WO2021031732A1 - 分体式镜头及其组装方法、摄像模组和终端设备 - Google Patents
分体式镜头及其组装方法、摄像模组和终端设备 Download PDFInfo
- Publication number
- WO2021031732A1 WO2021031732A1 PCT/CN2020/100788 CN2020100788W WO2021031732A1 WO 2021031732 A1 WO2021031732 A1 WO 2021031732A1 CN 2020100788 W CN2020100788 W CN 2020100788W WO 2021031732 A1 WO2021031732 A1 WO 2021031732A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lens
- optical
- split
- optical lens
- topmost
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B7/00—Mountings, adjusting means, or light-tight connections, for optical elements
- G02B7/02—Mountings, adjusting means, or light-tight connections, for optical elements for lenses
- G02B7/021—Mountings, adjusting means, or light-tight connections, for optical elements for lenses for more than one lens
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/18—Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B7/00—Mountings, adjusting means, or light-tight connections, for optical elements
- G02B7/02—Mountings, adjusting means, or light-tight connections, for optical elements for lenses
- G02B7/023—Mountings, adjusting means, or light-tight connections, for optical elements for lenses permitting adjustment
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B7/00—Mountings, adjusting means, or light-tight connections, for optical elements
- G02B7/02—Mountings, adjusting means, or light-tight connections, for optical elements for lenses
- G02B7/025—Mountings, adjusting means, or light-tight connections, for optical elements for lenses using glue
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B30/00—Camera modules comprising integrated lens units and imaging units, specially adapted for being embedded in other devices, e.g. mobile phones or vehicles
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
- G02B13/0015—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
- G02B13/002—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
- G02B13/0045—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
Definitions
- This application relates to the field of camera modules, and in particular to a split lens and its assembly method, camera module and terminal equipment.
- the front camera module is an indispensable component.
- the front camera module and the display screen of the terminal device are arranged on the same side to meet consumer needs such as selfies.
- the ever-increasing "screen-to-body ratio" places higher and higher requirements on the structure and layout of the front camera module.
- different manufacturers have developed a variety of solutions from different angles.
- One solution is to open a through hole on the display screen of the terminal device.
- some manufacturers choose to open a U-shaped hole at the top of the display screen of the terminal device, and place the front camera module, earpiece and other sensing devices in the U-shaped hole.
- the front camera module is the largest in the front sensor, a larger U-shaped hole is required, which has a greater impact on the "screen-to-body ratio".
- Some manufacturers choose to open circular or elliptical openings on LCD or OLED displays. On the one hand, the size of the openings is still large. On the other hand, the openings appear abrupt when the terminal device displays the screen. user experience.
- Some manufacturers have also proposed a scheme of directly arranging the camera module below the screen, in which the front camera module transmits images through the screen.
- the imaging quality of the front camera module in such a solution cannot meet the needs of users.
- the blind hole refers to removing the light transmittance in the area corresponding to the front camera module on the display screen.
- Lower layer and non-essential layer to increase light transmittance.
- the main purpose of the present application is to provide a split lens and an assembly method thereof, a camera module and a terminal device, wherein the structure of the split lens of the camera module is improved so that the camera module is configured as
- the size of the opening required by the display screen of the terminal device can be reduced to increase the “screen-to-body ratio” of the terminal device. High imaging quality.
- Another object of the present application is to provide a split lens and its assembly method, camera module and terminal equipment, wherein the split optical lens is not provided with a “mirror” between its first lens part and second lens part.
- Another object of the present application is to provide a split lens and an assembly method thereof, a camera module and a terminal device, in which, since the "lens tube top" structure is not provided, the first optical part of the first lens part
- the design freedom of the lens and the structural area of the second optical lens on the top side of the second lens part is improved.
- the thickness dimension of the structure area of the first optical lens and the topmost second optical lens can be increased, so that the first lens part and the second lens part have greater adjustment gap.
- Another objective of the present application is to provide a split lens and an assembly method thereof, a camera module and a terminal device, wherein the second lens part includes a lens barrel and at least one second optical lens installed in the lens barrel. Lens, wherein the second optical lens on the topmost side is completely exposed on the top of the lens barrel to form a structure in which the first lens part and the second lens part are not provided with a "lens barrel ceiling" structure Configuration.
- Another object of the present application is to provide a split lens and an assembly method thereof, a camera module and a terminal device, wherein the first optical transmission of the first lens part includes an optical zone and a structure surrounding the optical zone Area, wherein the optical area includes a protrusion protruding from the structure area, wherein, when the optical lens is assembled in a terminal device, the protrusion of the first optical lens is fitted into the In the through hole of the display screen of the terminal device, so that the optical zone of the first optical lens can be adjacent to the top of the through hole to obtain a larger field of view and light flux, thereby ensuring the camera module Has high imaging quality.
- Another object of the present application is to provide a split lens and an assembly method thereof, a camera module and a terminal device, in which, because there is no "lens tube top" structure between the first lens part and the second lens part , So that the height difference between the optical zone and the structural zone of the first optical lens of the first lens part can be increased, so that when the optical lens is assembled in the through hole of the display screen of the terminal device, the first The optical zone of the optical lens can be closer to the top of the through hole to obtain a larger field of view and light flux, thereby ensuring that the camera module has a higher imaging quality.
- Another object of the present application is to provide a split lens and an assembly method thereof, a camera module and a terminal device, wherein the convex portion of the first optical lens has a relatively small lateral size, so that the The front camera module is suitable for display screens with small through holes, so that the "screen-to-body ratio" of the terminal device can be improved.
- Another object of the present application is to provide a split lens and an assembly method thereof, a camera module and a terminal device, wherein the shape of the side wall of the protrusion is adapted to the shape of the through hole of the display screen to facilitate When the optical lens is assembled in the through hole of the display screen, the protruding portion can fit into the through hole.
- Another object of the present application is to provide a split lens and an assembly method thereof, a camera module and a terminal device, wherein the at least one second optical lens is mounted on the mirror from bottom to top in a flip-chip manner. In the barrel, in this way, the assembly yield and efficiency are improved.
- Another object of the present application is to provide a split lens and an assembly method thereof, a camera module and a terminal device, wherein the first lens part is assembled to the second lens part by means of active calibration (AOA), In this way, the optical performance and assembly accuracy and efficiency of the split lens are improved.
- AOA active calibration
- this application provides a split lens, which includes:
- a first lens part including a first optical lens
- the second lens part, the second lens part includes a lens barrel and at least one second optical lens installed in the lens barrel, the inner diameter of the lens barrel is larger in size, and the second lens on the top side The optical lens is completely exposed on the top of the lens barrel,
- the first optical lens is attached to the topmost second optical lens by the adhesive.
- the lens barrel includes a lens barrel body whose inner diameter decreases from top to bottom, and a bearing platform protruding from the bottom area of the lens barrel body, and the at least one second optical lens Installed in the lens barrel body from bottom to top in an upside-down manner, wherein the bottommost second optical lens is installed on the carrying platform, wherein the top of the lens barrel body has an opening to The second optical lens on the topmost side is completely exposed.
- the lower end surface of the lens barrel main body is lower than the lower end surface of the second optical lens on the bottommost side.
- the upper end surface of the lens barrel main body is higher than the upper end surface of the topmost second optical lens.
- the upper end surface of the first optical lens is higher than the upper end surface of the lens barrel main body.
- the ratio of the clear aperture of the first optical lens to the clear aperture of the topmost second optical lens is 0.8-1.25.
- the lateral size of the first optical lens is smaller than the lateral size of the topmost second optical lens.
- the split lens according to the present application at least part of the second optical lenses are fitted with each other.
- the lateral dimension of the topmost second optical lens is larger than the lateral dimension of the bottommost second optical lens.
- the topmost second optical lens includes a mounting platform recessed on the upper end surface of the second optical lens, and the mounting platform is configured to mount the second optical lens.
- An optical lens is on it.
- the topmost second optical lens includes a mounting platform protrudingly formed on the upper end surface of the second optical lens, and the mounting platform is configured to mount the second optical lens.
- An optical lens is on it.
- the first optical lens includes an optical zone and a structural zone surrounding the optical zone, wherein the optical zone includes a protrusion extending protruding from the structural zone.
- the diameter of the protrusion is not greater than 1.2 mm.
- the angle between the side wall of the protrusion and the optical axis set by the split lens is less than 15°.
- the side wall is substantially parallel to the optical axis.
- the side wall of the protrusion is substantially perpendicular to the upper surface of the structure area.
- the highest point of the protrusion protrudes at least 0.3-1.2 m from the lower surface of the structure area.
- the total height of the first optical lens is 0.4-1.6 mm.
- the upper side of the optical zone is a convex surface
- the lower side opposite to the upper side is a concave surface
- the first optical lens is a plastic lens.
- the first optical lens is a glass lens.
- the Abbe number of the refractive index of the glass lens is 50-71.
- the refractive index of the glass lens is 1.48-1.55.
- the upper surface of the protrusion is convex.
- the first optical lens further includes a light shielding layer provided in a non-optical effective area of the first optical lens.
- the area covered by the light shielding layer includes the first optical lens The upper surface and side surface of the structure area, and the side wall of the protrusion.
- the area covered by the light shielding layer includes the size of the first optical lens The upper surface and the side surface of the structure area, the side wall of the protrusion, and at least part of the upper surface of the second optical lens on the topmost side.
- the light-shielding layer further covers the transition area between the side wall of the protrusion and the upper surface thereof, wherein the transition area is located from the side of the protrusion.
- the length of the wall in the direction of the center of the protrusion is 0.03-0.05 mm.
- the material of the light shielding layer is an ink material.
- the first lens part is mounted on the second lens part through active calibration.
- the lower surface of the first optical lens is higher than the upper end surface of the lens barrel.
- the split lens further includes: a protective element disposed on the topmost side of the second optical lens.
- the shape of the split cross section is D-shaped.
- the present application also provides a camera module, which includes:
- the photosensitive component wherein the split lens is held on the photosensitive path of the photosensitive component.
- the camera module further includes a driving element, wherein the driving element is mounted on the photosensitive assembly, and the optical lens is mounted on the driving element.
- a terminal device which includes:
- the terminal body including the display screen
- a camera module wherein the camera module includes:
- the photosensitive component wherein the split lens is held on the photosensitive path of the photosensitive component
- the camera module and the display screen are installed on the same side of the terminal body to be configured as a front camera module;
- the display screen has a through hole formed therethrough.
- the inner diameter of the through hole is slightly larger than the lateral dimension of the protrusion.
- the distance between the upper surface of the protrusion and the top end of the through hole ranges from 0.01 to 0.5 mm.
- the through hole is a stepped hole, so that when the camera module and the display screen are installed on the same side of the terminal body, the first optical lens The protruding part and part of the structure area are fitted in the through hole.
- a split lens assembly method which includes:
- a lens barrel, at least one second optical lens, and a first lens portion including the first optical lens are provided, wherein the lens barrel includes a lens barrel body whose inner diameter decreases from top to bottom and a lens barrel protruding from the lens barrel.
- the at least one second optical lens is installed in the lens barrel body from bottom to top in a flip-chip manner to form a second lens part, wherein the topmost second optical lens is completely exposed On the top of the lens barrel;
- the first lens part is fixed to the second lens part to form the split lens.
- adjusting the relative position relationship between the first lens part and the second lens part in an active calibration manner includes:
- fixing the first lens part to the first lens part to form the split lens includes:
- the adhesive is cured to fixedly attach the first optical lens to the topmost second optical lens, thereby fixing the first lens part to the first lens part.
- FIG. 1 illustrates a schematic diagram of the structure of an existing split lens.
- FIG. 2 illustrates a schematic diagram of a conventional split lens assembled in a terminal device.
- FIG. 3 illustrates another schematic diagram of a conventional split lens assembled in a terminal device.
- Fig. 4 illustrates a schematic diagram of a camera module according to an embodiment of the present application.
- FIG. 5 illustrates a schematic structural diagram of a split lens of the camera module according to an embodiment of the present application.
- FIG. 6 illustrates a schematic diagram of a variant implementation of the split lens according to an embodiment of the present application.
- FIG. 7 illustrates a schematic diagram of another variant implementation of the split lens according to an embodiment of the present application.
- FIG. 8 illustrates a schematic diagram of another variant implementation of the split lens according to an embodiment of the present application.
- FIG. 9 illustrates a schematic diagram of another variant implementation of the split lens according to an embodiment of the present application.
- FIG. 10 illustrates a schematic diagram of another variant implementation of the split lens according to an embodiment of the present application.
- FIG. 11 illustrates a schematic diagram of another variant implementation of the split lens according to an embodiment of the present application.
- FIG. 12 illustrates a schematic diagram of another variant implementation of the split lens according to an embodiment of the present application.
- FIG. 13 illustrates a schematic diagram of another variant implementation of the split lens according to an embodiment of the present application.
- FIG. 14 illustrates a schematic diagram of another variant implementation of the split lens according to an embodiment of the present application.
- Fig. 15 illustrates a terminal device according to an embodiment of the present application.
- FIG. 16 illustrates a schematic diagram of the split lens assembled in a terminal device according to an embodiment of the present application.
- FIG. 17 illustrates a schematic diagram of another implementation manner in which the split lens is assembled to the terminal device according to an embodiment of the present application.
- FIG. 18 illustrates a schematic diagram of the assembly process of the split lens according to an embodiment of the present application.
- the existing front camera module usually includes a photosensitive component for photosensitive imaging and an optical lens held on the photosensitive path of the photosensitive component.
- the optical lens includes an integrated lens and a split lens.
