[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023182612A1 - 이차전지용 음극 활물질, 이의 제조 방법 및 이를 포함하는 이차전지 - Google Patents

이차전지용 음극 활물질, 이의 제조 방법 및 이를 포함하는 이차전지 Download PDF

Info

Publication number
WO2023182612A1
WO2023182612A1 PCT/KR2022/018857 KR2022018857W WO2023182612A1 WO 2023182612 A1 WO2023182612 A1 WO 2023182612A1 KR 2022018857 W KR2022018857 W KR 2022018857W WO 2023182612 A1 WO2023182612 A1 WO 2023182612A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
secondary battery
silicon
paragraph
based particles
Prior art date
Application number
PCT/KR2022/018857
Other languages
English (en)
French (fr)
Inventor
김주석
Original Assignee
주식회사 엘케이테크놀러지
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘케이테크놀러지 filed Critical 주식회사 엘케이테크놀러지
Priority to CN202280085664.5A priority Critical patent/CN118435383A/zh
Publication of WO2023182612A1 publication Critical patent/WO2023182612A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • C01B33/023Preparation by reduction of silica or free silica-containing material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • It relates to a negative electrode active material for secondary batteries, a manufacturing method thereof, and a secondary battery containing the same.
  • silicon anode material is attracting attention as an anode material for next-generation batteries, with a theoretical capacity per weight more than 10 times that of commercialized graphite material (370 mAh/g).
  • One embodiment provides a negative active material for a secondary battery that has excellent electrochemical properties by suppressing volume change that occurs during repeated charging and discharging.
  • Another embodiment provides a method for manufacturing the anode active material for secondary batteries.
  • Another embodiment provides a secondary battery including the anode active material for a secondary battery.
  • One embodiment provides a negative active material for a secondary battery including silicon (Si)-based particles, wherein the silicon (Si)-based particles include an M-O-Si bond (where M is a metal).
  • the metal (M) may include B, P, Ge, Ti, Zr, or a combination thereof.
  • the silicon (Si)-based particles may further include Si-Si bonds.
  • the silicon (Si)-based particles can be manufactured by reducing waste glass containing silica and metal oxide at a temperature of 200°C to 350°C.
  • the silicon (Si)-based particles have a wavenumber of 800 cm -1 to 900 cm -1 , a wavenumber of 650 cm -1 to 750 cm -1 , or a combination thereof in the Fourier transform infrared (FT-IR) spectrum.
  • a transmittance peak corresponding to the MO-Si bond may be displayed at a wave number of .
  • the average particle diameter of the silicon (Si)-based particles may be 0.05 ⁇ m to 5 ⁇ m.
  • Another embodiment includes producing silicon (Si)-based particles by reducing waste glass containing silica and metal oxide at a temperature of 200°C to 350°C, and the produced silicon (Si)-based particles are M-O
  • a method for manufacturing a negative active material for a secondary battery comprising a -Si bond (where M is a metal) is provided.
  • the waste glass may be heat-strengthened glass generated when disposing of a display.
  • the metal of the metal oxide and the metal (M) may include B, P, Ge, Ti, Zr, or a combination thereof.
  • the reduction may be performed by adding a reducing agent containing Al, AlCl 3 , Zn, Mg, Ca, or a combination thereof.
  • Another embodiment includes a negative electrode including the negative electrode active material; anode; and a secondary battery containing an electrolyte.
  • the capacity of the cathode may be 800 mAh/g to 1700 mAh/g at 1C.
  • the negative electrode may have a volume change of 5% to 40% after repeating 50 cycles of charging and discharging at 0.5C.
  • the anode active material for secondary batteries not only improves the electrochemical properties of secondary batteries by suppressing volume changes that occur during repeated charging and discharging, but is also environmentally friendly because waste glass from various displays can be recycled.
  • 1A and 1B are scanning electron microscope (SEM) images of anode active materials for secondary batteries according to Example 1 and Comparative Example 1, respectively.
  • Figures 2a and 2b are X-ray diffraction analysis (XRD) graphs of negative electrode active materials for secondary batteries according to Example 1 and Comparative Example 1, respectively.
  • XRD X-ray diffraction analysis
  • 3A and 3B are graphs showing Fourier transform infrared (FT-IR) spectra of negative electrode active materials for secondary batteries according to Example 1 and Comparative Example 1, respectively.
  • FT-IR Fourier transform infrared
  • Figures 4a and 4b are graphs showing changes in voltage and discharge capacity according to the initial charge and discharge cycle in the secondary battery according to Example 1 and Comparative Example 1, respectively.
  • Figures 5a and 5b are graphs showing capacity changes according to repeated charge and discharge cycles in the secondary batteries according to Example 1 and Comparative Example 1, respectively.
  • Figures 6a and 6b are images showing changes in the volume of the negative electrode during repeated charging and discharging of the secondary battery according to Example 1 and Comparative Example 1, respectively.
  • a negative active material for a secondary battery includes silicon (Si)-based particles, where the silicon (Si)-based particles include an M-O-Si bond (where M is a metal).
  • silicon (Si)-based particles used as a negative electrode active material contain M-O-Si bonds, thereby controlling the change in volume of silicon (Si) that occurs when reacting with lithium ions.
  • silicon (Si) containing M-O-Si bonds as a negative electrode active material, the volume change of silicon that occurs during repeated charging and discharging can be suppressed, and the electrochemical properties of the secondary battery can be improved accordingly.
  • the M-O-Si bond may be a particle having an M-O-Si bond.
  • the silicon (Si)-based particle may be in the form of a plurality of particles agglomerated, and may include a particle having an M-O-Si bond as one of the plurality of particles.
  • the metal (M) may include B, P, Ge, Ti, Zr, or a combination thereof.
  • Silicon (Si)-based particles not only have pure Si-Si bonds, but also have the M-O-Si bonds. Specifically, according to X-ray diffraction analysis (XRD) and Fourier transform infrared (FT-IR) spectra for the silicon (Si)-based particles, it contains pure Si-Si bonds and additionally has M-O-Si bonds.
  • the Si-Si bond may be a particle having a Si-Si bond.
  • the silicon (Si)-based particles have a wavenumber of 800 cm -1 to 900 cm -1 , a wavenumber of 650 cm -1 to 750 cm -1 , in a Fourier transform infrared (FT-IR) spectrum.
  • FT-IR Fourier transform infrared
  • a transmittance peak corresponding to the MO-Si bond may be displayed at a wave number of a combination thereof.
  • the transmittance peak corresponding to the MO-Si bond may appear, for example, at a wave number of 850 cm -1 to 900 cm -1 , a wave number of 650 cm -1 to 700 cm -1 , or a combination thereof.
  • the average particle diameter of the silicon (Si)-based particles may be 0.05 ⁇ m to 5 ⁇ m, for example, 0.05 ⁇ m to 1 ⁇ m, 0.1 ⁇ m to 0.8 ⁇ m. If the average particle diameter of the silicon (Si)-based particles is within the above range, a high capacity electrode can be obtained.
  • the silicon (Si)-based particles can be manufactured through a low-temperature reduction method using waste glass containing silica and metal oxides.
  • the waste glass may be heat-strengthened glass used in liquid crystal displays such as smartphones. Most of the waste glass generated when disposing of various displays cannot be recycled and is landfilled, causing environmental pollution. In one embodiment, by using the waste glass as a raw material for a negative electrode active material, the waste glass of various displays can be recycled, thereby reducing environmental pollution, making it environmentally friendly.
  • the conventional process of manufacturing silicon from silica requires a temperature of over 1700°C when using a carbothermal process, and when using metal reducing agents such as magnesium and aluminum, it is difficult to control the structure due to an exothermic reaction over 2500°C. .
  • waste glass raw material costs are greatly reduced by eliminating the need for equipment due to high-temperature processes, and silicon with easy structure control and high purity can be manufactured through a low-temperature reduction method.
  • silicon (Si)-based particles are used to process waste glass containing silica and metal oxides at a temperature of 200°C to 350°C, for example, 200°C to 300°C, 200°C to 280°C. It can be prepared by reduction at temperature.
  • silicon-based particles with easy structure control and high purity can be obtained, and the manufactured silicon-based particles contain M-O-Si bonds to prevent volume changes of silicon (Si) that occur during charging and discharging. You can.
  • the metal of the metal oxide is the same as the metal (M) in the M-O-Si bond.
  • the metal oxide may include boron oxide, phosphorus oxide, germanium oxide, titanium oxide, zirconium oxide, or a combination thereof.
  • Manufacturing of the silicon (Si)-based particles may be performed by adding a reducing agent.
  • the reducing agent may include Al, AlCl 3 , Zn, Mg, Ca, or a combination thereof.
  • the reducing agent can be used together with Al and AlCl 3 , and in this case, they can be mixed at a weight ratio of 1:5 to 1:20, for example, 1:10 to 1:20.
  • the secondary battery includes a negative electrode, a positive electrode, and an electrolyte.
  • a negative electrode using silicon (Si)-based particles as a negative electrode active material may have high capacity. Specifically, it may be 800 mAh/g to 1700 mAh/g at 1C, for example, 800 mAh/g to 1500 mAh/g at 1C, and 900 mAh/g to 1200 mAh/g at 1C.
  • a negative electrode using silicon (Si)-based particles as a negative electrode active material can suppress volume changes that occur during repeated charging and discharging.
  • the volume change after repeating 50 cycles of charging and discharging at 0.5C may be 5% to 40%, for example, 5% to 20%, or 10% to 18%.
  • the negative electrode includes a current collector and a negative electrode active material layer located on the current collector.
  • the current collector may use copper foil, nickel foil, stainless steel foil, titanium foil, nickel foam, copper foam, a polymer substrate coated with a conductive metal, or a combination thereof, but is not limited thereto.
  • the negative electrode active material layer includes the negative electrode active material described above and may further include a binder and a conductive material.
  • the binder serves to adhere the negative electrode active material particles to each other and also to adhere the negative electrode active material to the negative electrode current collector.
  • Representative examples include polyvinyl alcohol, carboxymethyl cellulose, hydroxypropyl cellulose, polyvinyl chloride, and carboxylic acid.
  • Silized polyvinyl chloride, polyvinyl fluoride, polymers containing ethylene oxide, polyvinylpyrrolidone, polyurethane, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, styrene-butadiene rubber, acrylic Rated styrene-butadiene rubber, epoxy resin, nylon, etc. can be used, but are not limited thereto.
  • the conductive material is used to provide conductivity to the electrode, and in the battery being constructed, any electronically conductive material can be used as long as it does not cause chemical change.
