WO2021244327A1 - 光学镜头、摄像模组和终端设备 - Google Patents
光学镜头、摄像模组和终端设备 Download PDFInfo
- Publication number
- WO2021244327A1 WO2021244327A1 PCT/CN2021/095177 CN2021095177W WO2021244327A1 WO 2021244327 A1 WO2021244327 A1 WO 2021244327A1 CN 2021095177 W CN2021095177 W CN 2021095177W WO 2021244327 A1 WO2021244327 A1 WO 2021244327A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical lens
- sleeve
- protrusion
- optical
- lens
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B7/00—Mountings, adjusting means, or light-tight connections, for optical elements
- G02B7/02—Mountings, adjusting means, or light-tight connections, for optical elements for lenses
- G02B7/022—Mountings, adjusting means, or light-tight connections, for optical elements for lenses lens and mount having complementary engagement means, e.g. screw/thread
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B7/00—Mountings, adjusting means, or light-tight connections, for optical elements
- G02B7/02—Mountings, adjusting means, or light-tight connections, for optical elements for lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B7/00—Mountings, adjusting means, or light-tight connections, for optical elements
- G02B7/02—Mountings, adjusting means, or light-tight connections, for optical elements for lenses
- G02B7/025—Mountings, adjusting means, or light-tight connections, for optical elements for lenses using glue
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B30/00—Camera modules comprising integrated lens units and imaging units, specially adapted for being embedded in other devices, e.g. mobile phones or vehicles
Definitions
- This application relates to the field of camera modules, in particular to optical lenses, camera modules and terminal equipment.
- the front camera module is an indispensable component.
- the front camera module and the display screen of the terminal device are arranged on the same side to meet the needs of consumers such as selfies.
- the ever-increasing "screen-to-body ratio" puts higher and higher requirements on the structure and layout of the front camera module.
- different manufacturers have developed a variety of solutions from different angles.
- the first solution is to use a telescopic camera module to hide and use the camera module. More specifically, when a camera module is needed, the camera module can be extended out of the terminal device for shooting; after the shooting is completed, the camera module is retracted into the housing of the terminal device. However, the camera module is prone to be impacted by external forces in the process of continuous expansion and contraction (especially when the camera module extends out of the terminal device, the camera module is more susceptible to damage), resulting in damage to the front camera module. The telescopic scheme is more difficult to maintain and replace. Similar to this, another solution is to slidably install the display screen and the housing part of the terminal device. The camera module is installed on the housing part, so that when the front camera module needs to be used, the display can be moved relatively.
- the screen or shell part is used to expose the camera module for shooting. When it is not needed, the screen or shell part is moved to the original position to hide the camera module.
- this solution requires constant movement of the display screen or the housing part, and the display screen will become a vulnerable part.
- the display screen and the housing part are misaligned. This configuration method is not Facilitate the installation and fixation of terminal equipment.
- the second solution is to open a through hole on the display screen of the terminal device.
- some manufacturers choose to open a U-shaped hole at the top of the display screen of the terminal device, and place the front camera module, earpiece and other sensing devices in the U-shaped hole.
- the front camera module is the largest in the front sensor, a larger U-shaped hole is required, which has a greater impact on the "screen-to-body ratio".
- some manufacturers changed the U-shaped holes to drop-shaped, but due to the limitations of the structure of the front camera module and the limitations of the screen opening process, the openings cannot be made more. small.
- aperture screen refers to the formation of a light window that can transmit visible light by removing or canceling part of the camera module in the display screen to receive light; Module), so as to improve the "screen-to-body ratio" of the terminal device while realizing the front camera of the terminal device.
- This solution has a more compact and safe packaging structure.
- the camera module or display screen will not become a vulnerable component.
- its opening size is smaller and More beautiful.
- the structure of the existing optical lens determines that even if the "open-hole screen" is adopted, the opening cannot be further reduced.
- the current window size of the "open-hole screen” is at least 4.5mm or more. Therefore, it is difficult to meet the expectations of consumers for the "open-hole screen".
- An advantage of the present application is to provide an optical lens, camera module, and terminal device, wherein the optical lens adopts a "small head” optical design to allow the light window opened on the display screen of the terminal device to be Further reduction, so as to further improve the "screen ratio" of the terminal device.
- the optical lens adopts a "small head” optical design, which means that the head size of the optical lens that extends into the light window is smaller than that of the existing camera module. .
- optical lens is a split lens, which includes a first lens part and at least a second lens part, wherein the first lens part
- the first optical lens of a lens part includes a structure area and a convex portion extending upward from the structure area.
- the convex portion is located in the head area of the optical lens and has a relatively small size to be partially formed
- the optical design of the "small head" of the optical lens is not limited to a split lens, which includes a first lens part and at least a second lens part, wherein the first lens part
- the first optical lens of a lens part includes a structure area and a convex portion extending upward from the structure area.
- the convex portion is located in the head area of the optical lens and has a relatively small size to be partially formed
- the optical design of the "small head" of the optical lens is a split lens, which includes a first lens part and at least a second lens part, wherein the first lens part
- the first optical lens of a lens part includes a structure area and
- Another advantage of the present application is to provide an optical lens, camera module, and terminal equipment, wherein the first lens part is sleeved around the first optical lens to prevent stray light from entering the optical lens .
- the sleeve has no top structure, so that the size of the sleeve as a whole is smaller than the existing lens structure. Therefore, the optical lens has a relatively small size.
- Head size That is to say, in the embodiment of the present application, the protrusion and the sleeve are located in the head area of the optical lens and both have a relatively small size, so as to form the "small" of the optical lens.
- the optical design of the head is to provide an optical lens, camera module, and terminal equipment, wherein the first lens part is sleeved around the first optical lens to prevent stray light from entering the optical lens .
- the sleeve has no top structure, so that the size of the sleeve as a whole is smaller than the existing lens structure. Therefore, the optical lens has
- Another advantage of the present application is to provide an optical lens, a camera module, and a terminal device, wherein when the optical lens is assembled on the terminal device, the first lens part can be more deeply embedded in the terminal device In the light window of the display screen of the device, so that the optical zone formed on the first optical lens can be closer to the top of the light window to obtain a larger field of view and light flux, thereby ensuring the camera
- the module has high imaging quality.
- Another advantage of the present application is to provide an optical lens, camera module and terminal equipment, wherein the first lens part includes a fastening structure formed between the first optical lens and the sleeve to The fastening structure strengthens the bonding strength between the sleeve and the first optical lens, so as to prevent the sleeve from falling off or separating from the first optical lens.
- Another advantage of the present application is to provide an optical lens, camera module and terminal equipment, wherein the first lens part includes a fastening structure formed between the first optical lens and the sleeve to Through the fastening structure, the sleeve can be more closely attached to the periphery of the first optical lens, so as to obtain a better anti-stray light effect.
- an optical lens which includes:
- the first lens part includes a first optical lens and a sleeve.
- the first optical lens has a structure area and a convex portion extending upward from the upper surface of the structure area.
- the convex portion has an upper surface and a sleeve.
- the upper surface extends downward to the side surface of the upper surface of the structure area, wherein the first lens part further includes a fastening structure formed between the first optical lens and the sleeve, and The fastening structure, the sleeve is fastened to the first optical lens; and
- the second lens part assembled with the first lens part includes a lens barrel and at least one second optical lens installed in the lens barrel.
- the fastening structure is formed between the side surface of the protrusion and the sleeve.
- the fastening structure is formed between the upper surface of the structure area and the lower surface of the sleeve.
- the fastening structure includes at least one protrusion integrally formed on the sleeve and at least one recess formed on the side surface of the protrusion to at least partially Through the cooperation between the at least one protrusion and the at least one groove, the sleeve is fastened to the first optical lens.
- the fastening structure includes at least one groove recessedly formed on the sleeve and at least one protrusion protrudingly formed on the side surface of the protrusion to at least partially Through the cooperation between the at least one protrusion and the at least one groove, the sleeve is fastened to the first optical lens.
- the fastening structure includes a first threaded portion formed on the inner surface of the sleeve and a second threaded portion formed on the side surface of the convex portion to at least partially Through the cooperation between the first threaded portion and the second threaded portion, the sleeve is fastened to the first optical lens.
- the side surface of the raised portion includes a stepped surface at the transition between the raised portion and the structure area and a second surface extending upward from the stepped surface, and At least one groove is recessedly formed on the step surface, and the at least one protrusion is protrudingly formed on the lower surface of the sleeve.
- the side surface of the raised portion includes a stepped surface at the transition between the raised portion and the structure area and a second surface extending upward from the stepped surface, and At least one protrusion is formed on the step surface, and the at least one groove is recessedly formed on the lower surface of the sleeve.