- FIG. 1 illustrates a schematic diagram of the structure of an existing split lens.
- the split lens includes a first lens part 1 and a second lens part 2, wherein the first lens part 1 includes a first optical lens 11 (In some existing split optical lenses, the first lens part 1 also includes a first lens barrel 12 for accommodating the first optical lens 11), and the second lens part 2 includes at least one second optical lens 21 and In the second lens barrel 22 accommodating at least one optical lens 21.
- the optical zone of the first optical lens 11 of the first lens part 1 and the topmost second optical lens 21 of the second lens part 2 The distance between is relatively certain.
- the optical lens itself (including the first optical lens 11 and the second optical lens 21) has a limitation of molding accuracy, and there is a limitation of assembly accuracy between the lens and the lens barrel, resulting in the first optical lens
- the distance between 11 and the optical zone of the topmost second optical lens 21 of the second lens part 2 is indeterminate. Therefore, in a split lens, an adjustment gap needs to be reserved between the first lens part 1 and the second lens part 2.
- the adjustment gap is the smallest gap between the first lens portion 1 and the second lens portion 2.
- the adjustment gap needs to be greater than 10 microns (preferably, the range of the adjustment gap is 30- Between 100 microns). Since the relative position between the first lens part 1 and the second lens part 2 will be adjusted according to the imaging result of the split lens, the adjustment gap between the first lens part 1 and the second lens part 2 will change, but After adjusting and fixing the relative positions of the first lens part 1 and the second lens part 2, the adjustment gap of most split lenses will still be greater than 10 microns, and the adjustment gap of some split lenses will be between 30-100 microns .
- the first lens part 1 is mounted on the upper surface of the second lens barrel 22, that is, between the first optical lens 11 and the second optical lens next to it.
- the “sky plane” of the second lens barrel 22 exists between the lenses 21.
- the existence of the "lens tube top” structure inevitably reduces the adjustment gap, affects the adjustment of the split lens, and thus affects the adjustment quality and assembly yield of the lens.
- the "lens tube top” structure has a certain thickness. Therefore, under the premise of ensuring the adjustment gap as much as possible, the design freedom of the second optical lens 21 of the second lens part 2 is limited, especially the few second optical lenses 22 closest to the first optical lens 11.
- the structure area of the second optical lens 21 adjacent to the first optical lens 11 needs to be shifted toward the image side of the lens.
- Such a design reduces the thickness of the connection between the structural area and the optical zone of the topmost second optical lens 21, which leads to an increase in the difficulty of molding the topmost second optical lens 21.
- Such a design will also cause the surface shape of the imaging surface of the optical zone of the second optical lens 21 and the manufacturing tolerances of the structure zone to become larger, which reduces the imaging quality of the split lens.
- the "lens barrel top” structure raises the mounting base surface of the first optical lens 11, so that the height design of the first optical lens 11 extending upward is affected. It should be understood that the overall height of the optical system of the split lens is within a relatively determined range, and the existence of the "lens barrel top” structure is equivalent to raising the mounting base of the first lens part 1. Therefore, the first lens The height of part 1 needs to be reduced to meet the overall height requirement of the optical system. The influence of the “lens tube top” structure on the height design of the first lens part 1 will be reflected when the split lens is assembled in a terminal device (for example, a smart phone).
- a terminal device for example, a smart phone
- FIG. 2 illustrates a schematic diagram of a conventional split lens assembled in a terminal device.
- FIG. 3 illustrates another schematic diagram of a conventional split lens assembled in a terminal device.
- the display opening 3 of the terminal device must be at least larger than a certain size to meet the requirements of the field of view and the amount of light of the front camera module 4, which results in the terminal device
- the opening of the display screen 5 is too large, which affects the improvement of "screen-to-body ratio", aesthetics and user experience.
- the basic idea of this application is to cancel the "lens barrel ceiling" structure of the first lens part and the second lens part, so that on the one hand, the adjustment range of the split lens can be made larger; on the other hand, , Eliminates the influence of the "lens tube top” structure on the optical design of the first optical lens (especially the height design), so that the optical zone of the first optical lens can be relatively more protruding than its structural zone.
- the optical zone of the first optical lens can be adjacent to the The top of the through hole to obtain a larger field of view and light flux, so as to ensure that the camera module has a higher imaging quality.
- the present application proposes a split lens, which includes: a first lens part including a first optical lens; and a second lens part, wherein the first lens part is assembled to the second lens part.
- the second lens part includes a lens barrel and at least one second optical lens installed in the lens barrel, and the topmost second optical lens is completely exposed on the top of the lens barrel.
- the influence of the structure on the optical design of the first optical lens so that the optical zone of the first optical lens can be relatively more prominent than its structural zone, so that when the split lens is When the first optical lens is fitted into the through hole of the display screen of the terminal device and assembled in the terminal device, the optical zone of the first optical lens can be closer to the top of the through hole to A larger field of view and light flux are obtained, thereby ensuring that the camera module has a higher imaging quality.
- the camera module 10 based on the embodiment of the present application is illustrated, wherein the camera module 10 is configured as a front camera module 10 of a terminal device to meet the needs of users such as selfies.
- the terminal device includes, but is not limited to, a smart phone, a tablet computer, a wearable device, and the like.
- the camera module 10 includes an optical lens and a photosensitive component 30, and the optical lens is held on the photosensitive path of the photosensitive component 30, so that the light collected by the optical lens can follow Along the photosensitive path, an image is formed in the photosensitive assembly 30.
- the optical lens is implemented as a split lens 20, which includes at least two lens parts.
- the photosensitive component 30 includes a circuit board 31, a photosensitive chip 32 electrically connected to the circuit board 31, at least one electronic component 32 disposed on the circuit board 31, and a package disposed on the circuit board 31
- the camera module 10 shown in FIG. 4 is a fixed-focus camera module, and those skilled in the art should know that the camera module 10 involved in this application can also be implemented as a dynamic-focus camera module.
- the camera module 10 further includes a driving element (not shown) disposed between the split lens 20 and the photosensitive assembly 30, so as to carry the split lens through the driving element The lens 10 moves along the photosensitive path to change the distance between the split lens 10 and the photosensitive assembly 30.
- the split lens 20 includes two lens parts: a first lens part 21 and a second lens part 22, wherein the first lens part 21 includes a first optical The lens 211, the second lens part 22 includes a lens barrel 222 and at least one second optical lens 221 installed in the lens barrel 222.
- the inner diameter of the lens barrel 222 is large and small, and the at least one optical lens 221 is installed in the lens barrel 222 from top to bottom in an upside-down manner, and, The topmost second optical lens 221 is completely exposed to the top of the lens barrel 222. That is to say, in the embodiment of the present application, there is no "lens tube top" structure between the first optical lens 211 and the second optical lens 221 adjacent thereto.
- the lens barrel 222 includes a lens barrel body 223 whose inner diameter decreases from top to bottom, and a bearing protruding from the bottom area of the lens barrel body 223.
- the platform 224, the at least one second optical lens 221 is installed in the lens barrel main body 223 from bottom to top in an upside-down manner, wherein the bottommost second optical lens 221 is installed on the carrier Platform 224.
- the upper part of the second lens part 22 indicates the direction in which the second lens part 22 faces the object side
- the lower part of the second lens part 22 indicates that the second lens part 22 faces The direction of the image side.
- the top of the lens barrel main body 223 has an opening (wherein the opening is a complete opening) to completely expose the second optical lens 221 on the topmost side. That is to say, in the embodiment of the present application, the lens barrel main body 223 is not provided with an inwardly extending bearing structure on its top, so that the topmost second optical lens 221 can be completely exposed to the lens.
- the inner diameter of the lens barrel body 223 can be gradually reduced from top to bottom along the inner wall of the lens barrel body 223 (that is, the cross section of the lens barrel body 223 has a trapezoidal shape) to allow all
- the at least one second optical lens 221 is installed in the lens barrel body 223 from bottom to top in a flip-chip manner.
- the inner diameter of the lens barrel body 223 may be lowered in steps along the inner wall of the lens barrel body 223 from top to bottom, so as to form a stepped surface for supporting each step.
- the at least one second optical lens 221 is installed in the lens barrel main body 223 from bottom to top in an upside-down manner. Specifically, first, the bottom-most second optical lens 221 is installed on the carrying platform 224; then, the other second optical lenses 221 are installed in the lens barrel main body 223 in sequence. It should be understood that, corresponding to the size change of the lens barrel body 223, in the embodiment of the present application, the diameter of the second optical lens 221 gradually increases from bottom to top (including part of the second optical lens 221 having the same diameter). Case).
- the diameter of the second optical lens 221 located on the upper side is not less than the diameter of the second optical lens 221 located on the lower side. That is to say, in the embodiment of the present application, among all the second optical lenses 221, the topmost second optical lens 221 has the largest diameter size. In this way, the second optical lens 221 has the largest diameter.
- the installation of the lens part 22 provides a larger installation area.
- the one with the largest diameter size may not be set as the topmost second optical lens 221, but set as other The second optical lens 221.
- the second optical lens 221 with the largest diameter size is set as the second optical lens 221 located on the lower side of the topmost second optical lens 221, which is not limited by this application.
- the carrying platform 224 is disposed at the bottom of the lens barrel 222, and because the bottom of the lens barrel 222 has a relatively large space, there is enough space to set the thickness of the carrying platform 224. In this way, not only can it be ensured that the split lens 20 meets the structural strength requirements, but the overall size of the split lens 20 does not need to be increased. It should be understood that the "sufficient space" comes from a considerable height difference between the optical zone and the structure zone of the second optical lens 221 at the bottom side.
- the carrying platform 224 may extend integrally on the inner wall of the lens barrel body 223, that is, the carrying platform 224 and the lens barrel body 223 may have an integrated structure .
- the carrying platform 224 and the lens barrel main body 223 may have a split structure, wherein the carrying platform 224 is a separate component and is fixed on the inner wall of the lens barrel main body 223 .
- this application is not limited.
- the lower end surface of the lens barrel body 223 is lower than the bottom of the second optical lens 221 at the bottom. End face. More preferably, in the embodiment of the present application, the upper end surface of the lens barrel main body 223 is higher than the upper end surface of the second optical lens 221 on the topmost side.
- at least a part of the second optical lenses 221 may be interfitted with each other, that is, in the present application In some examples, part of the second optical lenses 221 are fitted with each other to form a fitted lens, as shown in FIG. 13.
- the split lens 20 has a "small head” structure configuration.
- the first optical lens 211 included in the first lens portion 21 includes an optical zone 212 and a structure zone 213 surrounding the optical zone 212.
- the optical zone 212 It includes a protrusion 214 protruding from the structure area 213 to form a "small head” structure configuration.
- the optical zone 212 represents a part of the first optical lens 211 that participates in light-transmitting imaging
- the structure area 213 represents a part of the first optical lens 211 that does not participate in the light-transmitting imaging.
- the upper end surface of the first optical lens 211 is higher than the upper end surface of the lens barrel body 223.
- the height of the upper end surface of the first optical lens 211 exceeding the upper end surface of the lens barrel main body 223 accounts for 1/2-3/4 of its own height.
- the optical zone 212 of the first optical lens 211 can be relatively more protruding than the structural zone 213, so that when the split lens 20 is When the first optical lens 211 is fitted into the through hole of the display screen of the terminal device and assembled in the terminal device, the optical zone 212 of the first optical lens 211 can be closer to the through hole In order to obtain a larger field of view and light flux, the camera module 10 has a higher imaging quality.
- the upper side of the optical zone 212 of the first optical lens 211 is convex, and the lower side is concave, or the lower side of the optical zone 212 is implemented It is convex or flat.
- this application is not limited.
- the lateral size of the first optical lens 211 is smaller than the lateral size of the topmost second optical lens 221.
- the lateral size of the first optical lens 211 may be equal to or slightly larger than the lateral size of the topmost second optical lens 221. In this regard, this application is not limited.
- the ratio of the clear aperture of the first optical lens 211 to the clear aperture of the topmost second optical lens 221 is 0.8-1.25, as shown in FIG. 5.
- the through hole aperture of the first optical lens 211 is formed on the upper side of the optical zone 212 of the first optical lens 211
- the clear aperture of the second optical lens 221 is formed on the second optical lens.
- the shape of the protrusion 214 is adapted to be formed in the display The shape of the through hole of the screen.
- the angle between the sidewall of the protrusion 214 and the optical axis set by the split lens 20 is less than 15°.
- the side wall is substantially parallel to the optical axis.
- the sidewall of the protrusion 214 while the sidewall of the protrusion 214 is substantially parallel to the optical axis, it is also substantially perpendicular to the upper surface of the structure region 213, so that the protrusion
- the transition area between the portion 214 and the structure area 213 forms an "L" structure.
- the sidewall of the protrusion 214 cannot be completely parallel to the optical axis and completely perpendicular to the upper surface of the structure region 213.
- the use of basically perpendicular and basically parallel to this description method is to describe the standard of structural design and processing.
- the upper surface of the protrusion 214 is implemented as a convex surface.
- the mounting base of the first optical lens 211 is The surface is too high, and the height design of the first optical lens 211 extending upward is affected.
- the "lens tube top” structure is cancelled.
- the distance between the optical zone 212 of the first optical lens 211 and the structural zone 213 The height difference can be further increased, so that when the optical lens is assembled in the through hole of the display screen of the terminal device, the optical zone 212 of the first optical lens 211 can be closer to the top of the through hole to obtain The larger field of view and the amount of light passing ensure that the camera module 10 has a higher imaging quality.