  • any electronically conductive material can be used as long as it does not cause chemical change. Examples include natural graphite, artificial graphite, carbon black, acetylene black, and Ketjen.
  • Carbon-based materials such as black and carbon fiber; Metallic substances such as metal powders such as copper, nickel, aluminum, and silver, or metal fibers; Conductive polymers such as polyphenylene derivatives; Alternatively, a conductive material containing a mixture thereof may be used.
  • the positive electrode includes a current collector and a positive electrode active material layer located on the current collector.
  • the current collector may be aluminum, but is not limited thereto.
  • the positive electrode active material layer includes a positive electrode active material.
  • the positive electrode active material may be a compound capable of reversible intercalation and deintercalation of lithium (lithiated intercalation compound), and specifically, lithium metal oxide may be used.
  • the lithium metal oxide may be an oxide containing lithium and at least one metal selected from cobalt, manganese, nickel, and aluminum.
  • the positive active material layer may further include a binder and a conductive material.
  • the binder serves to adhere the positive electrode active material particles to each other well and also to attach the positive electrode active material to the positive electrode current collector.
  • Representative examples thereof include polyvinyl alcohol, carboxymethyl cellulose, hydroxypropyl cellulose, polyvinyl chloride, and carboxylic acid.
  • Silized polyvinyl chloride, polyvinyl fluoride, polymers containing ethylene oxide, polyvinylpyrrolidone, polyurethane, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, styrene-butadiene rubber, acrylic Rated styrene-butadiene rubber, epoxy resin, nylon, etc. can be used, but are not limited thereto.
  • the conductive material is used to provide conductivity to the electrode, and in the battery being constructed, any electronically conductive material can be used as long as it does not cause chemical change.
  • any electronically conductive material can be used as long as it does not cause chemical change. Examples include natural graphite, artificial graphite, carbon black, acetylene black, and Ketjen.
  • Carbon-based materials such as black and carbon fiber; Metallic substances such as metal powders such as copper, nickel, aluminum, and silver, or metal fibers; Conductive polymers such as polyphenylene derivatives; Alternatively, a conductive material containing a mixture thereof may be used.
  • the negative electrode and positive electrode are manufactured by mixing an active material, a conductive material, and a binder in a solvent to prepare an active material composition, and applying this composition to a current collector. Since this electrode manufacturing method is widely known in the field, detailed description will be omitted in this specification.
  • the solvent may be N-methylpyrrolidone, but is not limited thereto.
  • the electrolyte includes lithium salt and an organic solvent.
  • the lithium salt is a substance that dissolves in an organic solvent and serves as a source of lithium ions in a secondary battery, enabling basic operation of the secondary battery and promoting the movement of lithium ions between the positive and negative electrodes.
  • lithium salt examples include LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiN(SO 3 C 2 F 5 ) 2 , LiN(CF 3 SO 2 ) 2 , LiC 4 F 9 SO 3 , LiClO 4 , LiAlO 2 , LiAlCl 4 , LiN(C x F 2x+1 SO 2 )(C y F 2y+1 SO 2 ) (where x and y are natural numbers), LiCl, LiI, LiB(C 2 O 4 ) 2 (lithium Lithium bis(oxalato) borate (LiBOB), or a combination thereof may be mentioned.
  • the concentration of the lithium salt can be used within a range of about 0.1M to about 2.0M.
  • concentration of lithium salt is within the above range, the gel-type electrolyte composition has appropriate conductivity and viscosity, so it can exhibit excellent electrolyte performance and lithium ions can move effectively.
  • the organic solvent serves as a medium through which ions involved in the electrochemical reaction of a secondary battery can move.
  • the organic solvent is a non-aqueous organic solvent and may be selected from carbonate-based, ester-based, ether-based, ketone-based, alcohol-based and aprotic solvents.
  • Examples of the carbonate-based solvent include dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate (DPC), methylpropyl carbonate (MPC), and ethylpropyl carbonate ( Ethylpropyl carbonate (EPC), ethylmethyl carbonate (EMC), ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), etc. may be used.
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • DPC dipropyl carbonate
  • MPC methylpropyl carbonate
  • EPC ethylpropyl carbonate
  • EMC ethylmethyl carbonate
  • EMC ethylmethyl carbonate
  • EC ethylene carbonate
  • PC propylene carbonate
  • BC butylene carbonate
  • the cyclic carbonate compound and the chain carbonate compound can be mixed and used in a volume ratio of about 1:1 to 1:9.
  • ester-based solvents include, for example, methyl acetate, ethyl acetate, n-propyl acetate, dimethyl acetate, methyl propionate, ethyl propionate, ⁇ -butyrolactone, decanolide, valerolactone, and Valonolactone, caprolactone, etc. may be used.
  • the ether solvent may include, for example, dibutyl ether, tetraglyme, diglyme, dimethoxyethane, 2-methyltetrahydrofuran, tetrahydrofuran, etc.
  • the ketone-based solvent may include cyclohexanone. there is.
  • ethyl alcohol, isopropyl alcohol, etc. may be used as the alcohol-based solvent.
  • the organic solvents can be used alone or in a mixture of more than one, and when using a mixture of more than one, the mixing ratio can be appropriately adjusted depending on the desired battery performance.
  • a separator may exist between the anode and cathode.
  • Such separators may be polyethylene, polypropylene, polyvinylidene fluoride, or a multilayer film of two or more layers thereof, such as polyethylene/polypropylene two-layer separator, polyethylene/polypropylene/polyethylene three-layer separator, polypropylene/polyethylene/poly.
  • a mixed multilayer film such as a propylene three-layer separator can be used.
  • borosilicate glass neutral borosilicate glass 5.1, USP and EP Type 1 glass
  • reducing agents Al and AlCl 3 are used.
  • Silicon (Si)-based particles were manufactured using a low-temperature reduction method. Specifically, borosilicate glass, Al and AlCl 3 were mixed at a weight ratio of 1:0.8:8, placed in a stainless steel reactor (Unilok Corporation), and then reacted at 250°C for 15 hours in an argon atmosphere. Proceed to produce silicon-based particles. Afterwards, impurities were removed through chemical etching in HCl solution.
  • Example 1 and Comparative Example 1 Each of the silicon-based particles prepared in Example 1 and Comparative Example 1 as a negative electrode active material, carbon black as a conductive material, and polyacrylic acid (PAA) as a binder were added to water as a solvent at a weight ratio of 60:20:20, respectively.
  • a cathode mixture slurry (solids content: 50% by weight) was prepared.
  • the negative electrode mixture slurry was applied to a 20 ⁇ m thick copper (Cu) thin film, which is a negative electrode current collector, and dried to prepare each negative electrode.
  • Cu copper
  • SEM Scanning electron microscopy
  • 1A and 1B are scanning electron microscope (SEM) images of anode active materials for secondary batteries according to Example 1 and Comparative Example 1, respectively.
  • Example 1 silicon-based particles having a size of 1 micrometer or less were manufactured.
  • Comparative Example 1 silicon-based particles with a size of 1 micrometer or less were manufactured, and it can be seen that the surface was smooth.
  • X-ray diffraction analysis was measured on the silicon-based particles prepared in Example 1 and Comparative Example 1 as a negative electrode active material, and the results are shown in FIGS. 2A and 2B.
  • Figures 2a and 2b are X-ray diffraction analysis (XRD) graphs of negative electrode active materials for secondary batteries according to Example 1 and Comparative Example 1, respectively.
  • XRD X-ray diffraction analysis
  • the silicon-based particles prepared in Example 1 pure silicon (Si) particles were synthesized within the silicon-based particles, whereas in the case of the silicon-based particles prepared in Comparative Example 1 even after etching with HCl. It can be seen that unreacted silica (SiO 2 ) particles still exist. Accordingly, it can be seen that the silicon-based particles according to one embodiment are particles with high purity of silicon (Si) while containing MO-Si bonds.
  • FT-IR Fourier transform infrared
  • 3A and 3B are graphs showing Fourier transform infrared (FT-IR) spectra of negative electrode active materials for secondary batteries according to Example 1 and Comparative Example 1, respectively.
  • FT-IR Fourier transform infrared
  • the silicon-based particles prepared in Example 1 include pure Si-Si bonds and additionally have B-O-Si bonds and Si-O-Si bonds.
  • the silicon-based particles prepared in Comparative Example 1 it can be confirmed that only Si-O-Si bonds and Si-Si bonds exist due to remaining silica. Accordingly, it can be seen that the silicon-based particles according to one embodiment are particles containing M-O-Si bonds.
  • Each half-cell was manufactured using the cathode and Li counter electrode prepared according to Example 1 and Comparative Example 1.
  • the initial charge/discharge cycle was performed at 0.05C for the half cell, and the resulting discharge capacity is shown in FIGS. 4A and 4B.
  • Figures 4a and 4b are graphs showing changes in voltage and discharge capacity according to the initial charge and discharge cycle in the secondary battery according to Example 1 and Comparative Example 1, respectively.
  • Example 1 the discharge capacity in Example 1 was about 1500 mAh/g, and in the case of Comparative Example 1, the discharge capacity was about 1800 mAh/g.
  • Figures 5a and 5b are graphs showing capacity changes according to repeated charge and discharge cycles in the secondary batteries according to Example 1 and Comparative Example 1, respectively.
  • Example 1 the capacity of about 1000 mAh/g is maintained up to 200 cycles, while in Comparative Example 1, the capacity is hardly realized at 100 cycles. In other words, it can be seen that the capacity of Comparative Example 1 was reduced because it could not withstand the volume change that occurred during repeated charging and discharging.
  • Each half-cell was manufactured using the cathode and Li counter electrode prepared according to Example 1 and Comparative Example 1. After performing an initial charge/discharge cycle at 0.05C for the half cell, 50 cycles of charge/discharge were repeated at a rate of 0.5C, and then the change in volume of the cathode was measured, and the results are shown in Figures 6A and 6B.
  • Figures 6a and 6b are images showing changes in the volume of the negative electrode during repeated charging and discharging of the secondary battery according to Example 1 and Comparative Example 1, respectively.
  • Example 1 the volume was expanded by about 16%, while in the case of Comparative Example 1, the volume was expanded by about 225%. That is, in Comparative Example 1, it can be seen that the volume change is not controlled during repeated charging and discharging.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