- the fastening structure includes at least one protrusion integrally formed on the lower surface of the sleeve and at least one recess formed on the upper surface of the structure area to at least Partly through the cooperation between the at least one protrusion and the at least one groove, the sleeve is fastened to the first optical lens.
- the fastening structure includes at least one groove recessedly formed on the lower surface of the sleeve and at least one protrusion protrudingly formed on the upper surface of the structure area to The sleeve is fastened to the first optical lens at least partially through the cooperation between the at least one protrusion and the at least one groove.
- the at least one groove includes at least two grooves, and the at least two grooves are arranged symmetrically with respect to the optical axis set by the optical lens;
- the at least one protrusion includes At least two protrusions, and the at least two protrusions are arranged symmetrically with respect to the optical axis.
- the gap between the inner surface of the sleeve and the second surface of the protrusion is less than or equal to 10 um.
- the first lens part further includes an adhesive provided between the sleeve and the side surface of the protrusion.
- the adhesive is provided between the inner surface of the sleeve and the second surface of the protrusion.
- the adhesive is provided on the inner surface of the sleeve and the second surface of the raised portion, and the lower surface of the sleeve and the second surface of the raised portion Between the steps.
- the angle between the second surface of the protrusion and the optical axis set by the optical lens is less than 15°.
- the second surface of the convex portion is parallel to the optical axis set by the optical lens.
- the diameter of the convex portion on the second surface portion is not greater than 1.2 mm.
- the height of the protrusion is greater than or equal to 0.74 mm.
- the distance between the highest point of the protrusion and the lower surface of the structure area is less than or equal to 1.3 mm.
- the ratio between the height of the protrusion and the distance between the highest point of the protrusion and the lower surface of the structure region is greater than or equal to 0.57.
- the upper surface of the convex portion includes a convex surface
- the lower surface of the structure area includes a concave surface corresponding to the convex surface
- the first optical lens is a glass lens.
- the Abbe number of the refractive index of the glass lens is 50-71.
- the refractive index of the glass lens is 1.48-1.55.
- the present application also provides a camera module, which includes: the above-mentioned optical lens.
- the total length of the optical mechanism of the optical lens is less than or equal to 4.5 mm, and the ratio between the height of the protrusion and the total term of the optical mechanism of the optical lens is less than or equal to 0.16.
- a terminal device which includes:
- the main body of the terminal equipment The main body of the terminal equipment.
- a camera module wherein the camera module includes the optical lens as described above, and wherein the camera module is configured as a front camera module.
- the terminal device main body includes a display screen, the display screen has a light window formed therethrough, and the camera module extends into the light window.
- the distance between the upper surface of the protrusion and the top end of the light window is in the range of 0.01-0.5 mm.
- the size of the light window is less than or equal to 3um.
- FIG. 1 illustrates a schematic diagram of a conventional split optical lens.
- FIG. 2 illustrates a schematic diagram of a conventional split optical lens assembled in a terminal device.
- Fig. 3 illustrates a schematic diagram of an optical lens according to an embodiment of the present application.
- Fig. 4 illustrates a schematic diagram of a first optical lens of the optical lens according to an embodiment of the present application.
- Fig. 5 illustrates a schematic diagram of a first lens portion of an optical lens according to another embodiment of the present application.
- FIG. 6 illustrates another schematic diagram of the first lens part according to another embodiment of the present application.
- FIG. 7 illustrates a schematic diagram of a modified implementation of the first lens part according to another embodiment of the present application.
- FIG. 8 illustrates a schematic diagram of another modified implementation of the first lens part according to another embodiment of the present application.
- FIG. 9 illustrates a schematic diagram of another modified implementation of the first lens part according to another embodiment of the present application.
- Fig. 10 illustrates a schematic diagram of another modified implementation of the first lens part according to another embodiment of the present application.
- FIG. 11 illustrates a schematic diagram of a camera module according to an embodiment of the present application.
- FIG. 12 illustrates a schematic diagram of the camera module being assembled in a terminal device according to an embodiment of the present application.
- Fig. 13 illustrates a schematic diagram of a terminal device according to an embodiment of the present application.
- the optical lens includes an integrated optical lens and a split optical lens.
- FIG. 1 illustrates a schematic diagram of an existing split optical lens. As shown in FIG.
- the split optical lens includes a first A lens portion 1P and a second lens portion 2P, wherein the first lens portion 1P includes a first optical lens 11P and a first lens barrel 12P for accommodating the first optical lens 11P, and the second lens portion 2P includes at least a second The optical lens 21P and the second lens barrel 22P for accommodating at least one optical lens 21P.
- FIG. 2 illustrates a schematic diagram of a conventional split optical lens assembled in a terminal device.
- the size of the light window 3P of the display screen of the terminal device is largely determined by the size of the head of the split optical lens, because the first lens barrel 12P and the first lens barrel 12P
- the horizontal size of the optical lens 11P is relatively large. Therefore, the light window 3P of the display screen of the terminal device also needs a relatively large size to be able to meet the requirements of the field of view and the amount of light of the split optical lens, which causes the terminal device
- the light window 3P is larger (at least 4.5mm or more), which affects the improvement of "screen-to-body ratio", aesthetics and user experience.
- the key is to reduce the size of the head of the optical lens, that is, to reduce the size of the part of the optical lens that extends into the light window of the terminal device.
- the part of the optical lens extending into the light window of the terminal device is defined as the head of the optical lens
- the size of the head is defined as the size of the optical lens. Head size.
- the inventor of the present application provides an improved optical lens, as shown in FIG. 3.
- the optical lens 10 according to the embodiment of the present application adopts a "small head" optical design solution, which has a relatively small head size, so that when the optical lens 10 (or includes the When the camera module of the optical lens 10 is assembled in a terminal device, the light window opened by the display screen of the terminal device can be further reduced, thereby further improving the "screen ratio" of the terminal device.
- the optical lens 10 is a split optical lens 10, which includes two lens parts: a first lens part 20 and a second lens part 30.
- a lens part 20 includes a first optical lens 21 and a sleeve 22 arranged around the first optical lens 21, and the second lens part 30 includes a lens barrel 32 and at least one second lens mounted in the lens barrel 32.
- the optical design of the “small head” of the optical lens 10 is mainly implemented in the first lens part 20.
- the first optical lens 21 includes a structure area 211 and a protrusion 212 extending upward from the structure area 211.
- the protrusion The portion 212 has an upper surface 213 and a side surface 214 extending between the upper surface 213 and the upper surface of the structure area 211, wherein the upper surface 213 of the convex portion 212 forms the upper surface of the optical lens 10
- the surface, and the surface tangent to the upper surface 213 of the protrusion 212 forms the front end surface of the optical lens 10.
- the first optical lens 21 includes an optical zone and a non-optical zone, where the optical zone represents an area in the first optical lens 21 that transmits light and participates in imaging, and the non-optical zone represents the first optical zone.
- the optical zone is formed on the upper surface 213 of the protrusion 212 and the lower surface of the structure area 211 and on the upper surface of the protrusion 212.
- the range of the optical zone of the first optical lens 21 can also be adjusted, for example, including at least a part of the side wall of the convex portion 212.
- the upper surface 213 of the protrusion 212 includes a convex surface (arc surface) for converging light to increase the amount of light entering.
- the lower surface of the structure area 211 It includes a concave surface corresponding to the convex surface for diverging light.
- the structural size configuration of the protrusion 212 constitutes a part of the “small head” design of the optical lens 10.
- the raised portion 212 extends upward from the upper surface of the structure area 211, wherein the height of the raised portion 212 is greater than or equal to 0.74 mm, here, the raised portion 212
- the height of the raised portion 212 represents the distance between the highest point of the raised portion 212 and the upper surface of the structure area 211.
- the distance between the highest point of the protrusion 212 and the lower surface of the structure area 211 is less than or equal to 1.3 mm.
- the protrusion 212 towers above the structure area 211.
- the ratio between the height of the raised portion 212 and the distance between the highest point of the raised portion 212 and the lower surface of the structure region 211 is greater than Or equal to 0.57.
- the lateral dimension of the protrusion 212 is less than or equal to 2.4 mm, and the angle between the side surface 214 of the protrusion 212 and the optical axis set by the optical lens 10 is less than 15°, with this size configuration, the protrusion 212 has an elongated structure relative to the structure area 211. In this way, the optical design of the "small head" of the optical lens 10 is partially formed.
- the lateral dimension of the protrusion 212 is 2.4 mm
- the image circle of the optical lens 10 is 6.8 mm
- the lateral dimension of the protrusion is the same as the image circle of the optical lens 10
- the ratio is 0.35, that is, the optical lens 10 according to the embodiment of the present application has the characteristic of a large image surface.
