[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022092263A1 - グランドショート故障検出装置およびノード装置 - Google Patents

グランドショート故障検出装置およびノード装置 Download PDF

Info

Publication number
WO2022092263A1
WO2022092263A1 PCT/JP2021/040010 JP2021040010W WO2022092263A1 WO 2022092263 A1 WO2022092263 A1 WO 2022092263A1 JP 2021040010 W JP2021040010 W JP 2021040010W WO 2022092263 A1 WO2022092263 A1 WO 2022092263A1
Authority
WO
WIPO (PCT)
Prior art keywords
ground short
short failure
signal
signal lines
detection device
Prior art date
Application number
PCT/JP2021/040010
Other languages
English (en)
French (fr)
Inventor
哲 中西
敦 上鉢
康宏 野原
広平 ▲高▼間
Original Assignee
いすゞ自動車株式会社
株式会社トランストロン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by いすゞ自動車株式会社, 株式会社トランストロン filed Critical いすゞ自動車株式会社
Priority to DE112021004416.8T priority Critical patent/DE112021004416T5/de
Priority to CN202180073483.6A priority patent/CN116508293A/zh
Priority to US18/033,819 priority patent/US20240013648A1/en
Publication of WO2022092263A1 publication Critical patent/WO2022092263A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/46Monitoring; Testing
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/18Status alarms
    • G08B21/185Electrical failure alarms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/18Status alarms
    • G08B21/182Level alarms, e.g. alarms responsive to variables exceeding a threshold