실리콘(Si)계 입자를 포함하고, 상기 실리콘(Si)계 입자는 M-O-Si 결합(여기서, M은 금속임)을 포함하는 것인 이차전지용 음극 활물질, 이의 제조 방법 및 이를 포함하는 이차전지에 관한 것이다.

Description

이차전지용 음극 활물질, 이의 제조 방법 및 이를 포함하는 이차전지
이차전지용 음극 활물질, 이의 제조 방법 및 이를 포함하는 이차전지에 관한 것이다.
리튬이온 이차전지 분야에서 실리콘 음극 소재는 상용화된 흑연 소재(370 mAh/g)에 비해 이론적인 무게당 용량이 10배 이상일 정도로 차세대 배터리용 음극 물질로 각광을 받고 있다.
다만, 충전시 리튬이온과 실리콘의 반응을 통해 300% 이상 부피가 커지는 문제점을 가지고 있어, 충방전을 반복할 시 커다란 부피 변화로 인해 실리콘이 깨지고, 전극에서 떨어져 나가는 문제가 있다.
일 구현예는 충방전 반복시 발생하는 부피 변화가 억제되어 전기화학적 특성이 우수한 이차전지용 음극 활물질을 제공한다.
다른 일 구현예는 상기 이차전지용 음극 활물질의 제조 방법을 제공한다.
또 다른 일 구현예는 상기 이차전지용 음극 활물질을 포함하는 이차전지를 제공한다.
일 구현예는 실리콘(Si)계 입자를 포함하고, 상기 실리콘(Si)계 입자는 M-O-Si 결합(여기서, M은 금속임)을 포함하는 것인 이차전지용 음극 활물질을 제공한다.
상기 금속(M)은 B, P, Ge, Ti, Zr 또는 이들의 조합을 포함할 수 있다.
상기 실리콘(Si)계 입자는 Si-Si 결합을 더 포함할 수 있다.
상기 실리콘(Si)계 입자는 실리카 및 금속산화물을 함유하는 폐유리를 200℃ 내지 350℃의 온도에서 환원시켜 제조될 수 있다.
상기 실리콘(Si)계 입자는 푸리에 변환 적외선(FT-IR) 스펙트럼에서, 800 cm-1 내지 900 cm-1의 파수(wavenumber), 650 cm-1 내지 750 cm-1의 파수, 또는 이들의 조합의 파수에서 상기 M-O-Si 결합에 해당하는 투과도(transmittance) 피크를 나타낼 수 있다.
상기 실리콘(Si)계 입자의 평균입경은 0.05 ㎛ 내지 5 ㎛ 일 수 있다.
다른 일 구현예는 실리카 및 금속산화물을 함유하는 폐유리를 200℃ 내지 350℃의 온도에서 환원시켜 실리콘(Si)계 입자를 제조하는 단계를 포함하고, 상기 제조된 실리콘(Si)계 입자는 M-O-Si 결합(여기서, M은 금속임)을 포함하는 것인 이차전지용 음극 활물질의 제조 방법을 제공한다.
상기 폐유리는 디스플레이 폐기시 발생되는 열강화유리일 수 있다.
상기 금속산화물의 금속과 상기 금속(M)은 B, P, Ge, Ti, Zr 또는 이들의 조합을 포함할 수 있다.
상기 환원은 Al, AlCl3, Zn, Mg, Ca 또는 이들의 조합을 포함하는 환원제를 투입하여 수행될 수 있다.
또 다른 일 구현예는 상기 음극 활물질을 포함하는 음극; 양극; 및 전해질을 포함하는 이차전지를 제공한다.
상기 음극의 용량은 1C에서 800 mAh/g 내지 1700 mAh/g 일 수 있다.
상기 음극은 0.5C에서 50 사이클의 충방전을 반복한 후의 부피 변화가 5% 내지 40% 일 수 있다.
일 구현예에 따른 이차전지용 음극 활물질은 충방전 반복시 발생하는 부피 변화를 억제함으로써 이차전지의 전기화학적 특성을 향상시킬 수 있을 뿐만 아니라, 각종 디스플레이의 폐유리를 재활용할 수 있어 친환경적이다.
도 1a 및 도 1b는 각각 실시예 1 및 비교예 1에 따른 이차전지용 음극 활물질의 주사전자현미경(SEM) 이미지이다.
도 2a 및 도 2b는 각각 실시예 1 및 비교예 1에 따른 이차전지용 음극 활물질의 X선 회절분석(XRD) 그래프이다.
도 3a 및 도 3b는 각각 실시예 1 및 비교예 1에 따른 이차전지용 음극 활물질의 푸리에 변환 적외선(FT-IR) 스펙트럼을 보여주는 그래프이다.
도 4a 및 도 4b는 각각 실시예 1 및 비교예 1에 따른 이차전지에 있어서, 충방전 초기 사이클에 따른 전압과 방전용량 변화를 나타내는 그래프이다.
도 5a 및 도 5b는 각각 실시예 1 및 비교예 1에 따른 이차전지에 있어서, 충방전 반복 사이클에 따른 용량 변화를 나타내는 그래프이다.
도 6a 및 도 6b는 각각 실시예 1 및 비교예 1에 따른 이차전지의 충방전 반복시 음극의 부피 변화를 보여주는 이미지이다.
이하, 구현예들에 대하여 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 구현예들은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 구현예에 한정되지 않는다.
일 구현예에 따른 이차전지용 음극 활물질은 실리콘(Si)계 입자를 포함하며, 이때 실리콘(Si)계 입자는 M-O-Si 결합(여기서, M은 금속임)을 포함한다.
일 구현예에서 음극 활물질로 사용되는 실리콘(Si)계 입자는 M-O-Si 결합을 포함하고 있음으로써 리튬이온과 반응시 발생하는 실리콘(Si)의 부피 변화를 제어할 수 있다. 다시 말해, M-O-Si 결합을 포함하는 실리콘(Si)을 음극 활물질로 사용함으로써 충방전 반복시 발생하는 실리콘의 부피 변화를 억제할 수 있으며, 이에 따라 이차전지의 전기화학적 특성이 향상될 수 있다.
구체적으로, M-O-Si 결합은 M-O-Si 결합을 갖는 입자일 수 있다. 다시 말해, 상기 실리콘(Si)계 입자는 다수 개의 입자들이 뭉쳐있는 형태일 수 있으며, 다수 개의 입자들 중 하나로서 M-O-Si 결합을 가지는 입자를 포함할 수 있다.
상기 M-O-Si 결합에서 금속(M)은 B, P, Ge, Ti, Zr 또는 이들의 조합을 포함할 수 있다.
일 구현예에 따른 실리콘(Si)계 입자는 순수한 Si-Si 결합을 갖고 있음은 물론 상기 M-O-Si 결합도 갖고 있는 것이다. 구체적으로, 상기 실리콘(Si)계 입자에 대한 X선 회절분석(XRD) 및 푸리에 변환 적외선(FT-IR) 스펙트럼에 의하면, 순수한 Si-Si 결합을 포함하며 M-O-Si 결합을 추가적으로 가지고 있다. 여기서, 상기 Si-Si 결합은 Si-Si 결합을 갖는 입자일 수 있다.