- the sleeve 22 is arranged around the first optical lens 21. More specifically, as shown in FIG. 3, in the embodiment of the present application, the sleeve 22 It is arranged on the outer side of the convex portion 212 of the first optical lens 21 (for example, sleeved on the outer peripheral surface of the convex portion 212).
- the side surface 214 of the protrusion 212 includes a step surface 215 for placing the sleeve 22.
- the step surface 215 is formed in the transition area between the side surface 214 of the protrusion 212 and the upper surface of the structure area 211. That is to say, in the embodiment of the present application, the side surface 214 of the raised portion 212 may include a stepped surface 215 formed in the transition area between the raised portion 212 and the structure region 211 and a stepped surface 215 that extends over the The second surface 216 between the step surface 215 and the upper surface 213 of the protrusion 212.
- the sleeve 22 arranged around the first optical lens 21 also functions as an aperture, that is, the amount of light entering the optical lens 10 can be controlled by the sleeve 22.
- the sleeve 22 has no lens barrel surface structure (the lens barrel surface structure represents The top surface structure of the lens barrel), or, to a certain extent, the sleeve 22 is a lens barrel with the top surface structure removed. Because of this, the sleeve 22 has a relatively small size compared to the existing lens barrel structure, and because there is no lens barrel top surface structure, the thickness of the wall structure forming the sleeve 22 can be reduced. In this way, the size of the sleeve 22 is further reduced.
- the head of the optical lens 10 is the part of the optical lens 10 that extends into the light window of the terminal device. Accordingly, in the embodiment of the present application, the optical lens 10 The head of the lens includes at least a part of the sleeve 22 and at least a part of the upper area of the protrusion 212. Therefore, when the protrusion 212 with a relatively small size and the protrusion 212 with a relatively small size are configured When the sleeve 22 is described, the size of the head of the optical lens can be reduced, so as to realize the optical design scheme of "small head".
- the sleeve 22 is arranged on the outer side of the convex portion 212 of the first optical lens 21. This configuration is convenient for adjusting the sleeve during the assembly process. The barrel 22 is clamped, which makes the subsequent assembly process more convenient. At the same time, the sleeve 22 disposed on the protrusion 212 can also protect the first optical lens 21, prevent external impact, reduce lens damage, and improve yield.
- the first optical lens 21 can be implemented as a plastic lens, which can be molded by plastic injection and cut and polished to a desired shape.
- the first optical lens 21 can also be implemented as a glass lens, which can be prepared by a glass molding process and cut or polished into a desired shape.
- the distance between the highest point of the convex portion 212 of the first optical lens 21 and the lower surface of the structure area 211 is greater than or equal to 0.3 mm, and the total length of the first optical lens 21 is greater than or equal to 0.3 mm.
- the height is 0.4-1.6 mm, that is, the height dimension of the first optical lens 21 is relatively large, which easily causes the light transmittance of the first optical lens 21 to be relatively low. Therefore, preferably, in the embodiment of the present application, the first optical lens 21 is made of a glass material with higher light transmittance through a glass molding process, so that the height and size of the first optical lens 21 can be reduced. Great influence on light transmittance.
- the forming principle of molded glass is: place the preform of the glass that has its initial shape in a precision processing mold, raise the temperature to soften the glass, and then press the mold surface to deform the glass by force. Take it out to form the required lens shape.
- the first optical lens 21 is an aspherical lens, and the molded glass needs to be processed by pressing the glass with a mold, the biconcave lens produced by the molded glass will cause greater damage to the mold. Therefore, the first optical lens 21
- the upper surface is preferably convex.
- the molded glass is manufactured by a forming mold, there may be a relatively large inclination angle between the side surface 214 of the convex portion 212 of the first optical lens 21 after the molded glass is formed and the optical axis.
- the first optical lens 21 may be ground by cold working technology, so that the angle between the side surface 214 of the convex portion 212 of the first optical lens 21 and the optical axis is less than 15°.
- the light-transmissive refractive index of the glass is preferably 1.48-1.55, and its refractive index Abbe number is preferably 50-71.
- the split lens has higher imaging quality (for example, aberrations such as dispersion are well controlled within a certain range).
- the use of glass materials can have better temperature drift.
- an adhesive may be applied between the sleeve 22 and the first optical lens 21, so The adhesive may be applied between the inner surface of the sleeve 22 and the second surface 216 of the protrusion 212, and/or the lower surface of the sleeve 22 and the step of the protrusion 212 Between surface 215. It is worth mentioning that when the adhesive is applied between the inner surface of the sleeve 22 and the second surface 216 of the protrusion 212, the step surface 215 can also prevent glue overflow. The role of.
- the second lens barrel 32 partly includes a lens barrel 32 and at least one second optical lens 31, preferably, includes a plurality of the second optical lenses 31.
- the inner diameter of the lens barrel 32 is larger and smaller, and the plurality of second optical lenses 31 are mounted in the lens barrel 32 from top to bottom in an upside-down manner.
- the upper portion of the second lens portion 30 indicates the direction of the second lens portion 30 toward the object side
- the lower portion of the second lens portion 30 indicates the direction of the second lens portion 30 toward the image side.
- an adhesive may be provided between the plurality of second optical lenses 31 to strengthen the structure of the lens group formed by the plurality of second optical lenses 31.
- At least part of the second optical lenses 31 can be interlocked with each other, that is, in some examples of the present application, part of the The second optical lenses 31 are fitted with each other to form a fitted lens.
- the first lens portion 20 and the second lens portion 30 may also be connected to each other.
- An adhesive 40 is provided therebetween, that is, an adhesive 40 is provided between the lower surface of the structure area 211 of the first optical lens 21 and the upper surface of the lens barrel 32 of the second lens portion 30.
- the optical lens can be assembled in the following manner:
- a photosensitive component acquires the first lens portion 20 and the The image of the lens assembly composed of the second lens part 30 is further used to calculate the imaging quality and adjustment amount of the lens assembly through image algorithms such as SFR and MTF, and then, in at least one direction (adjustment) according to the adjustment amount
- the directions include X-axis, Y-axis, Z-axis, and directions around X-axis, Y-axis, and Z-axis).
- the imaging quality of the lens assembly (for example, the imaging quality can be evaluated by optical parameters such as peak value, field curvature, astigmatism, etc.) meets the preset requirements;
- the adhesive 40 between the first lens portion 20 and the second lens portion 30 is cured, so that the relative position between the first lens portion 20 and the lens portion is determined Come down.
- the optical lens 10 of the embodiment of the present application adopts a "small head” optical design to allow the light window opened by the display screen of the terminal device to be further reduced, thereby further improving the terminal
- the "screen ratio" of the device More specifically, when the optical lens 10 is assembled on a terminal device, the first lens portion 20 can be more deeply fitted into the light window of the display screen of the terminal device, so that it is formed on the first
- the optical zone of an optical lens 21 can be closer to the top of the light window to obtain a larger field of view and light flux, thereby ensuring that the camera module has a higher imaging quality.
- the inventor of the present application found that during the manufacturing process, the processed first optical lens 21 has a certain error (especially the convex portion of the first optical lens 21). 212). From a top view point of view, the processed convex portion 212 of the first optical lens 21 is actually a circle with a certain roundness error. Moreover, when the sleeve 22 is fixed to the outside of the convex portion 212 of the first optical lens 21, there is also a gap between the lower surface of the sleeve 22 and the step surface 215 of the convex portion 212 Assembly error in the plane direction.
- the matching accuracy and strength of the sleeve 22 and the first optical lens 21 depend on the matching accuracy between two pairs of surfaces: the first optical lens 21
- the matching accuracy between the two pairs of surfaces cannot be guaranteed, that is, there is a certain matching gap between the two pairs of surfaces. Due to the existence of the gap, the sleeve 22 cannot fit and fit tightly to the step surface 215 and the second surface 216, and can only be installed on the sleeve 22 and the first surface 216.
- the adhesive 40 between the optical lenses 21 barely increases the bonding strength, which causes the sleeve 22 to easily loosen in the optical axis direction.
- the sleeve 22 moves up loosely, when its height is higher than the preset height, it will cause a decrease in the amount of light; if the sleeve 22 moves down loosely, when its height is lower than the preset height At this time, it will lead to an increase in the amount of light entering and thus an increase in the amount of stray light entering.
- Embodiment 2 the inventor of the present application further improved on the basis of Embodiment 1 to improve the mating accuracy and strength of the sleeve 22 and the first optical lens 21.
- the first lens portion 20 further includes a fastening structure 30 formed between the first optical lens 21 and the sleeve 22 to pass the tightness In the solid structure 30, the sleeve 22 is fastened around the first optical lens 21.
