[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019146236A1 - 正極材料、および、電池 - Google Patents

正極材料、および、電池 Download PDF

Info

Publication number
WO2019146236A1
WO2019146236A1 PCT/JP2018/043358 JP2018043358W WO2019146236A1 WO 2019146236 A1 WO2019146236 A1 WO 2019146236A1 JP 2018043358 W JP2018043358 W JP 2018043358W WO 2019146236 A1 WO2019146236 A1 WO 2019146236A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
positive electrode
battery
electrode active
electrolyte material
Prior art date
Application number
PCT/JP2018/043358
Other languages
English (en)
French (fr)
Inventor
忠朗 松村
出 佐々木
裕太 杉本
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to EP18902206.4A priority Critical patent/EP3745499A4/en
Priority to JP2019567875A priority patent/JP7241306B2/ja
Priority to CN201880085584.3A priority patent/CN111566851B/zh
Publication of WO2019146236A1 publication Critical patent/WO2019146236A1/ja
Priority to US16/931,113 priority patent/US11749803B2/en
Priority to US18/219,210 priority patent/US20230352690A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/30Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6
    • C01F17/36Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6 halogen being the only anion, e.g. NaYF4
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/006Compounds containing, besides zirconium, two or more other elements, with the exception of oxygen or hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/14Sulfur, selenium, or tellurium compounds of phosphorus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/002Inorganic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/008Halides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0094Composites in the form of layered products, e.g. coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present disclosure relates to positive electrode materials for batteries, and batteries.
  • Patent Document 1 discloses a battery using a halide containing indium as a solid electrolyte.
  • Patent Document 2 discloses an all-solid lithium battery in which the surface of a positive electrode active material is coated with a lithium ion conductive oxide having substantially no electron conductivity.
  • the positive electrode material includes a positive electrode active material, a covering layer covering at least a part of the surface of the positive electrode active material, the first solid electrolyte material, and a second solid electrolyte material.
  • the first solid electrolyte material contains Li, M, and X, and does not contain sulfur.
  • M includes at least one element selected from the group consisting of metal elements other than Li and metalloid elements.
  • X contains at least one element selected from the group consisting of Cl and Br.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of the positive electrode material in the first embodiment.
  • FIG. 2 is a cross-sectional view showing a schematic configuration of the battery in the second embodiment.
  • the positive electrode material according to Embodiment 1 includes a positive electrode active material, a first solid electrolyte material, and a second solid electrolyte material.
  • the first solid electrolyte material is located on the surface of the positive electrode active material to form a covering layer.
  • the first solid electrolyte material is a material represented by the following composition formula (1).
  • ⁇ , ⁇ and ⁇ are each independently greater than 0.
  • M includes at least one element selected from the group consisting of metal elements other than Li and metalloid elements.
  • X contains at least one element selected from the group consisting of Cl and Br.
  • Patent Document 1 in the all solid secondary battery including a solid electrolyte composed of a compound containing indium, it is preferable that the positive electrode active material to Li potential is 3.9 V or less on average, whereby the oxidation decomposition of the solid electrolyte occurs. It is said that a film consisting of decomposition products is formed well and good charge and discharge characteristics can be obtained.
  • a positive electrode active material having an average Li potential of 3.9 V or less a general layered transition metal oxide positive electrode such as LiCoO 2 or LiNi 0.8 Co 0.15 Al 0.05 O 2 is disclosed. There is.
  • a side reaction in which electrons are extracted also from the halide solid electrolyte containing iodine in contact with the positive electrode active material occurs. That is, it is considered that an oxide decomposition layer having poor lithium ion conductivity is formed between the positive electrode active material and the halide solid electrolyte, and functions as a large interface resistance in the electrode reaction of the positive electrode. In order to solve this problem, it is necessary to suppress the transfer of electrons to the iodine-containing halide solid electrolyte and to suppress the formation of the oxidation decomposition layer.
  • Non-Patent Document 1 shows calculation results regarding the potential stability of various solid electrolytes such as an oxide solid electrolyte, a sulfide solid electrolyte, and a halide solid electrolyte.
  • the potential stability varies depending on the anion species that constitute it.
  • the halide solid electrolyte containing bromine is 4.0 V vs. It has been shown to have potential stability below Li.
  • the upper limit of the potential stability derived from the calculation is 4.0 V vs.. It was revealed that even if the solid electrolytes were less than Li, when they were used for the positive electrode material, there existed some that exhibited stable charge and discharge characteristics.
  • the upper limit of the potential stability is 4.0 V vs.
  • a halide solid electrolyte containing bromine which is said to be less than or equal to Li, is used for the positive electrode material, 4.0 V vs. Even when charged at a voltage higher than Li, good charge / discharge characteristics are exhibited.
  • a halide solid electrolyte containing iodine is poor in oxidation stability, in a battery in which a positive electrode active material and a halide solid electrolyte containing iodine are in contact, the battery continuously exhibits oxidative decomposition during charging.
  • an iodine-free halide solid electrolyte (an example of the first solid electrolyte material) is excellent in oxidation stability and shows oxidative decomposition in a battery in which the positive electrode active material is in contact with an iodine-free halide solid electrolyte. There is no, or even if it is oxidatively decomposed, the reaction does not continue.
  • the positive electrode active material and the iodine-containing halide solid electrolyte are separated from and not in direct contact with the coating layer containing the iodine-free halide solid electrolyte. Therefore, according to the above configuration, it is possible to suppress the oxidation of the iodine-containing halide solid electrolyte and to suppress an increase in reaction overpotential of the battery. Moreover, the halide solid electrolyte containing iodine is superior in ionic conductivity to the halide solid electrolyte not containing iodine. Therefore, according to the above configuration, the output characteristics of the battery can be further improved as compared with the case where only the halide solid electrolyte containing no iodine is used in the positive electrode layer.
  • the halide solid electrolyte has high ion conductivity, is excellent in thermal stability, and does not generate harmful gases such as hydrogen sulfide. Therefore, by using the halide solid electrolyte, the output characteristics and thermal stability of the battery can be improved, and the generation of harmful gases such as hydrogen sulfide can be suppressed.
  • Patent Document 2 a lithium ion conductive oxide having no electron conductivity is formed because a high resistance layer is generated by the contact between a sulfide solid electrolyte and a positive electrode active material exhibiting an oxidation-reduction reaction at a potential of 3 V or more. It is said that the formation of the high resistance layer can be suppressed by covering the surface of the positive electrode active material.
  • the present inventors thought that the high resistance layer can be suppressed also by covering the positive electrode active material with a lithium ion conductive halide having no electron conductivity. Furthermore, by covering with a halide solid electrolyte that is more excellent in lithium ion conductivity than an oxide solid electrolyte, it is also possible to suppress Li transfer resistance from the solid electrolyte to the positive electrode active material.
  • Patent Document 1 in the all solid secondary battery including a solid electrolyte composed of a compound containing indium, it is desirable that the pair Li potential of the positive electrode active material is 3.9 V or less on average. It is said that a film consisting of decomposition products by oxidative decomposition is well formed, and good charge and discharge characteristics can be obtained. However, the detailed mechanism of oxidative degradation has not been clarified.
  • the positive electrode active material is coated with a halide solid electrolyte not containing iodine (an example of a first solid electrolyte material)
  • the positive electrode A low resistance positive electrode active material / sulfide solid electrolyte interface can be formed by the high ion conductivity of the halide solid electrolyte while suppressing the formation of a high resistance layer due to the contact of the active material and the sulfide solid electrolyte.
  • a "metalloid element” is B, Si, Ge, As, Sb, and Te.
  • metal element refers to all elements contained in Groups 1 to 12 of the periodic table except hydrogen, and B, Si, Ge, As, Sb, Te, C, N, P, O, S , And Se are elements contained in all of Groups 13 to 16 except Se. That is, it is an element group that can be a cation when forming an inorganic compound with a halogen compound.
  • a halide solid electrolyte containing at least one element selected from the group consisting of a metal element other than Li and a metalloid element is an ion compared to a halide solid electrolyte such as LiI composed of only Li and a halogen element.
  • the conductivity is high. Therefore, when a halide solid electrolyte containing at least one element selected from the group consisting of a metal element other than Li and a metalloid element is used in the battery, the output characteristics of the battery can be improved.
  • the first solid electrolyte material may contain Y as a metal element.
  • the ion conductivity of the first solid electrolyte material can be further improved.
  • the charge and discharge characteristics of the battery can be further improved.
  • the first solid electrolyte material containing Y may be, for example, a compound represented by the composition formula of Li a Me b Y c X 6 .
  • Me is at least one selected from the group consisting of metal elements other than Li and Y and metalloid elements.
  • m is the valence of Me.
  • At least one element selected from the group consisting of Mg, Ca, Sr, Ba, Zn, Sc, Al, Ga, Bi, Zr, Hf, Ti, Sn, Ta and Nb may be used.
  • the ion conductivity of the first solid electrolyte material can be further improved.
  • the ion conductivity of the first solid electrolyte material can be further improved.
  • the charge and discharge characteristics of the battery can be further improved.
  • the first solid electrolyte material may be a material represented by the following composition formula (A1). Li 6-3d Y d X 6 Formula (A1)
  • X is at least one element selected from the group consisting of Cl and Br. Further, in the composition formula (A1), 0 ⁇ d ⁇ 2 is satisfied.
  • the ion conductivity of the first solid electrolyte material can be further improved.
  • the charge / discharge efficiency of the battery can be further improved.
  • the first solid electrolyte material may be a material represented by the following composition formula (A2). Li 3 YX 6 ⁇ Formula (A2)
  • X is at least one element selected from the group consisting of Cl and Br.
  • the ion conductivity of the first solid electrolyte material can be further improved.
  • the charge / discharge efficiency of the battery can be further improved.
  • the first solid electrolyte material may be a material represented by the following composition formula (A3). Li 3-3 ⁇ Y 1 + ⁇ Cl 6 formula (A3) Here, in the composition formula (A3), 0 ⁇ ⁇ 0.15 is satisfied.
  • the ion conductivity of the first solid electrolyte material can be further improved.
  • the charge / discharge efficiency of the battery can be further improved.
  • the first solid electrolyte material may be a material represented by the following composition formula (A4). Li 3-3 ⁇ Y 1 + ⁇ Br 6 ⁇ Formula (A4) Here, in the composition formula (A4), 0 ⁇ ⁇ 0.25 is satisfied.
  • the ion conductivity of the first solid electrolyte material can be further improved.
  • the charge / discharge efficiency of the battery can be further improved.
  • the first solid electrolyte material may be a material represented by the following composition formula (A5). Li 3-3 ⁇ + a Y 1 + ⁇ -a Me a Cl 6-x Br x Formula (A5)
  • Me is one or more elements selected from the group consisting of Mg, Ca, Sr, Ba, and Zn.
  • composition formula (A5) ⁇ 1 ⁇ ⁇ 2, 0 ⁇ a ⁇ 3, 0 ⁇ (3-3 ⁇ + a), 0 ⁇ (1 + ⁇ a), and 0 ⁇ x ⁇ 6 are satisfied.
  • the ion conductivity of the first solid electrolyte material can be further improved.
  • the charge / discharge efficiency of the battery can be further improved.
  • the first solid electrolyte material may be a material represented by the following composition formula (A6). Li 3 -3 ⁇ Y 1 + ⁇ -a Me a Cl 6-x Br x Formula (A6)
  • Me is one or more elements selected from the group consisting of Al, Sc, Ga, and Bi.
  • composition formula (A6) ⁇ 1 ⁇ ⁇ 1, 0 ⁇ a ⁇ 2, 0 ⁇ (1 + ⁇ a), and 0 ⁇ x ⁇ 6 are satisfied.
  • the ion conductivity of the first solid electrolyte material can be further improved.
  • the charge / discharge efficiency of the battery can be further improved.
  • the first solid electrolyte material may be a material represented by the following composition formula (A7). Li 3-3 ⁇ -a Y 1 + ⁇ -a Me a Cl 6-x Br x Formula (A7)
  • Me is one or more elements selected from the group consisting of Zr, Hf, and Ti.
  • composition formula (A7) ⁇ 1 ⁇ ⁇ 1, 0 ⁇ a ⁇ 1.5, 0 ⁇ (3 ⁇ 3 ⁇ a), 0 ⁇ (1 + ⁇ a), and 0 ⁇ x ⁇ 6, Is satisfied.
  • the ion conductivity of the first solid electrolyte material can be further improved.
  • the charge / discharge efficiency of the battery can be further improved.
  • the first solid electrolyte material may be a material represented by the following composition formula (A8). Li 3-3 ⁇ -2a Y 1 + ⁇ -a Me a Cl 6-x Br x Formula (A8)
  • Me is one or more elements selected from the group consisting of Ta and Nb.
  • composition formula (A8) ⁇ 1 ⁇ ⁇ 1, 0 ⁇ a ⁇ 1.2, 0 ⁇ (3-3 ⁇ -2a), 0 ⁇ (1 + ⁇ a), and 0 ⁇ x ⁇ 6, Is satisfied.