더욱 구체적으로, 상기 실리콘(Si)계 입자는 푸리에 변환 적외선(FT-IR) 스펙트럼에서, 800 cm-1 내지 900 cm-1의 파수(wavenumber), 650 cm-1 내지 750 cm-1의 파수, 또는 이들의 조합의 파수에서 상기 M-O-Si 결합에 해당하는 투과도(transmittance) 피크를 나타낼 수 있다. 상기 M-O-Si 결합에 해당하는 투과도 피크는 예를 들면, 850 cm-1 내지 900 cm-1의 파수, 650 cm-1 내지 700 cm-1의 파수, 또는 이들의 조합의 파수에서 나타날 수 있다.
상기 실리콘(Si)계 입자의 평균입경은 0.05 ㎛ 내지 5 ㎛ 일 수 있고, 예를 들면, 0.05 ㎛ 내지 1 ㎛, 0.1 ㎛ 내지 0.8 ㎛ 일 수 있다. 실리콘(Si)계 입자의 평균입경이 상기 범위 내인 경우 고용량의 전극을 얻을 수 있다.
상기 실리콘(Si)계 입자는 실리카 및 금속산화물을 함유하는 폐유리(waste glass)를 이용하여 저온 환원법을 통해 제조될 수 있다.
상기 폐유리(waste glass)는 스마트폰 등과 같은 디스플레이 액정에 사용되는 열강화유리일 수 있다. 각종 디스플레이 폐기시 발생되는 폐유리는 대부분 재활용되지 못하고 매립되는 실정이라 환경오염의 원인이 되고 있다. 일 구현예에서는 상기 폐유리를 음극 활물질의 원료로 사용함으로써 각종 디스플레이의 폐유리를 재활용할 수 있게 되며, 이에 따라 환경오염을 줄일 수 있어 친환경적이다.
또한, 종래 실리콘을 실리카로부터 제조하는 공정은 탄화열 공정(carbothermal process)을 이용할 경우 1700℃ 이상의 온도가 필요하며, 마그네슘, 알루미늄 등의 금속 환원제를 사용할 경우 2500℃ 이상의 발열반응으로 인하여 구조 제어가 어렵다. 반면, 일 구현예는 폐유리를 사용함으로써 고온 공정으로 인한 설비가 필요 없어 원료비를 크게 절감할 뿐만 아니라, 저온 환원법을 통해 구조 제어가 쉽고 순도 높은 실리콘을 제조할 수 있다.
구체적으로, 일 구현예에 따른 실리콘(Si)계 입자는 실리카 및 금속산화물을 함유하는 폐유리를 200℃ 내지 350℃의 온도에서, 예를 들면, 200℃ 내지 300℃, 200℃ 내지 280℃의 온도에서 환원시켜 제조될 수 있다.
상기 범위의 낮은 환원 온도에서 제조될 경우 구조 제어가 쉽고 순도 높은 실리콘계 입자를 얻을 수 있고, 제조된 실리콘계 입자는 M-O-Si 결합을 포함하고 있어 충방전시 발생하는 실리콘(Si)의 부피 변화를 막을 수 있다.
상기 금속산화물의 금속은 M-O-Si 결합에서의 금속(M)과 동일하다. 예를 들면, 상기 금속산화물은 붕소 산화물, 인 산화물, 게르마늄 산화물, 티타늄 산화물, 지르코늄 산화물, 또는 이들의 조합을 포함할 수 있다.
상기 실리콘(Si)계 입자의 제조는 환원제를 투입하여 수행될 수 있다. 상기 환원제는 Al, AlCl3, Zn, Mg, Ca 또는 이들의 조합을 포함할 수 있다. 예를 들면, 환원제는 Al 및 AlCl3을 함께 사용할 수 있고, 이 경우 1:5 내지 1:20의 중량비로, 예를 들면, 1:10 내지 1:20의 중량비로 혼합하여 사용할 수 있다.
이하, 전술한 음극 활물질을 포함하는 이차전지에 대하여 설명한다.
상기 이차전지는 음극, 양극 및 전해질을 포함한다.
일 구현예에 따른 실리콘(Si)계 입자를 음극 활물질로 이용한 음극은 고용량을 가질 수 있다. 구체적으로, 1C에서 800 mAh/g 내지 1700 mAh/g 일 수 있고, 예를 들면, 1C에서 800 mAh/g 내지 1500 mAh/g, 1C에서 900 mAh/g 내지 1200 mAh/g 일 수 있다.
일 구현예에 따른 실리콘(Si)계 입자를 음극 활물질로 이용한 음극은 충방전 반복시 발생하는 부피 변화를 억제할 수 있다. 구체적으로, 0.5C에서 50 사이클의 충방전을 반복한 후의 부피 변화가 5% 내지 40% 일 수 있고, 예를 들면, 5% 내지 20%, 10% 내지 18% 일 수 있다.
상기 음극은 집전체 및 상기 집전체 위에 위치하는 음극 활물질층을 포함한다.
상기 집전체는 구리 박, 니켈 박, 스테인레스강 박, 티타늄 박, 니켈 발포체(foam), 구리 발포체, 전도성 금속이 코팅된 폴리머 기재, 또는 이들의 조합을 사용할 수 있으나, 이에 한정되는 것은 아니다.
상기 음극 활물질층은 전술한 음극 활물질을 포함하며, 바인더 및 도전재를 더 포함할 수 있다.
상기 바인더는 음극 활물질 입자들을 서로 잘 부착시키고, 또한 음극 활물질을 음극 집전체에 잘 부착시키는 역할을 하며, 그 대표적인 예로는 폴리비닐알코올, 카르복시메틸셀룰로오스, 히드록시프로필셀룰로오스, 폴리비닐클로라이드, 카르복실화된 폴리비닐클로라이드, 폴리비닐플루오라이드, 에틸렌 옥사이드를 포함하는 폴리머, 폴리비닐피롤리돈, 폴리우레탄, 폴리테트라플루오로에틸렌, 폴리비닐리덴 플루오라이드, 폴리에틸렌, 폴리프로필렌, 스티렌-부타디엔 러버, 아크릴레이티드 스티렌-부타디엔 러버, 에폭시 수지, 나일론 등을 사용할 수 있으나, 이에 한정되는 것은 아니다.
상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성 재료이면 어떠한 것도 사용가능하며, 그 예로 천연 흑연, 인조 흑연, 카본 블랙, 아세틸렌 블랙, 케첸블랙, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유 등의 금속계 물질; 폴리페닐렌 유도체 등의 도전성 폴리머; 또는 이들의 혼합물을 포함하는 도전성 재료를 사용할 수 있다.
상기 양극은 집전체 및 상기 집전체 위에 위치하는 양극 활물질층을 포함한다.
상기 집전체는 알루미늄을 사용할 수 있으나, 이에 한정되는 것은 아니다.
상기 양극 활물질층은 양극 활물질을 포함한다. 상기 양극 활물질은 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물(리티에이티드 인터칼레이션 화합물)을 사용할 수 있고, 구체적으로는 리튬 금속 산화물을 사용할 수 있다. 상기 리튬 금속 산화물은 구체적으로 코발트, 망간, 니켈 및 알루미늄으로부터 선택되는 적어도 하나의 금속과 리튬을 포함하는 산화물을 사용할 수 있다.
상기 양극 활물질층은 바인더 및 도전재를 더 포함할 수 있다.