- the fastening structure 30 is formed between the side surface 214 of the protrusion 212 and the sleeve 22.
- the fastening structure 30 includes at least one protrusion 31 integrally formed on the sleeve 22 and a recess formed on the protrusion 212.
- the at least one groove 32 of the side surface 214 at least partially passes through the fit between the at least one protrusion 31 and the at least one groove 32, and the sleeve 22 is fastened to the first optical lens 21 .
- the at least one protrusion 31 portion 212 integrally and protrudingly extends downward from the lower surface of the sleeve 22, and the at least one groove 32 is recessed
- the step surface 215 formed on the protrusion 212 is configured such that, during the process of assembling the sleeve 22 to the first optical lens 21, by aligning the at least one protrusion 31 on the At least one groove 32 can install and position the sleeve 22, and further, by inserting the at least one protrusion 31 into the at least one groove 32, the sleeve 22 and the first groove 32 can be strengthened.
- the bonding strength of the optical lens 21 is configured such that, during the process of assembling the sleeve 22 to the first optical lens 21, by aligning the at least one protrusion 31 on the At least one groove 32 can install and position the sleeve 22, and further, by inserting the at least one protrusion 31 into the at least one groove 32, the sleeve 22 and the first groove 32 can be strengthened.
- the bonding strength between the sleeve 22 and the first optical lens 21 can be strengthened to ensure that the sleeve
- the barrel 22 does not move upward in the direction of the optical axis; at the same time, the cooperation between the at least one groove 32 and the at least one protrusion 31 can also ensure that the sleeve 22 does not rotate in a plane.
- the at least one protrusion 31 includes at least two protrusions 31, and the at least one groove 32 includes at least two grooves 32, that is, the The fastening structure 30 includes a plurality of protrusions 31 and a plurality of grooves 32. More preferably, the arrangement position of the at least two grooves 32 on the first optical lens 21 is evenly and spaced apart with respect to the optical axis set by the optical lens, and/or, the at least two grooves 32 The arrangement positions of the protrusions 31 on the lower surface of the sleeve 22 are evenly and spaced apart with respect to the optical axis set by the optical lens.
- the protrusions 31 are arranged along the lower part of the sleeve 22 at an interval of 120° with respect to the optical axis.
- the circumference formed by the surface is uniformly arranged, and the grooves 32 are uniformly arranged along the circumference formed by the stepped surface 215 of the first optical lens 21 at an interval of 120° with respect to the optical axis.
- the protrusion 31 may be prefabricated and then attached to the lower surface of the sleeve 22, and the groove 32 may be integrally formed on the protrusion.
- the side surface 214 of may also be formed by digging out a part of the side surface 214 after the first optical lens 21 is prefabricated, and this is not limited by this application.
- the adhesive 40 can still be arranged between the sleeve 22 and the first optical lens 21 to enhance the bonding strength between the sleeve 22 and the first optical lens 21.
- the adhesive 40 may only be provided between the sleeve 22 and the second surface 216 of the first optical lens 21, or the adhesive 40 may only be provided on the sleeve Between the lower surface of 22 and the step surface 215 of the first optical lens 21, or the adhesive 40 is simultaneously disposed between the sleeve 22 and the second surface 216 of the first optical lens 21 And is arranged between the lower surface of the sleeve 22 and the stepped surface 215 of the first optical lens 21.
- the starting point for coating the adhesive 40 may be set to The middle position area of the second surface 216 (it should be understood that the middle position area of the second surface 216 does not refer to the physical middle position of the second surface 216 but only means adjacent to the second surface 216 The physical middle position), and then squeeze and apply the adhesive 40 to both sides (upward and downward sides).
- a gap less than or equal to 10 um can be reserved between the inner side surface of the sleeve 22 and the second surface 216. It is worth mentioning that even if part of the adhesive 40 overflows from the second surface 216, it will flow onto the step surface 215, that is, the step surface 215 can prevent the adhesive 40 from overflowing. .
- the groove 32 formed on the step surface 215 can serve as an overflow groove, and when a part of the adhesive 40 is filled into the groove When inside 32, the bonding strength between the protrusion 31 and the groove 32 of the fastening structure 30 can be further strengthened.
- the groove 32 formed on the step surface 215 has multiple effects: not only serves as a part of the fastening structure 30; at the same time, it also serves as a glue overflow groove to prevent glue overflow; and , The bonding strength of the fastening structure 30 can also be strengthened.
- FIG. 7 illustrates a schematic diagram of a modified implementation of the first lens part 20 according to an embodiment of the present application.
- the fastening structure 30 includes at least one groove 32 recessedly formed on the lower surface of the sleeve 22 and a step protrudingly formed on the protrusion 212
- the at least one protrusion 31 of the surface 215 at least partially passes through the fit between the at least one protrusion 31 and the at least one groove 32, and the sleeve 22 is fastened to the first optical lens 21. That is, in this modified implementation, the positions of the protrusion 31 and the recess 32 are reversed.
- the fastening structure 30 may also be formed in other positions.
- the fastening structure 30 is formed on the second surface 216 of the protrusion 212 and the sleeve. Between the inner surface of the barrel 22.
- the side surface 214 of the raised portion 212 includes a stepped surface 215 at the transition between the raised portion 212 and the structure area 211 and a second surface 216 extending upward from the stepped surface 215
- the at least one groove 32 is recessedly formed on the second surface 216, and the at least one protrusion 31 is protrudingly formed on the inner surface of the sleeve 22.
- the side surface 214 of the raised portion 212 includes a stepped surface 215 at the transition between the raised portion 212 and the structure area 211 and a second surface extending upward from the stepped surface 215 216.
- the at least one protrusion 31 is formed on the second surface 216, and the at least one groove 32 is recessed on the inner surface of the sleeve 22.
- the fastening structure 30 achieves the technical effect of fastening through the engagement (or engagement) between the protrusion 31 and the groove 32 .
- the fastening structure 30 may also be implemented by other fastening mechanisms, for example, threaded fitting, binding mechanism, and bolt fitting.
- the fastening structure 30 may also be implemented by other fastening mechanisms, for example, threaded fitting, binding mechanism, and bolt fitting.
- the fastening structure 30 includes a first threaded portion 31A formed on the inner surface of the sleeve 22 and The second threaded portion 32A of the side surface 214 of the raised portion 212 can at least partially pass the fit between the first threaded portion 31A and the second threaded portion 32A, and the sleeve 22 is fastened to The first optical lens 21.
- the side surface 214 of the protrusion 212 includes a second surface 216 and a stepped surface 215.
- the side surface 214 of the protrusion 212 may only include the second surface 216 without the stepped surface 215.
- the fastening structure 30 may be formed between the side surface 214 of the protrusion 212 and the sleeve 22.
- the fastening structure 30 includes at least one protrusion 31 integrally formed on the sleeve 22 and a recess formed thereon.
- the fastening structure can also be formed between the upper surface of the structure area of the first optical lens and the lower surface of the sleeve. This is not for this application. The limitations.
- the optical lens 10 of the embodiment of the present application adopts a "small head” optical design to allow the light window opened by the display screen of the terminal device to be further reduced, thereby further improving the terminal
- the "screen ratio" of the device More specifically, when the optical lens 10 is assembled on a terminal device, the first lens portion 20 can be more deeply fitted into the light window of the display screen of the terminal device, so that it is formed on the first
- the optical zone of an optical lens 21 can be closer to the top of the light window to obtain a larger field of view and light flux, thereby ensuring that the camera module has a higher imaging quality.
- the first lens portion 20 includes a fastening structure 30 formed between the first optical lens 21 and the sleeve 22, so as to strengthen the sleeve 22 to the sleeve 22 through the fastening structure 30
- the bonding strength between the first optical lenses 21 is to prevent the sleeve 22 from falling off or separating from the first optical lens 21.
- the sleeve 22 can be more closely attached to the periphery of the first optical lens 21 to obtain a better anti-stray light effect.
- a camera module is also provided.
- Fig. 11 illustrates a camera module according to an embodiment of the present application.
- the camera module 60 includes the optical lens 10 and the photosensitive assembly 50 as described above, and the optical lens 10 is held by the photosensitive assembly 50 of the photosensitive assembly.
- the camera module 60 can be implemented as a fixed-focus camera module or a moving-focus camera module, which is not limited by this application.
- the camera module 60 When implemented as a dynamic focus camera module, the camera module 60 further includes a driving element disposed between the optical lens 10 and the photosensitive assembly 50 to adjust the optical lens 10 through the driving element. Relative to the positional relationship of the photosensitive component 50.