- the highest point of the protrusion 214 protrudes from the lower surface of the structure region 213 by at least 0.3-1.2 mm. That is, in the embodiment of the present application, the distance between the highest point of the protrusion 214 and the highest point of the structure area 213 is at least 0.3-1.2 mm. Preferably, the distance between the highest point of the protrusion 214 and the highest point of the structure area 213 is 0.4-0.8 mm. Meanwhile, in the embodiment of the present application, the total height of the first optical lens 211 is 0.4-1.6 mm. Preferably, the total height of the first optical lens 211 is 1.2-1.6 mm. In addition, in the embodiment of the present application, the outer diameter of the first optical lens 211 ranges from 3.0 to 4.0 mm, preferably, the outer diameter of the first optical lens 211 ranges from 3.2 to 3.8 mm.
- the topmost second optical lens The lens 221 includes a mounting platform 215 formed recessed on the upper end surface of the second optical lens 221, and the mounting platform 215 is configured to mount the first optical lens 211 thereon, as shown in FIG. 13.
- the topmost second optical lens 221 may also include a mounting protrudingly formed on the upper end surface of the second optical lens 221 A platform 215, the mounting platform 215 is configured to mount the first optical lens 211 thereon, as shown in FIG. 14.
- the first optical lens 211 can be implemented as a plastic lens, which can be molded by plastic injection and cut and polished to a desired shape.
- the first optical lens 211 can also be implemented as a glass lens, which can be prepared by a glass molding process and cut or polished into a desired shape.
- the distance between the highest point of the convex portion 214 of the first optical lens 211 and the point surface of the structure area 213 is at least 0.3-1.2mm, and the first The total height of the optical lens 211 is 0.4-1.6 mm.
- the thickness of the first optical lens 211 is relatively high, resulting in a relatively low light transmittance of the first optical lens 211. Therefore, using a glass material with a higher light transmittance can reduce the influence of the greater thickness of the first optical lens 211 on the light transmittance.
- the molding principle of molded glass is: place the preform of glass in a precision processing mold, increase the temperature to soften the glass, and then press the mold surface to deform the glass and take it out of the mold. Then the required lens shape can be formed. Since the first optical lens 211 is an aspherical lens, and the molded glass requires a mold to press the glass for processing, the biconcave lens produced by the molded glass will cause greater damage to the mold. Therefore, the first optical lens 211 The upper surface is preferably convex.
- the molded glass is manufactured by a molding die, there may be a relatively large inclination angle between the side wall of the convex portion 214 of the first optical lens 211 and the optical axis after the molded glass is molded.
- the first optical lens 211 is ground by cold working technology, so that the angle between the sidewall of the convex portion 214 of the first optical lens 211 and the optical axis is less than 15°.
- the light-transmissive refractive index of the glass is preferably 1.48-1.55, and its refractive index Abbe number is preferably 50-71.
- the split lens 20 has high imaging quality (for example, aberrations such as dispersion are well controlled within a certain range).
- the use of glass materials can have better temperature drift.
- FIG. 6 illustrates a schematic diagram of a variant implementation of the split lens according to an embodiment of the present application.
- the first optical lens 211 further includes a light-shielding layer 23 provided in the non-optically effective area of the first optical lens 211.
- the non-optical effective area of the first optical lens 211 includes the structural area 213 of the first optical lens 211 and a part of the optical area 212 that does not function for imaging and lighting.
- the light-shielding layer 23 can be formed by ink, wherein the thickness of the ink layer is preferably greater than 5 microns, preferably, the thickness of the ink layer is set to 15-30 microns to achieve higher light-shielding ability.
- the light-shielding layer 23 also functions as a diaphragm.
- the light-shielding layer 23 can control the The amount of light entering the split optical lens.
- the light shielding layer 23 covers the structure area 213 of the first optical lens 211
- the upper surface and the side surface of, and the side wall of the raised portion 214 are as shown in FIG. 6.
- the light shielding layer 23 covers the upper surface and the side surface of the structure area 213 of the first optical lens 211,
- the side walls of the convex portion 214 and, at least part of the top surface of the second optical lens 221, are as shown in FIG. 7.
- the protrusion 214 A transition area is formed between the upper surface and the side wall, and the transition area does not play a role in imaging and lighting.
- the light shielding layer 23 further covers the transition area 215 between the sidewall of the protrusion 214 and the upper surface thereof, as shown in FIG. 8.
- the length of the transition area 215 in the direction from the side wall of the protrusion 214 to the center of the protrusion 214 is 0.03-0.05 mm.
- the distance may also be set to other values, depending on the molding accuracy of the glass molding process.
- those skilled in the art should understand that when lenses made of other materials are made by other molding processes, there are also accuracy problems at the edges or transitions due to molding accuracy problems, and the transition area 215 is generated.
- the light shielding layer 23 may also cover other areas of the first optical lens 211, for example, the non-optical area of the lower surface of the first optical lens 211 At least part of it. Even in other examples of the present application, the light shielding layer 23 may also cover at least a part of the non-optical area of the topmost second optical lens. In this regard, this application is not limited.
- the light-shielding layer 23 can also be made of other materials.
- the light shielding layer 23 may be formed by attaching a SOMA sheet to the non-optical area 212 of the first optical lens 211. In this regard, this application is not limited.
- the first lens part 21 is assembled to the first lens part 21 by means of active optical alignment (AOA).
- AOA active optical alignment
- the first lens part 21 is a “naked lens”, which only includes the first optical lens 211.
- the first optical lens 211 is attached to the upper surface of the topmost second optical lens 221 through the adhesive 24. That is to say, in the embodiment of the present application, the bonding position of the first lens part 21 and the second lens part 22 is set at the first optical lens 211 and the topmost second optical lens 221 between.
- the bonding position can also be set in other positions, for example, between the first optical lens 211 and the lens barrel 222; Between the second optical lens 221 and the lens barrel 222 on the side, this is not limited by this application.
- the adhesive 24 includes a glue made of an opaque material to increase the effect of preventing stray light (the stray light may come from external light or the display itself is caused by refraction or reflection).
- FIG. 9 illustrates a schematic diagram of a modified implementation of the split lens 20 according to an embodiment of the present application.
- the first lens part 21 further includes a first lens barrel 212 for accommodating the first optical lens 211, that is, in this modified implementation, the The first lens part 21 is a non-“naked lens”.
- the first lens part 21 can be attached to the second lens part 22 through an adhesive 24 by means of active calibration, wherein the adhesive position can be set on the first lens barrel 212 and the lens.
- the effect of the light shielding layer 23 can be achieved by the first lens barrel 212.
- the light shielding layer 23 is formed on the first lens barrel 212.
- FIG. 10 illustrates another modified implementation of the split lens according to an embodiment of the present application.
- the cross-sectional shape of the split lens 20 is "D".
- FIG. 11 illustrates another modified implementation of the split lens according to an embodiment of the present application.
- the cross-sectional shape of the split lens barrel 222 is In a specific implementation, the split lens 20 as shown in FIGS. 10 and 11 can be realized by cutting at least part of the lens barrel 222 and even at least part of the structure area 213 of the second optical lens 221; or, in the molding process , Directly formed with "D" shape or The second optical lens 221.
- the split lens 20 is implemented as the split lens 20 as shown in FIG. 10 and FIG. 11, the front camera module 10 assembled in the terminal device may be closer to The edge of the terminal device, that is, the through hole of the display screen is made closer to the edge to improve the aesthetics.
- the cross-sectional shape of the split lens 20 may also be implemented in other shapes, for example, Etc. This is not limited by this application.
- FIG. 12 illustrates another modified implementation of the split lens according to an embodiment of the present application.
- the split lens 20 further includes a protection element 25 disposed on the topmost side of the second optical lens 221.
- the protection element 25 is formed on the upper end surface of the second optical lens 221 to protect the second optical lens 221.
- the protection element 25 can effectively prevent the second optical lens 221 from being bumped and causing performance or reliability to be damaged.
- the protective element 25 may be adhered to the topmost second optical lens 221 and/or the lens barrel 222 through an adhesive 24 after the split lens 20 is assembled.
- the optical system of the split lens 20 can also be configured in other ways.
- the first lens part 21 may include more optical lenses.
- the second lens part 22 may include fewer optical lenses.
- the first lens part 21 may include the first optical lens 211 and at least a part of the second optical lens 221, the second lens part 22 includes other remaining second optical lenses 221, and, The top second optical lens 221 is also exposed on the top of the second lens part 22.
- the split lens 20 further includes a larger number of lens parts.
- the split lens 20 may include three lens parts: a first lens part 21, a second lens part 22, and a third lens part (not shown), and the first lens part 21, the The second lens part 22 and the third lens part are assembled in an AOA manner to ensure assembly accuracy and yield.
- the camera module 10 and its split lens 20 based on the embodiments of the present application are clarified, which cancels the "lens barrel ceiling” structure of the first lens part 21 and the second lens part 22, so that The adjustment range of the split lens 20 becomes larger; on the other hand, the influence of the "lens barrel sky” structure on the optical design (especially the height design) of the first optical lens 211 is eliminated, so that the The optical zone 212 of an optical lens 211 can be relatively more protruding from its structural zone 213, so that when the split lens 20 is fitted into the through hole of the display screen of the terminal device with the first optical lens 211 When assembled in the terminal device in an internal manner, the optical zone 212 of the first optical lens 211 can be closer to the top of the through hole to obtain a larger field of view and light flux, thereby ensuring the camera module 10 has high imaging quality.
- a terminal device is also provided.
- Fig. 15 illustrates a terminal device according to an embodiment of the present application.
- the terminal device 100 includes: a terminal body 80 including a display screen 81, and the camera module 10 described above, wherein the camera module 10 and the display screen 81 are installed in the same
- the display screen 81 may be implemented as an LCD or OLED display screen 81.
- FIG. 16 illustrates a schematic diagram of the split lens assembled in a terminal device according to an embodiment of the present application.
- the display screen 81 has a through hole 810 formed therethrough, wherein the inner diameter of the through hole 810 is slightly larger than the lateral size of the protrusion 214.
- the through hole 810 of the display screen 81 is formed in an opaque material in the display screen 81, wherein the top of the through hole 810 is the cover layer of the display screen 81 (usually a glass cover board).
- the convex portion 214 of the first optical lens 211 of the split lens 20 is embedded in the through hole 810.
- the split lens 20 is assembled to the terminal device in such a way that the first optical lens 211 is fitted into the through hole 810 of the display screen 81.
- the optical zone 212 of the first optical lens 211 can be closer to the top of the through hole 810 to obtain a larger field of view and light flux, thereby ensuring that the camera module 10 has a higher imaging quality.
- the first optical lens 211 is fitted into the through hole 810 of the display screen 81, including the first optical lens 211 is fitted into the display screen with a gap.
- the through hole 810 of the display screen 81 and the first optical lens 211 are fitted into the through hole 810 of the display screen 81 in a gap-free manner.
- the first optical lens 211 is fitted into the through hole 810 of the display screen 81 with a gap, so that the assembly tolerance between the split lens 20 and the display screen 81 It can be tolerated and adjusted, and the movement of the display screen 81 has a relatively small impact on the split lens 20.
- the highest point of the protrusion 214 protrudes from the lower surface of the structure area 213 by at least 0.3-1.2 mm.
- the distance between the upper surface of the protrusion 214 and the top end of the through hole 810 is in the range of 0.01-0.5 mm, so that The split lens 20 has a larger field of view (for example, it may not be less than 60°) and the amount of light passing.
- the top end of the through hole 810 represents the lower surface of the cover layer of the display screen 81.
- the diameter of the protrusion 214 is not greater than 1-2.5 mm. Therefore, the diameter of the through hole 810 of the display screen 81 can be reduced, so that the terminal device 100 The "screen-to-body ratio" can be improved.
- the light shielding layer 23 provided on the surface of the split lens 20 can avoid stray light caused by external light or light inside the display screen 81 through refraction or reflection.
- FIG. 17 illustrates a schematic diagram of another implementation manner in which the split lens is assembled to the terminal device according to an embodiment of the present application.
- the through hole 810 is implemented as a stepped hole, and the split lens 20 uses the convex portion 214 and part of the first optical lens 211
- the structure area 213 is fitted into the through hole 810 and assembled in the terminal device.
- the optical area 212 of the first optical lens 211 can be closer to the top of the through hole 810 to obtain a better
- the large field of view and the amount of light passing ensure that the camera module 10 has a high imaging quality. It is worth mentioning that, in this way, the overall height of the camera module 10 and the terminal device 100 can be further reduced, which is beneficial to the slimness of the terminal device.
- FIG. 18 illustrates a schematic diagram of the assembly process of the split lens 20 according to an embodiment of the present application.
- the assembling process of the split lens 20 according to the present application first includes: providing a lens barrel 222, at least one second optical lens 221, and a first lens portion 21 including the first optical lens 211
- the lens barrel 222 includes a lens barrel body 223 whose inner diameter decreases from top to bottom, and a supporting platform 224 protruding from the bottom area of the lens barrel body 223.
- the at least one second optical lens 221 is installed in the lens barrel body 223 from bottom to top in an upside-down manner to form the second lens portion 22, wherein the topmost second The optical lens 221 is completely exposed on the top of the lens barrel 222.
- the first lens portion 21, the second lens portion 22 and the photosensitive component 30 are pre-positioned along the optical axis direction.
- the relative positional relationship between the first lens portion 21 and the second lens portion 22 is adjusted in an active calibration manner.
- the first lens part 21 is fixed to the first lens part 21 to form the split lens 20.