상기 바인더는 양극 활물질 입자들을 서로 잘 부착시키고, 또한 양극 활물질을 양극 집전체에 잘 부착시키는 역할을 하며, 그 대표적인 예로는 폴리비닐알코올, 카르복시메틸셀룰로오스, 히드록시프로필셀룰로오스, 폴리비닐클로라이드, 카르복실화된 폴리비닐클로라이드, 폴리비닐플루오라이드, 에틸렌 옥사이드를 포함하는 폴리머, 폴리비닐피롤리돈, 폴리우레탄, 폴리테트라플루오로에틸렌, 폴리비닐리덴 플루오라이드, 폴리에틸렌, 폴리프로필렌, 스티렌-부타디엔 러버, 아크릴레이티드 스티렌-부타디엔 러버, 에폭시 수지, 나일론 등을 사용할 수 있으나, 이에 한정되는 것은 아니다.
상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성 재료이면 어떠한 것도 사용가능하며, 그 예로 천연 흑연, 인조 흑연, 카본 블랙, 아세틸렌 블랙, 케첸블랙, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유 등의 금속계 물질; 폴리페닐렌 유도체 등의 도전성 폴리머; 또는 이들의 혼합물을 포함하는 도전성 재료를 사용할 수 있다.
상기 음극 및 양극은 각각 활물질, 도전재 및 바인더를 용매 중에서 혼합하여 활물질 조성물을 제조하고, 이 조성물을 집전체에 도포하여 제조한다. 이와 같은 전극 제조 방법은 당해 분야에 널리 알려진 내용이므로 본 명세서에서 상세한 설명은 생략하기로 한다. 상기 용매로는 N-메틸피롤리돈 등을 사용할 수 있으나 이에 한정되는 것은 아니다.
상기 전해질은 리튬염 및 유기용매를 포함한다.
상기 리튬염은 유기용매에 용해되어, 이차전지 내에서 리튬 이온의 공급원으로 작용하여 기본적인 이차 전지의 작동을 가능하게 하고, 양극과 음극 사이의 리튬 이온의 이동을 촉진하는 역할을 하는 물질이다.
상기 리튬염의 구체적인 예로는 LiPF6, LiBF4, LiSbF6, LiAsF6, LiN(SO3C2F5)2, LiN(CF3SO2)2, LiC4F9SO3, LiClO4, LiAlO2, LiAlCl4, LiN(CxF2x+1SO2)(CyF2y+1SO2)(여기서, x 및 y는 자연수임), LiCl, LiI, LiB(C2O4)2(리튬 비스옥살레이토 보레이트(lithium bis(oxalato) borate; LiBOB), 또는 이들의 조합을 들 수 있다.
상기 리튬염의 농도는 약 0.1M 내지 약 2.0M 범위 내에서 사용할 수 있다. 리튬염의 농도가 상기 범위에 포함되는 경우 겔형 전해질 조성물이 적절한 전도도 및 점도를 가지므로 우수한 전해액 성능을 나타낼 수 있고, 리튬 이온이 효과적으로 이동할 수 있다.
상기 유기용매는 이차전지의 전기화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 한다. 상기 유기 용매는 비수성 유기용매로서, 카보네이트계, 에스테르계, 에테르계, 케톤계, 알코올계 및 비양성자성 용매에서 선택될 수 있다.
상기 카보네이트계 용매로는 예컨대 디메틸 카보네이트(dimethyl carbonate, DMC), 디에틸 카보네이트(diethyl carbonate, DEC), 디프로필 카보네이트(dipropyl carbonate, DPC), 메틸프로필 카보네이트(methylpropyl carbonate, MPC), 에틸프로필 카보네이트(ethylpropyl carbonate, EPC), 에틸메틸 카보네이트(ethylmethyl carbonate, EMC), 에틸렌 카보네이트(ethylene carbonate, EC), 프로필렌 카보네이트(propylene carbonate, PC), 부틸렌 카보네이트(butylene carbonate, BC) 등이 사용될 수 있다.
특히, 사슬형 카보네이트 화합물 및 환형 카보네이트 화합물을 혼합하여 사용하는 경우, 유전율을 높이는 동시에 점성이 작은 용매로 제조될 수 있어서 좋다. 이 경우 환형 카보네이트 화합물 및 사슬형 카보네이트 화합물은 약 1:1 내지 1:9의 부피비로 혼합하여 사용할 수 있다.
또한 상기 에스테르계 용매로는 예컨대 메틸아세테이트, 에틸아세테이트, n-프로필아세테이트, 디메틸아세테이트, 메틸프로피오네이트, 에틸프로피오네이트, γ-부티로락톤, 데카놀라이드(decanolide), 발레로락톤, 메발로노락톤(mevalonolactone), 카프로락톤(caprolactone) 등이 사용될 수 있다. 상기 에테르 용매로는 예컨대 디부틸에테르, 테트라글라임, 디글라임, 디메톡시에탄, 2-메틸테트라히드로퓨란, 테트라히드로퓨란 등이 사용될 수 있으며, 상기 케톤계 용매로는 시클로헥사논 등이 사용될 수 있다. 또한 상기 알코올계 용매로는 에틸알코올, 이소프로필 알코올 등이 사용될 수 있다.
상기 유기용매는 단독 또는 하나 이상 혼합하여 사용할 수 있으며, 하나 이상 혼합하여 사용하는 경우의 혼합 비율은 목적하는 전지 성능에 따라 적절하게 조절할 수 있다.
이차전지의 종류에 따라 양극과 음극 사이에 세퍼레이터가 존재할 수도 있다. 이러한 세퍼레이터로는 폴리에틸렌, 폴리프로필렌, 폴리비닐리덴 플루오라이드 또는 이들의 2층 이상의 다층막이 사용될 수 있으며, 폴리에틸렌/폴리프로필렌 2층 세퍼레이터, 폴리에틸렌/폴리프로필렌/폴리에틸렌 3층 세퍼레이터, 폴리프로필렌/폴리에틸렌/폴리프로필렌 3층 세퍼레이터 등과 같은 혼합 다층막이 사용될 수 있음은 물론이다.
이하에서는 본 발명의 구체적인 실시예들을 제시한다.  다만, 하기에 기재된 실시예들은 본 발명을 구체적으로 예시하거나 설명하기 위한 것에 불과하며, 이로서 본 발명이 제한되어서는 아니된다. 또한, 여기에 기재되지 않은 내용은 이 기술 분야에서 숙련된 자이면 충분히 기술적으로 유추할 수 있는 것이므로 그 설명을 생략한다.
(실리콘계 입자 제조)
실시예 1
스마트폰 폐기시 발생한 폐유리로서 보로실리케이트 유리(neutral borosilicate glass 5.1, USP and EP Type 1 glass)(SiO2 85%, B2O3 13% 및 Na 2% 함유)와 환원제인 Al 및 AlCl3를 사용하여 저온 환원법으로 실리콘(Si)계 입자를 제조하였다. 구체적으로, 보로실리케이트 유리, Al 및 AlCl3를 1:0.8:8의 중량비로 혼합한 후, 스테인레스 스틸 반응기(stainless steel reactor)(Unilok Corporation)에 넣은 다음, 아르곤 분위기에서 250℃에서 15시간 반응을 진행하여 실리콘계 입자를 제조하였다. 이후 HCl 용액에서 화학적 에칭(chemical etching)을 통해 불순물을 제거하였다.
비교예 1