Definitions

  • This disclosure relates to a ground short failure detection device and a node device.
  • a CAN communication system in which a CAN (Controller Area Network) signal is transmitted by operating the voltage of two signal lines is known.
  • Patent Document 1 describes a communication line having two signal lines, a node device connected between the two signal lines and having a communication function, and a potential for measuring the potential of each of the two signal lines.
  • a short failure detection device including a measuring means and a short failure determining means for determining whether or not a ground short failure has occurred in a communication line based on the potential measured by the potential measuring means is disclosed.
  • data transmission may be attempted from a plurality of node devices at the same time.
  • the priority of a plurality of node devices is determined based on the identification information (ID) contained in the data, and the communication arbitration in which the data is transmitted from the predetermined node device based on the priority is performed. Will be done.
  • the potentials of the two signal lines are due to the difference in the inductance component of the signal lines (for example, the difference in the length of the harness) and the potential difference between the plurality of grounds. May not be stable. As a result, the accuracy of determining a ground short failure may decrease.
  • An object of the present disclosure is to provide a ground short failure detection device and a node device capable of improving the determination accuracy of a ground short failure.
  • the ground short failure detection device in the present disclosure has two signal lines, fluctuates the potential of each of the two signal lines, switches the potential difference between the two signal lines between a responsive level and a dominant level, and signals each of the responsive level and the dominant level.
  • a current measuring unit that measures the current value of the current flowing through each of the two signal lines, and a current measuring unit. It is determined whether or not the difference between the measured current values exceeds a predetermined value, and if the difference exceeds a predetermined value, the potential is relatively low at the dominant level among the two signal lines.
  • a judgment unit that outputs a judgment result indicating that a ground short failure of the low potential side signal line has occurred, and a judgment unit.
  • the node device in the present disclosure includes the above-mentioned ground short failure detection device.
  • FIG. 1 is a diagram showing an example of a CAN bus network according to an embodiment of the present disclosure.
  • FIG. 2 is a flowchart showing an example of processing of the control device.
  • FIG. 1 is a diagram showing an example of a CAN bus network according to an embodiment of the present disclosure.
  • the CAN bus network has two signal lines.
  • the CAN bus network fluctuates the potential of each of the two signal lines, switches the potential difference between the two signal lines between the recessive level and the dominant level, and uses each of the recessive level and the dominant level as a signal between multiple node devices. It is a communication network that sends and receives data to and from each other.
  • a plurality of node devices 1, 1A, 1B, 1C are connected to the two signal lines.
  • a meter 5 such as a brake warning light and a failure code recording device 6 are connected to the two signal lines.
  • DTC Diagnostic Trouble Code
  • terminating resistors 7 are connected to both ends of the two communication lines.
  • the two signal lines are composed of a high potential side signal line CAN_H and a low potential side signal line CAN_L.
  • the high potential side signal line CAN_H has a relatively low potential (for example, a potential near the reference potential) at the recessive level and a relatively high potential (for example, a potential higher than the potential near the reference potential) at the dominant level. It is a line.
  • the low potential side signal line CAN_L has a relatively high potential (for example, a potential near the reference potential) at the recessive level and a relatively low potential (for example, a potential lower than the potential near the reference potential) at the dominant level. It is a line.
  • the node device 1 among the plurality of node devices 1, 1A, 1B, 1C has a function of the ground short failure detection device 100 for detecting the ground short of the low potential side signal line CAN_L. Therefore, the description of the node device 1 is replaced with the description of the ground short failure detection device 100.
  • the ground short failure detection device 100 may be provided separately from the node device 1. Further, other node devices 1A, 1B, 1C may have the function of the ground short failure detection device 100.
  • the node device 1 has a CAN transceiver 2 and a control device 3.
  • the CAN transceiver 2 provides an interface between the control device 3 and the physical wiring of the CAN bus. Since the CAN transceiver 2 transmits a signal through physical wiring, it performs conversion from data to a differential signal and vice versa, adjustment of differential voltage, securing of operating voltage, protection of wiring, and the like.
  • the CAN transceiver 2 has a current measuring unit 4.
  • the current measuring unit 4 periodically measures the current value of the current flowing through the high potential side signal line CAN_H. Further, the current measuring unit 4 periodically measures the current value of the current flowing through the low potential side signal line CAN_L. Further, the current measuring unit 4 outputs each of the measured current values to the control device 3.
  • the control device 3 is, for example, an ECU (Electronic Control Unit) including a microcomputer composed of a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), etc. (not shown) and an input / output device.
  • the control device 3 realizes various functions such as an acquisition unit 31, a calculation unit 32, a determination unit 33, and a control unit 34 by sequentially reading and executing a program stored in the ROM by the CPU, for example.
  • the control device 3 processes data to be transmitted / received to / from the node device (for example, any of the node devices 1A, 1B, 1C) of the communication partner via the CAN bus (two signal lines), for example.
  • control device 3 carries out other processing such as monitoring the state of the CAN bus. Thereby, it is determined whether or not the priority of other node devices (for example, node devices 1A, 1B, 1C) is high.
  • the control device 3 processes data to be transmitted / received to / from the node device of the communication partner when the CAN bus is in an active state and another node device is transmitting data or immediately after the transmission is completed). Do not carry out.
  • control device 3 performs communication arbitration when the CAN bus is in an idle state and its own node device 1 and another node device attempt to transmit at the same time. In the communication arbitration, the identification information (ID) included in the data transmitted by each of the own node device 1 and the other node devices is used. In communication arbitration, the control device 3 determines the priority of its own node device 1 and other node devices based on the identification information, and processes data to be transmitted / received to / from the node device of the communication partner based on the priority. do.
  • ID identification information
  • the acquisition unit 31 acquires the current values of each of the two signal lines (the current value of the high potential side signal line CAN_H and the low potential side signal line CAN_L).
  • the calculation unit 32 calculates the difference between the current value of the high potential side signal line CAN_H and the current value of the low potential side signal line CAN_L (hereinafter referred to as "difference in current value").
  • the determination unit 33 determines whether or not the difference between the calculated current values exceeds a predetermined value. When the difference between the current values exceeds a predetermined value, the determination unit 33 outputs a determination result indicating that a ground short failure of the low potential side signal line CAN_L has occurred. Specifically, the determination unit 33 outputs a determination result indicating that a ground short failure has occurred when the number of times the difference between the current values exceeds a predetermined value exceeds a predetermined number.
  • the following processing is performed in determining whether or not a ground short failure of the low potential side signal line CAN_L has occurred.