  • the ion conductivity of the first solid electrolyte material can be further improved.
  • the charge / discharge efficiency of the battery can be further improved.
  • the first solid electrolyte material for example, Li 3 YX 6 , Li 2 MgX 4 , Li 2 FeX 4 , Li (Al, Ga, In) X 4 , Li 3 (Al, Ga, In) X 6 , etc. , May be used.
  • X contains at least one element selected from the group consisting of Cl and Br.
  • the second solid electrolyte material includes a material having high ion conductivity.
  • a halide solid electrolyte containing iodine or the like is used as the second solid electrolyte material.
  • a compound represented by the following composition formula (2) may be used as a halide solid electrolyte containing iodine.
  • ⁇ ′, ⁇ ′ and ⁇ ′ are each independently greater than 0.
  • X ′ contains at least one element selected from the group consisting of Cl and Br, and I.
  • the ion conductivity of the second solid electrolyte material can be further improved.
  • the charge / discharge efficiency of the battery can be further improved.
  • M ′ may contain Y.
  • the second solid electrolyte material may contain Y as a metal element.
  • the ion conductivity of the second solid electrolyte material can be further improved.
  • the charge and discharge characteristics of the battery can be further improved.
  • the ion conductivity of the second solid electrolyte material can be further improved.
  • the charge and discharge characteristics of the battery can be further improved.
  • the second solid electrolyte material may be a material represented by the following composition formula (B1). Li 6-3d Y d X 6 formula (B1)
  • X is one or two or more halogen elements containing at least I.
  • 0 ⁇ d ⁇ 2 is satisfied.
  • the ion conductivity of the second solid electrolyte material can be further improved.
  • the charge / discharge efficiency of the battery can be further improved.
  • the second solid electrolyte material may be a material represented by the following composition formula (B2). Li 3 YX 6 ⁇ Formula (B2)
  • X is one or more kinds of halogen elements containing at least I.
  • the ion conductivity of the second solid electrolyte material can be further improved.
  • the charge / discharge efficiency of the battery can be further improved.
  • the second solid electrolyte material may be a material represented by the following composition formula (B3).
  • Me is one or more elements selected from the group consisting of Mg, Ca, Sr, Ba, and Zn.
  • composition formula (B3) ⁇ 1 ⁇ ⁇ 2, 0 ⁇ a ⁇ 3, 0 ⁇ (3-3 ⁇ + a), 0 ⁇ (1 + ⁇ a), 0 ⁇ x ⁇ 6, 0 ⁇ y ⁇ 6 , And (x + y) ⁇ 6 are satisfied.
  • the ion conductivity of the second solid electrolyte material can be further improved.
  • the charge / discharge efficiency of the battery can be further improved.
  • the second solid electrolyte material may be a material represented by the following composition formula (B4). Li 3 -3 ⁇ Y 1 + ⁇ -a Me a Cl 6-x-y Br x I y Formula (B4)
  • Me is one or more elements selected from the group consisting of Al, Sc, Ga, and Bi.
  • composition formula (B4) ⁇ 1 ⁇ ⁇ 1, 0 ⁇ a ⁇ 2, 0 ⁇ (1 + ⁇ a), 0 ⁇ x ⁇ 6, 0 ⁇ y ⁇ 6, and (x + y) ⁇ 6, Is satisfied.
  • the ion conductivity of the second solid electrolyte material can be further improved.
  • the charge / discharge efficiency of the battery can be further improved.
  • the second solid electrolyte material may be a material represented by the following composition formula (B5). Li 3-3 ⁇ -a Y 1 + ⁇ -a Me a Cl 6-x-y Br x I y Formula (B5)
  • Me is one or more elements selected from the group consisting of Zr, Hf, and Ti.
  • composition formula (B5) ⁇ 1 ⁇ ⁇ 1, 0 ⁇ a ⁇ 1.5, 0 ⁇ (3-3 ⁇ -a), 0 ⁇ (1 + ⁇ a), 0 ⁇ x ⁇ 6, 0 ⁇ Y ⁇ 6 and (x + y) ⁇ 6 are satisfied.
  • the ion conductivity of the second solid electrolyte material can be further improved.
  • the charge / discharge efficiency of the battery can be further improved.
  • the second solid electrolyte material may be a material represented by the following composition formula (B6).
  • Me is one or more elements selected from the group consisting of Ta and Nb.
  • composition formula (B6) -1 ⁇ ⁇ 1, 0 ⁇ a ⁇ 1.2, 0 ⁇ (3-3 ⁇ -2a), 0 ⁇ (1 + ⁇ -a), 0 ⁇ x ⁇ 6, 0 ⁇ Y ⁇ 6 and (x + y) ⁇ 6 are satisfied.
  • the ion conductivity of the second solid electrolyte material can be further improved.
  • the charge / discharge efficiency of the battery can be further improved.
  • Li 3 YX 6 Li 2 MgX 4 , Li 2 FeX 4 , Li (Al, Ga, In) X 4 , Li 3 (Al, Ga, In) X 6 , etc.
  • X includes at least one element selected from the group consisting of Cl and Br, and I.
  • a sulfide solid electrolyte or the like can also be used as the second solid electrolyte material.
  • a sulfide solid electrolyte for example, Li 2 S—P 2 S 5 , Li 2 S—SiS 2 , Li 2 S—B 2 S 3 , Li 2 S—GeS 2 , Li 3.25 Ge 0.25 P 0.75 S 4 , Li 10 GeP 2 S 12 , etc. may be used.
  • LiX, Li 2 O, MO q, like Li p MO q may be added.
  • X is one or more elements selected from the group consisting of F, Cl, Br, and I.
  • M is one or more elements selected from the group consisting of P, Si, Ge, B, Al, Ga, In, Fe, and Zn.
  • p and q are each independently a natural number.
  • the second solid electrolyte material may be a sulfide solid electrolyte.
  • the sulfide solid electrolyte may include lithium sulfide and phosphorus sulfide.
  • the sulfide solid electrolyte may be Li 2 S—P 2 S 5 .
  • Li 2 S—P 2 S 5 has high ionic conductivity and is stable to redox. Therefore, by using Li 2 S—P 2 S 5 , the charge / discharge efficiency of the battery can be further improved.
  • the positive electrode active material includes a material having a property of absorbing and releasing metal ions (for example, lithium ions).
  • a positive electrode active material for example, a lithium-containing transition metal oxide (eg, Li (NiCoAl) O 2 , Li (NiCoMn) O 2 , LiCoO 2 , etc.), transition metal fluoride, polyanion material, fluorinated polyanion material, transition Metal sulfides, transition metal oxysulfides, transition metal oxynitrides, etc. may be used.
  • a lithium-containing transition metal oxide eg, Li (NiCoAl) O 2 , Li (NiCoMn) O 2 , LiCoO 2 , etc.
  • transition metal fluoride eg, Li (NiCoAl) O 2 , Li (NiCoMn) O 2 , LiCoO 2 , etc.
  • polyanion material e.g, Li (NiCoMn) O 2 , LiCoO 2
  • the positive electrode active material may be nickel.cobalt.lithium manganate.
  • the positive electrode active material may be Li (NiCoMn) O 2 .
  • the energy density and charge / discharge efficiency of the battery can be further enhanced.
  • the first solid electrolyte material contained in the covering layer a material having low electron conductivity and resistance to oxidation may be used.
  • a material having low electron conductivity and resistance to oxidation may be used.
  • an iodine-free halide solid electrolyte can be used as the first solid electrolyte material.
  • the iodine-free halide solid electrolyte has high ionic conductivity and high high potential stability. Therefore, by using a halide solid electrolyte not containing iodine, it is possible to further enhance the charge / discharge efficiency of the battery and to further suppress the rise in the reaction overpotential of the battery.
  • the first solid electrolyte material may be Li 2.7 Y 1.1 Cl 6 or Li 3 YBr 6 or Li 2.5 Y 0.5 Zr 0.5 Cl 6. Good.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of positive electrode material 1000 in the first embodiment.
  • Positive electrode material 1000 according to Embodiment 1 includes second solid electrolyte particles 100, positive electrode active material particles 110, and covering layer 111.
  • the positive electrode active material particles 110 and the second solid electrolyte particles 100 are separated by the covering layer 111 and do not make direct contact.
  • the cover layer 111 is a layer containing a first solid electrolyte material. That is, the covering layer 111 is provided on the surface of the positive electrode active material particle 110.
  • the thickness of the covering layer 111 may be 1 nm or more and 100 nm or less.
  • the thickness of the covering layer 111 is 1 nm or more, direct contact between the positive electrode active material particles 110 and the second solid electrolyte particles 100 can be suppressed, and side reactions of the second solid electrolyte material can be suppressed. Therefore, the charge and discharge efficiency can be improved.
  • the thickness of the covering layer 111 is 100 nm or less, the thickness of the covering layer 111 does not become too thick. Therefore, the internal resistance of the battery can be sufficiently reduced. As a result, the energy density of the battery can be increased.
  • the covering layer 111 may uniformly cover the positive electrode active material particles 110.
  • the direct contact between the positive electrode active material particles 110 and the second solid electrolyte particles 100 can be suppressed, and the side reaction of the second solid electrolyte material can be suppressed. For this reason, it is possible to further enhance the charge and discharge characteristics of the battery and to suppress an increase in reaction overpotential of the battery.
  • the covering layer 111 may cover a part of the positive electrode active material particles 110.
  • the plurality of positive electrode active material particles 110 are in direct contact with each other through the portion not having the covering layer 111, the electron conductivity between the positive electrode active material particles 110 is improved. Therefore, high power operation of the battery is possible.
  • the shape of the second solid electrolyte material in the first embodiment is not particularly limited, and may be, for example, needle-like, spherical, oval-spherical, or the like.
  • the shape of the second solid electrolyte material may be particles.
  • the median diameter may be 100 ⁇ m or less.
  • the positive electrode active material particles 110 and the second solid electrolyte particles 100 can form a good dispersed state in the positive electrode material. Therefore, charge and discharge characteristics are improved.
  • the median diameter may be 10 ⁇ m or less.
  • the positive electrode active material particles 110 and the second solid electrolyte particles 100 can form a good dispersed state.
  • second solid electrolyte particles 100 may be smaller than the median diameter of positive electrode active material particles 110.
  • the second solid electrolyte particles 100 and the positive electrode active material particles 110 can form a better dispersed state in the electrode.
  • the median diameter of the positive electrode active material particles 110 may be 0.1 ⁇ m or more and 100 ⁇ m or less.
  • the positive electrode active material particles 110 and the second solid electrolyte particles 100 can form a good dispersed state. As a result, the charge and discharge characteristics of the battery are improved.
  • the battery can operate at high power.
  • the median diameter of the positive electrode active material particles 110 may be larger than the median diameter of the second solid electrolyte particles 100. Thereby, the positive electrode active material particles 110 and the second solid electrolyte particles 100 can form a favorable dispersed state.
  • the second solid electrolyte particles 100 and the covering layer 111 may be in contact with each other as shown in FIG. At this time, the covering layer 111 and the positive electrode active material particles 110 are in contact with each other.
  • positive electrode material 1000 in Embodiment 1 may include a plurality of second solid electrolyte particles 100 and a plurality of positive electrode active material particles 110.
  • the content of the second solid electrolyte particles 100 and the content of the positive electrode active material particles 110 in the positive electrode material 1000 according to Embodiment 1 may be the same as or different from each other.
  • the first solid electrolyte material and the second solid electrolyte material in Embodiment 1 can be produced, for example, by the following method.
  • LiCl and YCl 3 are prepared in a molar ratio of 3: 1.
  • “M”, “Me”, and “X” in the above-described composition formula can be determined by selecting the type of the raw material powder.
  • the above-mentioned values “ ⁇ ”, “ ⁇ ”, “ ⁇ ”, “d”, “ ⁇ ”, “a”, “a”, “x” and “y” can be adjusted by adjusting the raw materials, blending ratio and synthesis process Can be adjusted.
  • the raw material powders are thoroughly mixed, the raw material powders are mixed, pulverized and reacted using a method of mechanochemical milling. Alternatively, the raw material powder may be well mixed and then sintered in vacuum.
  • composition (that is, the crystal structure) of the crystal phase in the solid electrolyte material can be determined by adjusting the reaction method and reaction conditions of the raw material powders.
  • FIG. 2 is a cross-sectional view showing a schematic configuration of battery 2000 in the second embodiment.
  • Battery 2000 in the second embodiment includes positive electrode 201, electrolyte layer 202, and negative electrode 203.
  • Positive electrode 201 includes the positive electrode material (for example, positive electrode material 1000) according to the above-described first embodiment.
  • the electrolyte layer 202 is disposed between the positive electrode 201 and the negative electrode 203.
  • volume ratio “v: 100 ⁇ v” of the positive electrode active material particles 110 and the second solid electrolyte particles 100 contained in the positive electrode 201 30 ⁇ v ⁇ 95 may be satisfied.
  • 30 ⁇ v sufficient battery energy density can be secured.
  • v ⁇ 95 high power operation can be realized.
  • the thickness of the positive electrode 201 may be 10 ⁇ m or more and 500 ⁇ m or less. When the thickness of the positive electrode 201 is 10 ⁇ m or more, sufficient energy density of the battery can be secured. When the thickness of the positive electrode 201 is 500 ⁇ m or less, an operation at high output can be realized.
  • the electrolyte layer 202 is a layer containing an electrolyte material.
  • the electrolyte material is, for example, a solid electrolyte material (that is, a third solid electrolyte material). That is, the electrolyte layer 202 may be a solid electrolyte layer.
  • a halide solid electrolyte As a third solid electrolyte material contained in the electrolyte layer 202, a halide solid electrolyte, a sulfide solid electrolyte, an oxide solid electrolyte, a polymer solid electrolyte, or a complex hydride solid electrolyte may be used.
  • the same halide solid electrolyte as the first solid electrolyte material and / or the second solid electrolyte material in Embodiment 1 described above may be used. That is, the electrolyte layer 202 may include the same halide solid electrolyte as the first solid electrolyte material and / or the second solid electrolyte material in Embodiment 1 described above.
  • the power density and charge / discharge characteristics of the battery can be further improved.