순수한 실리카(bare silica)(SiO2 99.5%, 400 메쉬, 2 마이크론 APS 파우더, S.A. 표면적 2 m2/g), Al 및 AlCl3를 1:0.8:8의 중량비로 혼합한 후, 스테인레스 스틸 반응기(stainless steel reactor)(Unilok Corporation)에 넣은 다음, 아르곤 분위기에서 250℃에서 15시간 반응을 진행하여 실리콘계 입자를 제조하였다. 이후 HCl 용액에서 화학적 에칭(chemical etching)을 통해 불순물을 제거하였다.
(이차전지용 음극 제조)
음극 활물질로서 실시예 1 및 비교예 1에서 제조된 각각의 실리콘계 입자를, 도전재로 카본 블랙을, 그리고 바인더로 폴리아크릴산(PAA)을 60:20:20의 중량비로 용매인 물에 첨가하여 각각의 음극 혼합물 슬러리(고형분 함량: 50 중량%)를 제조하였다. 상기 음극 혼합물 슬러리를 20㎛ 두께의 음극 집전체인 구리(Cu) 박막에 도포하고, 건조하여 각각의 음극을 제조하였다.
평가 1: 음극 활물질의 주사전자현미경(SEM) 측정
음극 활물질로서 실시예 1 및 비교예 1에서 제조된 실리콘계 입자의 표면에 대하여 주사전자현미경(SEM) 측정을 하여, 그 결과를 도 1a 및 도 1b에 나타내었다.
도 1a 및 도 1b는 각각 실시예 1 및 비교예 1에 따른 이차전지용 음극 활물질의 주사전자현미경(SEM) 이미지이다.
도 1a 및 도 1b를 참고하면, 실시예 1의 경우 1 마이크로미터 이하의 크기를 갖는 실리콘계 입자가 제조되었음을 확인할 수 있다. 또한 비교예 1의 경우 1 마이크로미터 이하의 크기를 갖는 실리콘계 입자가 제조되었으며, 표면이 매끈한 것을 볼 수 있다.
평가 2: 음극 활물질의 X선 회절분석(XRD) 측정
음극 활물질로서 실시예 1 및 비교예 1에서 제조된 실리콘계 입자에 대하여 X선 회절분석(XRD) 측정을 하여, 그 결과를 도 2a 및 도 2b에 나타내었다.
도 2a 및 도 2b는 각각 실시예 1 및 비교예 1에 따른 이차전지용 음극 활물질의 X선 회절분석(XRD) 그래프이다.
도 2a 및 도 2b를 참고하면, 실시예 1에서 제조된 실리콘계 입자의 경우 실리콘계 입자 내에 순수한 실리콘(Si) 입자가 합성되었음을 알 수 있는 반면, 비교예 1에서 제조된 실리콘계 입자의 경우 HCl으로 에칭 후에도 여전히 반응하지 않은 실리카(SiO2) 입자가 존재함을 알 수 있다. 이에 따라, 일 구현예에 따른 실리콘계 입자는 M-O-Si 결합을 포함하면서도 실리콘(Si)의 순도가 높은 입자임을 알 수 있다.
평가 3: 음극 활물질의 푸리에 변환 적외선(FT-IR) 측정
음극 활물질로서 실시예 1 및 비교예 1에서 제조된 실리콘계 입자에 대하여 푸리에 변환 적외선(FT-IR) 측정을 하여, 그 결과를 도 3a 및 도 3b에 나타내었다.
도 3a 및 도 3b는 각각 실시예 1 및 비교예 1에 따른 이차전지용 음극 활물질의 푸리에 변환 적외선(FT-IR) 스펙트럼을 보여주는 그래프이다.
도 3a 및 도 3b를 참고하면, 실시예 1에서 제조된 실리콘계 입자의 경우 순수한 Si-Si 결합을 포함하여, B-O-Si 결합 및 Si-O-Si 결합을 추가적으로 가지고 있음을 확인할 수 있다. 반면, 비교예 1에서 제조된 실리콘계 입자의 경우 잔존하는 실리카로 인한 Si-O-Si 결합 및 Si-Si 결합만이 존재함을 확인할 수 있다. 이에 따라, 일 구현예에 따른 실리콘계 입자는 M-O-Si 결합을 포함하고 있는 입자임을 알 수 있다.
평가 4: 이차전지의 전기화학적 특성 측정
실시예 1 및 비교예 1에 따라 제조된 음극과 Li 대극을 사용하여 각각의 하프셀을 제조하였다. 하프셀에 대해 0.05C에서 초기 충방전 사이클을 진행하여, 그에 따른 방전용량을 도 4a 및 도 4b에 나타내었다.
도 4a 및 도 4b는 각각 실시예 1 및 비교예 1에 따른 이차전지에 있어서, 충방전 초기 사이클에 따른 전압과 방전용량 변화를 나타내는 그래프이다.
도 4a 및 도 4b를 참고하면, 실시예 1의 경우 방전용량이 약 1500 mAh/g 이고, 비교예 1의 경우 방전용량이 약 1800 mAh/g 임을 확인하였다.
이어서, 초기 충방전 사이클 진행 이후 1C의 빠른 충방전 실험에서 장기 수명테스트를 진행하였다. 이에 대한 결과를 도 5a 및 도 5b에 나타내었다.
도 5a 및 도 5b는 각각 실시예 1 및 비교예 1에 따른 이차전지에 있어서, 충방전 반복 사이클에 따른 용량 변화를 나타내는 그래프이다.
도 5a 및 도 5b를 참고하면, 실시예 1의 경우 약 1000 mAh/g의 용량이 200 사이클까지 유지되는 반면, 비교예 1의 경우 100 사이클에서 거의 용량이 구현되지 않음을 확인할 수 있다. 즉, 비교예 1은 충방전 반복시 발생하는 부피 변화를 견디지 못해 용량이 저하된 것임을 알 수 있다.
이로부터, 일 구현예에 따라 M-O-Si 결합을 포함하는 실리콘계 입자를 음극 활물질로 사용한 경우 음극의 부피 변화가 억제되어 전기화학적 특성이 향상됨을 알 수 있다.
평가 5: 음극의 부피 변화 측정
실시예 1 및 비교예 1에 따라 제조된 음극과 Li 대극을 사용하여 각각의 하프셀을 제조하였다. 하프셀에 대해 0.05C에서 초기 충방전 사이클을 진행한 이후, 0.5C 속도에서 50 사이클의 충방전을 반복한 후 음극의 부피 변화를 측정하여, 그 결과를 도 6a 및 도 6b에 나타내었다.
도 6a 및 도 6b는 각각 실시예 1 및 비교예 1에 따른 이차전지의 충방전 반복시 음극의 부피 변화를 보여주는 이미지이다.
도 6a 및 도 6b를 참고하면, 실시예 1의 경우 약 16%의 부피가 팽창한 것을 알 수 있는 반면, 비교예 1의 경우 약 225%의 부피가 팽창한 것을 알 수 있다. 즉, 비교예 1은 반복된 충방전에서 부피 변화가 제어되지 않는 것을 알 수 있다.
이로부터, 일 구현예에 따라 M-O-Si 결합을 포함하는 실리콘계 입자를 음극 활물질로 사용한 경우 음극의 부피 변화가 억제됨을 알 수 있다.
이상을 통해 본 발명의 바람직한 실시예에 대하여 설명하였지만, 본 발명은 이에 한정되는 것이 아니고 특허청구범위와 발명의 상세한 설명 및 첨부한 도면의 범위 안에서 여러 가지로 변형하여 실시하는 것이 가능하고 이 또한 본 발명의 범위에 속하는 것은 당연하다.