  • a case where communication arbitration is performed as a case where the potentials of the two signal lines are not stable will be described as an example, but when the potentials of the two signal lines are not stable, communication arbitration is performed. Not limited to cases.
  • the control unit 34 controls the determination unit 33 so that it is determined whether or not the difference between the current values exceeds a predetermined value when the communication arbitration is not performed. When the difference between the current values exceeds a predetermined value, the determination unit 33 outputs a determination result indicating that a ground short failure of the low potential side signal line CAN_L has occurred. The control unit 34 controls the CAN transceiver 2 so that the determination result is transmitted to the failure code recording device 6.
  • the predetermined signal is a signal for transmitting data having identification information (ID) of its own node device 1 used for communication arbitration.
  • the control unit 34 determines whether or not the transmission of the predetermined signal is completed. It should be noted that the completion of the transmission of the predetermined signal can be determined by using the difference in current at the time when the data is transmitted by the own node device 1 after winning the arbitration, and the determination by the determination unit 33 can be determined. There are few mistakes.
  • the control unit 34 controls the determination unit 33 so that when the transmission of the predetermined signal is completed, it is determined whether or not the difference between the current values exceeds the predetermined value. Then, similarly, when the difference between the current values exceeds a predetermined value, the determination unit 33 outputs a determination result indicating that a ground short failure of the low potential side signal line CAN_L has occurred.
  • the control unit 34 controls the CAN transceiver 2 so that the determination result is transmitted to the failure code recording device 6.
  • FIG. 2 is a flowchart showing an example of the processing of the control device 3. This flow starts when the engine switch is turned on.
  • the control device 3 will be described as having the functions of the acquisition unit 31, the calculation unit 32, the determination unit 33, and the control unit 34. Further, the transmission of the predetermined signal will be described as being performed from its own node device 1.
  • step S100 the control device 3 acquires the current value of the discharge current of the high potential signal line CAN_H.
  • step S110 the control device 3 acquires the current value of the suction current of the low potential signal line CAN_L.
  • step S120 the control device 3 calculates the difference between the current value of the discharge current of the high potential signal line CAN_H and the current value of the suction current of the low potential signal line CAN_L.
  • step S130 the control device 3 determines whether or not the calculated difference exceeds a predetermined value.
  • step S130: YES the difference exceeds a predetermined value
  • step S140 the difference does not exceed the predetermined value
  • step S130: NO the process returns to before step S100.
  • step S140 the control device 3 determines whether or not the communication is arbitrated. In the case of communication arbitration (step S140: YES), the process returns to before step S100. If it is not communication arbitration (step S140: NO), the process proceeds to step S150.
  • step S150 the control device 3 controls the CAN transceiver 2 so that a predetermined signal is transmitted.
  • step S160 the control device 3 determines whether or not the transmission of the predetermined signal is completed.
  • step S160: YES the transmission of the predetermined signal is completed
  • step S170 the transmission of the predetermined signal is not completed
  • step S160: NO the process returns to before step S100.
  • step S170 the control device 3 determines that a ground short failure of the low potential signal line CAN_L has occurred.
  • the control device 3 controls the CAN transceiver 2 so that the determination result is transmitted to the failure code recording device 6.
  • the ground short failure detection device 100 in the above embodiment has two signal lines, changes the potential of each of the two signal lines, and switches the potential difference between the two signal lines between the recessive level and the dominant level.
  • Recessive level and dominant level are used as signals, and in a ground short failure detection device in a communication network where data is transmitted and received between multiple node devices, the current value of the current flowing at the time of dominant output to each of the two signal lines. It is determined whether or not the difference between the measured current values exceeds the predetermined value with the current measuring unit 4 for measuring, and if the difference exceeds the predetermined value, the relative of the two signal lines at the recessive level.
  • a determination unit 33 that outputs a determination result indicating that a ground short failure has occurred in the low potential side signal line CAN_L, which has a high potential and a relatively low potential at the dominant level, and a predetermined signal.
  • a control unit and 34 for controlling the determination unit 33 are provided so that when the transmission is completed, it is determined whether or not the difference exceeds a predetermined value.
  • the determination unit 33 determines whether the difference between the current values exceeds the predetermined value. Since it is determined whether or not it is, the error of the determination is reduced. This makes it possible to improve the accuracy of determining a ground short failure.
  • control unit 34 executes a control in which a predetermined signal is transmitted when the potentials of the two signal lines are not stable. As a result, when the potentials of the two signal lines are in an unstable state, the determination unit 33 does not perform the determination, so that it is possible to reduce the error in the determination.
  • the determination unit 33 makes a determination after confirming that the potentials of the two signal lines are not in an unstable state. Since it is performed, it is possible to reduce the error of the determination.
  • the predetermined signal transmitted when the communication arbitration is performed is the data having the identification information of the own node device 1 used for the communication arbitration. This is a signal for transmission.
  • a predetermined signal is transmitted from the own node device 1 and the transmission of the signal is completed, it is possible to confirm with the own signal that the potentials of the two signal lines are not unstable. This has the advantage that it is possible to accurately determine a ground short failure.
  • the potentials of the two signal lines may not be stable due to the difference in the inductance component of the signal lines or the potential difference between the plurality of grounds.
  • the inductance components of the two signal lines are measured, the difference in the inductance components is calculated, and the case where the difference in the inductance components exceeds a predetermined value is the case where the potentials of the two signal lines are not stable. May be. Further, for example, the potential between a plurality of grounds is measured, the potential difference between the plurality of grounds is calculated, and the potential difference between the plurality of grounds exceeds a predetermined value, or the potentials of the two signal lines are not stable. May be.
  • the predetermined signal transmitted when the communication arbitration is performed is used as a signal for transmitting the data having the identification information of the own node device 1 used for the communication arbitration.
  • the transmission of the predetermined signal may be a signal for transmitting data having a higher priority than the identification information of the plurality of node devices used for communication arbitration. In this case, even if the priority of the own node device 1 is not the highest among the plurality of node devices related to communication arbitration, for example, the priority of the own identification information is the priority of the identification information of another node device.
  • the present disclosure is suitably used for a node device provided with a ground short failure detection device, which is required to improve the accuracy of ground short failure determination.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Dc Digital Transmission (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Small-Scale Networks (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)

