포함하는 것을 특징으로 하는 전고체전지용 전극.
  10. 전극을 포함하는 전고체전지로서,
    상기 전극은,
    원료 활물질, 상기 원료 활물질의 표면에 염화물계 고체전해질로 코팅하여 형성되는 코팅층을 구비하는 활물질; 및
    황화물계 고체전해질;
    을 포함하는 전고체전지.
  11. 제10항에 있어서,
    상기 염화물계 고체전해질은 Li2-2xM2 1+xX4 (0≤x≤0.5, M2는 Be, Mg, Ca, Sr, Ba, Mn, Fe, Co, Ni, Cu 및 Zn 중에 적어도 하나이고, X는 F, Cl 및 Br 중에 적어도 하나)인 것을 특징으로 하는 전고체전지.
  12. 제10항에 있어서,
    상기 염화물계 고체전해질은 Li3-xM3 1-xM4 xX6 (0≤x<1, M3는 Sc, Y, Er, Yb, Cr, Fe 및 Co 중 하나이고, M4는 Ti, Zr 및 Hf 중 하나이고, X는 F, Cl 및 Br 중에 적어도 하나)인 것을 특징으로 하는 전고체전지.
  13. 제10항에 있어서,
    상기 원료 활물질은 LiCoO2, NCM계(Ni, Co 및 Mn 이외의 1종 이상의 도핑원소 포함), NCA계(Ni, Co 및 Al 이외의 1종 이상의 도핑원소 포함), LiMxMn2-xO4(M=Al, Ni, Cr, 고전압 스피넬 포함) 및 올리빈계(LiFePO4, LiMxFe1-xPO4(M=Ni, Co, Si))를 포함하는 그룹에서 선택되는 적어도 하나의 양극소재을 포함하는 것을 특징으로 하는 전고체전지.
PCT/KR2021/013791 2020-12-30 2021-10-07 고체전해질이 코팅된 활물질, 전극 및 그를 이용한 전고체전지 WO2022145645A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0186937 2020-12-30
KR1020200186937A KR20220097560A (ko) 2020-12-30 2020-12-30 고체전해질이 코팅된 활물질, 전극 및 그를 이용한 전고체전지

Publications (1)

Publication Number Publication Date
WO2022145645A1 true WO2022145645A1 (ko) 2022-07-07

Family

ID=82259332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/013791 WO2022145645A1 (ko) 2020-12-30 2021-10-07 고체전해질이 코팅된 활물질, 전극 및 그를 이용한 전고체전지

Country Status (2)

Country Link
KR (1) KR20220097560A (ko)
WO (1) WO2022145645A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160128670A (ko) * 2015-04-29 2016-11-08 현대자동차주식회사 고체 전해질 및 이를 포함하는 전고체 전지
WO2019135323A1 (ja) * 2018-01-05 2019-07-11 パナソニックIpマネジメント株式会社 電池
WO2019146236A1 (ja) * 2018-01-26 2019-08-01 パナソニックIpマネジメント株式会社 正極材料、および、電池
KR20200021731A (ko) * 2018-08-21 2020-03-02 전자부품연구원 전고체 이차전지용 양극 나노복합체 및 이의 제조 방법
JP2020109047A (ja) * 2018-12-28 2020-07-16 パナソニックIpマネジメント株式会社 固体電解質材料、およびそれを用いた電池

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102452005B1 (ko) 2017-12-27 2022-10-06 현대자동차주식회사 질소가 첨가된 전고체 전지용 황화물계 고체전해질

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160128670A (ko) * 2015-04-29 2016-11-08 현대자동차주식회사 고체 전해질 및 이를 포함하는 전고체 전지
WO2019135323A1 (ja) * 2018-01-05 2019-07-11 パナソニックIpマネジメント株式会社 電池
WO2019146236A1 (ja) * 2018-01-26 2019-08-01 パナソニックIpマネジメント株式会社 正極材料、および、電池
KR20200021731A (ko) * 2018-08-21 2020-03-02 전자부품연구원 전고체 이차전지용 양극 나노복합체 및 이의 제조 방법
JP2020109047A (ja) * 2018-12-28 2020-07-16 パナソニックIpマネジメント株式会社 固体電解質材料、およびそれを用いた電池

Also Published As

Publication number Publication date
KR20220097560A (ko) 2022-07-08

Similar Documents

Publication Publication Date Title
WO2019107879A1 (ko) 고체 전해질, 그 제조 방법 및 이를 포함하는 전고체 전지
WO2010053328A2 (ko) 고전압 특성이 향상된 양극 활물질
WO2019107878A1 (ko) 고체 전해질, 그 제조 방법 및 이를 포함하는 전고체 전지
WO2013002457A1 (ko) 양극활물질, 상기 양극활물질을 포함하는 전극, 및 리튬 전기 화학 전지
WO2015133692A1 (ko) 양극 활물질, 그를 갖는 리튬이차전지 및 그의 제조 방법
WO2021025370A1 (ko) 리튬 이차전지용 양극 활물질
WO2019078690A2 (ko) 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지
WO2018182216A9 (ko) 다층 구조의 복합전해질 및 이를 이용한 이차전지
WO2015099243A1 (ko) 붕소 화합물 함유 전극 활물질 및 이를 이용한 전기화학소자
WO2017142295A1 (ko) 황화물계 고체 전해질의 제조방법, 이로부터 제조된 황화물계 고체 전해질 및 이를 포함하는 전고체 리튬 이차전지
WO2009134047A1 (ko) 리튬 이차 전지용 음극 활물질과 그 제조방법 및 이를 음극으로 포함하는 리튬 이차 전지
WO2019103311A1 (ko) 전고상 리튬-폴리머 이차전지용 양극 및 그의 제조방법, 이를 포함한 이차전지
WO2023229121A1 (ko) 습식 및 건식 공정을 통한 고순도 황화리튬의 제조방법
WO2015012473A1 (ko) 리튬 망간계 산화물 및 이를 포함하는 양극 활물질
WO2022085984A1 (ko) 이차 전지용 전극 및 이차 전지용 전극의 제조 방법
WO2015026121A1 (ko) 수명특성이 우수한 리튬 코발트계 복합 산화물 및 이를 포함하는 이차전지용 양극 활물질
WO2010143805A1 (ko) 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
WO2018101765A1 (ko) 이차 전지용 음극 및 이를 포함하는 이차 전지
WO2022108118A1 (ko) 에스터계 유기용매를 이용한 황화물계 고체전해질의 제조 방법, 그 제조 방법으로 제조된 황화물계 고체전해질 및 전고체전지
WO2017039149A1 (ko) 자성 물질을 포함하는 이차전지용 바인더
WO2017061807A1 (ko) 전극조립체를 구성하는 분리막의 기공 내에 겔화 전해액 성분을 포함하고 있는 전지셀
WO2022145645A1 (ko) 고체전해질이 코팅된 활물질, 전극 및 그를 이용한 전고체전지
WO2023182612A1 (ko) 이차전지용 음극 활물질, 이의 제조 방법 및 이를 포함하는 이차전지
WO2023013804A1 (ko) 금속 전극 보호용 고분자 피막 및 이를 이용한 이차전지
WO2023080366A1 (ko) 리튬이차전지의 양극용 슬러리 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21915443

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21915443

Country of ref document: EP

Kind code of ref document: A1