Claims (13)

  1. 실리콘(Si)계 입자를 포함하고,
    상기 실리콘(Si)계 입자는 M-O-Si 결합(여기서, M은 금속임)을 포함하는 것인 이차전지용 음극 활물질.
  2. 제1항에서,
    상기 금속(M)은 B, P, Ge, Ti, Zr 또는 이들의 조합을 포함하는 것인 이차전지용 음극 활물질.
  3. 제1항에서,
    상기 실리콘(Si)계 입자는 Si-Si 결합을 더 포함하는 것인 이차전지용 음극 활물질.
  4. 제1항에서,
    상기 실리콘(Si)계 입자는 실리카 및 금속산화물을 함유하는 폐유리를 200℃ 내지 350℃의 온도에서 환원시켜 제조되는 것인 이차전지용 음극 활물질.
  5. 제1항에서,
    상기 실리콘(Si)계 입자는 푸리에 변환 적외선(FT-IR) 스펙트럼에서, 800 cm-1 내지 900 cm-1의 파수(wavenumber), 650 cm-1 내지 750 cm-1의 파수, 또는 이들의 조합의 파수에서 상기 M-O-Si 결합에 해당하는 투과도(transmittance) 피크를 나타내는 것인 이차전지용 음극 활물질.
  6. 제1항에서,
    상기 실리콘(Si)계 입자의 평균입경은 0.05 ㎛ 내지 5 ㎛인 것인 이차전지용 음극 활물질.
  7. 실리카 및 금속산화물을 함유하는 폐유리를 200℃ 내지 350℃의 온도에서 환원시켜 실리콘(Si)계 입자를 제조하는 단계를 포함하고,
    상기 제조된 실리콘(Si)계 입자는 M-O-Si 결합(여기서, M은 금속임)을 포함하는 것인 이차전지용 음극 활물질의 제조 방법.
  8. 제7항에서,
    상기 폐유리는 디스플레이 폐기시 발생되는 열강화유리인 것인 이차전지용 음극 활물질의 제조 방법.
  9. 제7항에서,
    상기 금속산화물의 금속과 상기 금속(M)은 B, P, Ge, Ti, Zr 또는 이들의 조합을 포함하는 것인 이차전지용 음극 활물질의 제조 방법.
  10. 제7항에서,
    상기 환원은 Al, AlCl3, Zn, Mg, Ca 또는 이들의 조합을 포함하는 환원제를 투입하여 수행되는 것인 이차전지용 음극 활물질의 제조 방법.
  11. 제1항, 제2항 및 제4항 내지 제6항 중 어느 한 항의 음극 활물질을 포함하는 음극;
    양극; 및
    전해질을 포함하는 이차전지.
  12. 제11항에서,
    상기 음극의 용량은 1C에서 800 mAh/g 내지 1700 mAh/g 인 것인 이차전지.
  13. 제11항에서,
    상기 음극은 0.5C에서 50 사이클의 충방전을 반복한 후의 부피 변화가 5% 내지 40%인 것인 이차전지.
PCT/KR2022/018857 2022-03-25 2022-11-25 이차전지용 음극 활물질, 이의 제조 방법 및 이를 포함하는 이차전지 WO2023182612A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280085664.5A CN118435383A (zh) 2022-03-25 2022-11-25 用于二次电池的负极活性物质、其制备方法以及包含其的二次电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0037332 2022-03-25
KR1020220037332A KR102434809B1 (ko) 2022-03-25 2022-03-25 이차전지용 음극 활물질, 이의 제조 방법 및 이를 포함하는 이차전지