Abstract

グランドショート故障検出装置およびノード装置は、グランドショート故障の判定精度を上げることが可能である。グランドショート故障検出装置は、2本の信号線を有し、2本の信号線それぞれの電位を変動させ、レセシブレベルおよびドミナントレベルのそれぞれを信号として、複数のノード装置間でデータの送受信を相互に行う通信ネットワークにおけるグランドショート故障検出装置において、2本の信号線のそれぞれに流れる電流の電流値を測定する電流測定部と、測定されたそれぞれの電流値の差分が所定値を超えるか否かを判定し、差分が所定値を超える場合、2本の信号線のうち、ドミナントレベルでは相対的に低い電位になる低電位側信号線のグランドショート故障が発生していることを示す判定結果を出力する判定部と、予め定められた信号の送信が完了した場合、差分が所定値を超えるか否かの判定がされるように、判定部を制御する制御部と、を備える。

Description

グランドショート故障検出装置およびノード装置
 本開示は、グランドショート故障検出装置およびノード装置に関する。
 従来、通信ネットワークとして、2本の信号線の電圧の作動によってCAN(Controller Area Network)の信号が送信されるCAN通信システムが知られている。
 例えば、特許文献1には、2本の信号線を有する通信ラインと、2本の信号線間に接続され、通信機能を有するノード装置と、2本の信号線のそれぞれの電位を測定する電位測定手段と、電位測定手段で測定された電位に基づいて、通信ラインにおいてグランドショート故障が発生しているか否かを判定するショート故障判定手段とを備えたショート故障検出装置が開示されている。
日本国特開2006-191404号公報
 ところで、CAN通信システムにおいては、複数のノード装置から同時にデータの送信が試みられる場合がある。この場合には、データに含まれる識別情報(ID:identification information)に基づいて複数のノード装置の優先順位が決定され、優先順位に基づいて所定のノード装置からデータの送信がされる通信調停が行われる。
 しかしながら、通信調停中においては、複数のノード装置から2本の信号線に電流が伝送され、通信調停後においては、優先順位に基づいて、所定のノード装置から2本の信号線に電圧が伝送される。調停中は、2本の信号線の電流の差分が安定しない場合がある。これにより、2本の信号線(CANバス)の異常(ここではショート故障判定)の判断に誤りが生じる場合があるため、グランドショート故障の判定精度が低下するおそれがある。
 また、例えば、CAN通信システムが車両に搭載される場合においては、信号線のインダクタンス成分の差(例えば、ハーネスの長さの差)や複数のグランド間の電位差により、2本の信号線の電位が安定しない場合がある。これにより、グランドショート故障の判定精度が低下するおそれがある。
 本開示の目的は、グランドショート故障の判定精度を上げることが可能なグランドショート故障検出装置およびノード装置を提供することである。
 上記の目的を達成するため、本開示におけるグランドショート故障検出装置は、
 2本の信号線を有し、前記2本の信号線それぞれの電位を変動させ、前記2本の信号線間の電位差をレセシブレベルとドミナントレベルとに切り替え、前記レセシブレベルおよび前記ドミナントレベルのそれぞれを信号として、複数のノード装置間でデータの送受信を相互に行う通信ネットワークにおけるグランドショート故障検出装置において、
 前記2本の信号線のそれぞれに流れる電流の電流値を測定する電流測定部と、
 測定されたそれぞれの前記電流値の差分が所定値を超えるか否かを判定し、前記差分が所定値を超える場合、前記2本の信号線のうち、前記ドミナントレベルでは相対的に低い電位になる低電位側信号線のグランドショート故障が発生していることを示す判定結果を出力する判定部と、
 予め定められた信号の送信が完了した場合、前記差分が所定値を超えるか否かの判定がされるように、前記判定部を制御する制御部と、
 を備える。
 また、本開示におけるノード装置は、上記のグランドショート故障検出装置を備える。
 本開示によれば、2本の信号線(CANバス)の異常状態、ここではグランドショート故障の判定精度を上げることができる。
図1は、本開示の実施の形態に係るCANバスネットワークの一例を示す図である。 図2は、制御装置の処理の一例を示すフローチャートである。
 以下、本開示の実施の形態について、図面を参照しながら説明する。本実施の形態では、車載通信ネットワークについて、CANバスネットワークを一例にして説明する。図1は、本開示の実施の形態に係るCANバスネットワークの一例を示す図である。
 図1に示すように、CANバスネットワークは、2本の信号線を有する。CANバスネットワークは、2本の信号線それぞれの電位を変動させ、2本の信号線間の電位差をレセシブレベルとドミナントレベルとに切り替え、レセシブレベルおよびドミナントレベルのそれぞれを信号として、複数のノード装置間でデータの送受信を相互に行う通信ネットワークである。
 図1に示すように、2本の信号線には複数のノード装置1,1A,1B,1Cが接続されている。また、2本の信号線には、ブレーキ警告灯のようなメーター5や、故障コード記録装置6が接続されている。信号線の断線やショート故障、センサの機能異常などの不具合が生じた場合、それらの情報は、故障コード(DTC:Diagnostic Trouble Code)として故障コード記録装置6に記録される。また、2本の通信線の両端には終端抵抗7が接続されている。
 2本の信号線(CANバスともいう)は、高電位側信号線CAN_Hおよび低電位側信号線CAN_Lにより構成されている。高電位側信号線CAN_Hは、レセシブレベルでは相対的に低い電位(例えば、基準電位近傍の電位)になり、ドミナントレベルでは相対的に高い電位(例えば、基準電位近傍の電位より高い電位)になる信号線である。低電位側信号線CAN_Lは、レセシブレベルでは相対的に高い電位(例えば、基準電位近傍の電位)になり、ドミナントレベルでは相対的に低い電位(例えば、基準電位近傍の電位より低い電位)になる信号線である。
 本実施の形態において、複数のノード装置1,1A,1B,1Cの中のノード装置1は、低電位側信号線CAN_Lのグランドショートを検出するグランドショート故障検出装置100の機能を有する。したがって、ノード装置1を説明することで、グランドショート故障検出装置100の説明に代える。なお、グランドショート故障検出装置100は、ノード装置1とは別個に独立して設けられてもよい。また、他のノード装置1A,1B,1Cがグランドショート故障検出装置100の機能を有してもよい。