- adjusting the relative position relationship between the first lens portion 21 and the second lens portion 22 in an active calibration manner includes:
- the second lens portion 22 and the photosensitive component 30 Based on the imaging quality of the image collected by the imaging system formed by the first optical lens 211, the second lens portion 22 and the photosensitive component 30, adjust the gap between the first lens portion 21 and the second lens portion 22 Relative position relationship.
- the image of the object to be measured is acquired through the photosensitive component 30 in cooperation with the split optical lens, and then the molding quality and adjustment amount of the split lens 20 are calculated by image imaging quality calculation methods such as SFR and MTF. Then, the relative position between the first lens part 21 and the second lens part 22 is adjusted in real time in at least one direction (at least one direction refers to the xyz direction and the direction of rotation around the xyz axis) according to the adjustment amount.
- the relationship is to make the imaging quality of the split lens 20 (mainly including optical parameters such as peak value, field curvature, astigmatism, etc.) reach a preset threshold after one or more adjustments.
- the process of fixing the first lens portion 21 to the first lens portion 21 to form the split lens 20 includes: first, the first optical lens 211 and the lens An adhesive 24 is applied between the second optical lenses 221 on the top side; further, the first optical lens 211 is fixedly attached to the second optical lens 221 on the top side by curing the adhesive 24 , Thereby fixing the first lens portion 21 to the first lens portion 21.
- the adhesive 24 may be cured by thermal curing or light curing, that is, the adhesive 24 contains a light curing component or a thermal curing component.
- the step of applying the adhesive 24 may also be performed after active calibration, that is, after the imaging quality correction of the split lens 20 is completed, the first lens is removed Part 21, and then an adhesive 24 is applied to the corresponding position of the second lens part 22.
- this application is not limited.
- the assembling method of the split lens 20 based on the embodiment of the present application is clarified, which can prepare the split lens 20 as described above and its deformation implementation.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Lens Barrels (AREA)
Abstract
一种分体式镜头(20)及其组装方法、摄像模组(10)和终端设备(100)。分体式镜头(20)包括:包括第一光学透镜(211)的第一镜头部分(21)和第二镜头部分(22)。第一镜头部分(21)组装于第二镜头部分(22),其中,第二镜头部分(22)包括镜筒(222)和安装于镜筒(222)内的至少一第二光学透镜(221),最顶侧的第二光学透镜(221)完全地暴露于镜筒(222)的顶部。这样取消第一镜头部分(21)和第二镜头部分(22)的"镜筒天面"结构,以使得分体式镜头(20)的调整范围更大。并且当包括分体式镜头(20)的摄像模组(10)装配于终端设备(100)时,第一光学透镜(211)的光学区(212)能邻近于显示屏(81)的通孔(810)的顶部,以获得较大的视场角和通光量,从而确保摄像模组(10)具有较高的成像质量。
Description
本申请涉及摄像模组领域,尤其涉及分体式镜头及其组装方法、摄像模组和终端设备。
随着移动电子设备的普及,被应用于移动电子设备的用于帮助使用者获取影像(例如视频或者图像)的摄像模组的相关技术得到了迅猛的发展和进步,并且在近年来,摄像模组在诸如医疗、安防、工业生产等诸多的领域都得到了广泛的应用。
在消费电子领域(例如,在智能手机领域)中,前置摄像模组是一个不可或缺的部件。前置摄像模组与终端设备的显示屏设置于同一侧,用于满足消费者自拍等需求。然而,不断增大的“屏占比”,对前置摄像模组的结构、布置提出了越来越高的要求。为了减小前置摄像模组对提高“屏占比”的影响,不同厂商从不同角度开发了多种解决方案。
一种解决方向为:在终端设备的显示屏上开设通孔。具体来说,为了隐藏前置摄像模组,一些厂商选择在终端设备的显示屏顶端开设U型孔,并将前置摄像模组、听筒等传感设备放置于该U型孔内。然而,由于前置摄像模组是前置传感器中体积最大的,因此需要较大的U型孔,其对“屏占比”影响较大。
为了减少开孔对提高“屏占比”的影响,一些厂商将U型孔改为水滴状,但是由于前置摄像模组自身的结构和屏幕开孔工艺的局限,无法将开孔做得更小。
还有一些厂商选择在LCD或者OLED显示屏上开设圆形或者椭圆形的开孔,一方面开孔的尺寸仍然较大,另一方面,在终端设备进行屏幕显示时开孔显得很突兀,影响用户体验。
也有一些厂商提出一种直接将摄像模组布置于屏幕下方的方案,其中,前置摄像模组透过屏幕成像。然而,这样的解决方案中前置摄像模组的成像质量难以满足用户需求。
还有一些厂商选择在终端设备的屏幕上设置盲孔,前置摄像模组透过盲孔成像,其中,盲孔指的是去掉显示屏上对应于前置摄像模组的区域中透光率较低的层和非必要的层,以此来增加透光率。虽然,这种方案平衡了透光率和开孔尺寸,但透光率依然不高无法达到较好的成像质量。
因此,需要一种改进的前置摄像模组的结构和布置方式,以使得终端设备的“屏占比”能够增加,并且,所述前置摄像模组具有较高的成像质量。
发明内容
本申请的主要目的在于提供一种分体式镜头及其组装方法、摄像模组和终端设备,其中,通过对所述摄像模组的所述分体式镜头的结构改进使得在将摄像模组配置为终端设备的前置摄像模组时,所述终端设备的显示屏所需的开孔尺寸能够被减小,以提高所述终端设备的“屏占比”,并且,所述摄像模组具有较高的成像质量。
本申请的另一目的在于提供一种分体式镜头及其组装方法、摄像模组和终端设备,其中,所述分体式光学镜头在其第一镜头部分和第二镜头部分之间没有设置“镜筒天面”结构,以增加所述分体式镜头的调整范围。
本申请的另一目的在于提供一种分体式镜头及其组装方法、摄像模组和终端设备,其中,由于没有设置所述“镜筒天面”结构,所述第一镜头部分的第一光学透镜与所述第二镜头部分的最顶侧的第二光学透镜的结构区的设计自由度得以提升。具体来说,所述第一光学透镜与最顶侧的所述第二光学透镜的结构区的厚度尺寸可增加,以使得所述第一镜头部分和所述第二镜头部分具有更大的调整间隙。
本申请的另一目的在于提供一种分体式镜头及其组装方法、摄像模组和终端设备,其中,所述第二镜头部分包括镜筒和安装于所述镜筒内的至少一第二光学透镜,其中,最顶侧的所述第二光学透镜完全地暴露于所述镜筒的 顶部,以形成在所述第一镜头部分和第二镜头部分没有设置“镜筒天面”结构的结构配置。
本申请的另一目的在于提供一种分体式镜头及其组装方法、摄像模组和终端设备,其中,所述第一镜头部分的第一光学透光包括光学区和围绕所述光学区的结构区,其中,所述光学区包括突出于延伸于所述结构区的凸起部,其中,当所述光学镜头装配于终端设备时,所述第一光学透镜的凸起部嵌合于所述终端设备的显示屏的通孔内,以使得所述第一光学透镜的光学区能邻近于所述通孔的顶部,以获得较大的视场角和通光量,从而确保所述摄像模组具有较高的成像质量。
本申请的另一目的在于提供一种分体式镜头及其组装方法、摄像模组和终端设备,其中,由于在其第一镜头部分和第二镜头部分之间没有设置“镜筒天面”结构,使得所述第一镜头部分的第一光学透镜的光学区和结构区之间的高度差能够被提高,从而当所述光学镜头装配于终端设备的显示屏的通孔时,所述第一光学透镜的光学区能更邻近于所述通孔的顶部,以获得更大的视场角和通光量,从而确保所述摄像模组具有较高的成像质量。
本申请的另一目的在于提供一种分体式镜头及其组装方法、摄像模组和终端设备,其中,所述第一光学镜头的所述凸起部具有相对较小的横向尺寸,以使得所述前置摄像模组适用于具有较小通孔的显示屏,从而所述终端设备的“屏占比”能够得以提升。
本申请的另一目的在于提供一种分体式镜头及其组装方法、摄像模组和终端设备,其中,所述凸起部的侧壁形状适配于所述显示屏的通孔形状,以便于当所述光学镜头装配于所述显示屏的通孔时,所述凸起部能够适配地嵌合于所述通孔内。
本申请的另一目的在于提供一种分体式镜头及其组装方法、摄像模组和终端设备,其中,所述至少一第二光学透镜以倒装的方式自下而上地安装于所述镜筒内,通过这样的方式,提高组装良率和效率。
本申请的另一目的在于提供一种分体式镜头及其组装方法、摄像模组和终端设备,其中,所述第一镜头部分通过主动校准(AOA)的方式组装于所 述第二镜头部分,通过这样的方式,提高所述分体式镜头的光学性能和组装精度和效率。
通过下面的描述,本申请的其它优势和特征将会变得显而易见,并可以通过权利要求书中特别指出的手段和组合得到实现。
为实现上述至少一目的或优势,本申请提供一种分体式镜头,其包括:
包括第一光学透镜的第一镜头部分;以及
第二镜头部分,所述第二镜头部分包括镜筒和安装于所述镜筒内的至少一第二光学透镜,所述镜筒的内径尺寸上大下小,最顶侧的所述第二光学透镜完全地暴露于所述镜筒的顶部,
其中,所述第一镜头部分与所述第二镜头部分之间具有调整间隙,并且,所述第一镜头部分通过黏着剂附着于最顶侧的所述第二光学透镜。
在根据本申请的分体式镜头中,所述第一光学透镜通过所述黏着剂附着于最顶侧的所述第二光学透镜。
在根据本申请的分体式镜头中,所述镜筒包括内径自上而下减少的镜筒主体以及突出于延伸于所述镜筒主体的底部区域的承载平台,所述至少一第二光学透镜以倒装的方式自下而上地安装于所述镜筒主体内,其中,最底侧的所述第二光学透镜安装于所述承载平台,其中,所述镜筒主体的顶部具有开口以完全地暴露最顶侧的所述第二光学透镜。
在根据本申请的分体式镜头中,所述镜筒主体的下端面低于最底侧的所述第二光学透镜的下端面。
在根据本申请的分体式镜头中,所述镜筒主体的上端面高于最顶侧的所述第二光学透镜的上端面。
在根据本申请的分体式镜头中,所述第一光学透镜的上端面高于所述镜筒主体的上端面。
在根据本申请的分体式镜头中,所述第一光学透镜的通光孔径与最顶侧的所述第二光学透镜的通光孔径的比值为0.8-1.25。
在根据本申请的分体式镜头中,所述第一光学透镜的横向尺寸小于最顶侧的所述第二光学透镜的横向尺寸。
在根据本申请的分体式镜头中,至少部分所述第二光学透镜之间相互嵌合。
在根据本申请的分体式镜头中,最顶侧的所述第二光学透镜的横向尺寸大于最底侧的所述第二光学透镜的横向尺寸。
在根据本申请的分体式镜头中,最顶侧的所述第二光学透镜包括凹陷地形成于所述的第二光学透镜的上端面的安装平台,所述安装平台被配置为安装所述第一光学透镜于其上。
在根据本申请的分体式镜头中,最顶侧的所述第二光学透镜包括突出地形成于所述的第二光学透镜的上端面的安装平台,所述安装平台被配置为安装所述第一光学透镜于其上。