Publications (1)

Publication Number Publication Date
WO2023182612A1 true WO2023182612A1 (ko) 2023-09-28

Family

ID=83092693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/018857 WO2023182612A1 (ko) 2022-03-25 2022-11-25 이차전지용 음극 활물질, 이의 제조 방법 및 이를 포함하는 이차전지

Country Status (3)

Country Link
KR (1) KR102434809B1 (ko)
CN (1) CN118435383A (ko)
WO (1) WO2023182612A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102434809B1 (ko) * 2022-03-25 2022-08-23 주식회사 엘케이테크놀러지 이차전지용 음극 활물질, 이의 제조 방법 및 이를 포함하는 이차전지

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006253086A (ja) * 2005-03-14 2006-09-21 Sony Corp 高分子電解質、電池および電池の製造方法
KR101614016B1 (ko) * 2014-12-31 2016-04-20 (주)오렌지파워 실리콘계 음극 활물질 및 이의 제조 방법
WO2021022821A1 (en) * 2019-08-07 2021-02-11 Ningde Amperex Technology Limited Anode material and electrochemical device and electronic device including the same
JP2021095332A (ja) * 2014-12-26 2021-06-24 株式会社半導体エネルギー研究所 負極活物質、及びリチウムイオン二次電池
KR102434809B1 (ko) * 2022-03-25 2022-08-23 주식회사 엘케이테크놀러지 이차전지용 음극 활물질, 이의 제조 방법 및 이를 포함하는 이차전지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006253086A (ja) * 2005-03-14 2006-09-21 Sony Corp 高分子電解質、電池および電池の製造方法
JP2021095332A (ja) * 2014-12-26 2021-06-24 株式会社半導体エネルギー研究所 負極活物質、及びリチウムイオン二次電池
KR101614016B1 (ko) * 2014-12-31 2016-04-20 (주)오렌지파워 실리콘계 음극 활물질 및 이의 제조 방법
WO2021022821A1 (en) * 2019-08-07 2021-02-11 Ningde Amperex Technology Limited Anode material and electrochemical device and electronic device including the same
KR102434809B1 (ko) * 2022-03-25 2022-08-23 주식회사 엘케이테크놀러지 이차전지용 음극 활물질, 이의 제조 방법 및 이를 포함하는 이차전지

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHOI, DONGWOONG ET AL.: "Novel Nanostructured SiO2/ZrO2 based electrodes with enhanced electrochemical performance for lithium-ion batteries", ELECTROCHIMICA ACTA, vol. 218, 24 August 2016 (2016-08-24), pages 47 - 53, XP002798905, DOI: 10.1016/j.electacta.2016.08.116 *

Also Published As

Publication number Publication date
KR102434809B1 (ko) 2022-08-23
CN118435383A (zh) 2024-08-02

Similar Documents

Publication Publication Date Title
WO2017164702A1 (ko) 음극 및 이의 제조방법
WO2010035950A2 (ko) 리튬 이차 전지용 음극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
WO2015099243A1 (ko) 붕소 화합물 함유 전극 활물질 및 이를 이용한 전기화학소자
WO2017222113A1 (ko) 리튬 이차 전지용 음극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
WO2019156434A1 (ko) 전해액 조성물 및 이를 이용한 이차전지
WO2020130434A1 (ko) 음극 활물질, 그의 제조 방법 및 그를 포함하는 리튬이차전지
WO2015174652A1 (ko) 리튬바나듐지르코늄포스페이트를 포함하는 리튬이온전지의 양극활물질 및 그를 포함하는 리튬이온전지
WO2019050161A1 (ko) 리튬 이차 전지
WO2019013521A2 (ko) 리튬 이차 전지
WO2010143805A1 (ko) 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
WO2012141503A2 (ko) 양극 활물질, 그 제조 방법 및 이를 채용한 양극 및 리튬 전지
WO2018048156A1 (ko) 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지
WO2014061973A1 (ko) 규소 산화물의 제조방법
WO2014061974A1 (ko) 규소 산화물-탄소 복합체 및 이의 제조방법
WO2023182612A1 (ko) 이차전지용 음극 활물질, 이의 제조 방법 및 이를 포함하는 이차전지
WO2019050162A1 (ko) 리튬 이차 전지
WO2018074684A1 (ko) 리튬 이차 전지
WO2016122196A1 (ko) 전극, 전지 및 전극의 제조 방법
WO2018084525A1 (ko) 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지
WO2019022358A1 (ko) 리튬-황 전지용 양극 및 이를 포함하는 리튬-황 전지
WO2023027431A1 (ko) 리튬 이차 전지용 전극 및 이를 포함하는 리튬 이차 전지
WO2019198949A1 (ko) 인화철의 제조방법, 인화철을 포함하는 리튬 이차전지용 양극 및 이를 구비한 리튬 이차전지
WO2020013482A1 (ko) 옥시수산화질산철의 제조방법, 이로부터 제조된 옥시수산화질산철을 포함하는 리튬 이차전지용 양극 및 이를 구비한 리튬 이차전지
WO2018038509A1 (ko) 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
WO2023013804A1 (ko) 금속 전극 보호용 고분자 피막 및 이를 이용한 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22933781

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280085664.5

Country of ref document: CN