  • the third solid electrolyte material contained in the electrolyte layer 202 may be a halide solid electrolyte different from the first solid electrolyte material and the second solid electrolyte material in the first embodiment described above. That is, the electrolyte layer 202 may include a halide solid electrolyte different from the first solid electrolyte material and the second solid electrolyte material in Embodiment 1 described above.
  • the charge and discharge characteristics of the battery can be further improved.
  • Li 2 S—P 2 S 5 Li 2 S—SiS 2 , Li 2 S—B 2 S 3 , Li 2 S—GeS 2 , Li 3.25 Ge 0.25 P 0.75 S 4 , Li 10 GeP 2 S 12 , etc.
  • LiX, Li 2 O, MO q like Li p MO q, may be added.
  • X is one or more elements selected from the group consisting of F, Cl, Br, and I.
  • M is one or more elements selected from the group consisting of P, Si, Ge, B, Al, Ga, In, Fe, and Zn.
  • p and q are each independently a natural number.
  • the sulfide solid electrolyte of the third solid electrolyte material the same sulfide solid electrolyte as that of the second solid electrolyte material in Embodiment 1 described above may be used. That is, the electrolyte layer 202 may include the same sulfide solid electrolyte as the second solid electrolyte material in the first embodiment described above.
  • the electrolyte layer 202 includes the same sulfide solid electrolyte as the second solid electrolyte material in Embodiment 1, the charge and discharge characteristics of the battery can be improved.
  • the oxide solid electrolyte of the third solid electrolyte material is, for example, a NASICON-type solid electrolyte represented by LiTi 2 (PO 4 ) 3 and its element substitution product, a (LaLi) TiO 3 -based perovskite-type solid electrolyte, Li 14 LiGe type solid electrolyte represented by ZnGe 4 O 16 , Li 4 SiO 4 , LiGeO 4 and its element substitution product, Garnet type solid electrolyte represented by Li 7 La 3 Zr 2 O 12 and its element substitution product, Li 3 Li 2 SO 4 , Li 2 CO 3, etc. were added based on N and its H-substituted, Li 3 PO 4 and its N-substituted, Li-BO compound such as LiBO 2 , Li 3 BO 3 etc. Glass, glass ceramics, etc. can be used.
  • NASICON-type solid electrolyte represented by LiTi 2 (PO 4 ) 3 and its element substitution product
  • a compound of a polymer compound and a lithium salt can be used as a solid polymer electrolyte of the third solid electrolyte material.
  • the polymer compound may have an ethylene oxide structure. By having an ethylene oxide structure, a large amount of lithium salt can be contained, and the ionic conductivity can be further enhanced.
  • the lithium salt LiPF 6, LiBF 4, LiSbF 6, LiAsF 6, LiSO 3 CF 3, LiN (SO 2 CF 3) 2, LiN (SO 2 C 2 F 5) 2, LiN (SO 2 CF 3) ( SO 2 C 4 F 9), LiC (SO 2 CF 3) 3, etc., may be used.
  • a lithium salt one lithium salt selected therefrom can be used alone. Alternatively, a mixture of two or more lithium salts selected therefrom may be used as the lithium salt.
  • the complex hydride solid electrolyte of the third solid electrolyte material for example, LiBH 4 -LiI, LiBH 4 -P 2 S 5 or the like can be used.
  • the solid electrolyte layer may contain the third solid electrolyte material as a main component. That is, the solid electrolyte layer may contain, for example, 50% or more (that is, 50% by weight or more) of the third solid electrolyte material in a weight ratio to the entire solid electrolyte layer.
  • the charge and discharge characteristics of the battery can be further improved.
  • the solid electrolyte layer may contain, for example, 70% or more (that is, 70% by weight or more) of the third solid electrolyte material in a weight ratio to the entire solid electrolyte layer.
  • the charge and discharge characteristics of the battery can be further improved.
  • the solid electrolyte layer further contains unavoidable impurities or starting materials, by-products and decomposition products used when synthesizing the third solid electrolyte material while containing the third solid electrolyte material as a main component. Etc. may be included.
  • the solid electrolyte layer may contain the third solid electrolyte material, for example, 100% (that is, 100% by weight) in weight ratio to the whole of the solid electrolyte layer except for impurities which are inevitably mixed.
  • the charge and discharge characteristics of the battery can be further improved.
  • the solid electrolyte layer may be made of only the third solid electrolyte material.
  • the solid electrolyte layer may contain two or more of the materials listed as the third solid electrolyte material.
  • the solid electrolyte layer may include a halide solid electrolyte and a sulfide solid electrolyte.
  • the thickness of the electrolyte layer 202 may be 1 ⁇ m or more and 300 ⁇ m or less. When the thickness of the electrolyte layer 202 is 1 ⁇ m or more, the positive electrode 201 and the negative electrode 203 can be easily separated. In addition, when the thickness of the electrolyte layer 202 is 300 ⁇ m or less, operation at high output can be realized.
  • the negative electrode 203 includes a material having a property of inserting and extracting metal ions (eg, lithium ions).
  • the negative electrode 203 contains, for example, a negative electrode active material.
  • metal materials, carbon materials, oxides, nitrides, tin compounds, silicon compounds, etc. may be used.
  • the metal material may be a single metal.
  • the metal material may be an alloy.
  • metal materials include lithium metal, lithium alloy, and the like.
  • carbon materials include natural graphite, coke, graphitized carbon, carbon fibers, spherical carbon, artificial graphite, amorphous carbon and the like. From the viewpoint of capacity density, silicon (Si), tin (Sn), a silicon compound, or a tin compound can be used.
  • the negative electrode 203 may include a solid electrolyte material.
  • a solid electrolyte material exemplified as a material constituting the electrolyte layer 202 may be used. According to the above configuration, the lithium ion conductivity in the negative electrode 203 is enhanced, and an operation at high output becomes possible.
  • the median diameter of the negative electrode active material particles may be 0.1 ⁇ m or more and 100 ⁇ m or less.
  • the median diameter of the negative electrode active material particles is 0.1 ⁇ m or more, the negative electrode active material particles and the solid electrolyte material can form a good dispersed state in the negative electrode. This improves the charge and discharge characteristics of the battery.
  • the median diameter of the negative electrode active material particles is 100 ⁇ m or less, lithium diffusion in the negative electrode active material particles is quickened. Thus, the battery can operate at high power.
  • the median diameter of the negative electrode active material particles may be larger than the median diameter of the solid electrolyte material. Thereby, a favorable dispersed state of the negative electrode active material particles and the solid electrolyte material can be formed.
  • volume ratio “v: 100 ⁇ v” of the negative electrode active material particles to the solid electrolyte material contained in the negative electrode 203 30 ⁇ v ⁇ 95 may be satisfied.
  • 30 ⁇ v sufficient battery energy density can be secured.
  • v ⁇ 95 high power operation can be realized.
  • the thickness of the negative electrode 203 may be 10 ⁇ m or more and 500 ⁇ m or less. When the thickness of the negative electrode is 10 ⁇ m or more, sufficient energy density of the battery can be secured. In addition, when the thickness of the negative electrode is 500 ⁇ m or less, high power operation can be realized.
  • a binder may be contained in at least one of the positive electrode 201, the electrolyte layer 202, and the negative electrode 203 for the purpose of improving the adhesion between the particles.
  • the binder is used to improve the binding properties of the material constituting the electrode.
  • the binder polyvinylidene fluoride, polytetrafluoroethylene, polyethylene, polypropylene, aramid resin, polyamide, polyimide, polyamideimide, polyacrylonitrile, polyacrylic acid, polyacrylic acid methyl ester, polyacrylic acid ethyl ester, poly Acrylic acid hexyl ester, polymethacrylic acid, polymethacrylic acid methyl ester, polymethacrylic acid ethyl ester, polymethacrylic acid hexyl ester, polyvinyl acetate, polyvinyl pyrrolidone, polyether, polyether sulfone, hexafluoropolypropylene, styrene buta
  • tetrafluoroethylene, hexafluoroethylene, hexafluoropropylene, perfluoroalkyl vinyl ether, vinylidene fluoride, chlorotrifluoroethylene, ethylene, propylene, pentafluoropropylene, fluoromethyl vinyl ether, acrylic acid, and Copolymers of two or more materials selected from the group consisting of hexadienes can be used. Moreover, 2 or more types selected from these may be mixed and it may be used as a binding agent.
  • At least one of the positive electrode 201 and the negative electrode 203 may contain a conductive aid for the purpose of enhancing the electron conductivity.
  • conductive aids include graphites of natural graphite or artificial graphite, carbon blacks such as acetylene black and ketjen black, conductive fibers such as carbon fibers or metal fibers, metal powders such as fluorinated carbon and aluminum , Conductive whiskers such as zinc oxide or potassium titanate, conductive metal oxides such as titanium oxide, conductive polymer compounds such as polyaniline, polypyrrole and polythiophene, and the like can be used.
  • a carbon conductive aid is used, cost reduction can be achieved.
  • the battery in the second embodiment can be configured as a battery of various shapes such as coin type, cylindrical type, square type, sheet type, button type, flat type, and laminated type.
  • Example 1 [Preparation of Second Solid Electrolyte Material]
  • Raw material powders LiBr, LiCl, LiI, YCl 3 , YBr 3 in molar ratio of LiBr: LiCl: LiI: YCl 3 : YBr 3 1: 1: 4: 1 in an argon glove box with a dew point of ⁇ 60 ° C. or less. It weighed so that it might become 1 :. Thereafter, milling was performed at 600 rpm for 25 hours using a planetary ball mill (manufactured by Fritsch, P-7) to obtain a powder of a second solid electrolyte material Li 3 YBr 2 Cl 2 I 2 .
  • Li (NiCoMn) O 2 (hereinafter referred to as NCM)
  • mixing with an agate mortar was used.
  • the first solid electrolyte material (Li 2.7 Y 1.1 Cl 6 ) and the positive electrode active material (NCM) were weighed in a weight ratio of 1:10 in an argon glove box. These were mixed in an agate mortar to obtain a coated positive electrode active material of Example 1 in which the coating layer was formed on the particle surface layer.
  • Example 2 [Preparation of positive electrode active material coating layer]
  • milling was performed at 600 rpm for 25 hours using a planetary ball mill (manufactured by Fritsch, P-7 type) to obtain a powder of the first solid electrolyte material Li 3 YBr 6 .
  • Example 2 The items other than the preparation of the positive electrode active material coating layer were carried out in the same manner as the method of Example 1 described above to obtain a positive electrode material of Example 2.
  • Example 3 [Preparation of positive electrode active material coating layer]
  • metal In (200 ⁇ m in thickness) was laminated on the positive electrode side to make a positive electrode current collector.
  • metal In thickness 200 ⁇ m
  • metal Li thickness 300 ⁇ m
  • metal In thickness 200 ⁇ m
  • the battery was placed in a 25 ° C. thermostat.
  • Constant current charging was performed at a current value of 70 ⁇ A at which a rate of 0.05 C (20 hours rate) was obtained with respect to the theoretical capacity of the battery, and charging was completed at a voltage of 3.7 V.
  • the first solid electrolyte material contained in the battery is represented by a composition formula Li ⁇ M ⁇ X ⁇ . ⁇ , ⁇ and ⁇ are each independently a value larger than 0, and M contains at least one element selected from the group consisting of metal elements other than Li and metalloid elements, and X contains at least one element selected from the group consisting of Cl and Br.
  • Li (NiCoMn) O 2 (hereinafter referred to as NCM)
  • mixing with an agate mortar was used.
  • the first solid electrolyte material (Li 2.7 Y 1.1 Cl 6 ) and the positive electrode active material (NCM) were weighed in a weight ratio of 1:10 in an argon glove box. These were mixed in an agate mortar to obtain a coated positive electrode active material of Example 4 in which the coating layer was formed on the particle surface layer. That is, all or part of particles of the plurality of particles of the positive electrode active material had a coating layer formed on at least a part of the particle surface.
  • Example 5 Preparation of positive electrode active material coating layer
  • milling was performed at 600 rpm for 25 hours using a planetary ball mill (manufactured by Fritsch, P-7 type) to obtain a powder of the first solid electrolyte material Li 3 YBr 6 .
  • Example 6 [Preparation of positive electrode active material coating layer]
  • the preparation of the positive electrode active material coating layer was not carried out, and the items other than the preparation of the second solid electrolyte material, using NCM not having the coating layer formed, were carried out in the same manner as the method of Example 4 described above.
  • the positive electrode material of Comparative Example 3 was obtained.
  • the battery was placed in a 25 ° C. thermostat.
  • Constant current charging was performed at a current value of 70 ⁇ A at which a rate of 0.05 C (20 hours rate) was obtained with respect to the theoretical capacity of the battery, and charging was completed at a voltage of 3.7 V. This was allowed to stand for 20 minutes in an open circuit, and the stabilized open circuit voltage was read. The difference between the open circuit voltage and the final voltage 3.7 V was taken as an overvoltage.
  • the covering layer containing the first solid electrolyte material is provided on the surface of the positive electrode active material. It has been confirmed that the increase in battery overvoltage can be suppressed.
  • the first solid electrolyte material contained in the battery is represented by a composition formula Li ⁇ M ⁇ X ⁇ . ⁇ , ⁇ and ⁇ are each independently a value larger than 0, and M contains at least one element selected from the group consisting of metal elements other than Li and metalloid elements, and X contains at least one element selected from the group consisting of Cl and Br.
  • the battery of the present disclosure can be utilized, for example, as an all solid lithium secondary battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本発明が解決しようとする課題は、電池の反応過電圧上昇を抑制することである。 本発明の正極材料は、正極活物質と、前記正極活物質の表面の少なくとも一部を覆い、第1固体電解質材料を含む被被覆層と、第2固体電解質材料とを含む。前記第1固体電解質材料は、Li、M、およびXを含み、かつ、硫黄を含まない。Mは、Li以外の金属元素と半金属元素とからなる群より選択される少なくとも1つの元素を含む。Xは、ClとBrとからなる群より選択される少なくとも1つの元素を含む。