在根据本申请的分体式镜头中,所述第一光学透镜包括光学区和围绕所述光学区的结构区,其中,所述光学区包括突出地延伸于所述结构区的凸起部。
在根据本申请的分体式镜头中,所述凸起部的直径不大于1.2mm。
在根据本申请的分体式镜头中,所述凸起部的侧壁与所述分体式镜头所设定的光轴之间的夹角小于15°。
在根据本申请的分体式镜头中,所述侧壁基本平行于所述光轴。
在根据本申请的分体式镜头中,所述凸起部的侧壁基本垂直于所述结构区的上表面。
在根据本申请的分体式镜头中,所述凸起部的最高点突出所述结构区的下表面至少0.3-1.2m。
在根据本申请的分体式镜头中,所述第一光学透镜的总高度为0.4-1.6mm。
在根据本申请的分体式镜头中,所述光学区的上侧为凸面,与所述上侧相对的下侧为凹面。
在根据本申请的分体式镜头中,所述第一光学透镜为塑料透镜。
在根据本申请的分体式镜头中,所述第一光学透镜为玻璃透镜。
在根据本申请的分体式镜头中,所述玻璃透镜的折射率阿贝数为50-71。
在根据本申请的分体式镜头中,所述玻璃透镜的折射率为1.48-1.55。
在根据本申请的分体式镜头中,所述凸起部的上表面为凸面。
在根据本申请的分体式镜头中,所述第一光学透镜还包括设于所述第一光学透镜的非光学有效区的遮光层。
在根据本申请的分体式镜头中,当所述第一光学透镜的横向尺寸对应于最顶侧的所述第二光学透镜时,所述遮光层包覆的区域,包括所述第一光学透镜的所述结构区的上表面和侧表面,以及,所述凸起部的侧壁。
在根据本申请的分体式镜头中,当所述第一光学透镜的横向尺寸小于最顶侧的所述第二光学透镜时,所述遮光层包覆的区域,包括所述第一光学透镜的结构区的上表面和侧表面、所述凸起部的侧壁,以及,至少部分最顶侧的所述第二光学透镜的上表面。
在根据本申请的分体式镜头中,所述遮光层进一步包覆所述凸起部的侧壁和其上表面之间的过渡区域,其中,所述过渡区域在从所述凸起部的侧壁向所述凸起部中心的方向上的长度为0.03-0.05mm。
在根据本申请的分体式镜头中,所述遮光层的材料为油墨材料。
在根据本申请的分体式镜头中,所述第一镜头部分通过主动校准的方式安装于所述第二镜头部分。
在根据本申请的分体式镜头中,所述第一光学透镜的下表面高于所述镜筒的上端面。
在根据本申请的分体式镜头中,所述分体式镜头进一步包括:设置于最顶侧所述第二光学透镜的保护元件。
在根据本申请的分体式镜头中,所述分体式横截面的形状为D型。
根据本申请的另一方面,本申请还提供一种摄像模组,其包括:
如上所述的分体式镜头;以及
感光组件,其中,所述分体式镜头保持于所述感光组件的感光路径上。
在根据本申请的摄像模组中,所述摄像模组进一步包括驱动元件,其中,所述驱动元件安装于所述感光组件,所述光学镜头安装于所述驱动元件。
根据本申请的又一方面,还提供一种一种终端设备,其包括:
包括显示屏的终端主体;以及
摄像模组,其中,所述摄像模组包括:
如上所述的分体式镜头;以及
感光组件,其中,所述分体式镜头保持于所述感光组件的感光路径上;
其中,所述摄像模组与所述显示屏安装于所述终端主体的同侧,以被配置为前置摄像模组;
其中,所述显示屏具有贯穿地形成于其中的通孔,所述通孔的内径略大于所述凸起部的横向尺寸,当所述摄像模组安装于所述终端主体的前侧时,所述第一光学透镜的所述凸起部嵌合于所述通孔内。
在根据本申请的终端设备中,所述凸起部的上表面与所述通孔的顶端之间的距离范围为0.01-0.5mm。
在根据本申请的终端设备中,所述通孔为阶梯孔,以使得当所述摄像模组与所述显示屏安装于所述终端主体的同侧时,所述第一光学透镜的所述凸起部和部分所述结构区嵌合于所述通孔内。
根据本申请的又一方面,还提供一种分体式镜头组装方法,其包括:
提供一镜筒、至少一第二光学透镜以及,包括第一光学透镜的第一镜头部分,其中,所述镜筒包括内径自上而下减少的镜筒主体以及突出于延伸于所述镜筒主体的底部区域的承载平台;
以倒装的方式自下而上地将所述至少一第二光学透镜安装于所述镜筒主体内,以形成第二镜头部分,其中,最顶侧的所述第二光学透镜完全地暴露于所述镜筒的顶部;
沿着光轴方向预定位所述第一镜头部分、第二镜头部分和感光组件;
以主动校准的方式调整所述第一镜头部分与所述第二镜头部分之间的相对位置关系;以及
将所述第一镜头部分固设于所述第二镜头部分,以形成所述分体式镜头。
在本根据本申请的分体式镜头组装方法中,以主动校准的方式调整所述第一镜头部分与所述第二镜头部分之间的相对位置关系,包括:
基于所述第一光学透镜、第二镜头部分和感光组件所构成的成像系统所 采集的图像的成像质量,调整所述第一镜头部分与所述第二镜头部分之间的相对位置关系。
在本根据本申请的分体式镜头组装方法中,将所述第一镜头部分固设于所述第一镜头部分,以形成所述分体式镜头,包括:
在所述第一光学透镜和最顶侧的所述第二光学透镜之间施加黏着剂;以及
固化所述黏着剂以将所述第一光学透镜固定地附着于最顶侧的所述第二光学透镜,从而将所述第一镜头部分固设于所述第一镜头部分。
通过对随后的描述和附图的理解,本申请进一步的目的和优势将得以充分体现。
本申请的这些和其它目的、特点和优势,通过下述的详细说明,附图和权利要求得以充分体现。
通过结合附图对本申请实施例进行更详细的描述,本申请的上述以及其他目的、特征和优势将变得更加明显。附图用来提供对本申请实施例的进一步理解,并且构成说明书的一部分,与本申请实施例一起用于解释本申请,并不构成对本申请的限制。在附图中,相同的参考标号通常代表相同部件或步骤。
图1图示了现有分体式镜头的结构示意图。
图2图示了现有的分体式镜头组装于终端设备的示意图。
图3图示了现有的分体式镜头组装于终端设备的另一示意图。
图4图示了根据本申请实施例的摄像模组的示意图。
图5图示了根据本申请实施例的所述摄像模组的分体式镜头的结构示意图。
图6图示了根据本申请实施例的所述分体式镜头的一种变形实施的示意图。
图7图示了根据本申请实施例的所述分体式镜头的另一种变形实施的示意图。
图8图示了根据本申请实施例的所述分体式镜头的又一种变形实施的示意图。
图9图示了根据本申请实施例的所述分体式镜头的又一种变形实施的示意图。
图10图示了根据本申请实施例的所述分体式镜头的又一种变形实施的示意图。
图11图示了根据本申请实施例的所述分体式镜头的又一种变形实施的示意图。
图12图示了根据本申请实施例的所述分体式镜头的又一种变形实施的示意图。
图13图示了根据本申请实施例的所述分体式镜头的又一种变形实施的示意图。
图14图示了根据本申请实施例的所述分体式镜头的又一种变形实施的示意图。
图15图示了根据本申请实施例的终端设备。
图16图示了根据本申请实施例的所述分体式镜头组装于终端设备的示意图。
图17图示了根据本申请实施例的所述分体式镜头组装于所述终端设备的另一种实施方式的示意图。
图18图示了根据本申请实施例的所述分体式镜头的组装过程的示意图。
下面,将参考附图详细地描述根据本申请的示例实施例。显然,所描述的实施例仅仅是本申请的一部分实施例,而不是本申请的全部实施例,应理解,本申请不受这里描述的示例实施例的限制。
申请概述
如前所述,为了减小前置摄像模组对提高“屏占比”的影响,不同厂商从不同角度开发了多种解决方案。但是这些解决方案或多或少都无法同时 满足继续提高“屏占比”和确保前置摄像模组的成像质量的要求。
具体来说,现有的前置摄像模组通常包括用于感光成像的感光组件和保持于感光组件的感光路径上的光学镜头。按照结构来分,光学镜头包括一体式镜头和分体式镜头。图1图示了现有分体式镜头的结构示意图,如图1所示,该分体式镜头包括第一镜头部分1和第二镜头部分2,其中,第一镜头部分1包括第一光学透镜11(在一些现有的分体式光学镜头中,第一镜头部分1还包括用于收容第一光学透镜11的第一镜筒12),第二镜头部分2包括至少一第二光学透镜21和用于收容至少一光学透镜21的第二镜筒22。
本领域普通技术人员应知晓,对于一个光学系统而言,在理想情况下,第一镜头部分1的第一光学透镜11与第二镜头部分2的最顶侧的第二光学透镜21的光学区之间的距离是相对确定的。然而,在实际生产过程中,光学透镜本身(包括第一光学透镜11和第二光学透镜21)具有成型精度的限制,以及,透镜与镜筒之间存在组装精度的限制,导致第一光学透镜11与第二镜头部分2的最顶侧的第二光学透镜21的光学区之间的距离是不确定的。因此,在分体式镜头中,需要在第一镜头部分1与第二镜头部分2之间预留调整间隙。
具体来说,该调整间隙为第一镜头部分1与第二镜头部分2之间间隙的最小处,在实际组装过程中,该调整间隙需大于10微米(优选地,调整间隙的范围在30-100微米之间)。由于第一镜头部分1和第二镜头部分2之间的相对位置会依据分体式镜头的成像结果进行调整,第一镜头部分1与第二镜头部分2之间的调整间隙会产生变化,但在调整完第一镜头部分1与第二镜头部分2的相对位置并进行固定后,大部分分体式镜头的调整间隙依然会大于10微米,并且部分分体式镜头的调整间隙在30-100微米之间。
然而,如图1所示,在现有的分体式镜头中,第一镜头部分1安装于第二镜筒22的上表面,也就是说,在第一光学透镜11和与其紧邻的第二光学透镜21之间存在第二镜筒22的“天面”。该“镜筒天面”结构的存在不可避免地减小了该调整间隙,影响了该分体式镜头的调整,从而对镜头调 整品质和组装良率造成了影响。
进一步地,该“镜筒天面”结构具有一定的厚度。因此,在尽可能保证调整间隙的前提下,第二镜头部分2的第二光学透镜21的设计自由度受到限制,尤其是最靠近第一光学透镜11的几片第二光学透镜22。特别地,为了给“镜筒天面”结构预留设置空间,紧邻于第一光学透镜11的第二光学透镜21的结构区需要向镜头像侧方向偏移。这样的设计使得最顶侧的第二光学透镜21的结构区和光学区之间的连接处的厚度降低,导致最顶侧的第二光学透镜21的成型难度提升。这样的设计,还会导致第二光学透镜21的光学区的成像面的面型和结构区的制造公差变大,使得该分体式镜头的成像品质下降。
还有,该“镜筒天面”结构抬高了所述第一光学透镜11的安装基面,以使得第一光学透镜11向上延伸的高度设计受到影响。应可以理解,分体式镜头的光学系统的整体高度在相对确定的范围内,该“镜筒天面”结构的存在相当于垫高了第一镜头部分1的安装基面,因此,第一镜头部分1的高度需降低以满足光学系统的整体高度要求。该“镜筒天面”结构对第一镜头部分1的高度设计的影响将会在当该分体式镜头组装于终端设备(例如,智能手机)时体现。
图2图示了现有的分体式镜头组装于终端设备的示意图。图3图示了现有的分体式镜头组装于终端设备的另一示意图。在如图2和图3所示意图的组装方式中,终端设备的显示屏开孔3至少需要大于一定尺寸才能满足前置摄像模组4的视场角和进光量的要求,如此造成了终端设备的显示屏5的开孔过大,影响提高“屏占比”、美观性和用户体验。
针对上述技术问题,本申请的基本构思是取消第一镜头部分和第二镜头部分的“镜筒天面”结构,这样,一方面能够使得所述分体式镜头的调整范围更大;另一方面,消除了该“镜筒天面”结构对所述第一光学透镜的光学设计的影响(尤其是高度设计),从而所述第一光学透镜的光学区能相对更突出于其结构区,以使得当所述分体式镜头以所述第一光学透镜嵌合于所述终端设备的显示屏的通孔内的方式装配于终端设备时,所述第一光学透镜的 光学区能邻近于所述通孔的顶部,以获得较大的视场角和通光量,从而确保所述摄像模组具有较高的成像质量。
基于此,本申请提出了一种分体式镜头,其包括:包括第一光学透镜的第一镜头部分;以及第二镜头部分,其中,所述第一镜头部分组装于所述第二镜头部分。所述第二镜头部分包括镜筒和安装于所述镜筒内的至少一第二光学透镜,最顶侧的所述第二光学透镜完全地暴露于所述镜筒的顶部。这样,取消第一镜头部分和第二镜头部分的“镜筒天面”结构,以使得一方面所述分体式镜头的调整范围变得更大;另一方面,消除了该“镜筒天面”结构对所述第一光学透镜的光学设计的影响(尤其是高度设计),从而所述第一光学透镜的光学区能相对更突出于其结构区,以使当所述分体式镜头以所述第一光学透镜嵌合于所述终端设备的所述显示屏的通孔内的方式装配于终端设备时,所述第一光学透镜的光学区能更邻近于所述通孔的顶部,以获得较大的视场角和通光量,从而确保所述摄像模组具有较高的成像质量。
在介绍本申请的基本原理之后,下面将参考附图来具体介绍本申请的各种非限制性实施例。
示例性摄像模组及其分体式镜头
如图4所示,基于本申请实施例的摄像模组10被阐明,其中,所述摄像模组10被配置为终端设备的前置摄像模组10,用于满足用户的自拍等需求。在本申请实施例中,所述终端设备包括但不限于智能手机、平板电脑、可穿戴设备等。
在本申请实施例中,所述摄像模组10包括光学镜头和感光组件30,所述光学镜头保持于所述感光组件30的感光路径,以使得藉由所述光学镜头所采集的光线能够沿着该感光路径在所述感光组件30中成像。特别地,在本申请实施例中,所述光学镜头被实施为分体式镜头20,其包括至少两个镜头部分。所述感光组件30,包括线路板31、电连接于所述线路板31的感光芯片32、设置于所述线路板31的至少一电子元器件32,以及,设置于所述线路板31的封装体33等部件,其中,所述分体式镜头20安装于所 述封装体33上。
应注意到,如图4所示的所述摄像模组10为定焦摄像模组,本领域技术人员应知晓,本申请所涉及的所述摄像模组10还可被实施为动焦摄像模组,即,所述摄像模组10还包括设置于所述分体式镜头20和所述感光组件30之间的驱动元件(未有图示意),以通过所述驱动元件承载着所述分体式镜头10沿着所述感光路径移动,以改变所述分体式镜头10和所述感光组件30之间的距离。
如图5所示,在本申请实施例中,所述分体式镜头20包括两个镜头部分:第一镜头部分21和第二镜头部分22,其中,所述第一镜头部分21包括第一光学透镜211,所述第二镜头部分22包括镜筒222和安装于所述镜筒222内的至少一第二光学透镜221。特别地,在本申请实施例中,所述镜筒222的内径尺寸上大下小,所述至少一光学透镜221以倒装的方式自上而下地安装于所述镜筒222内,并且,最顶侧的所述第二光学透镜221完全地暴露于所述镜筒222的顶部。也就是说,在本申请实施例中,在所述第一光学透镜211和与其紧邻的所述第二光学透镜221之间没有“镜筒天面”结构。