- the total length of the optical mechanism of the optical lens 10 is less than or equal to 4.5 mm, and the ratio between the height of the protrusion 212 and the general term of the optical mechanism of the optical lens 10 Less than or equal to 0.16.
- the total track length (TTL) of the optical lens 10 represents the highest point of the upper surface of the first optical lens 21 of the optical lens 10 and the imaging surface of the camera module 60 the distance between. In this way, the optical lens 10 has a compact and small size structure configuration.
- the camera module 10 can be configured as a front camera module of a terminal device 80 to meet the needs of users such as selfies.
- the terminal device 80 includes But not limited to smartphones, tablets, wearable devices, etc.
- FIG. 12 illustrates a schematic diagram of the camera module being assembled in the terminal device according to an embodiment of the present application. As shown in FIG.
- the head of the optical lens 10 when the camera module 60 is assembled to the terminal device 80, the head of the optical lens 10 can be more deeply fitted into the light window 810 of the display screen 81 of the terminal device 80 Inside, so that the optical zone formed on the optical lens 10 can be closer to the top of the light window 810 to obtain a larger field of view and light flux, so as to ensure that the camera module 60 has a higher Image quality.
- the distance between the upper surface 213 of the protrusion 212 and the top end of the light window 810 is in the range of 0.01-0.5 mm, This allows the optical lens 10 to have a larger field of view (for example, greater than or equal to 60°) and a larger amount of light.
- the optical lens 10 has a relatively small head size. Therefore, the diameter of the light window 810 of the display screen 81 can be reduced, so that the terminal device 80 The "screen-to-body ratio" can be improved.
- the size of the light window 810 may be less than or equal to 3 mm, and preferably, the size of the light window 810 may be less than or equal to 2.5 mm.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Lens Barrels (AREA)
Abstract
一种光学镜头(10)、摄像模组(60)和终端设备(80)。该光学镜头(10)为分体式光学镜头(10),包括第一镜头部分(20)和至少一第二镜头部分(30)。第一镜头部分(20)包括具有"小头部"结构的第一光学透镜(21)、套筒(22)、以及形成于第一光学透镜(21)和套筒(22)之间的紧固结构(30),通过紧固结构(30)将套筒(22)紧固于第一光学透镜(21)。通过紧固结构(30)加强套筒(22)与第一光学透镜(21)的结合强度,以防止套筒(22)自第一光学透镜(21)脱离或分离。
Description
本申请涉及摄像模组领域,尤其涉及光学镜头、摄像模组和终端设备。
随着移动终端设备的普及,被应用于移动终端设备的用于帮助使用者获取影像(例如视频或者图像)的摄像模组的相关技术得到了迅猛的发展和进步,并且在近年来,摄像模组在诸如医疗、安防、工业生产等诸多的领域都得到了广泛的应用。
在消费电子领域(例如,在智能手机领域)中,前置摄像模组是一个不可或缺的部件。前置摄像模组与终端设备的显示屏设置于同一侧,用于满足消费者自拍等需求。然而,不断增大的“屏占比”,对前置摄像模组的结构、布置提出了越来越高的要求。为了减小前置摄像模组对提高“屏占比”的影响,不同厂商从不同角度开发了多种解决方案。
第一种解决方向为:采用伸缩式的摄像模组,以便隐藏和使用摄像模组。更具体地,在需要摄像模组时,可让摄像模组伸出终端设备进行拍摄;拍摄完毕后,将摄像模组缩回终端设备的壳体内。然而,摄像模组在不断伸缩的过程中,容易受外力撞击(尤其是当摄像模组伸出终端设备后,摄像模组更容易受到损坏)而导致前置摄像模组损坏,并且,这种伸缩式的方案,维修难度和更换难度都比较高。与此类似,还有一种方案是将终端设备的显示屏与壳体部分进行可滑动地安装配置,摄像模组安装于壳体部分,这样,当需要使用前置摄像模组时,相对移动显示屏或壳体部分以将摄像模组暴露出来进行拍摄,当不需要使用时,将显示屏或壳体部分移动到原始位置,以隐藏摄像模组。然而,这种方案需不断移动显示屏或壳体部分,显示屏会成为易受损坏的部分,并且,在使用前置摄像模组时,显示屏与壳体部分错位设置,这种配置方式不利于终端设备的安装与固定。
第二种解决方向为:在终端设备的显示屏上开设通孔。具体来说,为了隐藏前置摄像模组,一些厂商选择在终端设备的显示屏顶端开设U型孔,并 将前置摄像模组、听筒等传感设备放置于该U型孔内。然而,由于前置摄像模组是前置传感器中体积最大的,因此需要较大的U型孔,其对“屏占比”影响较大。为了减少开孔对提高“屏占比”的影响,一些厂商将U型孔改为水滴状,但是由于前置摄像模组自身的结构和屏幕开孔工艺的局限,无法将开孔做得更小。
也有一些厂商提出一种“开孔屏”的技术方案,其通常配合屏下摄像模组来实现提高“屏占比”的目的。“开孔屏”指的是通过去除或取消显示屏中部分摄像模组接收光线的结构,以形成可以透光可见光的光窗;进而,在光窗下方安装摄像模组(即为屏下摄像模组),从而在实现终端设备前置摄像的同时,提升终端设备的“屏占比”。这种方案相对于第一种解决方案,其封装结构更为紧凑且安全,摄像模组或显示屏不会成为易受损伤的部件,相对于第二种解决方案,其开孔尺寸较小且更为美观。
然而,现有的光学镜头的结构决定即使采用“开孔屏”的技术方案,其开孔也不可能进一步地缩减,具体地,当下“开孔屏”的光窗尺寸都至少在4.5mm以上,难以满足消费者期待的“开孔屏”的开孔尽可能地缩减,以最大程度地提高“屏占比”的需求。
发明内容