 ノード装置1は、CANトランシーバ2と、制御装置3とを有する。
 CANトランシーバ2は、制御装置3とCANバスの物理配線の間との間のインターフェースを提供する。CANトランシーバ2は、物理配線を通して信号を伝送するため、データから差動信号への変換とその逆の変換、差動電圧の調整、動作電圧の確保、配線の保護などを行う。
 CANトランシーバ2は、電流測定部4を有している。電流測定部4は、高電位側信号線CAN_Hを流れる電流の電流値を周期的に測定する。また、電流測定部4は、低電位側信号線CAN_Lを流れる電流の電流値を周期的に測定する。また、電流測定部4は、測定した電流値のそれぞれを制御装置3に出力する。
 制御装置3は、例えば、図示しないCPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)等からなるマイクロコンピュータと入出力装置とを備えるECU(Electronic Control Unit)である。制御装置3は、例えば、CPUがROMに記憶されているプログラムを順次読み出して実行することで、取得部31、算出部32、判定部33、および、制御部34など種々の機能を実現する。制御装置3は、例えば、CANバス(2本の信号線)を介して通信相手のノード装置(例えば、ノード装置1A,1B,1Cのいずれかをいう)と送受信するデータの処理を実施する。
 また、制御装置3は、CANバスの状態を監視するなどの他の処理を実施する。これにより、他のノード装置(例えば、ノード装置1A,1B,1Cをいう)の優先順位が高いかどうかを判定する。制御装置3は、CANバスがアクディブな状態である他のノード装置がデータを送信中である状態や、送信を終了した直後の状態)である場合、通信相手のノード装置と送受信するデータの処理を実施しない。また、制御装置3は、CANバスがアイドル状態にあり、自身のノード装置1と他のノード装置とが同時に送信を試みる場合、通信調停を行う。通信調停においては、自身のノード装置1および他のノード装置のそれぞれが送信するデータに含まれる識別情報(ID)が用いられる。通信調停では、制御装置3は、識別情報に基づいて、自身のノード装置1および他のノード装置における優先順位を決定し、優先順位に基づいて通信相手のノード装置と送受信するデータの処理を実施する。
 取得部31は、2本の信号線(高電位側信号線CAN_Hの電流値および低電位側信号線CAN_L)それぞれの電流値を取得する。
 算出部32は、高電位側信号線CAN_Hの電流値と低電位側信号線CAN_Lの電流値との間の差分(以下、「電流値の差分」という)を算出する。
 判定部33は、算出された電流値の差分が所定値を超えるか否かについて判定する。判定部33は、電流値の差分が所定値を超える場合、低電位側信号線CAN_Lのグランドショート故障が発生していることを示す判断結果を出力する。具体的には、判定部33は、電流値の差分が所定値を超えた回数が所定数を超える場合、グランドショート故障が発生していることを示す判断結果を出力する。
 ところで、通信調停前においては、複数のノード装置のそれぞれから電圧が同時に2本の信号線に伝送される。通信調停後においては、優先順位に基づいて所定のノード装置から電圧が2本の信号線に伝送される。これにより、通信調停が行われる場合においては、取得部31に取得される2本の信号線の電位が安定しない場合がある。そのため、電流値の差分が安定しない。その結果、判定部33の判定に誤りが生じるおそれがある。
 そこで、本実施の形態においては、低電位側信号線CAN_Lのグランドショート故障が発生しているかの判定において、以下の処理が行われる。なお、ここでは、2本の信号線の電位が安定しない場合として、通信調停が行われる場合を一例に説明するが、2本の信号線の電位が安定しない場合としては、通信調停が行われる場合に限定されない。
 制御部34は、通信調停が行われない場合、電流値の差分が所定値を超えるか否かの判定がされるように判定部33を制御する。判定部33は、電流値の差分が所定値を超える場合、低電位側信号線CAN_Lのグランドショート故障が発生していることを示す判断結果を出力する。制御部34は、その判定結果が故障コード記録装置6へ送信されるようにCANトランシーバ2を制御する。
 通信調停が行われる場合、予め定められた信号が送信される。ここで、予め定められた信号とは、通信調停に用いられる自身のノード装置1の識別情報(ID)を有するデータを送信する場合の信号である。制御部34は、予め定められた信号の送信が完了したか否かを判定する。なお、予め定められた信号の送信が完了することは、調停に勝って自身のノード装置1でデータ送信された時点での電流の差分を使って判定をすることが出来、判定部33による判定に誤りが少ない状態である。
 制御部34は、予め定められた信号の送信が完了した場合、電流値の差分が所定値を超えるか否かの判定がされるように判定部33を制御する。そして、同様にして、判定部33は、電流値の差分が所定値を超える場合、低電位側信号線CAN_Lのグランドショート故障が発生していることを示す判断結果を出力する。制御部34は、その判定結果が故障コード記録装置6へ送信されるようにCANトランシーバ2を制御する。
 次に、動作の一例について説明する。図2は、制御装置3の処理の一例を示すフローチャートである。本フローは、エンジンスイッチをオンした場合に開始される。制御装置3が、取得部31、算出部32、判定部33、および、制御部34のそれぞれの機能を有するものとして説明する。また、予め定められた信号の送信は、自身のノード装置1から行われるものとして説明する。
 先ず、ステップS100において、制御装置3は、高電位信号線CAN_Hの吐き出し電流の電流値を取得する。
 次に、ステップS110において、制御装置3は、低電位信号線CAN_Lの吸い込み電流の電流値を取得する。
 次に、ステップS120において、制御装置3は、高電位信号線CAN_Hの吐き出し電流の電流値と低電位信号線CAN_Lの吸い込み電流の電流値との差分を算出する。
 次に、ステップS130において、制御装置3は、算出された差分が所定値を超えるか否かについて判定する。差分が所定値を超える場合(ステップS130:YES)、処理はステップS140に遷移する。差分が所定値を超えない場合(ステップS130:NO)、処理はステップS100の前に戻る。