具体来说,如图5所示,在本申请实施例中,所述镜筒222包括内径自上而下减少的镜筒主体223以及突出于延伸于所述镜筒主体223的底部区域的承载平台224,所述至少一第二光学透镜221以倒装的方式自下而上地安装于所述镜筒主体223内,其中,最底侧的所述第二光学透镜221安装于所述承载平台224。这里,在本申请实施例中,所述第二镜头部分22的上方表示所述第二镜头部分22朝向物侧的方向,所述第二镜头部分22的下方表示所述第二镜头部分22朝向像侧的方向。应可以观察到,所述镜筒主体223的顶部具有开口(其中所述开口为完全的敞口),以完全地暴露位于最顶侧的所述第二光学透镜221。也就是说,在本申请实施例中,所述镜筒主体223没有在其顶部设置向内延伸的承载结构,以使得最顶侧的所述第二光学透镜221能够完全地暴露于所述镜筒主体223的顶部。
在具体实施中,所述镜筒主体223的内径可沿着所述镜筒主体223的 内壁自上而下逐渐地降低(即,所述镜筒主体223的截面具有梯形状),以允许所述至少一第二光学透镜221以倒装的方式自下而上地安装于所述镜筒主体223内。或者,在本申请的其他示例中,所述镜筒主体223的内径可沿着所述镜筒主体223的内壁自上而下地呈阶梯状降低,以在每个阶梯面上形成用于支撑每一所述第二光学透镜221的安装平台215。对此,并不为本申请所局限。
相应地,如图5所示,在本申请实施例中看,所述至少一第二光学透镜221以倒装的方式自下而上地安装于所述镜筒主体223内。具体来说,首先,将最底侧的所述第二光学透镜221安装于所述承载平台224;接着,依次依序将其他所述第二光学透镜221安装于所述镜筒主体223内。应可以理解,对应于所述镜筒主体223的尺寸变化,在本申请实施例中,所述第二光学透镜221的直径在下而上逐渐增大(包括部分所述第二光学透镜221直径相等的情况)。也就是说,在本申请实施例中,位于上侧的所述第二光学透镜221的直径不小于位于下侧的所述第二光学透镜221的直径。也就是说,在本申请实施例中,在所有的所述第二光学透镜221中,最顶侧的所述第二光学透镜221具有最大的直径尺寸,通过这样的方式,为所述第二镜头部分22的安装提供较大的安装区域。
值得一提的是,在本申请其他的示例中,在所有的所述第二光学透镜221中,直径尺寸最大的可不设置为最顶侧的所述第二光学透镜221,而设置为其他所述第二光学透镜221。例如,将直径尺寸最大的所述第二光学透镜221设置为位于最顶侧的所述第二光学透镜221下侧的所述第二光学透镜221,对此,并不为本申请所局限。
值得一提的是,所述承载平台224设置于所述镜筒222的底部,并且因为所述镜筒222底部具有较大的空间,因此,有足够的空间设置所述承载平台224的厚度。这样,不仅能够确保所述分体式镜头20满足结构强度要求,而且还不需要增加所述分体式镜头20的整体尺寸。应可以理解,该“足够空间”来自于最底侧的所述第二光学透镜221的光学区和结构区之间具有相当的高度差。相应地,在本申请实施例中,所述承载平台224可一体地延 伸于所述镜筒主体223的内壁,也就是说,所述承载平台224可与所述镜筒主体223具有一体式结构。当然,在本申请其他示例中,所述承载平台224与所述镜筒主体223可具有分体式结构,其中,所述承载平台224为单独的部件并固定于所述镜筒主体223的内壁上。对此,并不为本申请所局限。
值得一提的是,出于对所述第二光学透镜221的保护和封装的需求,优选地,所述镜筒主体223的下端面低于最底侧的所述第二光学透镜221的下端面。更优选地,在本申请实施例中,所述镜筒主体223的上端面高于最顶侧的所述第二光学透镜221的上端面。为了进一步地增强所述分体式镜头20的结构强度和可靠性,在本申请的一些示例中,至少部分所述第二光学透镜221之间可相互嵌合地设置,也就是说,在本申请的一些示例中,部分所述第二光学透镜221相互嵌合,以形成嵌合透镜,如图13所示。
进一步地,如图5所示,在本申请实施例中,所述分体式镜头20具有“小头部”的结构配置。具体来说,在本申请实施例中,所述第一镜头部分21所包括的所述第一光学透镜211,包括光学区212和围绕所述光学区212的结构区213,所述光学区212包括突出于延伸于所述结构区213的凸起部214,以形成“小头部”的结构配置。这里,所述光学区212表示第一光学透镜211中参与透光成像的部分,所述结构区213表示所述第一光学透镜211中不参与到透光成像的部分。
具体来说,在本申请实施例中,所述第一光学透镜211的上端面高于所述镜筒主体223的上端面。优选地,所述第一光学透镜211的上端面超过所述镜筒主体223的上端面的高度占其自身高度的1/2-3/4。应注意到,通过所述第一镜头部分21的小头部的配置方式,所述第一光学透镜211的光学区212能相对更突出于其结构区213,从而当所述分体式镜头20以所述第一光学透镜211嵌合于所述终端设备的所述显示屏的通孔内的方式装配于终端设备时,所述第一光学透镜211的光学区212能更邻近于所述通孔的顶部,以获得较大的视场角和通光量,从而确保所述摄像模组10具有较高的成像质量。
具体来说,在本申请实施例中,所述第一光学透镜211的所述光学区 212的上侧为凸面型,其下侧为凹面型,或者,所述光学区212的下侧被实施为凸面型或者平面型。对此,并不为本申请所局限。如图5所示,所述第一光学透镜211的横向尺寸小于最顶侧的所述第二光学透镜221的横向尺寸。当然,在本申请其他示例中,所述第一光学透镜211的横向尺寸可相当于或略大于最顶侧的所述第二光学透镜221的横向尺寸。对此,并不为本申请所局限。特别地,在本申请实施例中,所述第一光学透镜211的通光孔径与最顶侧的所述第二光学透镜221的通光孔径的比值为0.8-1.25,如图5所示。这里,所述第一光学透镜211的通孔孔径形成于所述第一光学透镜211的所述光学区212的上侧,所述第二光学透镜221的通光孔径形成于所述第二光学透镜221的光学区212的上侧。
为了便于所述第一光学透镜211嵌合于所述终端设备的所述显示屏的通孔内,优选地,在本申请实施例中,所述凸起部214的形状适配于形成于显示屏的通孔的形状。特别地,在本申请实施例中,所述凸起部214的侧壁与所述分体式镜头20所设定的光轴之间的夹角小于15°。优选地,在本申请实施例中,所述侧壁基本平行于所述光轴。更优选地,在本申请实施例中,所述凸起部214的侧壁在基本平行于所述光轴的同时,还基本垂直于所述结构区213的上表面,以使得所述凸起部214与所述结构区213的过渡区域形成“L”型结构。值得一提的是,在具体实施中,受限于加工工艺,所述凸起部214的侧壁不可能完全地平行于所述光轴以及完全地垂直于所述结构区213的上表面,采用基本垂直于和基本平行于这种描述方式是为了描述结构设计和加工时的标准。优选地,所述凸起部214的上表面被实施为凸面型。
如前所述,在现有的分体式镜头20中,由于在第一光学透镜211和第二光学透镜221之间存在“镜筒天面”结构,因此所述第一光学透镜211的安装基面被太高,导致第一光学透镜211向上延伸的高度设计受到影响。相对地,在本申请实施例中,该“镜筒天面”结构被取消,在进行高度设计时,所述第一光学透镜211的所述光学区212的与所述结构区213之间的高度差可进一步地增加,以利于当所述光学镜头装配于终端设备的显示屏的 通孔时,所述第一光学透镜211的光学区212能更邻近于所述通孔的顶部,以获得更大的视场角和通光量,从而确保所述摄像模组10具有较高的成像质量。
特别地,在本申请实施例中,所述凸起部214最高点突出所述结构区213的下表面至少0.3-1.2mm。也就是说,本申请实施例中,所述凸起部214的最高点与所述结构区213最高点之间的距离至少为0.3-1.2mm。优选地,所述凸起部214的最高点与所述结构区213最高点之间的距离为0.4-0.8mm。同时,在本申请实施例中,所述第一光学透镜211的总高度为0.4-1.6mm。优选地,所述第一光学透镜211的总高度为1.2-1.6mm。并且,在本申请实施例中,所述第一光学透镜211的外径范围为3.0-4.0mm,优选地,所述第一光学透镜211的外径范围为3.2-3.8mm。
为了进一步地提升所述第一光学透镜211的所述光学区212的凸起部214与所述结构区213之间的高度差,在本申请一些示例中,最顶侧的所述第二光学透镜221包括凹陷地形成于所述的第二光学透镜221的上端面的安装平台215,所述安装平台215被配置为安装所述第一光学透镜211于其上,如图13所示。当然,本领域技术人员应绒里想到,在本申请的其他示例中,最顶侧的所述第二光学透镜221还可以包括突出地形成于所述的第二光学透镜221的上端面的安装平台215,所述安装平台215被配置为安装所述第一光学透镜211于其上,如图14所示。
在具体实施中,所述第一光学透镜211可被实施为塑料透镜,其可通过塑料注入成型并进行切割打磨出所需的形态。当然,在本申请其他示例中,所述第一光学透镜211还可被实施为玻璃透镜,其可通过模造玻璃工艺制备而成并通过切割或打磨出所需形状。
如前所述,在本申请实施例中,所述第一光学透镜211的凸起部214的最高点突出所述结构区213的点表面的距离至少为0.3-1.2mm,并且所述第一光学透镜211的总高度为0.4-1.6mm。也就是说,所述第一光学透镜211的厚度尺寸相对较高,造成所述第一光学透镜211的透光率相对较低。因此,采用较高透光率的玻璃材料可以降低所述第一光学透镜211的厚度较大对 透光率的影响。
具体来说,模造玻璃的成型原理为:将已具初形的玻璃初胚置于精密加工成型模具中,升高温度使玻璃软化,再由模具表面施压使玻璃受力变形分模取出,即可形成所需要的透镜形状。由于所述第一光学透镜211为非球面透镜,并且模造玻璃需要使用模具对玻璃施压进行加工,模造玻璃制造双凹型的镜片对模具的损伤较大,因此,所述第一光学透镜211的上表面优选为凸面。同时,由于模造玻璃是通过成型模具制造而成,因此,模造玻璃成型后的所述第一光学透镜211的凸起部214的侧壁与光轴之间可能存在较大的倾角,此时可以通过冷加工技术研磨所述第一光学透镜211,使得所述第一光学透镜211的凸起部214的侧壁与光轴的夹角小于15°。
值得一提的是,当所述第一光学透镜211被实施为玻璃透镜时,所述玻璃透光的折射率优选为1.48-1.55,其折射率阿贝数优选为50-71。这样,所述分体式镜头20具有较高的成像品质(例如,将色散等像差很好地控制在一定范围内)。同时,选用玻璃材料可以有较好的温漂。
图6图示了根据本申请实施例的所述分体式镜头的一种变形实施的示意图。如图6所示,在该变形实施中,所述第一光学透镜211还包括设于所述第一光学透镜211的非光学有效区的遮光层23。这里,所述第一光学透镜211的非光学有效区包括所述第一光学透镜211的结构区213以及部分不起成像采光作用的光学区212。在具体实施中,所述遮光层23可通过油墨形成,其中,所述油墨层的厚度优选大于5微米,优选地,所述油墨层的厚度设置为15-30微米,以达到较高的遮光能力。应可以理解,所述遮光层23还起到光阑的作用,例如,当所述遮光层23形成于所述第一光学透镜211的非光学有效区时,所述遮光层23可以控制所述分体式光学透镜的进光量。
具体来说,当所述第一光学透镜211的横向尺寸对应于最顶侧的所述第二光学透镜221时,所述遮光层23包覆所述第一光学透镜211的所述结构区213的上表面和侧表面,以及,所述凸起部214的侧壁,如图6所示。当所述第一光学透镜211的横向尺寸小于最顶侧的所述第二光学透镜221时,所述遮光层23包覆所述第一光学透镜211的结构区213的上表面和侧 表面、所述凸起部214的侧壁,以及,至少部分最顶侧的所述第二光学透镜221的上表面,如图7所示。
进一步地,当所述第一光学透镜211为通过模造玻璃工艺形成的玻璃透镜时,所述第一光学透镜211的边缘处的成型精度相对较难控制,因此,在所述凸起部214的上表面和侧壁之间会形成过渡区域,该过渡区域不起成像采光作用。在本申请一些示例中,所述遮光层23进一步包覆所述凸起部214的侧壁和其上表面之间的过渡区域215,如图8所示。特别地,所述过渡区域215在从所述凸起部214的侧壁向所述凸起部214的中心方向上的长度为0.03-0.05mm。当然,在本申请其他示例中,该距离还可以被设定为其他值,具体取决于模造玻璃工艺的成型精度。同时,本领域技术人员应可以理解,在通过其他成型工艺制成其他材料的透镜时,由于成型精度的问题在边缘处或者过渡处也会存在精度问题,而产生所述过渡区域215。
值得一提的是,在本申请其他示例中,所述遮光层23还可以包覆所述第一光学透镜211的其他区域,例如,所述第一光学透镜211的下表面的非光学区域的至少一部分。甚至,在本申请的其他示例中,所述遮光层23还可以包覆最顶侧的所述第二光学透镜的非光学区域的至少一部分。对此,并不为本申请所局限。
值得一提的是,在本申请其他示例中,所述遮光层23还可以通过其他材料制备而成。例如,所述遮光层23可通过SOMA片附着于所述第一光学透镜211的非光学区212域形成。对此,并不为本申请所局限。
进一步地,在本申请实施例中,所述第一镜头部分21通过主动校准的方式(Active Optical Alignment,AOA)组装于所述第一镜头部分21。
具体来说,在如图5所示意的所述分体式镜头20中,所述第一镜头部分21为“裸镜头”,其仅包括所述第一光学透镜211。相应地,在具体实施中,所述第一光学透镜211通过黏着剂24附着于最顶侧的所述第二光学透镜221的上表面。也就是说,在本申请实施例中,所述第一镜头部分21和所述第二镜头部分22的粘接位置设置在所述第一光学透镜211和最顶侧的所述第二光学透镜221之间。当然,在本申请其他示例中,该粘接位置还 可以设置于其他位置,例如,在所述第一光学透镜211与所述镜筒222之间;在所述第一光学透镜211、最顶侧的所述第二光学透镜221和所述镜筒222之间,对此,并不为本申请所局限。并且,优选地,所述黏着剂24包括不透光材料的胶材,以增加防杂光的效果(杂光可能来自外部光线或者显示屏自身发光经过折射或反射造成)。