本申请的一优势在于提供一种光学镜头、摄像模组和终端设备,其中,所述光学镜头采用“小头部”的光学设计,以允许所述终端设备的显示屏所开设的光窗可进一步地缩减,从而进一步地提高所述终端设备的“屏幕比”。这里,所述光学镜头采用“小头部”的光学设计,指的是所述光学镜头的伸入所述光窗部分的头部尺寸相较于现有的摄像模组的头部尺寸较小。
本申请的另一优势在于提供一种光学镜头、摄像模组和终端设备,其中,所述光学镜头为分体式镜头,其包括第一镜头部分和至少一第二镜头部分,其中,所述第一镜头部分的第一光学透镜包括结构区和自所述结构区向上延伸的凸起部,所述凸起部位于所述光学镜头的头部区域且具有相对较小的尺寸,以部分地形成所述光学镜头的“小头部”的光学设计。
本申请另一优势在于提供一种光学镜头、摄像模组和终端设备,其中,所述第一镜头部分采用套筒套接于所述第一光学透镜的周围以防止杂散光进入所述光学镜头。特别地,相较于现有的镜筒结构,所述套筒没有顶部结 构,从而在整体上所述套筒的尺寸小于现有的镜头结构,也因此,所述光学镜头具有相对较小的头部尺寸。也就是说,在本申请实施例中,所述凸起部和所述套筒位于所述光学镜头的头部区域且两者皆具有相对较小的尺寸,以形成所述光学镜头的“小头部”的光学设计。
本申请的另一优势在于提供一种光学镜头、摄像模组和终端设备,其中,当所述光学镜头装配于终端设备时,所述第一镜头部分能更为深入地嵌合于所述终端设备的显示屏的光窗内,以使得形成于所述第一光学透镜的光学区能更邻近于所述光窗的顶部,以获得较大的视场角和通光量,从而确保所述摄像模组具有较高的成像质量。
本申请的另一优势在于提供一种光学镜头、摄像模组和终端设备,其中,所述第一镜头部分包括形成于所述第一光学透镜和所述套筒之间的紧固结构,以通过所述紧固结构加强所述套筒于所述第一光学透镜之间的结合强度,以防止所述套筒自所述第一光学透镜脱落或分离。
本申请的另一优势在于提供一种光学镜头、摄像模组和终端设备,其中,所述第一镜头部分包括形成于所述第一光学透镜和所述套筒之间的紧固结构,以通过所述紧固结构使得所述套筒能够更为贴合地附着于所述第一光学透镜的周围,以获得更佳的防杂散光效果。
通过下面的描述,本申请的其它优势和特征将会变得显而易见,并可以通过权利要求书中特别指出的手段和组合得到实现。
为实现上述至少一目的或优势,本申请提供一种光学镜头,其包括:
第一镜头部分,包括第一光学透镜和套筒,所述第一光学透镜具有结构区和自所述结构区的上表面向上延伸的凸起部,所述凸起部具有上表面和自所述上表面往下延伸至所述结构区的上表面的侧表面,其中,所述第一镜头部分还包括形成于所述第一光学透镜和所述套筒之间的紧固结构,通过所述紧固结构,所述套筒被紧固于所述第一光学透镜;以及
与所述第一镜头部分装配的第二镜头部分,包括镜筒和安装于所述镜筒内的至少一第二光学透镜。
在根据本申请的光学镜头中,所述紧固结构形成于所述凸起部的侧表面与所述套筒之间。
在根据本申请的光学镜头中,所述紧固结构形成于所述结构区的上表面与所述套筒的下表面之间。
在根据本申请的光学镜头中,所述紧固结构包括一体成型于所述套筒的至少一凸起和凹陷地形成于所述凸起部的侧表面的至少一凹槽,以至少部分地通过所述至少一凸起和所述至少一凹槽之间的配合,所述套筒紧固于所述第一光学透镜。
在根据本申请的光学镜头中,所述紧固结构包括凹陷地形成于所述套筒的至少一凹槽和突出地形成于所述凸起部的侧表面的至少一凸起,以至少部分地通过所述至少一凸起和所述至少一凹槽之间的配合,所述套筒紧固于所述第一光学透镜。
在根据本申请的光学镜头中,所述紧固结构包括形成于所述套筒的内表面的第一螺纹部和形成于所述凸起部的侧表面的第二螺纹部,以至少部分地通过所述第一螺纹部和所述第二螺纹部之间的配合,所述套筒紧固于所述第一光学透镜。
在根据本申请的光学镜头中,所述凸起部的侧表面包括位于所述凸起部与所述结构区的过渡处的台阶面和自所述台阶面向上延伸的第二面,所述至少一凹槽凹陷地形成于所述台阶面,所述至少一凸起突出地形成于所述套筒的下表面。
在根据本申请的光学镜头中,所述凸起部的侧表面包括位于所述凸起部与所述结构区的过渡处的台阶面和自所述台阶面向上延伸的第二面,所述至少一凸起形成于所述台阶面,所述至少一凹槽凹陷地形成于所述套筒的下表面。
在根据本申请的光学镜头中,所述紧固结构包括一体成型于所述套筒的下表面的至少一凸起和凹陷地形成于所述结构区的上表面的至少一凹槽,以至少部分地通过所述至少一凸起和所述至少一凹槽之间的配合,所述套筒紧固于所述第一光学透镜。
在根据本申请的光学镜头中,所述紧固结构包括凹陷地形成于所述套筒的下表面的至少一凹槽和突出地形成于所述结构区的上表面的至少一凸起,以至少部分地通过所述至少一凸起和所述至少一凹槽之间的配合,所述套筒紧固于所述第一光学透镜。
在根据本申请的光学镜头中,所述至少一凹槽包括至少二凹槽,所述至少二凹槽相对于所述光学镜头所设定的光轴对称地布置;所述至少一凸起包括至少二凸起,所述至少二凸起相对于所述光轴对称地布置。
在根据本申请的光学镜头中,所述套筒的内表面与所述凸起部的第二面之间的间隙小于或等于10um。
在根据本申请的光学镜头中,所述第一镜头部分进一步包括设置于所述套筒与所述凸起部的侧表面之间的黏着剂。
在根据本申请的光学镜头中,所述黏着剂被设置于所述套筒的内表面与所述凸起部的第二面之间。
在根据本申请的光学镜头中,所述黏着剂被设置于所述套筒的内表面与所述凸起部的第二面,以及,所述套筒的下表面与所述凸起部的台阶面之间。
在根据本申请的光学镜头中,所述凸起部的第二面与所述光学镜头所设定的光轴之间的夹角小于15°。
在根据本申请的光学镜头中,所述凸起部的第二面与所述光学镜头所设定的光轴相平行°
在根据本申请的光学镜头中,所述凸起部在第二面部分的直径不大于1.2mm。
在根据本申请的光学镜头中,所述凸起部的高度大于或等于0.74mm。
在根据本申请的光学镜头中,所述凸起部的最高点与所述结构区的下表面之间的距离小于或等于1.3mm。
在根据本申请的光学镜头中,所述凸起部的高度与所述凸起部的最高点与所述结构区的下表面之间的距离之间的比值大于或等于0.57。
在根据本申请的光学镜头中,所述凸起部的上表面包括凸面,所述结构区的下表面包括对应于所述凸面的凹面。
在根据本申请的光学镜头中,所述第一光学透镜为玻璃透镜。
在根据本申请的光学镜头中,所述玻璃透镜的折射率阿贝数为50-71。
在根据本申请的光学镜头中,所述玻璃透镜的折射率为1.48-1.55。
根据本申请的另一方面,本申请还提供一种摄像模组,其包括:如上所述的光学镜头。
在根据本申请的摄像模组中,所述光学镜头的光学机构总长小于或等于4.5mm,所述凸起部的高度与所述光学镜头的光学机构总称之间的比值小于或等于0.16。
根据本申请的又一方面,还提供一种终端设备,其包括:
终端设备主体;以及
摄像模组,其中,所述摄像模组包括如上所述的光学镜头,其中,所述摄像模组被配置为前置摄像模组。
在根据本申请的终端设备中,所述终端设备主体包括显示屏,所述显示屏具有贯穿地形成于其中的光窗,所述摄像模组伸入所述光窗内。
在根据本申请的终端设备中,所述凸起部的上表面与所述光窗的顶端之间的距离范围为0.01-0.5mm。
在根据本申请的终端设备中,所述光窗的尺寸小于等于3um。
通过对随后的描述和附图的理解,本申请进一步的目的和优势将得以充分体现。
本申请的这些和其它目的、特点和优势,通过下述的详细说明,附图和权利要求得以充分体现。
通过结合附图对本申请实施例进行更详细的描述,本申请的上述以及其他目的、特征和优势将变得更加明显。附图用来提供对本申请实施例的进一步理解,并且构成说明书的一部分,与本申请实施例一起用于解释本申请,并不构成对本申请的限制。在附图中,相同的参考标号通常代表相同部件或步骤。
图1图示了现有分体式光学镜头的示意图。
图2图示了现有的分体式光学镜头组装于终端设备的示意图。
图3图示了根据本申请实施例的光学镜头的示意图。
图4图示了根据本申请实施例的所述光学镜头的第一光学透镜的示意图。
图5图示了根据本申请另一实施例的光学透镜的第一镜头部分的示意图。
图6图示了根据本申请另一实施例的所述第一镜头部分的另一示意图。
图7图示了根据本申请另一实施例的所述第一镜头部分的一变形实施的示意图。
图8图示了根据本申请另一实施例的所述第一镜头部分的另一变形实施的示意图。
图9图示了根据本申请另一实施例的所述第一镜头部分的又一变形实施的示意图。
图10图示了根据本申请另一实施例的所述第一镜头部分的又一变形实 施的示意图。
图11图示了根据本申请实施例的摄像模组的示意图。
图12图示了根据本申请实施例的所述摄像模组被组装于终端设备的示意图。
图13图示了根据本申请实施例的终端设备的示意图。
下面,将参考附图详细地描述根据本申请的示例实施例。显然,所描述的实施例仅仅是本申请的一部分实施例,而不是本申请的全部实施例,应理解,本申请不受这里描述的示例实施例的限制。