Description

正極材料、および、電池
 本開示は、電池用の正極材料、および、電池に関する。
 特許文献1には、インジウムを含むハロゲン化物を固体電解質として用いた電池が開示されている。特許文献2には、正極活物質の表面が実質的に電子伝導性を持たないリチウムイオン伝導性酸化物で被覆された全固体リチウム電池が開示されている。
特開2006-244734号公報 特許第4982866号公報
Chem.Mater.2016,28,266-273.
 従来技術においては、電池の反応過電圧上昇の抑制が望まれる。
 本開示の一様態における正極材料は、正極活物質と、前記正極活物質の表面の少なくとも一部を覆い、第1固体電解質材料を含む被服層と、第2固体電解質材料とを含む。前記第1固体電解質材料は、Li、M、およびXを含み、かつ、硫黄を含まない。Mは、Li以外の金属元素と半金属元素とからなる群より選択される少なくとも1つの元素を含む。Xは、ClとBrとからなる群より選択される少なくとも1つの元素を含む。
 本開示によれば、電池の反応過電圧上昇を抑制することができる。
図1は、実施の形態1における正極材料の概略構成を示す断面図である。 図2は、実施の形態2における電池の概略構成を示す断面図である。
 以下、本開示の実施の形態が、図面を参照しながら説明される。
 (実施の形態1)
 実施の形態1における正極材料は、正極活物質と第1固体電解質材料と第2固体電解質材料とを含む。
 前記第1固体電解質材料は、前記正極活物質の表面に位置することで、被覆層を形成している。
 前記第1固体電解質材料は、下記の組成式(1)により表される材料である。
 Liαβγ ・・・式(1)
 ここで、αとβとγとは、それぞれ独立に、0より大きい値である。
 Mは、Li以外の金属元素と半金属元素とからなる群より選択される少なくとも1つの元素を含む。
 Xは、ClとBrとからなる群より選択される少なくとも1つの元素を含む。
 以上の構成によれば、電池の反応過電圧上昇を抑制することができる。
 特許文献1では、インジウムを含む化合物からなる固体電解質を含む全固体二次電池において、正極活物質の対Li電位が平均で3.9V以下であることが望ましく、これにより固体電解質の酸化分解による分解生成物からなる皮膜が良好に形成され、良好な充放電特性が得られると言及されている。また、対Li電位が平均で3.9V以下の正極活物質として、LiCoO、LiNi0.8Co0.15Al0.05などの一般的な層状遷移金属酸化物正極が開示されている。
 一方、本発明者らが鋭意検討した結果、正極材料にヨウ素(=I)を含むハロゲン化物固体電解質(第2固体電解質材料の一例)を用いた電池では、対Li電位が平均で3.9V以下の正極活物質を用いた場合であっても、充電中にハロゲン化物固体電解質が酸化分解することを見出した。また、それに伴い電池の反応過電圧が上昇する課題が存在し、その原因がハロゲン化物固体電解質に含まれるヨウ素の酸化反応にあると推察した。具体的には、正極材料中の正極活物質からリチウムと電子が引き抜かれる通常の充電反応に加え、正極活物質と接するヨウ素を含むハロゲン化物固体電解質からも電子が引き抜かれる副反応が生じる。すなわち、正極活物質とハロゲン化物固体電解質の間に、リチウムイオン伝導性に乏しい酸化分解層が形成され、正極の電極反応において大きな界面抵抗として機能すると考えられる。この課題を解消するためには、ヨウ素を含むハロゲン化物固体電解質への電子授受を抑制し、酸化分解層形成を抑制する必要がある。
 非特許文献1では、酸化物固体電解質、硫化物固体電解質、ハロゲン化物固体電解質など、様々な固体電解質の電位安定性に関する計算結果が示されている。ハロゲン化物固体電解質に関しては、構成するアニオン種によって電位安定性が異なることが示されている。例えば、臭素を含むハロゲン化物固体電解質は、4.0Vvs.Li以下の電位安定性を有することが示されている。
 一方、本発明者らが鋭意検討した結果、計算から導き出される電位安定性の上限が4.0Vvs.Liを下回る固体電解質であっても、それらを正極材料に用いた場合、安定した充放電特性を示すものが存在することを明らかにした。例えば、電位安定性の上限が4.0Vvs.Li以下とされる臭素を含むハロゲン化物固体電解質を正極材料に用いた場合、4.0Vvs.Li以上の電圧で充電した場合でも良好な充放電特性を示す。一方で、ヨウ素を含むハロゲン化物固体電解質を正極材料に用いた場合、著しく充放電特性が低下することを明らかにした。そのメカニズムの詳細は明らかでないが、臭素を含むハロゲン化物固体電解質を正極材料に用いた場合、正極活物質と当該固体電解質が接するごく近傍においては充電中に固体電解質が酸化されるが、酸化生成物の電子伝導性が極めて低いため、固体電解質内部へと反応が継続して進行しない。一方、ヨウ素を含むハロゲン化物固体電解質を正極材料に用いた場合、固体電解質の酸化生成物が電子伝導性を有するため、正極活物質と当該固体電解質が接する近傍のみで反応が留まらず、固体電解質内部へと反応が継続して進行し、固体電解質の酸化分解層が継続的に生成する。このため、電池の反応過電圧が上昇すると考えられる。以上の通り、固体電解質を正極材料に用いた際の電池動作に関しては、非特許文献1にて開示される計算結果からのみでは、推測することができない。
 ヨウ素を含むハロゲン化物固体電解質は酸化安定性に乏しいため、正極活物質とヨウ素を含むハロゲン化物固体電解質とが接触する電池においては、充電時に継続的に酸化分解を示す。一方、ヨウ素を含まないハロゲン化物固体電解質(第1固体電解質材料の一例)は、酸化安定性に優れ、正極活物質とヨウ素を含まないハロゲン化物固体電解質とが接触する電池において、酸化分解を示さない、もしくは酸化分解した場合でも反応が継続しない。本開示のある実施形態による構成では、正極活物質と、ヨウ素を含むハロゲン化物固体電解質とが、ヨウ素を含まないハロゲン化物固体電解質を含む被覆層に隔てられ直接接しない。そのため、以上の構成によれば、ヨウ素を含むハロゲン化物固体電解質の酸化を抑制し、電池の反応過電圧の上昇を抑制することができる。また、ヨウ素を含むハロゲン化物固体電解質は、ヨウ素を含まないハロゲン化物固体電解質よりもイオン導電率に優れる。そのため、以上の構成によれば、正極層にヨウ素を含まないハロゲン化物固体電解質のみを用いた場合と比較し、電池の出力特性をより向上することができる。
 ハロゲン化物固体電解質は、イオン導電率が高く、熱的安定性に優れ、硫化水素などの有害ガスを発生しない。したがって、ハロゲン化物固体電解質を用いることで、電池の出力特性、および熱的安定性を向上し、硫化水素などの有害ガス発生を抑制できる。
 また、特許文献2では、硫化物固体電解質と、3V以上の電位で酸化還元反応を示す正極活物質との接触で高抵抗層が生じるとして、電子伝導性を持たないリチウムイオン伝導性酸化物で正極活物質表面を被覆することで、前記高抵抗層の形成を抑制できると言及されている。
 ここで、本発明者らは、電子伝導性を持たないリチウムイオン伝導性ハロゲン化物で正極活物質を被覆することでも前記高抵抗層を抑制できるのではないかと考えた。さらに、酸化物固体電解質よりリチウムイオン伝導性に優れるハロゲン化物固体電解質で被覆することで、固体電解質から正極活物質へのLi移動抵抗を抑制することも可能となる。
 既に説明したように、特許文献1では、インジウムを含む化合物からなる固体電解質を含む全固体二次電池において、正極活物質の対Li電位が平均で3.9V以下であることが望ましく、これにより酸化分解による分解生成物からなる皮膜が良好に形成され、良好な充放電特性が得られると言及されている。ただし、酸化分解の詳細なメカニズムについては明らかにされていない。
 本発明者らが鋭意検討した結果、ハロゲン化物固体電解質のうちヨウ素を含む場合は、対Li電位が平均で3.9V以下の正極活物質でも酸化反応が進行し、抵抗層となることを見出した。正極活物質に接するヨウ素含有ハロゲン化物固体電解質が充電時の副反応として酸化され、イオン伝導性の乏しい抵抗層となることが推察される。
 正極に硫化物固体電解質(第2固体電解質材料の一例)を使用する全固体電池において、ヨウ素を含まないハロゲン化物固体電解質(第1固体電解質材料の一例)で正極活物質を被覆すれば、正極活物質と硫化物固体電解質の接触による高抵抗層の形成を抑制しつつ、ハロゲン化物固体電解質の高いイオン伝導性による低抵抗な正極活物質/硫化物固体電解質界面を形成することができる。
 本開示の他のある実施形態による構成では、被覆層に含まれるヨウ素非含有ハロゲン化物固体電解質により、硫化物固体電解質への電子授受が抑制される。このため、硫化物固体電解質の副反応が生じず、充放電効率を向上することができる。また、副反応が生じないため、酸化層形成が抑制され、電極反応の界面抵抗を低減することができる。
 なお、「半金属元素」とは、B、Si、Ge、As、Sb、およびTeである。
 また、「金属元素」とは、水素を除く周期表1族から12族中に含まれるすべての元素、ならびに、B、Si、Ge、As、Sb、Te、C、N、P、O、S、およびSeを除く全ての13族から16族中に含まれる元素である。すなわち、ハロゲン化合物と無機化合物を形成した際に、カチオンとなりうる元素群である。
 Li以外の金属元素と半金属元素とからなる群より選択される少なくとも1つの元素を含むハロゲン化物固体電解質は、Liとハロゲン元素のみから構成されるLiIなどのハロゲン化物固体電解質と比較し、イオン導電率が高い。そのため、Li以外の金属元素と半金属元素とからなる群より選択される少なくとも1つの元素を含むハロゲン化物固体電解質を電池に用いた場合、電池の出力特性を向上することができる。
 なお、組成式(1)においては、Mは、Y(=イットリウム)を含んでいてもよい。
 すなわち、第1固体電解質材料は、金属元素としてYを含んでいてもよい。
 以上の構成によれば、第1固体電解質材料のイオン導電率をより向上させることができる。これにより、電池の充放電特性を、より向上させることができる。
 Yを含む第1固体電解質材料として、例えば、LiMeの組成式で表される化合物であってもよい。ここで、a+mb+3c=6、かつ、c>0が満たされる。Meは、LiおよびYを除く金属元素と半金属元素とからなる群より選択される少なくとも1つである。また、mは、Meの価数である。
 Meとして、Mg、Ca、Sr、Ba、Zn、Sc、Al、Ga、Bi、Zr、Hf、Ti、Sn、TaおよびNbからなる群より選択される少なくとも1つの元素を用いてもよい。
 以上の構成によれば、第1固体電解質材料のイオン導電率をより向上することができる。
 なお、組成式(1)において、2.5≦α≦3、1≦β≦1.1、およびγ=6、が満たされてもよい。
 以上の構成によれば、第1固体電解質材料のイオン導電率をより向上することができる。これにより、電池の充放電特性を、より向上させることができる。
 なお、第1固体電解質材料は、下記の組成式(A1)により表される材料であってもよい。
 Li6-3d ・・・式(A1)
 ここで、組成式(A1)においては、Xは、ClとBrとからなる群より選択される少なくとも1つの元素である。また、組成式(A1)においては、0<d<2、を満たす。
 以上の構成によれば、第1固体電解質材料のイオン導電率を、より向上することができる。これにより、電池の充放電効率を、より向上させることができる。
 なお、第1固体電解質材料は、下記の組成式(A2)により表される材料であってもよい。
 LiYX ・・・式(A2)
 ここで、組成式(A2)においては、Xは、ClとBrとからなる群より選択される少なくとも1つの元素である。
 以上の構成によれば、第1固体電解質材料のイオン導電率を、より向上することができる。これにより、電池の充放電効率を、より向上させることができる。
 なお、第1固体電解質材料は、下記の組成式(A3)により表される材料であってもよい。
 Li3-3δ1+δCl ・・・式(A3)
 ここで、組成式(A3)においては、0<δ≦0.15、が満たされる。
 以上の構成によれば、第1固体電解質材料のイオン導電率を、より向上することができる。これにより、電池の充放電効率を、より向上させることができる。
 なお、第1固体電解質材料は、下記の組成式(A4)により表される材料であってもよい。
 Li3-3δ1+δBr ・・・式(A4)
 ここで、組成式(A4)においては、0<δ≦0.25、が満たされる。
 以上の構成によれば、第1固体電解質材料のイオン導電率を、より向上することができる。これにより、電池の充放電効率を、より向上させることができる。
 なお、第1固体電解質材料は、下記の組成式(A5)により表される材料であってもよい。
 Li3-3δ+a1+δ-aMeCl6-xBr ・・・式(A5)
 ここで、組成式(A5)においては、Meは、Mg、Ca、Sr、Ba、およびZnからなる群より選択される1種または2種以上の元素である。
 また、組成式(A5)においては、-1<δ<2、0<a<3、0<(3-3δ+a)、0<(1+δ-a)、および0≦x≦6、が満たされる。
 以上の構成によれば、第1固体電解質材料のイオン導電率を、より向上することができる。これにより、電池の充放電効率を、より向上させることができる。
 なお、第1固体電解質材料は、下記の組成式(A6)により表される材料であってもよい。
 Li3-3δ1+δ-aMeCl6-xBr ・・・式(A6)
 ここで、組成式(A6)においては、Meは、Al、Sc、Ga、およびBiからなる群より選択される1種または2種以上の元素である。
 また、組成式(A6)においては、-1<δ<1、0<a<2、0<(1+δ-a)、および0≦x≦6、が満たされる。
 以上の構成によれば、第1固体電解質材料のイオン導電率を、より向上することができる。これにより、電池の充放電効率を、より向上させることができる。
 なお、第1固体電解質材料は、下記の組成式(A7)により表される材料であってもよい。
 Li3-3δ-a1+δ-aMeCl6-xBr ・・・式(A7)
 ここで、組成式(A7)においては、Meは、Zr、Hf、およびTiからなる群より選択される1種または2種以上の元素である。
 また、組成式(A7)においては、-1<δ<1、0<a<1.5、0<(3-3δ-a)、0<(1+δ-a)、および0≦x≦6、が満たされる。
 以上の構成によれば、第1固体電解質材料のイオン導電率を、より向上することができる。これにより、電池の充放電効率を、より向上させることができる。
 なお、第1固体電解質材料は、下記の組成式(A8)により表される材料であってもよい。
 Li3-3δ-2a1+δ-aMeCl6-xBr ・・・式(A8)
 ここで、組成式(A8)においては、Meは、Ta、およびNbからなる群より選択される1種または2種以上の元素である。
 また、組成式(A8)においては、-1<δ<1、0<a<1.2、0<(3-3δ-2a)、0<(1+δ-a)、および0≦x≦6、が満たされる。
 以上の構成によれば、第1固体電解質材料のイオン導電率を、より向上することができる。これにより、電池の充放電効率を、より向上させることができる。
 なお、第1固体電解質材料として、例えば、LiYX、LiMgX、LiFeX、Li(Al、Ga、In)X、Li(Al、Ga、In)X、など、が用いられうる。ここで、Xは、ClおよびBrからなる群より選択される少なくとも1つの元素を含む。
 第2固体電解質材料は、イオン導電率が高い材料を含む。例えば、第2固体電解質材料は、ヨウ素を含むハロゲン化物固体電解質などが用いられる。例えば、ヨウ素を含むハロゲン化物固体電解質としては、下記の組成式(2)で表される化合物が用いられうる。
 Liα’M’β’X’γ’ ・・・式(2)
 ここで、α’とβ’とγ’とは、それぞれ独立に、0より大きい値である。
 M’は、Li以外の金属元素と半金属元素とからなる群より選択される少なくとも1つの元素を含む。
 X’は、ClとBrとからなる群より選択される少なくとも1つの元素と、Iと、を含む。
 以上の構成によれば、第2固体電解質材料のイオン導電率をより向上させることができる。これにより、電池の充放電効率を、より向上させることができる。
 なお、組成式(2)においては、M’は、Yを含んでいてもよい。
 すなわち、第2固体電解質材料は、金属元素としてYを含んでいてもよい。
 以上の構成によれば、第2固体電解質材料のイオン導電率をより向上することができる。これにより、電池の充放電特性を、より向上させることができる。
 なお、組成式(2)において、X’は、Br(=臭素)とCl(=塩素)とを含んでいてもよい。
 以上の構成によれば、第2固体電解質材料のイオン導電率をより向上することができる。これにより、電池の充放電特性を、より向上させることができる。
 なお、第2固体電解質材料は、下記の組成式(B1)により表される材料であってもよい。
 Li6-3d ・・・式(B1)
 ここで、組成式(B1)においては、Xは、少なくともIを含む1種または2種以上のハロゲン元素である。また、組成式(B1)においては、0<d<2、を満たす。
 以上の構成によれば、第2固体電解質材料のイオン導電率を、より向上することができる。これにより、電池の充放電効率を、より向上させることができる。
 なお、第2固体電解質材料は、下記の組成式(B2)により表される材料であってもよい。
 LiYX ・・・式(B2)
 ここで、組成式(B2)においては、Xは、少なくともIを含む1種または2種以上のハロゲン元素である。
 以上の構成によれば、第2固体電解質材料のイオン導電率を、より向上することができる。これにより、電池の充放電効率を、より向上させることができる。