图9图示了根据本申请实施例的所述分体式镜头20的一变形实施的示意图。如图9所示,在该变形实施中,所述第一镜头部分21还包括用于收容所述第一光学透镜211的第一镜筒212,也就是说,在该变形实施中,所述第一镜头部分21为非“裸镜头”。相应地,所述第一镜头部分21可通过主动校准的方式通过黏着剂24附着于所述第二镜头部分22,其中,该粘接位置可设置于所述第一镜筒212和所述镜筒222之间,或者,所述第一光学透镜211与最顶侧的所述第二光学透镜221,或者,所述第一光学透镜211、最顶侧的所述第二光学透镜221、所述第一镜筒212和所述镜筒222之间。对此,并不为本申请所局限。
值得一提的是,当所述第一镜头部分21包括所述第一镜筒212时,所述遮光层23的效果可通过所述第一镜筒212实现。也就是说,所述遮光层23形成于所述第一镜筒212。
图10图示了根据本申请实施例的所述分体式镜头的又一种变形实施。如图10所示,在该变形实施中,所述分体式镜头20的横截面的形状为“D”型。图11图示了根据本申请实施例的所述分体式镜头的又一种变形实施。如图11所示,在该变形实施中,所述分体式镜筒222的横截面的形状为
在具体实施中,如图10和图11所示意的所述分体式镜头20能够通过切割至少部分镜筒222甚至至少部分所述第二光学透镜221的结构区213实现;或者,在成型过程中,直接成型具有“D”字型或者
的所述第二光学透镜221。
应可以理解,当所述分体式镜头20被实施为如图10和如图11所示意的所述分体式镜头20时,组装于所述终端设备的前置摄像模组10可更为邻近于终端设备的边缘,也就是说,使得所述显示屏的通孔更靠近边缘,以 提升美观性。
图12图示了根据本申请实施例的所述分体式镜头的又一种变形实施。如图12所示,在该变形实施例中,所述分体式镜头20,还包括设置于最顶侧所述第二光学透镜221的保护元件25。具体来说,所述保护元件25形成于所述第二光学透镜221的上端面上,以保护所述第二光学透镜221。应可以理解,在所述分体式镜头20测试、运输、使用等场景中,其容易被磕碰而导致性能或者可靠性受到损害,尤其是当最顶侧的所述第二光学透镜221与所述镜筒222的上端面齐平时。相应地,通过所述保护元件25可有效地避免所述第二光学透镜221受到磕碰而导致性能或者可靠性受到损害。在具体实施中,所述保护元件25可在所述分体式镜头20组装完成后,通过黏着剂24粘接于最顶侧的所述第二光学透镜221和/或所述镜筒222。
值得一提的是,在本申请的其他示例中,所述分体式镜头20的光学系统还能够以其他方式进行配置,例如,所述第一镜头部分21可包括更多的光学透镜,所述第二镜头部分22可包括更少的光学透镜。例如,所述第一镜头部分21可包括所述第一光学透镜211和至少部分所述第二光学透镜221,所述第二镜头部分22包括其他剩余的所述第二光学透镜221,并且,最顶侧的所述第二光学透镜221同样暴露于所述第二镜头部分22的顶部。
并且,在本申请的其他示例中,所述分体式镜头20还包括更多数量的镜头部分。例如,所述分体式镜头20可包括三个镜头部分:第一镜头部分21、第二镜头部分22和第三镜头部分(未有图示意),并且,所述第一镜头部分21、所述第二镜头部分22和所述第三镜头部分以AOA的方式进行组装,以确保组装精度和良率。
综上,基于本申请实施例的摄像模组10及其分体式镜头20被阐明,其取消第一镜头部分21和第二镜头部分22的“镜筒天面”结构,以使得一方面所述分体式镜头20的调整范围变得更大;另一方面,消除了该“镜筒天面”结构对所述第一光学透镜211的光学设计的影响(尤其是高度设计), 从而所述第一光学透镜211的光学区212能相对更突出于其结构区213,以使当所述分体式镜头20以所述第一光学透镜211嵌合于所述终端设备的所述显示屏的通孔内的方式装配于终端设备时,所述第一光学透镜211的光学区212能更邻近于所述通孔的顶部,以获得较大的视场角和通光量,从而确保所述摄像模组10具有较高的成像质量。
示意性终端设备
根据本申请另一方面,还提供一种终端设备。图15图示了根据本申请实施例的终端设备。如图15所示,所述终端设备100包括:包括显示屏81的终端主体80,以及,如上所述的摄像模组10,其中,所述摄像模组10与所述显示屏81安装于同侧,以被配置为前置摄像模组10,用于实现用户的自拍等功能需求。所述显示屏81可被实施为LCD或者OLED显示屏81。
图16图示了根据本申请实施例的所述分体式镜头组装于终端设备的示意图。如图16所示,所述显示屏81具有贯穿地形成于其中的通孔810,其中,所述通孔810的内径略大于所述凸起部214的横向尺寸。这里,所述显示屏81的通孔810形成于所述显示屏81中不透光的材料中,其中,所述通孔810的顶部为所述显示屏81的盖板层(通常为玻璃盖板)。当所述摄像模组10组装于所述终端设备100的前侧时,所述分体式镜头20的第一光学透镜211的凸起部214嵌入至所述通孔810内。也就是说,在本申请实施例中,所述分体式镜头20以所述第一光学透镜211嵌合于所述显示屏81的通孔810内的方式装配于终端设备,通过这样的方式,所述第一光学透镜211的光学区212能更邻近于所述通孔810的顶部,以获得较大的视场角和通光量,从而确保所述摄像模组10具有较高的成像质量。
特别地,在本申请实施例中,所述第一光学透镜211嵌合于所述显示屏81的通孔810,包括所述第一光学透镜211以有间隙的方式嵌合于所述显示屏81的所述通孔810,以及,所述第一光学透镜211以无间隙的方式适配地嵌合于所述显示屏81的所述通孔810。优选地,所述第一光学透镜211以有间隙的方式嵌合于所述显示屏81的所述通孔810内,这样,所述分体 式镜头20与所述显示屏81之间的组装公差可以被容忍和调整,并且,所述显示屏81的移动对所述分体式镜头20的影响相对较小。
特别地,在本申请实施例中,所述凸起部214的最高点突出所述结构区213的下表面至少0.3-1.2mm,当所述分体式镜头20以所述第一光学透镜211嵌合于所述显示屏81的通孔810内的方式装配于终端设备时,所述凸起部214的上表面与所述通孔810的顶端之间的距离范围为0.01-0.5mm,以使得所述分体式镜头20具有较大的视场角(例如,可不小于60°)和通光量。这里,所述通孔810的顶端表示所述显示屏81的盖板层的下表面。并且,在本申请实施例中,所述凸起部214的直径不大于1-2.5mm,因此,所述显示屏81的所述通孔810的直径可得到缩减,以使得所述终端设备100的“屏占比”可得以提升。
值得一提的是,所述分体式镜头20表面设置的所述遮光层23可避免外部光线或者所述显示屏81内部光线经过折射或者反射造成的杂光。
图17图示了根据本申请实施例的所述分体式镜头组装于所述终端设备的另一种实施方式的示意图。如图17所示,在该变形实施中,所述通孔810被实施为阶梯孔,并且,所述分体式镜头20以所述第一光学透镜211的所述凸起部214和部分所述结构区213嵌合于所述通孔810内的方式装配于终端设备,通过这样的方式,所述第一光学透镜211的光学区212能更邻近于所述通孔810的顶部,以获得较大的视场角和通光量,从而确保所述摄像模组10具有较高的成像质量。值得一提的是,通过这样的方式,所述摄像模组10与所述终端设备100整体高度尺寸能够进一步地缩减,有利于终端设备的轻薄化。
示意性分体式镜头20组装方法
图18图示了根据本申请实施例的所述分体式镜头20的组装过程的示意图。如图18所示,根据本申请的所述分体式镜头20的组装过程,首先包括:提供一镜筒222、至少一第二光学透镜221以及,包括第一光学透镜211的第一镜头部分21,其中,所述镜筒222包括内径自上而下减少的镜筒主 体223以及突出于延伸于所述镜筒主体223的底部区域的承载平台224。
然后,以倒装的方式自下而上地将所述至少一第二光学透镜221安装于所述镜筒主体223内,以形成第二镜头部分22,其中,最顶侧的所述第二光学透镜221完全地暴露于所述镜筒222的顶部。
接着,沿着光轴方向预定位所述第一镜头部分21、第二镜头部分22和感光组件30。
进而,以主动校准的方式调整所述第一镜头部分21与所述第二镜头部分22之间的相对位置关系。
最终,将所述第一镜头部分21固设于所述第一镜头部分21,以形成所述分体式镜头20。
在本申请实施例中,以主动校准的方式调整所述第一镜头部分21与所述第二镜头部分22之间的相对位置关系,包括:
基于所述第一光学透镜211、第二镜头部分22和感光组件30所构成的成像系统所采集的图像的成像质量,调整所述第一镜头部分21与所述第二镜头部分22之间的相对位置关系。
具体来说,首先通过感光组件30配合所述分体式光学镜头获取被测目标的图像,进而,通过SFR、MTF等图像成像质量计算方法计算所述分体式镜头20的成型品质和调整量。然后,根据调整量在至少一个方向上(至少一个方向指的是xyz方向和分别绕xyz轴旋转的方向)实时调整所述第一镜头部分21和所述第二镜头部分22之间的相对位置关系,以通过一次或者多次调整后使得所述分体式镜头20的成像质量(主要包括峰值、场曲、像散等光学参数)达到预设阈值。
在本申请实施例中,将所述第一镜头部分21固设于所述第一镜头部分21,以形成所述分体式镜头20的过程,包括:首先在所述第一光学透镜211和最顶侧的所述第二光学透镜221之间施加黏着剂24;进而,通过固化所述黏着剂24以将所述第一光学透镜211固定地附着于最顶侧的所述第二光学透镜221,从而将所述第一镜头部分21固设于所述第一镜头部分21。特别地,在本申请实施例中,可通过热固化或者光固化的方式固化所述黏着剂 24,也就是说,所述黏着剂24中包含光固化成分或者热固化成分。
值得一提的是,在本申请实施例中,施加黏着剂24的步骤也可以在主动校准之后进行,即,在完成所述分体式镜头20的成像质量校正之后,移开所述第一镜头部分21,然后在所述第二镜头部分22的相应位置施加黏着剂24。对此,并不为本申请所局限。
综上基于本申请实施例的所述分体式镜头20组装方法被阐明,其能够制备如上所述的分体式镜头20及其变形实施。
本领域的技术人员应理解,上述描述及附图中所示的本发明的实施例只作为举例而并不限制本发明。本发明的目的已经完整并有效地实现。本发明的功能及结构原理已在实施例中展示和说明,在没有背离所述原理下,本发明的实施方式可以有任何变形或修改。
Claims (41)
- 一种分体式镜头,其特征在于,包括:包括第一光学透镜的第一镜头部分;以及第二镜头部分,所述第二镜头部分包括镜筒和安装于所述镜筒内的至少一第二光学透镜,所述镜筒的内径尺寸上大下小,最顶侧的所述第二光学透镜完全地暴露于所述镜筒的顶部,其中,所述第一镜头部分与所述第二镜头部分之间具有调整间隙,并且,所述第一镜头部分通过黏着剂附着于最顶侧的所述第二光学透镜。
- 根据权利要求1所述的分体式镜头,其中,所述第一光学透镜通过所述黏着剂附着于最顶侧的所述第二光学透镜。
- 根据权利要求1所述的分体式镜头,其中,所述镜筒包括内径自上而下减小的镜筒主体以及突出于延伸于所述镜筒主体的底部区域的承载平台,所述至少一第二光学透镜以倒装的方式自下而上地安装于所述镜筒主体内,最底侧的所述第二光学透镜安装于所述承载平台,所述镜筒主体的顶部具有开口以完全地暴露最顶侧的所述第二光学透镜。
- 根据权利要求3所述的分体式镜头,其中,所述镜筒主体的下端面低于最底侧的所述第二光学透镜的下端面。
- 根据权利要求3所述的分体式镜头,其中,所述镜筒主体的上端面高于最顶侧的所述第二光学透镜的上端面。
- 根据权利要求3所述的分体式镜头,其中,所述第一光学透镜的上端面高于所述镜筒主体的上端面。
- 根据权利要求1所述的分体式镜头,其中,所述第一光学透镜的通光孔径与最顶侧的所述第二光学透镜的通光孔径的比值为0.8-1.25。
- 根据权利要求1所述的分体式镜头,其中,所述第一光学透镜的横向尺寸小于最顶侧的所述第二光学透镜的横向尺寸。
- 根据权利要求1所述的分体式镜头,其中,至少部分所述第二光学透镜之间相互嵌合。
- 根据权利要求1所述的分体式镜头,其中,最顶侧的所述第二光学透镜的横向尺寸大于最底侧的所述第二光学透镜的横向尺寸。
- 根据权利要求1所述的分体式镜头,其中,最顶侧的所述第二光学 透镜包括凹陷地形成于所述的第二光学透镜的上端面的安装平台,所述安装平台被配置为安装所述第一光学透镜于其上。
- 根据权利要求1所述的分体式镜头,其中,最顶侧的所述第二光学透镜包括突出地形成于所述的第二光学透镜的上端面的安装平台,所述安装平台被配置为安装所述第一光学透镜于其上。
- 根据权利要求1所述的分体式镜头,其中,所述第一光学透镜包括光学区和围绕所述光学区的结构区,其中,所述光学区包括突出地延伸于所述结构区的凸起部。
- 根据权利要求13所述的分体式镜头,其中,所述凸起部的直径不大于1.2mm。
- 根据权利要求13所述的分体式镜头,其中,所述凸起部的侧壁与所述分体式镜头所设定的光轴之间的夹角小于15°。
- 根据权利要求15所述的分体式镜头,其中,所述侧壁基本平行于所述光轴。
- 根据权利要求15所述的分体式镜头,其中,所述凸起部的侧壁基本垂直于所述结构区的上表面。
- 根据权利要求13所述的分体式镜头,其中,所述凸起部的最高点突出所述结构区的下表面至少0.3-1.2mm。
- 根据权利要求18所述的分体式镜头,其中,所述第一光学透镜的总高度为0.4-1.6mm。
- 根据权利要求13所述的分体式镜头,其中,所述光学区的上侧为凸面,与所述上侧相对的下侧为凹面。
- 根据权利要求13所述的分体式镜头,其中,所述第一光学透镜为塑料透镜。
- 根据权利要求13所述的分体式镜头,其中,所述第一光学透镜为玻璃透镜。
- 根据权利要求22所述的分体式镜头,其中,所述玻璃透镜的折射率阿贝数为50-71。
- 根据权利要求22所述的分体式镜头,其中,所述玻璃透镜的折射率为1.48-1.55。
- 根据权利要求22所述的分体式镜头,其中,所述凸起部的上表面 为凸面。
- 根据权利要求13所述的分体式镜头,其中,所述第一光学透镜还包括设置于所述第一光学透镜的非光学有效区的遮光层。