实施例1
如前所述,“开孔屏”方案是提高终端设备的屏幕占比中一种较优的技术方案。但是,目前现有光学镜头的结构决定即使采用“开孔屏”方案,屏幕开孔也不可能进一步地缩减,当下“开孔屏”的光窗尺寸都至少在4.5mm以上。按结构来分,光学镜头包括一体式光学镜头和分体式光学镜头,图1图示了现有的一种分体式光学镜头的示意图,如图1所示,该分体式光学镜头,其包括第一镜头部分1P和第二镜头部分2P,其中,第一镜头部分1P包括第一光学透镜11P和用于收容第一光学透镜11P的第一镜筒12P,第二镜头部分2P包括至少一第二光学透镜21P和用于收容至少一光学透镜21P的第二镜筒22P。
图2图示了现有的分体式光学镜头组装于终端设备的示意图。在如图2所示意的组装方案中,终端设备的显示屏的光窗3P尺寸在很大程度上由该分体式光学镜头的头部尺寸决定,由于该第一镜筒12P和所述第一光学透镜11P的横向尺寸较大,因此,终端设备的显示屏的光窗3P也需要相对较大的尺寸才能够满足该分体式光学镜头的视场角和进光量的要求,如此造成了终端设备的光窗3P较大(至少在4.5mm以上),影响提高“屏占比”、美观性和用户体验。
应可以理解,为了进一步地缩减终端设备的光窗尺寸以提高屏幕占比,其关键在于缩减光学镜头的头部尺寸,即,缩减所述光学镜头伸入终端设备的光窗内的部分的尺寸。为了便于说明和理解,在本申请实施例中,将光学 镜头伸入终端设备的光窗内的部分定义为所述光学镜头的头部,所述头部具有的尺寸定义为所述光学镜头的头部尺寸。
基于此,本申请发明人提供了一种改进的光学镜头,如图3所示。如图3所示,根据本申请实施例的所述光学镜头10采用“小头部”的光学设计方案,其具有相对较小的头部尺寸,从而当所述光学镜头10(或包括所述光学镜头10的摄像模组)组装于终端设备时,允许所述终端设备的显示屏所开设的光窗可进一步地缩减,从而进一步地提高所述终端设备的“屏幕比”。
更具体地,如图3所示,根据本申请实施例的所述光学镜头10为分体式光学镜头10,其包括两个镜头部分:第一镜头部分20和第二镜头部分30,所述第一镜头部分20包括第一光学透镜21和设置于所述第一光学透镜21周围的套筒22,所述第二镜头部分30包括镜筒32和安装于所述镜筒32内的至少一第二光学透镜31。特别地,在本申请实施例中,所述光学镜头10的“小头部”的光学设计方案主要实施于所述第一镜头部分20。
具体来说,如图3和图4所示,在本申请实施例中,所述第一光学透镜21包括结构区211和自所述结构区211向上延伸的凸起部212,所述凸起部212具有上表面213和延伸于所述上表面213和所述结构区211的上表面之间的侧表面214,其中,所述凸起部212的上表面213形成所述光学镜头10的上表面,并且,所述与所述凸起部212的所述上表面213相切的表面形成所述光学镜头10的前端面。
应可以理解,所述第一光学透镜21包括光学区和非光学区,其中,光学区表示所述第一光学透镜21中透光且参与成像的区域,所述非光区表示所述第一光学透镜21中不透光和/或透光但不参与成像的区域。具体来说,在如图3所示意的实施例中,所述光学区形成于所述凸起部212的上表面213和所述结构区211的下表面中与所述凸起部212的上表面213对应的部分,当然,在本申请其他示例中,所述第一光学透镜21的光学区的范围还可以调整,例如,包括所述凸起部212的侧壁的至少一部分,对此,并不为本申请所局限。特别地,为了增加进光量,在本申请实施例中,所述凸起部212的上表面213包括凸面(弧形面),用于汇聚光线以增加进光量,所述结构区211的下表面包括对应于所述凸面的凹面,用于发散光线。
在本申请实施例中,所述凸起部212的结构尺寸配置构成所述光学镜头10的“小头部”设计的一部分。具体来说,在本申请实施例中,所述凸起部 212自所述结构区211的上表面向上延伸,其中,所述凸起部212的高度大于或等于0.74mm,这里,所述凸起部212的高度表示所述凸起部212的最高点与所述结构区211的上表面之间的距离。并且,所述凸起部212的最高点与所述结构区211的下表面之间的距离小于或等于1.3mm,通过这样的尺寸配置,所述凸起部212高耸于所述结构区211。具体来说,优选地,在本本申请实施例中,所述凸起部212的高度与所述凸起部212的最高点与所述结构区211的下表面之间的距离之间的比值大于或等于0.57。
并且,在本申请实施例中,所述凸起部212的横向尺寸小于等于2.4mm,所述凸起部212的侧表面214与所述光学镜头10设定的光轴之间的夹角小于15°,通过这样的尺寸配置,所述凸起部212相对于所述结构区211具有细长的结构。如此,部分地形成所述光学镜头10的“小头部”的光学设计方案。在本申请一个具体的示例中,所述凸起部212的横向尺寸为2.4mm,所述光学镜头10的像圆为6.8mm,所述突出部的横向尺寸与所述光学镜头10的像圆比值为0.35,也就是说,根据本申请实施例的所述光学镜头10具有大像面的特征。
为了遮挡光线,减少杂散光的影响,所述套筒22被设置于所述第一光学透镜21的周围,更明确地,如图3所示,在本申请实施例中,所述套筒22被设置于所述第一光学透镜21的所述凸起部212的外侧(例如,套接于所述凸起部212的外周面上)。为了承载和便于安装所述套筒22,在本申请实施例中,所述凸起部212的侧表面214包括一台阶面215,用于放置所述套筒22,优选地,所述台阶面215形成于所述凸起部212的侧表面214与所述结构区211的上表面之间的过渡区域。也就是说,在本申请实施例中,所述凸起部212的侧表面214可包括形成于所述凸起部212和所述结构区211之间过渡区域的台阶面215以及延伸于所述台阶面215和所述凸起部212的上表面213之间的第二面216。这里,设置于所述第一光学透镜21周围的所述套筒22也起到了光阑的作用,即,藉由所述套筒22能控制进入所述光学镜头10的进光量。
对比图1所示意的镜筒和图3所示意的套筒22,应可以观察到,相较于传统的镜筒结构,所述套筒22没有镜筒天面结构(镜筒天面结构表示镜筒顶表面结构),或者说,在某种程度上,所述套筒22是去除了顶面结构的镜筒。正因如此,所述套筒22相较于现有的镜筒结构具有相对较小的尺 寸,并且,因为没有镜筒顶表面结构,形成所述套筒22的壁面结构的厚度尺寸可以缩减,以使得所述套筒22的尺寸进一步地被缩减。如前所述,在本申请实施例中,所述光学镜头10的头部为所述光学镜头10伸入终端设备的光窗内的部分,相应地,在本申请实施例中,所述光学透镜的头部包括所述套筒22的至少一部分与所述凸起部212上部区域的至少一部分,因此,当配置具有相对较小尺寸的所述凸起部212和具有相对较小尺寸的所述套筒22时,所述光学透镜的头部尺寸能够得以缩减,以实现“小头部”的光学设计方案。
值得一提的是,在本申请实施例中,所述套筒22被设置于所述第一光学透镜21的凸起部212的外侧,这样的配置方式,便于在组装过程中对所述套筒22进行夹取,使后续的组装过程更加方便。同时,设置于所述凸起部212的所述套筒22还能够起到保护所述第一光学透镜21的作用,防止外部撞击、减少镜片损坏,提高良率。
在具体实施中,所述第一光学透镜21可被实施为塑料透镜,其可通过塑料注入成型并进行切割打磨出所需的形态。当然,在本申请其他示例中,所述第一光学透镜21还可被实施为玻璃透镜,其可通过模造玻璃工艺制备而成并通过切割或打磨出所需形状。
特别地,在本申请实施例中,所述第一光学透镜21的凸起部212的最高点与所述结构区211的下表面的距离大于等于0.3mm,所述第一光学透镜21的总高度为0.4-1.6mm,即,所述第一光学透镜21的高度尺寸相对较大,容易造成所述第一光学透镜21的透光率相对较低。因此,优选地,在本申请实施例中,所述第一光学透镜21采用较高透光率的玻璃材料通过模造玻璃工艺制成,藉此可以降低所述第一光学透镜21的高度尺寸较大对透光率的影响。
值得一提的是,模造玻璃的成型原理为:将已具初形的玻璃初胚置于精密加工成型模具中,升高温度使玻璃软化,再由模具表面施压使玻璃受力变形分模取出,即可形成所需要的透镜形状。由于所述第一光学透镜21为非球面透镜,并且模造玻璃需要使用模具对玻璃施压进行加工,模造玻璃制造双凹型的镜片对模具的损伤较大,因此,所述第一光学透镜21的上表面优选为凸面。同时,由于模造玻璃是通过成型模具制造而成,因此,模造玻璃成型后的所述第一光学透镜21的凸起部212的侧表面214与光轴之间 可能存在较大的倾角,此时可以通过冷加工技术研磨所述第一光学透镜21,使得所述第一光学透镜21的凸起部212的侧表面214与光轴的夹角小于15°。