 なお、第2固体電解質材料は、下記の組成式(B3)により表される材料であってもよい。
 Li3-3δ+a1+δ-aMeCl6-x-yBr ・・・式(B3)
 ここで、組成式(B3)においては、Meは、Mg、Ca、Sr、Ba、およびZnからなる群より選択される1種または2種以上の元素である。
 また、組成式(B3)においては、-1<δ<2、0<a<3、0<(3-3δ+a)、0<(1+δ-a)、0≦x<6、0<y≦6、および(x+y)<6、が満たされる。
 以上の構成によれば、第2固体電解質材料のイオン導電率を、より向上することができる。これにより、電池の充放電効率を、より向上させることができる。
 なお、第2固体電解質材料は、下記の組成式(B4)により表される材料であってもよい。
 Li3-3δ1+δ-aMeCl6-x-yBr ・・・式(B4)
 ここで、組成式(B4)においては、Meは、Al、Sc、Ga、およびBiからなる群より選択される1種または2種以上の元素である。
 また、組成式(B4)においては、-1<δ<1、0<a<2、0<(1+δ-a)、0≦x<6、0<y≦6、および(x+y)<6、が満たされる。
 以上の構成によれば、第2固体電解質材料のイオン導電率を、より向上することができる。これにより、電池の充放電効率を、より向上させることができる。
 なお、第2固体電解質材料は、下記の組成式(B5)により表される材料であってもよい。
 Li3-3δ-a1+δ-aMeCl6-x-yBr ・・・式(B5)
 ここで、組成式(B5)においては、Meは、Zr、Hf、およびTiからなる群より選択される1種または2種以上の元素である。
 また、組成式(B5)においては、-1<δ<1、0<a<1.5、0<(3-3δ-a)、0<(1+δ-a)、0≦x<6、0<y≦6、および(x+y)<6、が満たされる。
 以上の構成によれば、第2固体電解質材料のイオン導電率を、より向上することができる。これにより、電池の充放電効率を、より向上させることができる。
 なお、第2固体電解質材料は、下記の組成式(B6)により表される材料であってもよい。
 Li3-3δ-2a1+δ-aMeCl6-x-yBr ・・・式(B6)
 ここで、組成式(B6)においては、Meは、Ta、およびNbからなる群より選択される1種または2種以上の元素である。
 また、組成式(B6)においては、-1<δ<1、0<a<1.2、0<(3-3δ-2a)、0<(1+δ-a)、0≦x<6、0<y≦6、および(x+y)<6、が満たされる。
 以上の構成によれば、第2固体電解質材料のイオン導電率を、より向上することができる。これにより、電池の充放電効率を、より向上させることができる。
 なお、第2固体電解質材料として、例えば、LiYX、LiMgX、LiFeX、Li(Al、Ga、In)X、Li(Al、Ga、In)X、など、が用いられうる。ここで、Xは、ClおよびBrからなる群より選択される少なくとも1つの元素と、Iと、を含む。
 第2固体電解質材料としては、硫化物固体電解質なども用いられうる。硫化物固体電解質としては、例えば、LiS-P、LiS-SiS、LiS-B、LiS-GeS、Li3.25Ge0.250.75、Li10GeP12、など、が用いられうる。また、これらに、LiX、LiO、MO、LiMOなどが、添加されてもよい。ここで、Xは、F、Cl、Br、およびIからなる群より選択される1種または2種以上の元素である。また、Mは、P、Si、Ge、B、Al、Ga、In、Fe、およびZnからなる群より選択される1種または2種以上の元素である。また、pおよびqは、それぞれ独立に、自然数である。
 なお、実施の形態1においては、第2固体電解質材料は、硫化物固体電解質であってもよい。例えば、硫化物固体電解質は、硫化リチウムと硫化リンを含んでもよい。例えば、硫化物固体電解質は、LiS-Pであってもよい。
 LiS-Pは、イオン導電率が高く、酸化還元に対して安定である。したがって、LiS-Pを用いることで、電池の充放電効率をより向上させることができる。
 正極活物質は、金属イオン(例えば、リチウムイオン)を吸蔵・放出する特性を有する材料を含む。正極活物質として、例えば、リチウム含有遷移金属酸化物(例えば、Li(NiCoAl)O、Li(NiCoMn)O、LiCoO、など)、遷移金属フッ化物、ポリアニオン材料、フッ素化ポリアニオン材料、遷移金属硫化物、遷移金属オキシ硫化物、遷移金属オキシ窒化物、など、が用いられうる。特に、正極活物質として、リチウム含有遷移金属酸化物を用いた場合には、製造コストを安くでき、平均放電電圧を高めることができる。
 なお、実施の形態1においては、正極活物質は、ニッケル・コバルト・マンガン酸リチウムであってもよい。例えば、正極活物質は、Li(NiCoMn)Oであってもよい。
 以上の構成によれば、電池のエネルギー密度および充放電効率を、より高めることができる。
 被覆層に含まれる第1固体電解質材料としては、電子伝導性が低く、酸化耐性を有する材料、が用いられうる。例えば、第1固体電解質材料として、ヨウ素を含まないハロゲン化物固体電解質などが用いられうる。
 ヨウ素を含まないハロゲン化物固体電解質は、イオン導電率が高く、高電位安定性が高い。このため、ヨウ素を含まないハロゲン化物固体電解質を用いることで、電池の充放電効率をより高め、かつ、電池の反応過電圧の上昇をより抑制することができる。
 なお、実施の形態1においては、第1固体電解質材料は、Li2.71.1ClもしくはLiYBrもしくはLi2.50.5Zr0.5Clであってもよい。
 以上の構成によれば、電池の充放電効率をより高め、かつ、電池の反応過電圧の上昇をより抑制することができる。
 図1は、実施の形態1における正極材料1000の概略構成を示す断面図である。
 実施の形態1における正極材料1000は第2固体電解質粒子100と、正極活物質粒子110と、被覆層111とを含む。
 正極活物質粒子110と第2固体電解質粒子100とは、被覆層111によって隔てられ、直接接触しない。
 被覆層111は、第1固体電解質材料を含む層である。すなわち、正極活物質粒子110の表面には、被覆層111が設けられる。
 なお、被覆層111の厚みは、1nm以上かつ100nm以下であってもよい。
 被覆層111の厚みが1nm以上であることで、正極活物質粒子110と、第2固体電解質粒子100との、直接接触を抑制し、第2固体電解質材料の副反応を抑制できる。このため、充放電効率を向上することができる。
 また、被覆層111の厚みが100nm以下であることで、被覆層111の厚みが厚くなり過ぎない。このため、電池の内部抵抗を十分に小さくすることができる。その結果、電池のエネルギー密度を高めることができる。
 また、被覆層111は、正極活物質粒子110を一様に被覆してもよい。正極活物質粒子110と、第2固体電解質粒子100との、直接接触を抑制し、第2固体電解質材料の副反応を抑制できる。このため、電池の充放電特性をより高め、かつ、電池の反応過電圧の上昇を抑制することができる。
 もしくは、被覆層111は、正極活物質粒子110の一部を被覆してもよい。被覆層111を有さない部分を介して、複数の正極活物質粒子110同士が直接接触することで、正極活物質粒子110間での電子伝導性が向上する。このため、電池の高出力での動作が可能となる。
 また、実施の形態1における、第2固体電解質材料の形状は、特に限定されるものではなく、例えば、針状、球状、楕円球状、など、であってもよい。例えば、第2固体電解質材料の形状は、粒子であってもよい。
 例えば、実施の形態1における第2固体電解質材料の形状が粒子状(例えば、球状)の場合、メジアン径は、100μm以下であってもよい。メジアン径が100μm以下の場合、正極活物質粒子110と第2固体電解質粒子100とが、正極材料において良好な分散状態を形成し得る。このため、充放電特性が向上する。また、実施の形態1においては、メジアン径は10μm以下であってもよい。
 以上の構成によれば、正極材料において、正極活物質粒子110と第2固体電解質粒子100とが、良好な分散状態を形成できる。
 また、実施の形態1においては、第2固体電解質粒子100は、正極活物質粒子110のメジアン径より小さくてもよい。
 以上の構成によれば、電極において第2固体電解質粒子100と正極活物質粒子110とが、より良好な分散状態を形成できる。
 正極活物質粒子110のメジアン径は、0.1μm以上かつ100μm以下であってもよい。
 正極活物質粒子110のメジアン径が0.1μm以上の場合、正極材料1000において、正極活物質粒子110と第2固体電解質粒子100とが、良好な分散状態を形成し得る。この結果、電池の充放電特性が向上する。
 また、正極活物質粒子110のメジアン径が100μm以下の場合、正極活物質粒子110内のリチウム拡散が速くなる。このため、電池が高出力で動作し得る。
 正極活物質粒子110のメジアン径は、第2固体電解質粒子100のメジアン径よりも、大きくてもよい。これにより、正極活物質粒子110と第2固体電解質粒子100とが、良好な分散状態を形成できる。
 なお、実施の形態1における正極材料1000においては、第2固体電解質粒子100と被覆層111とは、図1に示されるように、互いに、接触していてもよい。このとき、被覆層111と正極活物質粒子110とは、互いに、接触する。
 また、実施の形態1における正極材料1000は、複数の第2固体電解質粒子100と、複数の正極活物質粒子110と、を含んでもよい。
 また、実施の形態1における正極材料1000における、第2固体電解質粒子100の含有量と正極活物質粒子110の含有量とは、互いに、同じであってもよいし、異なってもよい。
 <第1固体電解質材料と第2固体電解質材料の製造方法>
 実施の形態1における第1固体電解質材料と第2固体電解質材料は、例えば、下記の方法により、製造されうる。
 目的とする組成の配合比となるような二元系ハロゲン化物の原料粉を用意する。例えば、LiYClを作製する場合には、LiClとYClを、3:1のモル比で用意する。
 このとき、原料粉の種類を選択することで、上述の組成式における「M」と「Me」と「X」とを決定することができる。また、原料と配合比と合成プロセスを調整することで、上述の値「α」と「β」と「γ」と「d」と「δ」と「a」と「x」と「y」とを調整できる。
 原料粉をよく混合した後、メカノケミカルミリングの方法を用いて原料粉同士を混合・粉砕・反応させる。もしくは、原料粉をよく混合した後、真空中で焼結してもよい。
 これにより、前述したような結晶相を含む固体電解質材料が得られる。
 なお、固体電解質材料における結晶相の構成(すなわち、結晶構造)は、原料粉どうしの反応方法および反応条件の調整により、決定することができる。
 (実施の形態2)
 以下、実施の形態2が説明される。上述の実施の形態1と重複する説明は、適宜、省略される。
 図2は、実施の形態2における電池2000の概略構成を示す断面図である。
 実施の形態2における電池2000は、正極201と、電解質層202と、負極203と、を備える。
 正極201は、上述の実施の形態1における正極材料(例えば、正極材料1000)を含む。
 電解質層202は、正極201と負極203との間に配置される。
 以上の構成によれば、電池の反応過電圧の上昇を抑制することができる。
 正極201に含まれる、正極活物質粒子110と第2固体電解質粒子100の体積比率「v:100-v」について、30≦v≦95が満たされてもよい。30≦vの場合、十分な電池のエネルギー密度を確保し得る。また、v≦95では、高出力での動作を実現し得る。
 正極201の厚みは、10μm以上かつ500μm以下であってもよい。なお、正極201の厚みが10μm以上の場合には、十分な電池のエネルギー密度を確保し得る。なお、正極201の厚みが500μm以下の場合には、高出力での動作を実現し得る。
 電解質層202は、電解質材料を含む層である。当該電解質材料は、例えば、固体電解質材料(すなわち、第3固体電解質材料)である。すなわち、電解質層202は、固体電解質層であってもよい。
 電解質層202に含まれる第3固体電解質材料として、ハロゲン化物固体電解質、硫化物固体電解質、酸化物固体電解質、高分子固体電解質、または錯体水素化物固体電解質を用いてもよい。
 第3固体電解質材料のハロゲン化物固体電解質としては、上述の実施の形態1における、第1固体電解質材料および/または第2固体電解質材料と同じハロゲン化物固体電解質を用いてもよい。すなわち、電解質層202は、上述の実施の形態1における第1固体電解質材料および/または第2固体電解質材料と同じハロゲン化物固体電解質を含んでもよい。
 以上の構成によれば、電池の出力密度および充放電特性を、より向上させることができる。
 また、電解質層202に含まれる第3固体電解質材料としては、上述の実施の形態1における第1固体電解質材料および第2固体電解質材料とは異なるハロゲン化物固体電解質であってもよい。すなわち、電解質層202は、上述の実施の形態1における第1固体電解質材料および第2固体電解質材料とは異なるハロゲン化物固体電解質を含んでもよい。
 以上の構成によれば、電池の充放電特性を、より向上させることができる。
 第3固体電解質材料の硫化物固体電解質としては、LiS-P、LiS-SiS、LiS-B、LiS-GeS、Li3.25Ge0.250.75、Li10GeP12、など、が用いられうる。また、これらに、LiX、LiO、MO、LiMOなどが、添加されてもよい。ここで、Xは、F、Cl、Br、およびIからなる群より選択される1種または2種以上の元素である。また、Mは、P、Si、Ge、B、Al、Ga、In、Fe、およびZnからなる群より選択される1種または2種以上の元素である。また、pおよびqは、それぞれ独立に、自然数である。
 あるいは、第3固体電解質材料の硫化物固体電解質として、上述の実施の形態1における第2固体電解質材料と同じ硫化物固体電解質を用いてもよい。すなわち、電解質層202は、上述の実施の形態1における第2固体電解質材料と同じ硫化物固体電解質を含んでもよい。
 以上の構成によれば、還元安定性に優れる硫化物固体電解質を含むため、黒鉛や金属リチウムなどの低電位負極材料を用いることができ、電池のエネルギー密度を向上させることができる。また、電解質層202が実施の形態1における第2固体電解質材料と同じ硫化物固体電解質を含む構成によれば、電池の充放電特性を向上させることができる。
 第3固体電解質材料の酸化物固体電解質としては、例えば、LiTi(POおよびその元素置換体を代表とするNASICON型固体電解質、(LaLi)TiO系のペロブスカイト型固体電解質、Li14ZnGe16、LiSiO、LiGeOおよびその元素置換体を代表とするLISICON型固体電解質、LiLaZr12およびその元素置換体を代表とするガーネット型固体電解質、LiNおよびそのH置換体、LiPOおよびそのN置換体、LiBO、LiBOなどのLi-B-O化合物をベースとして、LiSO、LiCOなどが添加されたガラス、ガラスセラミックスなど、が用いられうる。
 第3固体電解質材料の高分子固体電解質としては、例えば、高分子化合物と、リチウム塩との化合物が用いられうる。高分子化合物はエチレンオキシド構造を有していてもよい。エチレンオキシド構造を有することで、リチウム塩を多く含有することができ、イオン導電率をより高めることができる。リチウム塩としては、LiPF、LiBF、LiSbF、LiAsF、LiSOCF、LiN(SOCF、LiN(SO、LiN(SOCF)(SO)、LiC(SOCF、など、が使用されうる。リチウム塩として、これらから選択される1種のリチウム塩が、単独で、使用されうる。もしくは、リチウム塩として、これらから選択される2種以上のリチウム塩の混合物が、使用されうる。
 第3固体電解質材料の錯体水素化物固体電解質としては、例えば、LiBH-LiI、LiBH-Pなど、が用いられうる。
 なお、固体電解質層は、第3固体電解質材料を、主成分として、含んでもよい。すなわち、固体電解質層は、第3固体電解質材料を、例えば、固体電解質層の全体に対する重量割合で50%以上(すなわち、50重量%以上)、含んでもよい。
 以上の構成によれば、電池の充放電特性を、より向上させることができる。
 また、固体電解質層は、第3固体電解質材料を、例えば、固体電解質層の全体に対する重量割合で70%以上(すなわち、70重量%以上)、含んでもよい。
 以上の構成によれば、電池の充放電特性を、より向上させることができる。
 なお、固体電解質層は、第3固体電解質材料を主成分として含みながら、さらに、不可避的な不純物、または、第3固体電解質材料を合成する際に用いられる出発原料および副生成物および分解生成物など、を含んでいてもよい。
 また、固体電解質層は、第3固体電解質材料を、例えば、混入が不可避的な不純物を除いて、固体電解質層の全体に対する重量割合で100%(すなわち、100重量%)、含んでもよい。
 以上の構成によれば、電池の充放電特性を、より向上させることができる。
 以上のように、固体電解質層は、第3固体電解質材料のみから構成されていてもよい。
 なお、固体電解質層は、第3固体電解質材料として挙げられた材料のうちの2種以上を含んでもよい。例えば、固体電解質層は、ハロゲン化物固体電解質と硫化物固体電解質とを含んでもよい。
 電解質層202の厚みは、1μm以上かつ300μm以下であってもよい。電解質層202の厚みが1μm以上の場合には、正極201と負極203とを分離しやすくなる。また、電解質層202の厚みが300μm以下の場合には、高出力での動作を実現し得る。