- 根据权利要求26所述的分体式镜头,其中,当所述第一光学透镜的横向尺寸对应于最顶侧的所述第二光学透镜时,所述遮光层包覆的区域包括所述第一光学透镜的所述结构区的上表面和侧表面,以及所述凸起部的侧壁。
- 根据权利要求26所述的分体式镜头,其中,当所述第一光学透镜的横向尺寸小于最顶侧的所述第二光学透镜时,所述遮光层包覆的区域,包括所述第一光学透镜的结构区的上表面和侧表面、所述凸起部的侧壁,以及至少部分最顶侧的所述第二光学透镜的上表面。
- 根据权利要求27或28所述的分体式镜头,其中,所述遮光层进一步包覆所述凸起部的侧壁和其上表面之间的过渡区域,其中,所述过渡区域在从所述凸起部的侧壁向所述凸起部中心的方向上的长度为0.03-0.05mm。
- 根据权利要求26所述的分体式镜头,其中,所述遮光层的材料为油墨材料。
- 根据权利要求1所述的分体式镜头,其中,所述第一镜头部分通过主动校准的方式安装于所述第二镜头部分。
- 根据权利要求31所述的分体式镜头,其中,所述第一光学透镜的下表面高于所述镜筒的上端面。
- 根据权利要求1所述的分体式镜头,进一步包括:设置于最顶侧所述第二光学透镜的保护元件。
- 根据权利要求1所述的分体式镜头,其中,所述分体式镜头的横截面的形状为“D”型。
- 一种摄像模组,其特征在于,包括:根据权利要求1-34任一所述的分体式镜头;以及感光组件,其中,所述分体式镜头保持于所述感光组件的感光路径上。
- 一种终端设备,其特征在于,包括:包括显示屏的终端主体;以及摄像模组,其中,所述摄像模组包括:根据权利要求1-34任一所述的分体式镜头;以及感光组件,其中,所述分体式镜头保持于所述感光组件的感光路径上;其中,所述摄像模组与所述显示屏安装于所述终端主体的同侧,以被配置为前置摄像模组;其中,所述显示屏具有贯穿地形成于其中的通孔,所述通孔的内径略大于所述凸起部的横向尺寸,当所述摄像模组安装于所述终端主体的前侧时,所述第一光学透镜的所述凸起部嵌合于所述通孔内。
- 根据权利要求36所述的终端设备,其中,所述凸起部的上表面与所述通孔的顶端之间的距离范围为0.01-0.5mm。
- 根据权利要求36所述的终端设备,其中,所述通孔为阶梯孔,以使得当所述摄像模组与所述显示屏安装于所述终端主体的同侧时,所述第一光学透镜的所述凸起部和部分所述结构区嵌合于所述通孔内。
- 一种分体式镜头组装方法,其特征在于,包括:提供一镜筒、至少一第二光学透镜以及,包括第一光学透镜的第一镜头部分,其中,所述镜筒包括内径自上而下减少的镜筒主体以及突出于延伸于所述镜筒主体的底部区域的承载平台;以倒装的方式自下而上地将所述至少一第二光学透镜安装于所述镜筒主体内,以形成第二镜头部分,其中,最顶侧的所述第二光学透镜完全地暴露于所述镜筒的顶部;沿着光轴方向预定位所述第一镜头部分、第二镜头部分和感光组件;以主动校准的方式调整所述第一镜头部分与所述第二镜头部分之间的相对位置关系;以及将所述第一镜头部分固设于所述第二镜头部分,以形成所述分体式镜头。
- 根据权利要求39所述的分体式镜头组装方法,其中,以主动校准的方式调整所述第一镜头部分与所述第二镜头部分之间的相对位置关系,包括:基于所述第一光学透镜、第二镜头部分和感光组件所构成的成像系统所采集的图像的成像质量,调整所述第一镜头部分与所述第二镜头部分之间的相对位置关系。
- 根据权利要求39所述的分体式镜头组装方法,其中,将所述第一镜头部分固设于所述第一镜头部分,以形成所述分体式镜头,包括:在所述第一光学透镜和最顶侧的所述第二光学透镜之间施加黏着剂;以 及固化所述黏着剂以将所述第一光学透镜固定地附着于最顶侧的所述第二光学透镜,从而将所述第一镜头部分固设于所述第一镜头部分。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/635,495 US20220291473A1 (en) | 2019-08-16 | 2020-07-08 | Split camera lens and assembly method thereof, camera module, and terminal device |
EP20854246.4A EP4016158A4 (en) | 2019-08-16 | 2020-07-08 | SLIT LENS AND METHOD OF ASSEMBLING THEREOF, CAMERA MODULE AND TERMINAL DEVICE |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910757388.2 | 2019-08-16 | ||
CN201921330919.1U CN210534409U (zh) | 2019-08-16 | 2019-08-16 | 分体式镜头、摄像模组和终端设备 |
CN201910757388.2A CN112394465B (zh) | 2019-08-16 | 2019-08-16 | 分体式镜头及其组装方法、摄像模组和终端设备 |
CN201921330919.1 | 2019-08-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021031732A1 true WO2021031732A1 (zh) | 2021-02-25 |
Family
ID=74660416
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/100788 WO2021031732A1 (zh) | 2019-08-16 | 2020-07-08 | 分体式镜头及其组装方法、摄像模组和终端设备 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20220291473A1 (zh) |
EP (1) | EP4016158A4 (zh) |
WO (1) | WO2021031732A1 (zh) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101052909A (zh) * | 2004-11-08 | 2007-10-10 | 松下电器产业株式会社 | 透镜单元 |
JP2010243961A (ja) * | 2009-04-10 | 2010-10-28 | Fujifilm Corp | レンズ鏡筒、及びレンズ間隔調整方法 |
CN105445889A (zh) * | 2015-12-02 | 2016-03-30 | 宁波舜宇光电信息有限公司 | 采用分体式镜头的摄像模组及其组装方法 |
CN206209175U (zh) * | 2016-03-04 | 2017-05-31 | 宁波舜宇光电信息有限公司 | 光学镜头和摄像模组 |
US20180164531A1 (en) * | 2016-12-10 | 2018-06-14 | AAC Technologies Pte. Ltd. | Lens Module |
CN110095848A (zh) * | 2018-01-30 | 2019-08-06 | 大立光电股份有限公司 | 具有双色模造光学元件的成像镜头与电子装置 |
CN210534409U (zh) * | 2019-08-16 | 2020-05-15 | 宁波舜宇光电信息有限公司 | 分体式镜头、摄像模组和终端设备 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9591221B2 (en) * | 2014-01-08 | 2017-03-07 | Apple Inc. | Magnetic camera component mounting in cameras |
US10025063B2 (en) * | 2014-04-10 | 2018-07-17 | Mems Start, Llc | Miniature lens assembly and method of making same |
CN109856753A (zh) * | 2019-03-19 | 2019-06-07 | 信利光电股份有限公司 | 一种小型镜头及屏下光学组件 |
-
2020
- 2020-07-08 EP EP20854246.4A patent/EP4016158A4/en active Pending
- 2020-07-08 WO PCT/CN2020/100788 patent/WO2021031732A1/zh unknown
- 2020-07-08 US US17/635,495 patent/US20220291473A1/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101052909A (zh) * | 2004-11-08 | 2007-10-10 | 松下电器产业株式会社 | 透镜单元 |
JP2010243961A (ja) * | 2009-04-10 | 2010-10-28 | Fujifilm Corp | レンズ鏡筒、及びレンズ間隔調整方法 |
CN105445889A (zh) * | 2015-12-02 | 2016-03-30 | 宁波舜宇光电信息有限公司 | 采用分体式镜头的摄像模组及其组装方法 |
CN206209175U (zh) * | 2016-03-04 | 2017-05-31 | 宁波舜宇光电信息有限公司 | 光学镜头和摄像模组 |
US20180164531A1 (en) * | 2016-12-10 | 2018-06-14 | AAC Technologies Pte. Ltd. | Lens Module |
CN110095848A (zh) * | 2018-01-30 | 2019-08-06 | 大立光电股份有限公司 | 具有双色模造光学元件的成像镜头与电子装置 |
CN210534409U (zh) * | 2019-08-16 | 2020-05-15 | 宁波舜宇光电信息有限公司 | 分体式镜头、摄像模组和终端设备 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4016158A4 * |
Also Published As
Publication number | Publication date |
---|---|
EP4016158A1 (en) | 2022-06-22 |
EP4016158A4 (en) | 2022-11-02 |
US20220291473A1 (en) | 2022-09-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10670828B2 (en) | Optical image capturing system with thin mounting components | |
CN210323544U (zh) | 屏下摄像组件、摄像模组和光学镜头 | |
TWI728690B (zh) | 成像鏡頭、相機模組及電子裝置 | |
CN112394465B (zh) | 分体式镜头及其组装方法、摄像模组和终端设备 | |
CN210442561U (zh) | 分体式镜头、摄像模组和终端设备 | |
EP3553581B1 (en) | Lens structure, manufacturing method thereof, and camera | |
CN210323547U (zh) | 屏下摄像组件、摄像模组和光学镜头 | |
CN214756582U (zh) | 光学镜头及摄像模组 | |
CN210323546U (zh) | 屏下摄像组件、摄像模组和光学镜头 | |
CN210534409U (zh) | 分体式镜头、摄像模组和终端设备 | |
CN110728905B (zh) | 电子设备 | |
US20200099832A1 (en) | Optical image capturing module | |
WO2021027431A1 (zh) | 屏下摄像组件、摄像模组和光学镜头及其制作方法 | |
WO2021031725A1 (zh) | 屏下摄像组件、摄像模组和光学镜头及其制作方法 | |
CN210323545U (zh) | 屏下摄像组件、摄像模组和光学镜头 | |
WO2021031732A1 (zh) | 分体式镜头及其组装方法、摄像模组和终端设备 | |
US10816749B2 (en) | Optical image capturing module and system with multi-lens frame and manufacturing method thereof | |
CN112540437B (zh) | 分体式镜头及其组装方法和摄像模组 | |
CN210323536U (zh) | 分体式镜头和摄像模组 | |
CN112731610B (zh) | 光学镜头及其组装方法和摄像模组 | |
CN112444934B (zh) | 屏下摄像组件、摄像模组和光学镜头及其制作方法 | |
CN112444936B (zh) | 屏下摄像组件、摄像模组和光学镜头及其制作方法 | |
CN112578524A (zh) | 分体式镜头、摄像模组和终端设备 | |
CN115412653A (zh) | 光学镜头及摄像模组 | |
WO2021244327A1 (zh) | 光学镜头、摄像模组和终端设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20854246 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020854246 Country of ref document: EP Effective date: 20220316 |