 ステップS140において、制御装置3は、通信調停であるか否かについて判定する。通信調停である場合(ステップS140:YES)、処理はステップS100の前に戻る。通信調停でない場合(ステップS140:NO)、処理はステップS150に遷移する。
 ステップS150において、制御装置3は、予め定められた信号が送信されるようにCANトランシーバ2を制御する。
 次に、ステップS160において、制御装置3は、予め定められた信号の送信が完了したか否かについて判定する。予め定められた信号の送信が完了した場合(ステップS160:YES)、処理はステップS170に遷移する。予め定められた信号の送信が完了しない場合(ステップS160:NO)、処理はステップS100の前に戻る。
 次に、ステップS170において、制御装置3は、低電位信号線CAN_Lのグランドショート故障が発生したと判定する。制御装置3は、判定結果が故障コード記録装置6へ送信されるようにCANトランシーバ2を制御する。
 上記実施の形態におけるグランドショート故障検出装置100は、2本の信号線を有し、2本の信号線それぞれの電位を変動させ、2本の信号線間の電位差をレセシブレベルとドミナントレベルとに切り替え、レセシブレベルおよびドミナントレベルのそれぞれを信号として、複数のノード装置間でデータの送受信を相互に行う通信ネットワークにおけるグランドショート故障検出装置において、2本の信号線のそれぞれにドミナント出力時に流れる電流の電流値を測定する電流測定部4と、測定されたそれぞれの電流値の差分が所定値を超えるか否かを判定し、差分が所定値を超える場合、2本の信号線のうち、レセシブレベルでは相対的に高い電位になり、ドミナントレベルでは相対的に低い電位になる低電位側信号線CAN_Lのグランドショート故障が発生していることを示す判定結果を出力する判定部33と、予め定められた信号の送信が完了した場合、差分が所定値を超えるか否かの判定がされるように、判定部33を制御する制御部と34と、を備える。
 上記構成により、予め定められた信号の送信が完了し、2本の信号線の電位が不安定な状態でないことを確認した上で、判定部33が電流値の差分が所定値を超えているか否かを判定するため、判定の誤りが減少する。これにより、グランドショート故障の判定精度を上げることが可能となる。
 また、上記実施の形態におけるグランドショート故障検出装置100においては、制御部34は、2本の信号線の電位が安定しない場合に、予め定められた信号が送信される制御を実行する。これにより、2本の信号線の電位が不安定な状態である場合、判定部33による判定が行われないため、判定の誤りを減少させることが可能となる。
 また、上記実施の形態におけるグランドショート故障検出装置100では、2本の信号線の電位が安定しない場合は、データに含まれるノード装置の識別情報に基づいて複数のノード装置の優先順位を決める通信調停が行われる場合である。これにより、2本の信号線の電位が不安定な状態となる場合がある通信調停では、2本の信号線の電位が不安定な状態でないことを確認した上で、判定部33による判定が行われるため、判定の誤りを減少させることが可能となる。
 また、上記実施の形態におけるグランドショート故障検出装置100では、通信調停が行われる場合に送信される予め定められた信号は、通信調停に用いられる、自身のノード装置1の識別情報を有するデータを送信する場合の信号である。この場合、自身のノード装置1から予め定められた信号が送信され、その信号の送信が完了した場合、2本の信号線の電位が不安定な状態でないことを自身の信号で確認することができ、グランドショート故障を的確に判定することが可能となるという利点がある。
 なお、上記実施の形態におけるグランドショート故障検出装置100では、2本の信号線の電位が安定しない場合として、通信調停が行われる場合を一例に挙げて説明したが、本開示はこれに限らない。例えば、信号線のインダクタンス成分の差や複数のグランド間の電位差により、2本の信号線の電位が安定しない場合でもよい。この場合、例えば、2本の信号線のインダクタンス成分を測定し、インダクタンス成分の差を算出し、インダクタンス成分の差が所定値を超える場合を、2本の信号線の電位が安定しない場合であるとしてもよい。また、例えば、複数のグランド間の電位を測定し、複数のグランド間の電位差を算出し、複数のグランド間の電位差が所定値を超える場合、2本の信号線の電位が安定しない場合であるとしてもよい。
 また、上記実施の形態では、通信調停が行われる場合に送信される予め定められた信号は、前記通信調停に用いられる、自身のノード装置1の識別情報を有するデータを送信する場合の信号として説明したが、本開示はこれに限らない。予め定められた信号の送信は、通信調停に用いられる複数のノード装置の識別情報よりも高い優先順位を有するデータを送信する場合の信号でもよい。この場合、通信調停に係る複数のノード装置の中で、自身のノード装置1の優先順位が最も高くない場合でも、例えば、自身の識別情報の優先順位が他のノード装置の識別情報の優先順位よりも低い場合であっても、通信調停に打ち勝って、自身のノード装置1から予め定められた信号を送信し、その信号の送信が完了したか否かの判定が、時間のロスがなく行えるため、グランドショート故障が発生したか否かの判定を定期的に行うことが可能となるという利点がある。
 その他、上記実施の形態は、何れも本開示の実施をするにあたっての具体化の一例を示したものに過ぎず、これらによって本開示の技術的範囲が限定的に解釈されてはならないものである。すなわち、本開示はその要旨、またはその主要な特徴から逸脱することなく、様々な形で実施することができる。
 本出願は、2020年10月30日付けで出願された日本国特許出願(特願2020-182733)に基づくものであり、その内容はここに参照として取り込まれる。
 本開示は、グランドショート故障の判定精度を上げることが要求されるグランドショート故障検出装置を備えたノード装置に好適に利用される。
 1,1A,1B,1C ノード装置
 2 CANトランシーバ
 3 制御装置
 4 電流測定部
 5 メーター
 6 故障コード記録装置
 7 終端抵抗
 31 取得部
 32 算出部
 33 判定部
 34 制御部
 100 グランドショート故障検出装置
 