 負極203は、金属イオン(例えば、リチウムイオン)を吸蔵・放出する特性を有する材料を含む。負極203は、例えば、負極活物質を含む。
 負極活物質には、金属材料、炭素材料、酸化物、窒化物、錫化合物、珪素化合物、など、が使用されうる。金属材料は、単体の金属であってもよい。もしくは、金属材料は、合金であってもよい。金属材料の例として、リチウム金属、リチウム合金、など、が挙げられる。炭素材料の例として、天然黒鉛、コークス、黒鉛化途上炭素、炭素繊維、球状炭素、人造黒鉛、非晶質炭素、など、が挙げられる。容量密度の観点から、珪素(Si)、錫(Sn)、珪素化合物、または錫化合物、を使用できる。
 負極203は、固体電解質材料を含んでもよい。固体電解質材料としては、電解質層202を構成する材料として例示された固体電解質材料を用いてもよい。以上の構成によれば、負極203内部のリチウムイオン伝導性を高め、高出力での動作が可能となる。
 負極活物質粒子のメジアン径は、0.1μm以上かつ100μm以下であってもよい。負極活物質粒子のメジアン径が0.1μm以上の場合、負極において、負極活物質粒子と固体電解質材料とが、良好な分散状態を形成し得る。これにより、電池の充放電特性が向上する。また、負極活物質粒子のメジアン径が100μm以下の場合、負極活物質粒子内のリチウム拡散が速くなる。このため、電池が高出力で動作し得る。
 負極活物質粒子のメジアン径は、固体電解質材料のメジアン径よりも、大きくてもよい。これにより、負極活物質粒子と固体電解質材料との良好な分散状態を形成できる。
 負極203に含まれる、負極活物質粒子と固体電解質材料の体積比率「v:100-v」について、30≦v≦95が満たされてもよい。30≦vの場合、十分な電池のエネルギー密度を確保し得る。また、v≦95の場合、高出力での動作を実現し得る。
 負極203の厚みは、10μm以上かつ500μm以下であってもよい。負極の厚みが10μm以上の場合には、十分な電池のエネルギー密度を確保し得る。また、負極の厚みが500μm以下の場合には、高出力での動作を実現し得る。
 正極201と電解質層202と負極203とのうちの少なくとも1つには、粒子同士の密着性を向上する目的で、結着剤が含まれてもよい。結着剤は、電極を構成する材料の結着性を向上するために、用いられる。結着剤としては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、アラミド樹脂、ポリアミド、ポリイミド、ポリアミドイミド、ポリアクリルニトリル、ポリアクリル酸、ポリアクリル酸メチルエステル、ポリアクリル酸エチルエステル、ポリアクリル酸ヘキシルエステル、ポリメタクリル酸、ポリメタクリル酸メチルエステル、ポリメタクリル酸エチルエステル、ポリメタクリル酸ヘキシルエステル、ポリ酢酸ビニル、ポリビニルピロリドン、ポリエーテル、ポリエーテルサルフォン、ヘキサフルオロポリプロピレン、スチレンブタジエンゴム、カルボキシメチルセルロース、など、が挙げられる。また、結着剤としては、テトラフルオロエチレン、ヘキサフルオロエチレン、ヘキサフルオロプロピレン、パーフルオロアルキルビニルエーテル、フッ化ビニリデン、クロロトリフルオロエチレン、エチレン、プロピレン、ペンタフルオロプロピレン、フルオロメチルビニルエーテル、アクリル酸、およびヘキサジエンからなる群より選択された2種以上の材料の共重合体が用いられうる。また、これらのうちから選択された2種以上が混合されて、結着剤として用いられてもよい。
 正極201と負極203との少なくとも1つは、電子導電性を高める目的で、導電助剤を含んでもよい。導電助剤としては、例えば、天然黒鉛または人造黒鉛のグラファイト類、アセチレンブラック、ケッチェンブラックなどのカーボンブラック類、炭素繊維または金属繊維などの導電性繊維類、フッ化カーボン、アルミニウムなどの金属粉末類、酸化亜鉛またはチタン酸カリウムなどの導電性ウィスカー類、酸化チタンなどの導電性金属酸化物、ポリアニリン、ポリピロール、ポリチオフェンなどの導電性高分子化合物、など、が用いられうる。炭素導電助剤を用いた場合、低コスト化を図ることができる。
 なお、実施の形態2における電池は、コイン型、円筒型、角型、シート型、ボタン型、扁平型、積層型、など、種々の形状の電池として、構成されうる。
 以下、実施例および比較例を用いて、本開示の詳細が説明される。
 ≪実施例1≫
 [第2固体電解質材料の作製]
 露点-60℃以下のアルゴングローブボックス内で、原料粉LiBr、LiCl、LiI、YCl、YBrとを、モル比でLiBr:LiCl:LiI:YCl:YBr=1:1:4:1:1となるように、秤量した。その後、遊星型ボールミル(フリッチュ社製、P-7型)を用い、25時間、600rpmでミリング処理することで、第2固体電解質材料LiYBrClの粉末を得た。
 [正極活物質被覆層の作製]
 露点-60℃以下のアルゴングローブボックス内で、原料粉LiClとYClとを、モル比でLiCl:YCl=2.7:1.1となるように、秤量した。その後、遊星型ボールミル(フリッチュ社製、P-5型)を用い、25時間、600rpmでミリング処理することで、第1固体電解質材料Li2.71.1Clの粉末を得た。当該被覆層の材料は、第1固体電解質材料である。
 正極活物質Li(NiCoMn)O(以下、NCMと表記する)上へのLi2.71.1Cl被覆層の形成には、メノウ乳鉢による混合を用いた。アルゴングローブボックス内で第1固体電解質材料(Li2.71.1Cl)と正極活物質(NCM)を1:10の重量比率で秤量した。これらをメノウ乳鉢で混合することで、被覆層を粒子表層に形成した実施例1の被覆正極活物質を得た。
 [正極材料の作製]
 アルゴングローブボックス内で、実施例1の第2固体電解質材料と、実施例1の被覆正極活物質を、23:77の重量比率で秤量した。これらをメノウ乳鉢で混合することで、実施例1の正極材料を作製した。
 ≪実施例2≫
 [正極活物質被覆層の作製]
 露点-60℃以下のアルゴングローブボックス内で、原料粉LiBrとYBrとを、モル比でLiBr:YBr=3:1となるように、秤量した。その後、遊星型ボールミル(フリッチュ社製、P-7型)を用い、25時間、600rpmでミリング処理することで、第1固体電解質材料LiYBrの粉末を得た。
 正極活物質被覆層の作製以外の項目は、上述の実施例1の方法と同様に実施し、実施例2の正極材料を得た。
 ≪実施例3≫
 [正極活物質被覆層の作製]
 露点-60℃以下のアルゴングローブボックス内で、原料粉LiCl、YCl、ZrClを、モル比でLiCl:YCl:ZrCl=5:1:1となるように、秤量した。その後、遊星型ボールミル(フリッチュ社製、P-7型)を用い、25時間、600rpmでミリング処理することで、第1固体電解質材料Li2.50.5Zr0.5Clの粉末を得た。
 正極活物質被覆層の作製以外の項目は、上述の実施例1の方法と同様に実施し、実施例3の正極材料を得た。
 ≪比較例1≫
 正極活物質被覆層の作製を実施せず、被覆層を形成していないNCMを用いたこと以外の項目は、上述の実施例1の方法と同様に実施し、比較例1の正極材料を得た。
 [硫化物固体電解質の作製]
 露点-60℃以下のアルゴングローブボックス内で、LiSとPとを、モル比でLiS:P=75:25となるように、秤量した。これらを乳鉢で粉砕して混合した。その後、遊星型ボールミル(フリッチュ社製、P-7型)を用い、10時間、510rpmでミリング処理することで、ガラス状の固体電解質を得た。ガラス状の固体電解質について、不活性雰囲気中で、270℃で、2時間熱処理した。これにより、ガラスセラミックス状の固体電解質であるLiS-Pを得た。
 [電池の作製]
 上述の実施例1~3および比較例1の正極材料、およびガラスセラミックス状のLiS-Pを用いて、下記の工程を実施した。
 まず、絶縁性外筒の中で、LiS-Pを80mg、正極材料を10mgの順に積層した。これを360MPaの圧力で加圧成型することで、正極と固体電解質層を得た。
 次に、正極側に、金属In(厚さ200μm)を積層し、正極側集電体とした。
 次に、固体電解質層の正極と接する側とは反対側に、金属In(厚さ200μm)、金属Li(厚さ300μm)、金属In(厚さ200μm)の順に積層した。これを80MPaの圧力で加圧成型することで、正極、固体電解質層、および負極からなる積層体を作製した。
 次に、積層体の上下にステンレス鋼集電体を配置し、集電体に集電リードを付設した。
 最後に、絶縁性フェルールを用いて、絶縁性外筒内部を外気雰囲気から遮断・密閉することで、電池を作製した。
 以上により、上述の実施例1~3および比較例1の電池をそれぞれ作製した。
 [充電試験]
 上述の実施例1~3および比較例1の電池をそれぞれ用いて、以下の条件で、充電試験が実施された。
 電池を25℃の恒温槽に配置した。
 電池の理論容量に対して0.05Cレート(20時間率)となる電流値70μAで、定電流充電し、電圧3.7Vで充電を終了した。
 以上により、上述の実施例1~3および比較例1の電池の50mAh/g(正極活物質重量換算)時点でのOCV電圧(すなわち、3.084V)からの上昇電圧を過電圧とした。この結果は下記の表1に示される。
Figure JPOXMLDOC01-appb-T000001
 ≪考察≫
 表1に示す実施例1と比較例1の結果から、ヨウ素を含むハロゲン化物固体電解質(第2固体電解質材料の一例)を正極に使用した電池においては、正極活物質の表面に、第1固体電解質材料を含む被覆層が設けられることで、電池の過電圧上昇を抑制できることが確認された。ここで、該電池に含まれる第1固体電解質材料は、組成式Liαβγによって表される。αとβとγとは、それぞれ独立に、0より大きい値であり、かつ、Mは、Li以外の金属元素と半金属元素とからなる群より選択される少なくとも1つの元素を含み、かつ、Xは、ClとBrとからなる群より選択される少なくとも1つの元素を含む。
 表1に示す比較例1の結果から、正極にヨウ素を含むハロゲン化物固体電解質を用い、かつ、第1固体電解質材料を含む被覆層を備えない場合には、充電途中の過電圧が213mVと高い値を示すことが確認された。
 また、実施例1から3と比較例1の結果から、被覆層に用いる第1固体電解質材料について、組成や構造が異なる場合であっても、電極内の第2固体電解質材料の酸化分解を抑制でき、それに伴い電池の過電圧上昇を抑制できることが確認された。
 ≪実施例4≫
 [第2固体電解質材料の作製]
 露点-60℃以下のアルゴングローブボックス内で、LiSとPとを、モル比でLiS:P=75:25となるように、秤量した。これらを乳鉢で粉砕して混合した。その後、遊星型ボールミル(フリッチュ社製、P-7型)を用い、10時間、510rpmでミリング処理することで、ガラス状の固体電解質を得た。ガラス状の固体電解質について、不活性雰囲気中で、270℃で、2時間熱処理した。これにより、ガラスセラミックス状の第2固体電解質材料であるLiS-Pを得た。
 [正極活物質被覆層の作製]
 露点-60℃以下のアルゴングローブボックス内で、原料粉LiClとYClとを、モル比でLiCl:YCl=2.7:1.1となるように、秤量した。その後、遊星型ボールミル(フリッチュ社製、P-5型)を用い、25時間、600rpmでミリング処理することで、第1固体電解質材料Li2.71.1Clの粉末を得た。当該被覆層の材料は、第1固体電解質材料である。
 正極活物質Li(NiCoMn)O(以下、NCMと表記する)上へのLi2.71.1Cl被覆層の形成には、メノウ乳鉢による混合を用いた。アルゴングローブボックス内で第1固体電解質材料(Li2.71.1Cl)と正極活物質(NCM)を1:10の重量比率で秤量した。これらをメノウ乳鉢で混合することで、被覆層を粒子表層に形成した実施例4の被覆正極活物質を得た。すなわち、正極活物質の複数の粒子のうちの全て又は一部の粒子は、粒子表面の少なくとも一部に被覆層が形成されていた。
 [正極材料の作製]
 アルゴングローブボックス内で、実施例4の第2固体電解質材料と、実施例4の被覆正極活物質を、23:77の重量比率で秤量した。これらをメノウ乳鉢で混合することで、実施例4の正極材料を作製した。
 ≪実施例5≫
 [正極活物質被覆層の作製]
 露点-60℃以下のアルゴングローブボックス内で、原料粉LiBrとYBrとを、モル比でLiBr:YBr=3:1となるように、秤量した。その後、遊星型ボールミル(フリッチュ社製、P-7型)を用い、25時間、600rpmでミリング処理することで、第1固体電解質材料LiYBrの粉末を得た。
 正極活物質被覆層の作製以外の項目は、上述の実施例4の方法と同様に実施し、実施例5の正極材料を得た。
 ≪実施例6≫
 [正極活物質被覆層の作製]
 露点-60℃以下のアルゴングローブボックス内で、原料粉LiCl、YCl、ZrClを、モル比でLiCl:YCl:ZrCl=5:1:1となるように、秤量した。その後、遊星型ボールミル(フリッチュ社製、P-7型)を用い、25時間、600rpmでミリング処理することで、第1固体電解質材料Li2.50.5Zr0.5Clの粉末を得た。
 正極活物質被覆層の作製以外の項目は、上述の実施例4の方法と同様に実施し、実施例6の正極材料を得た。
 ≪比較例2≫
 正極活物質被覆層の作製を実施せず、被覆層を形成していないNCMを用いたこと以外の項目は、上述の実施例4の方法と同様に実施し、比較例2の正極材料を得た。
 ≪比較例3≫
 [第2固体電解質材料の作製]
 露点-60℃以下のアルゴングローブボックス内で、原料粉LiBr、LiCl、LiI、YCl、YBrとを、モル比でLiBr:LiCl:LiI:YCl:YBr=1:1:4:1:1となるように、秤量した。その後、遊星型ボールミル(フリッチュ社製、P-7型)を用い、25時間、600rpmでミリング処理することで、第2固体電解質材料LiYBrClの粉末を得た。
 正極活物質被覆層の作製を実施せず、被覆層を形成していないNCMを用いたことと、第2固体電解質材料の作製以外の項目は、上述の実施例4の方法と同様に実施し、比較例3の正極材料を得た。
 [電池の作製]
 上述の実施例4~6および比較例2~3の正極材料、ならびに、ガラスセラミックス状のLiS-Pを用いて、下記の工程を実施した。
 まず、絶縁性外筒の中で、LiS-Pを80mg、正極材料を10mgの順に積層した。これを360MPaの圧力で加圧成型することで、正極と固体電解質層を得た。次に、正極側に、金属In(厚さ200μm)を積層し、正極側集電体とした。次に、固体電解質層の正極と接する側とは反対側に、金属In(厚さ200μm)、金属Li(厚さ300μm)、金属In(厚さ200μm)の順に積層した。これを80MPaの圧力で加圧成型することで、正極、固体電解質層、および負極からなる積層体を作製した。
 次に、積層体の上下にステンレス鋼集電体を配置し、集電体に集電リードを付設した。
 最後に、絶縁性フェルールを用いて、絶縁性外筒内部を外気雰囲気から遮断・密閉することで、電池を作製した。
 以上により、上述の実施例4~6および比較例2~3の電池をそれぞれ作製した。
 [充電試験]
 上述の実施例4~6および比較例2~3の電池をそれぞれ用いて、以下の条件で、充電試験が実施された。
 電池を25℃の恒温槽に配置した。
 電池の理論容量に対して0.05Cレート(20時間率)となる電流値70μAで、定電流充電し、電圧3.7Vで充電を終了した。これを開回路で20分静置し、安定化した開回路電圧を読み取った。この開回路電圧と終止電圧3.7Vとの差を過電圧とした。
 以上により、上述の実施例4~6および比較例2~3の過電圧を得た。この結果は下記の表2に示される。
Figure JPOXMLDOC01-appb-T000002
 ≪考察≫
 表2に示す結果から、硫化物固体電解質(第2固体電解質材料の一例)を正極に使用した電池においては、正極活物質の表面に、第1固体電解質材料を含む被覆層が設けられることで、電池の過電圧上昇を抑制できることが確認された。ここで、該電池に含まれる第1固体電解質材料は、組成式Liαβγで表される。αとβとγとは、それぞれ独立に、0より大きい値であり、かつ、Mは、Li以外の金属元素と半金属元素とからなる群より選択される少なくとも1つの元素を含み、かつ、Xは、ClとBrとからなる群より選択される少なくとも1つの元素を含む。
 表2に示す比較例2の結果から、正極に硫化物固体電解質を用い、かつ、第1固体電解質材料を含む被覆層を備えない場合には、充電終了時の過電圧が131mVと高い値を示すことが確認された。
 また、実施例4から6と比較例2との結果から、被覆層に用いる第1固体電解質材料について、組成や構造が異なる場合であっても、電極内の第2固体電解質材料の酸化分解を抑制でき、それに伴い電池の過電圧上昇を抑制できることが確認された。
 また、比較例3の結果から、正極活物質とヨウ素を含むハロゲン化物固体電解質が直接接触すると、充電終了時の過電圧が186mVと高い値を示すことが確認された。これは、ヨウ素が酸化して抵抗層を形成したためと考えられる。これに対して、実施例4から6の結果から、ヨウ素を含まないハロゲン化物固体電解質で正極活物質を被覆すれば、正極活物質と硫化物固体電解質の接触による高抵抗層の形成を抑制できることが確認された。
 本開示の電池は、例えば、全固体リチウム二次電池などとして、利用されうる。
 1000 正極材料
 100 第2固体電解質粒子
 110 正極活物質粒子
 111 被覆層
 2000 電池
 201 正極
 202 電解質層
 203 負極