 

Claims (7)

  1.  2本の信号線を有し、前記2本の信号線それぞれの電位を変動させ、前記2本の信号線間の電位差をレセシブレベルとドミナントレベルとに切り替え、前記レセシブレベルおよび前記ドミナントレベルのそれぞれを信号として、複数のノード装置間でデータの送受信を相互に行う通信ネットワークにおけるグランドショート故障検出装置において、
     前記2本の信号線のそれぞれに流れる電流の電流値を測定する電流測定部と、
     測定されたそれぞれの前記電流値の差分が所定値を超えるか否かを判定し、前記差分が所定値を超える場合、前記2本の信号線のうち、前記ドミナントレベルでは相対的低い電位になる低電位側信号線のグランドショート故障が発生していることを示す判定結果を出力する判定部と、
     予め定められた信号の送信が完了した場合、前記差分が所定値を超えるか否かの判定がされるように、前記判定部を制御する制御部と、
     を備える、
     グランドショート故障検出装置。
  2.  前記制御部は、前記2本の信号線の電位が安定しない場合に、前記予め定められた信号が送信される制御を実行する、
     請求項1に記載のグランドショート故障検出装置。
  3.  前記2本の信号線の電位が安定しない場合は、前記データに含まれるノード装置の識別情報に基づいて前記複数のノード装置の優先順位を決める通信調停が行われる場合である、
     請求項2に記載のグランドショート故障検出装置。
  4.  前記予め定められた信号は、前記通信調停に用いられる、自身のノード装置の識別情報を有するデータを送信する場合の信号である、
     請求項3に記載のグランドショート故障検出装置。
  5.  前記予め定められた信号は、前記通信調停に用いられる、複数のノード装置の識別情報のいずれよりも高い優先順位を有するデータを送信する場合の信号である、
     請求項3に記載のグランドショート故障検出装置。
  6.  前記予め定められた信号は、前記ノード装置の識別情報を示す信号である、
     請求項1に記載のグランドショート故障検出装置。
  7.  請求項1に記載のグランドショート故障検出装置を備える、ノード装置。
     