Claims (19)

  1.  正極活物質と、
     前記正極活物質の表面の少なくとも一部を覆い、第1固体電解質材料を含む被服層と、
     第2固体電解質材料とを含み、
     前記第1固体電解質材料は、Li、M、およびXを含み、かつ、硫黄を含まず、
     Mは、Li以外の金属元素と半金属元素とからなる群より選択される少なくとも1つの元素を含み、
     Xは、ClとBrとからなる群より選択される少なくとも1つの元素を含む、
     正極材料。
  2.  前記第1固体電解質材料は、下記の組成式(1)により表され、
     Liαβγ ・・・式(1)
     ここで、αとβとγとは、それぞれ独立に、0より大きい値であり、
     前記Mは、Li以外の金属元素と半金属元素とからなる群より選択される少なくとも1つの元素であり、
     前記Xは、ClとBrとからなる群より選択される少なくとも1つの元素である、
    請求項1に記載の正極材料。
  3.  前記Mは、イットリウムを含む、請求項2に記載の正極材料。
  4.  2.5≦α≦3、
     1≦β≦1.1、および
     γ=6、を満たす、請求項3に記載の正極材料。
  5.  前記第2固体電解質材料は、下記の組成式(2)により表され、
     Liα’M’β’X’γ’ ・・・式(2)
     ここで、α’とβ’とγ’とは、それぞれ独立に、0より大きい値であり、
     M’は、Li以外の金属元素と半金属元素とからなる群より選択される少なくとも1つの元素を含み、
     X’は、ClとBrとからなる群より選択される少なくとも1つの元素と、Iと、を含む、
     請求項1から4のいずれかに記載の正極材料。
  6.  前記M’は、イットリウムを含む、請求項5に記載の正極材料。
  7.  前記X’は、ClとBrとを含む、請求項5または6に記載の正極材料。
  8.  前記第2固体電解質材料は、硫化物固体電解質である、請求項1から4のいずれかに記載の正極材料。
  9.  前記硫化物固体電解質は、硫化リチウムと硫化リンである、請求項8に記載の正極材料。
  10.  前記硫化物固体電解質は、LiS-Pである、請求項8に記載の正極材料。
  11.  前記正極活物質は、ニッケル・コバルト・マンガン酸リチウムである、請求項1から10のいずれかに記載の正極材料。
  12.  請求項1から11のいずれかに記載の正極材料を含む正極と、
     負極と、
     前記正極と前記負極との間に設けられる電解質層と、を備える、電池。
  13.  前記電解質層は、前記第1固体電解質材料と前記第2固体電解質材料とのうちの少なくとも一方と同じ材料を含む、請求項12に記載の電池。
  14.  前記電解質層は、前記第1固体電解質材料と同じ材料を含む、請求項13に記載の電池。
  15.  前記電解質層は、前記第1固体電解質材料とは異なるハロゲン化物固体電解質を含む、請求項12から14のいずれかに記載の電池。
  16.  前記電解質層は、前記第1固体電解質材料および前記第2固体電解質材料とは異なるハロゲン化物固体電解質を含む、請求項12から15のいずれかに記載の電池。
  17.  前記電解質層は、硫化物固体電解質を含む、請求項11から16のいずれかに記載の電池。
  18.  前記第1固体電解質材料は、ヨウ素を含まないハロゲン化物であり、
     前記第2固体電解質材料は、硫化物、またはヨウ素を含むハロゲン化物であり、
     前記正極活物質と前記第2固体電解質材料とは、前記第1固体電解質材料に隔てられ直接接しない、
     請求項1から11のいずれかに記載の正極材料。
  19.  前記第1固体電解質材料は、ヨウ素を含まないハロゲン化物であり、
     前記第2固体電解質材料は、硫化物、またはヨウ素を含むハロゲン化物であり、
     前記正極活物質と前記第2固体電解質材料とは、前記第1固体電解質材料に隔てられ直接接しない、
     請求項12から17のいずれかに記載の電池。
PCT/JP2018/043358 2018-01-26 2018-11-26 正極材料、および、電池 WO2019146236A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP18902206.4A EP3745499A4 (en) 2018-01-26 2018-11-26 POSITIVE ELECTRODE MATERIAL AND BATTERY
JP2019567875A JP7241306B2 (ja) 2018-01-26 2018-11-26 正極材料、および、電池
CN201880085584.3A CN111566851B (zh) 2018-01-26 2018-11-26 正极材料和电池
US16/931,113 US11749803B2 (en) 2018-01-26 2020-07-16 Cathode material and battery
US18/219,210 US20230352690A1 (en) 2018-01-26 2023-07-07 Cathode material and battery

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2018-011533 2018-01-26
JP2018011533 2018-01-26
JP2018011534 2018-01-26
JP2018-011534 2018-01-26
JP2018-173451 2018-09-18
JP2018173451 2018-09-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/931,113 Continuation US11749803B2 (en) 2018-01-26 2020-07-16 Cathode material and battery

Publications (1)

Publication Number Publication Date
WO2019146236A1 true WO2019146236A1 (ja) 2019-08-01

Family

ID=67395371

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/043358 WO2019146236A1 (ja) 2018-01-26 2018-11-26 正極材料、および、電池

Country Status (5)

Country Link
US (2) US11749803B2 (ja)
EP (1) EP3745499A4 (ja)
JP (1) JP7241306B2 (ja)
CN (1) CN111566851B (ja)
WO (1) WO2019146236A1 (ja)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110931730A (zh) * 2019-11-04 2020-03-27 浙江锋锂新能源科技有限公司 一种铌酸钛负极材料及其制备方法和应用
WO2020174868A1 (ja) * 2019-02-28 2020-09-03 パナソニックIpマネジメント株式会社 正極材料、および、電池
JPWO2021182561A1 (ja) * 2020-03-13 2021-09-16
JP2021144924A (ja) * 2020-03-13 2021-09-24 マクセルホールディングス株式会社 全固体電池用電極および全固体電池
WO2021205821A1 (ja) * 2020-04-09 2021-10-14 パナソニックIpマネジメント株式会社 正極材料および電池
WO2021215215A1 (ja) 2020-04-20 2021-10-28 パナソニックIpマネジメント株式会社 電池
WO2022004397A1 (ja) * 2020-06-29 2022-01-06 パナソニックIpマネジメント株式会社 正極材料および電池
JPWO2022009806A1 (ja) * 2020-07-08 2022-01-13
WO2022018946A1 (ja) * 2020-07-22 2022-01-27 パナソニックIpマネジメント株式会社 固体電解質材料およびそれを用いた電池
WO2022018990A1 (ja) * 2020-07-22 2022-01-27 パナソニックIpマネジメント株式会社 固体電解質材料およびそれを用いた電池
WO2022145645A1 (ko) * 2020-12-30 2022-07-07 한국전자기술연구원 고체전해질이 코팅된 활물질, 전극 및 그를 이용한 전고체전지
WO2022209686A1 (ja) 2021-03-30 2022-10-06 パナソニックIpマネジメント株式会社 被覆正極活物質、正極材料、電池、および被覆正極活物質の製造方法
WO2022244416A1 (ja) 2021-05-20 2022-11-24 パナソニックIpマネジメント株式会社 複合正極活物質、正極材料、および電池
WO2022244445A1 (ja) * 2021-05-20 2022-11-24 パナソニックIpマネジメント株式会社 被覆正極活物質、正極材料および電池
US11522217B2 (en) 2020-04-14 2022-12-06 Saint-Gobain Ceramics & Plastics, Inc. Electrolyte material and methods of forming
WO2022254869A1 (ja) * 2021-05-31 2022-12-08 パナソニックIpマネジメント株式会社 被覆活物質、電極材料および電池
WO2022254984A1 (ja) * 2021-05-31 2022-12-08 パナソニックIpマネジメント株式会社 正極材料、正極および電池
WO2022255027A1 (ja) * 2021-05-31 2022-12-08 パナソニックIpマネジメント株式会社 被覆活物質、正極材料、正極および電池
WO2022254870A1 (ja) * 2021-05-31 2022-12-08 パナソニックIpマネジメント株式会社 被覆活物質、電極材料および電池
WO2022259819A1 (ja) * 2021-06-07 2022-12-15 パナソニックIpマネジメント株式会社 固体電解質組成物、固体電解質シートと電極とを備えた積層体の製造方法、および電池の製造方法
WO2022259854A1 (ja) * 2021-06-09 2022-12-15 パナソニックIpマネジメント株式会社 電池および固体電池
US11532816B2 (en) 2020-04-23 2022-12-20 Saint-Gobain Ceramics & Plastics, Inc. Ion conductive layer including binder material
JP2023500040A (ja) * 2020-05-25 2023-01-04 蜂巣能源科技股▲ふん▼有限公司 リチウムイオン電池用複合正極材料、その調製方法および使用
WO2023037769A1 (ja) * 2021-09-13 2023-03-16 パナソニックIpマネジメント株式会社 正極材料、正極および電池
WO2023037776A1 (ja) 2021-09-13 2023-03-16 パナソニックIpマネジメント株式会社 被覆活物質、被覆活物質の製造方法、正極材料、および電池
WO2023037775A1 (ja) 2021-09-13 2023-03-16 パナソニックIpマネジメント株式会社 被覆活物質、被覆活物質の製造方法、正極材料、および電池
US11637315B2 (en) 2020-08-07 2023-04-25 Saint-Gobain Ceramics & Plastics, Inc. Electrolyte material and methods of forming
US11664531B2 (en) 2020-04-14 2023-05-30 Saint-Gobain Ceramics & Plastics, Inc. Ion conductive material including complex metal halide, electrolyte including the same, and methods of forming the same
WO2023106212A1 (ja) * 2021-12-10 2023-06-15 パナソニックIpマネジメント株式会社 電極材料、電極、および電池
EP4102594A4 (en) * 2020-02-05 2023-07-19 Panasonic Holdings Corporation POSITIVE ELECTRODE AND BATTERY MATERIAL
US11757099B2 (en) 2020-04-23 2023-09-12 Saint-Gobain Ceramics & Plastics, Inc. Ion conductive layer and methods of forming
US11848414B2 (en) 2021-05-17 2023-12-19 Saint-Gobain Ceramics & Plastics, Inc. Electrolyte material and methods of forming
EP4084122A4 (en) * 2019-12-27 2024-02-28 Panasonic Intellectual Property Management Co., Ltd. BATTERY
EP4131489A4 (en) * 2020-03-30 2024-10-30 Panasonic Ip Man Co Ltd COATED POSITIVE ELECTRODE ACTIVE MATERIAL AND BATTERY THEREOF