PCT/JP2021/040010 2020-10-30 2021-10-29 グランドショート故障検出装置およびノード装置 WO2022092263A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112021004416.8T DE112021004416T5 (de) 2020-10-30 2021-10-29 Detektionsvorrichtung für erdungskurzschlüsse und knotenvorrichtung
CN202180073483.6A CN116508293A (zh) 2020-10-30 2021-10-29 接地短路故障检测装置及节点装置
US18/033,819 US20240013648A1 (en) 2020-10-30 2021-10-29 Ground short failure detection device and node device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020182733A JP2022072996A (ja) 2020-10-30 2020-10-30 グランドショート故障検出装置およびノード装置
JP2020-182733 2020-10-30

Publications (1)

Publication Number Publication Date
WO2022092263A1 true WO2022092263A1 (ja) 2022-05-05

Family

ID=81384015

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/040010 WO2022092263A1 (ja) 2020-10-30 2021-10-29 グランドショート故障検出装置およびノード装置

Country Status (5)

Country Link
US (1) US20240013648A1 (ja)
JP (1) JP2022072996A (ja)
CN (1) CN116508293A (ja)
DE (1) DE112021004416T5 (ja)
WO (1) WO2022092263A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230415676A1 (en) * 2022-06-27 2023-12-28 GM Global Technology Operations LLC Systems and methods for monitoring ground line degradation of electric devices coupled to a communication bus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002232492A (ja) * 2000-11-30 2002-08-16 Koninkl Philips Electronics Nv 2線式データバスのエラー認識用回路構成
JP2020527915A (ja) * 2017-07-21 2020-09-10 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh Canバスシステムのための送受信装置およびcan送受信装置によって短絡を検出する方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006191404A (ja) 2005-01-07 2006-07-20 Fujitsu Ten Ltd ショート故障検出装置及びノード装置
JP6979215B2 (ja) 2019-05-09 2021-12-08 株式会社ニューギン 遊技機

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002232492A (ja) * 2000-11-30 2002-08-16 Koninkl Philips Electronics Nv 2線式データバスのエラー認識用回路構成
JP2020527915A (ja) * 2017-07-21 2020-09-10 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh Canバスシステムのための送受信装置およびcan送受信装置によって短絡を検出する方法

Also Published As

Publication number Publication date
CN116508293A (zh) 2023-07-28
DE112021004416T5 (de) 2023-06-22
JP2022072996A (ja) 2022-05-17
US20240013648A1 (en) 2024-01-11

Similar Documents

Publication Publication Date Title
EP2079190B1 (en) Fault location device, communication device, and fault location method
KR102239986B1 (ko) 이더넷 버스 시스템을 구비한 차량 및 이러한 버스 시스템을 작동하기 위한 방법
US9568533B2 (en) Method and apparatus for open-wire fault detection and diagnosis in a controller area network
US9989575B2 (en) Detection of ECU ground fault with can bus voltage measurements
JP5071151B2 (ja) 通信システム、その異常推定方法、及び情報読出装置
JP5998891B2 (ja) 中継装置、車載システム
CN114902613B (zh) 车载装置、管理装置、劣化判断方法、变化要因判别方法、异常要因判别方法以及存储介质
JP5286659B2 (ja) 車載装置中継システム、車載装置中継方法及び中継装置
JP2014072673A (ja) 中継装置
CN115441889A (zh) 收发器装置
WO2022092263A1 (ja) グランドショート故障検出装置およびノード装置
US7257740B2 (en) Circuit for detecting ground offset of parts of a network
JP2009302783A (ja) 通信ネットワークの故障検知方法及び故障検知システム
JP4124427B2 (ja) 車両制御装置およびその通信方法
JP5696685B2 (ja) 車載通信システム、車載通信システムの通信異常監視方法、及び車載通信システムの通信異常監視プログラム
JP2009035237A (ja) 故障診断装置及び故障診断方法
JP4968169B2 (ja) 通信システム及び通信方法
JP2002359625A (ja) コントロールエリアネットワーク
JP2009147555A (ja) 車載用電子制御ユニットの故障予測システム
KR102168709B1 (ko) 게이트웨이를 이용한 차량의 네트워크 해킹 방지 장치 및 방법
JP7103197B2 (ja) 通信システム
JP6979630B2 (ja) 監視装置、監視方法及びプログラム
JP7528731B2 (ja) 車載装置、管理装置、異常判定方法および異常判定プログラム
US20210287457A1 (en) Communication control system
JP2009005160A (ja) エラー発生装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21886380

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18033819

Country of ref document: US

Ref document number: 202180073483.6

Country of ref document: CN

122 Ep: pct application non-entry in european phase

Ref document number: 21886380

Country of ref document: EP

Kind code of ref document: A1