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021201102A1 (de) * 2021-02-05 2022-08-11 Volkswagen Aktiengesellschaft Verwendung eines luftstabilen Festkörperelektrolyten
CN113451566A (zh) * 2021-06-22 2021-09-28 合肥国轩高科动力能源有限公司 一种复合包覆正极材料及其制备方法与应用
CN113394401A (zh) * 2021-06-25 2021-09-14 浙江帕瓦新能源股份有限公司 卤化物快离子导体修饰的正极材料及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08171938A (ja) * 1994-12-15 1996-07-02 Mitsubishi Cable Ind Ltd Li二次電池及びその正極
JP2006244734A (ja) 2005-02-28 2006-09-14 National Univ Corp Shizuoka Univ 全固体型リチウム二次電池
JP2009193940A (ja) * 2008-02-18 2009-08-27 Toyota Motor Corp 電極体及びその製造方法、並びに、リチウムイオン二次電池
WO2012077225A1 (ja) * 2010-12-10 2012-06-14 トヨタ自動車株式会社 電極体および全固体電池
JP4982866B2 (ja) 2005-07-01 2012-07-25 独立行政法人物質・材料研究機構 全固体リチウム電池
JP2014241282A (ja) * 2013-05-16 2014-12-25 トヨタ自動車株式会社 電極体の製造方法
JP2016189339A (ja) * 2012-02-17 2016-11-04 ソニー株式会社 全固体電池の製造方法、電極の製造方法、および、電子機器の製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4948510B2 (ja) * 2008-12-02 2012-06-06 トヨタ自動車株式会社 全固体電池
JP5158008B2 (ja) * 2009-04-28 2013-03-06 トヨタ自動車株式会社 全固体電池
JP2011096630A (ja) * 2009-10-02 2011-05-12 Sanyo Electric Co Ltd 固体リチウム二次電池及びその製造方法
JP5578280B2 (ja) * 2011-05-26 2014-08-27 トヨタ自動車株式会社 被覆活物質およびリチウム固体電池
JP2014063732A (ja) * 2012-08-30 2014-04-10 Jgc Catalysts & Chemicals Ltd 全固体型リチウムイオン電池用正極、その正極を得るために用いる混合体、それらの製造方法、および全固体型リチウムイオン電池
WO2014073470A1 (ja) * 2012-11-07 2014-05-15 株式会社 村田製作所 正極材料、二次電池およびそれらの製造方法
US20150380765A1 (en) * 2013-03-15 2015-12-31 Hitachi, Ltd. Solid electrolyte and all-solid state ion secondary battery using the same
RU2665046C2 (ru) * 2013-09-02 2018-08-28 Мицубиси Газ Кемикал Компани, Инк. Твердотельная батарея
CN107026257A (zh) * 2016-01-29 2017-08-08 比亚迪股份有限公司 一种全固态锂离子电池正极复合材料、正极材料、正极以及一种全固态锂离子电池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08171938A (ja) * 1994-12-15 1996-07-02 Mitsubishi Cable Ind Ltd Li二次電池及びその正極
JP2006244734A (ja) 2005-02-28 2006-09-14 National Univ Corp Shizuoka Univ 全固体型リチウム二次電池
JP4982866B2 (ja) 2005-07-01 2012-07-25 独立行政法人物質・材料研究機構 全固体リチウム電池
JP2009193940A (ja) * 2008-02-18 2009-08-27 Toyota Motor Corp 電極体及びその製造方法、並びに、リチウムイオン二次電池
WO2012077225A1 (ja) * 2010-12-10 2012-06-14 トヨタ自動車株式会社 電極体および全固体電池
JP2016189339A (ja) * 2012-02-17 2016-11-04 ソニー株式会社 全固体電池の製造方法、電極の製造方法、および、電子機器の製造方法
JP2014241282A (ja) * 2013-05-16 2014-12-25 トヨタ自動車株式会社 電極体の製造方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BOHNSACK, ANDREAS ET AL.: "Ternary Halides of the A3 MX 6 Type. VI. Ternary Chlorides of the Rare-Earth Elements with Lithium, Li3MCl6(M=Tb-Lu, Y, Sc) :Synthesis, Crystal Structures, and Ionic Motion", JOURNAL OF INORGANIC AND GENERAL CHEMISTRY, vol. 623, 1997, pages 1067 - 1073, XP055600040, doi:10.1002/chin.199739018 *
BOHNSACK, ANDREAS ET AL.: "Ternary Halides of the A3 MX 6Type. VII. The Bromides Li3MBr6(M=Sm-Lu, Y) : Synthesis, Crystal Structure, and Ionic Mobility", JOURNAL OF INORGANIC AND GENERAL CHEMISTRY, vol. 623, 1997, pages 1352 - 1356, XP055600030, doi:10.1002/zaac.19976230905 *
CHEM. MATER., vol. 28, 2016, pages 266 - 273
TOMITA ET AL, PROCEEDINGS OF THE 70TH ANNIVERSARY CONFERENCE OF THE ELECTOCHEMICAL SOCIETY OF JAPAN, vol. 1, no. 2, pages 384 *

Cited By (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12119487B2 (en) 2019-02-28 2024-10-15 Panasonic Intellectual Property Management Co., Ltd. Positive electrode material and battery
WO2020174868A1 (ja) * 2019-02-28 2020-09-03 パナソニックIpマネジメント株式会社 正極材料、および、電池
CN110931730A (zh) * 2019-11-04 2020-03-27 浙江锋锂新能源科技有限公司 一种铌酸钛负极材料及其制备方法和应用
EP4084122A4 (en) * 2019-12-27 2024-02-28 Panasonic Intellectual Property Management Co., Ltd. BATTERY
EP4102594A4 (en) * 2020-02-05 2023-07-19 Panasonic Holdings Corporation POSITIVE ELECTRODE AND BATTERY MATERIAL
JP7401359B2 (ja) 2020-03-13 2023-12-19 マクセル株式会社 全固体電池用電極および全固体電池
WO2021182561A1 (ja) * 2020-03-13 2021-09-16 マクセルホールディングス株式会社 全固体電池用電極および全固体電池
JPWO2021182561A1 (ja) * 2020-03-13 2021-09-16
EP4007011A4 (en) * 2020-03-13 2022-10-19 Maxell, Ltd. ELECTRODE FOR SOLID STATE BATTERY AND SOLID STATE BATTERY
JP2021144924A (ja) * 2020-03-13 2021-09-24 マクセルホールディングス株式会社 全固体電池用電極および全固体電池
CN114365309A (zh) * 2020-03-13 2022-04-15 麦克赛尔株式会社 全固体电池用电极和全固体电池
US12113210B2 (en) 2020-03-13 2024-10-08 Maxell, Ltd. Electrode for all-solid-state battery and all-solid-state battery
JP7033697B2 (ja) 2020-03-13 2022-03-10 マクセル株式会社 全固体電池用電極および全固体電池
EP4131489A4 (en) * 2020-03-30 2024-10-30 Panasonic Ip Man Co Ltd COATED POSITIVE ELECTRODE ACTIVE MATERIAL AND BATTERY THEREOF
WO2021205821A1 (ja) * 2020-04-09 2021-10-14 パナソニックIpマネジメント株式会社 正極材料および電池
EP4134350A4 (en) * 2020-04-09 2024-10-23 Panasonic Ip Man Co Ltd POSITIVE ELECTRODE MATERIAL AND BATTERY
US11978847B2 (en) 2020-04-14 2024-05-07 Saint-Gobain Ceramics & Plastics, Inc. Ion conductive material, electrolyte including ion conductive material, and methods of forming
US11664531B2 (en) 2020-04-14 2023-05-30 Saint-Gobain Ceramics & Plastics, Inc. Ion conductive material including complex metal halide, electrolyte including the same, and methods of forming the same
US11522217B2 (en) 2020-04-14 2022-12-06 Saint-Gobain Ceramics & Plastics, Inc. Electrolyte material and methods of forming
US11973186B2 (en) 2020-04-14 2024-04-30 Saint-Gobain Ceramics & Plastics, Inc. Ion conductive material including halide material, electrolyte including the same, and methods of forming the same
WO2021215215A1 (ja) 2020-04-20 2021-10-28 パナソニックIpマネジメント株式会社 電池
US12095089B2 (en) 2020-04-23 2024-09-17 Saint-Gobain Ceramics & Plastics, Inc. Ion conductive layer and methods of forming
US11984598B2 (en) 2020-04-23 2024-05-14 Saint-Gobain Ceramics & Plastics, Inc. Ion conductive layer and methods of forming
US11757099B2 (en) 2020-04-23 2023-09-12 Saint-Gobain Ceramics & Plastics, Inc. Ion conductive layer and methods of forming
US11532816B2 (en) 2020-04-23 2022-12-20 Saint-Gobain Ceramics & Plastics, Inc. Ion conductive layer including binder material
US11735732B2 (en) 2020-04-23 2023-08-22 Saint-Gobain Ceramics & Plastics, Inc. Ion conductive layer and methods of forming
EP4024516A4 (en) * 2020-05-25 2024-05-01 Svolt Energy Technology Co., Ltd COMPOSITE POSITIVE ELECTRODE MATERIAL FOR LITHIUM-ION BATTERY, PREPARATION METHOD AND USE THEREOF
JP7389247B2 (ja) 2020-05-25 2023-11-29 蜂巣能源科技股▲ふん▼有限公司 リチウムイオン電池用複合正極材料、その調製方法および使用
JP2023500040A (ja) * 2020-05-25 2023-01-04 蜂巣能源科技股▲ふん▼有限公司 リチウムイオン電池用複合正極材料、その調製方法および使用
CN115916703A (zh) * 2020-06-29 2023-04-04 松下知识产权经营株式会社 正极材料和电池
WO2022004397A1 (ja) * 2020-06-29 2022-01-06 パナソニックIpマネジメント株式会社 正極材料および電池
JP7420949B2 (ja) 2020-07-08 2024-01-23 トヨタ自動車株式会社 正極材料及び電池
CN115769397A (zh) * 2020-07-08 2023-03-07 丰田自动车株式会社 正极材料和电池
JPWO2022009806A1 (ja) * 2020-07-08 2022-01-13
WO2022009806A1 (ja) 2020-07-08 2022-01-13 トヨタ自動車株式会社 正極材料及び電池
EP4181230A4 (en) * 2020-07-08 2024-08-21 Toyota Motor Co Ltd POSITIVE ELECTRODE MATERIAL AND BATTERY
CN115769313A (zh) * 2020-07-22 2023-03-07 松下知识产权经营株式会社 固体电解质材料以及使用了该固体电解质材料的电池
WO2022018946A1 (ja) * 2020-07-22 2022-01-27 パナソニックIpマネジメント株式会社 固体電解質材料およびそれを用いた電池
WO2022018990A1 (ja) * 2020-07-22 2022-01-27 パナソニックIpマネジメント株式会社 固体電解質材料およびそれを用いた電池
US11637315B2 (en) 2020-08-07 2023-04-25 Saint-Gobain Ceramics & Plastics, Inc. Electrolyte material and methods of forming
US11978849B2 (en) 2020-08-07 2024-05-07 Saint-Gobain Ceramics & Plastics, Inc. Electrolyte material and methods of forming
WO2022145645A1 (ko) * 2020-12-30 2022-07-07 한국전자기술연구원 고체전해질이 코팅된 활물질, 전극 및 그를 이용한 전고체전지
WO2022209686A1 (ja) 2021-03-30 2022-10-06 パナソニックIpマネジメント株式会社 被覆正極活物質、正極材料、電池、および被覆正極活物質の製造方法
US11848414B2 (en) 2021-05-17 2023-12-19 Saint-Gobain Ceramics & Plastics, Inc. Electrolyte material and methods of forming
WO2022244445A1 (ja) * 2021-05-20 2022-11-24 パナソニックIpマネジメント株式会社 被覆正極活物質、正極材料および電池
WO2022244416A1 (ja) 2021-05-20 2022-11-24 パナソニックIpマネジメント株式会社 複合正極活物質、正極材料、および電池
WO2022254870A1 (ja) * 2021-05-31 2022-12-08 パナソニックIpマネジメント株式会社 被覆活物質、電極材料および電池
WO2022254869A1 (ja) * 2021-05-31 2022-12-08 パナソニックIpマネジメント株式会社 被覆活物質、電極材料および電池
WO2022254984A1 (ja) * 2021-05-31 2022-12-08 パナソニックIpマネジメント株式会社 正極材料、正極および電池
WO2022255027A1 (ja) * 2021-05-31 2022-12-08 パナソニックIpマネジメント株式会社 被覆活物質、正極材料、正極および電池
WO2022259819A1 (ja) * 2021-06-07 2022-12-15 パナソニックIpマネジメント株式会社 固体電解質組成物、固体電解質シートと電極とを備えた積層体の製造方法、および電池の製造方法
WO2022259854A1 (ja) * 2021-06-09 2022-12-15 パナソニックIpマネジメント株式会社 電池および固体電池
WO2023037769A1 (ja) * 2021-09-13 2023-03-16 パナソニックIpマネジメント株式会社 正極材料、正極および電池
WO2023037775A1 (ja) 2021-09-13 2023-03-16 パナソニックIpマネジメント株式会社 被覆活物質、被覆活物質の製造方法、正極材料、および電池
WO2023037776A1 (ja) 2021-09-13 2023-03-16 パナソニックIpマネジメント株式会社 被覆活物質、被覆活物質の製造方法、正極材料、および電池
WO2023106212A1 (ja) * 2021-12-10 2023-06-15 パナソニックIpマネジメント株式会社 電極材料、電極、および電池

Also Published As

Publication number Publication date
US20230352690A1 (en) 2023-11-02
JPWO2019146236A1 (ja) 2021-01-07
CN111566851B (zh) 2024-05-24
JP7241306B2 (ja) 2023-03-17
US20200350626A1 (en) 2020-11-05
US11749803B2 (en) 2023-09-05
CN111566851A (zh) 2020-08-21
EP3745499A4 (en) 2021-03-24
EP3745499A1 (en) 2020-12-02

Similar Documents

Publication Publication Date Title
WO2019146236A1 (ja) 正極材料、および、電池
JP7349645B2 (ja) 電極材料、および、電池
JP7316564B2 (ja) 電池
US11670775B2 (en) Positive electrode material and battery
JP7182196B2 (ja) 電池
JP7199038B2 (ja) 負極材料およびそれを用いた電池
JP7145439B2 (ja) 電池
WO2019135346A1 (ja) 正極材料、および、電池
US11637287B2 (en) Positive electrode material and battery using same
JP7249562B2 (ja) 電池
JP7217432B2 (ja) 正極材料およびそれを用いた電池
JP7486092B2 (ja) 正極材料、および、電池
US12132168B2 (en) Battery
CN113614948A (zh) 正极材料和电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18902206

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019567875

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018902206

Country of ref document: EP

Effective date: 20200826