值得一提的是,当所述第一光学透镜21被实施为玻璃透镜时,所述玻璃透光的折射率优选为1.48-1.55,其折射率阿贝数优选为50-71。这样,所述分体式镜头具有较高的成像品质(例如,将色散等像差很好地控制在一定范围内)。同时,选用玻璃材料可以有较好的温漂。
为了加强所述套筒22于所述第一光学透镜21之间的结合强度,在本申请实施例中,可在所述套筒22和所述第一光学透镜21之间施加黏着剂,所述黏着剂可施加于所述套筒22的内表面与所述凸起部212的第二面216之间,和/或,所述套筒22的下表面与所述凸起部212的台阶面215之间。值得一提的是,当所述黏着剂被施加于所述套筒22的内表面与所述凸起部212的第二面216之间时,所述台阶面215还能够起到防止溢胶的作用。
如图3所示,在本申请实施例中,所述第二镜筒32部分包括一镜筒32和至少一第二光学透镜31,优选地,包括多个所述第二光学透镜31。特别地,在本申请实施例中,所述镜筒32的内径尺寸上大下小,所述多个第二光学透镜31以倒装的方式自上而下地安装于所述镜筒32内,这里,所述第二镜头部分30的上方表示所述第二镜头部分30朝向物侧的方向,所述第二镜头部分30的下方表示所述第二镜头部分30朝向像侧的方向。并且,也可以在所述多个第二光学透镜31之间设置黏着剂,以对由所述多个第二光学透镜31所形成的透镜组进行结构加强。为了进一步地增强结构强度和可靠性,在本申请一些示例中,至少部分所述第二光学透镜31之间可相互嵌合地设置,也就是说,在本申请的一些示例中,部分所述第二光学透镜31相互嵌合,以形成嵌合透镜。
进一步地,如图3所示,为了加强所述第一镜头部分20和所述第二镜头部分30之间的连接强度,也可以在所述第一镜头部分20和所述第二镜头部分30之间设置黏着剂40,即,在所述第一光学透镜21的结构区211的下表面和所述第二镜头部分30的镜筒32上表面之间设置黏着剂40。
在一种可能的组装过程中,所述光学透镜可通过如下方式进行组装:
首先,分别拾取第一镜头部分20和第二镜头部分30;
然后,预定位所述第一镜头部分20、所述第二镜头部分30和感光组件, 使得所述第一镜头部分20、所述第二镜头部分30和该感光组件所形成的光学系统能够成像;
接着,主动校准所述第二镜头部分30和所述第二镜头部分30之间的相对位置关系,具体地,包括:感光组件(在被电导通后)获取所述第一镜头部分20和所述第二镜头部分30所组成的镜头组件的图像,进而,通过诸如SFR、MTF之类的图像算法计算所述镜头组件的成像品质及调整量,然后,根据调整量在至少一个方向上(调整方向包括X轴,Y轴,Z轴,和绕X轴,Y轴和Z轴的方向)实时主动调整所述第一镜头部分20和所述第二镜头部分30之间的相对位置,直至所述镜头组件的成像品质(例如,成像品质可通过峰值、场曲、像散等光学参数来评估)满足预设要求;
继而,在主动校准后,固化所述第一镜头部分20和所述第二镜头部分30之间的黏着剂40,以使得所述第一镜头部分20和所述镜头部分之间的相对位置确定下来。
应可以理解,本申请实施例的所述光学镜头10采用“小头部”的光学设计,以允许所述终端设备的显示屏所开设的光窗可进一步地缩减,从而进一步地提高所述终端设备的“屏幕比”。更具体地,当所述光学镜头10装配于终端设备时,所述第一镜头部分20能更为深入地嵌合于所述终端设备的显示屏的光窗内,以使得形成于所述第一光学透镜21的光学区能更邻近于所述光窗的顶部,以获得较大的视场角和通光量,从而确保摄像模组具有较高的成像质量。
实施例2
在如图3示意的光学镜头10中,本申请发明人发现:在制备过程中,加工出来的所述第一光学透镜21存在一定的误差(尤其是所述第一光学透镜21的凸起部212),从俯视视角来看,加工出来的所述第一光学透镜21的凸起部212实际为存在一定圆度误差的圆。并且,当所述套筒22被固定于所述第一光学透镜21的凸起部212的外侧时,所述套筒22的下表面与所述凸起部212的台阶面215之间也存在平面方向上的组装误差。这些误差导致,所述套筒22所述第一光学透镜21之间的组装配合精度不高,甚至出现所述套筒22无法适配地卡合于所述第一光学透镜21的所述凸起部212,导致所述套筒22可能发生晃动。
也就是说,在如图3示意的光学镜头10中,所述套筒22与所述第一光学透镜21的配合精度和强度取决于两对面之间的配合精度:所述第一光学透镜21的第二面216与所述套筒22的内侧面,以及,所述第一光学透镜21的台阶面215与所述套筒22的下表面。因此,为了获得更高的配合精度和结合强度,对于配合面的平整度要求较高,但是,由于工艺上存在误差,所述第一光学透镜21的第二面216和台阶面215的表面平整度都无法保证,因此,两对面之间的配合精度也难以保证,即,两对面之间存在一定的配合间隙。由于该间隙的存在,导致所述套筒22无法适配地且紧密地贴合于所述台阶面215和所述第二面216,仅能通过设置于所述套筒22与所述第一光学透镜21之间的黏着剂40勉强提高结合强度,从而导致所述套筒22在光轴方向上容易松动。应可以理解,如果所述套筒22松动向上移动,当其高度高于预设高度时,将导致进光量的减少;如果所述套筒22松动向下移动,当其高度低于预设高度时,将导致进光量的增加从而导致杂散光的进入量增加。
因此,在实施例2中,本申请发明人进一步在实施例1的基础上进行改进,以提高所述套筒22于所述第一光学透镜21的配合精度结合强度。
如图5所示,在本申请实施例中,所述第一镜头部分20进一步包括形成在所述第一光学透镜21和所述套筒22之间的紧固结构30,以通过所述紧固结构30,所述套筒22被紧固于所述第一光学透镜21的周围。相应地,在如图5所示意的实施例中,所述紧固结构30形成于所述凸起部212的侧表面214与所述套筒22之间。
具体来说,如图5所示,在本申请实施例中,所述紧固结构30包括一体成型于所述套筒22的至少一凸起31和凹陷地形成于所述凸起部212的侧表面214的至少一凹槽32,以至少部分地通过所述至少一凸起31和所述至少一凹槽32之间的配合,所述套筒22紧固于所述第一光学透镜21。特别地,在如图5所示意的实施例中,所述至少一凸起31部212一体地且突出地自所述套筒22的下表面往下延伸,所述至少一凹槽32凹陷地形成于所述凸起部212的台阶面215,通过这样的配置使得,在所述套筒22组装于所述第一光学透镜21的过程中,通过对齐所述至少一凸起31于所述至少一凹槽32能够对所述套筒22进行安装定位,进而,通过将所述至少一凸起31分别嵌合于所述至少一凹槽32能够加强所述套筒22与所述第 一光学透镜21的结合强度。也就是说,通过所述至少一凹槽32与所述至少一凸起31之间的配合,能够加强所述套筒22与所述第一光学透镜21之间的结合强度,确保所述套筒22不会在光轴方向上向上移动;同时,通过所述至少一凹槽32与所述至少一凸起31之间的配合,还能够确保所述套筒22不会在平面内转动。
优选地,如图6所示,在本申请实施例中,所述至少一凸起31包括至少二凸起31,所述至少一凹槽32包括至少二凹槽32,也就是说,所述紧固结构30包括多个凸起31和多个凹槽32。更优选地,所述至少二凹槽32于所述第一光学透镜21的布置位置为相对于所述光学透镜所设定的光轴均匀地且间隔地布置,和/或,所述至少二凸起31于所述套筒22的下表面的布置位置为相对于所述光学透镜所设定的光轴均匀地且间隔地布置。例如,当所述第一镜头部分20包括三个凸起31和三个凹槽32时,所述凸起31相对于所述光轴以间隔120°的方式沿着所述套筒22的下表面所形成的圆周均匀布置,所述凹槽32相对于所述光轴以间隔120°的方式沿着所述第一光学透镜21的台阶面215所形成的圆周均匀布置。
值得一提的是,本领域普通技术人员应可以理解,所述凸起31可以先预制形成然后附着于所述套筒22的下表面,所述凹槽32可一体成型于所述凸出部的侧表面214也可以在所述第一光学透镜21预制成型后再挖出所述侧表面214的一部分形成,对此,并不为本申请所局限。
进一步地,仍可以在所述套筒22和所述第一光学透镜21之间设置所述黏着剂40来增强所述套筒22与所述第一光学透镜21之间的结合强度。在具体实施中,所述黏着剂40可仅设置于所述套筒22和所述第一光学透镜21的第二面216之间,或者,所述黏着剂40可仅设置于所述套筒22的下表面和所述第一光学透镜21的台阶面215之间,或者,所述黏着剂40同时被设置在所述套筒22和所述第一光学透镜21的第二面216之间和设置于所述套筒22的下表面和所述第一光学透镜21的台阶面215之间。
特别地,当所述黏着剂40仅被设置于所述套筒22和所述第一光学透镜21的第二面216之间时,优选地,所述黏着剂40涂覆的起点可设置为所述第二面216的中间位置区域(应可以理解,所述第二面216的中间位置区域并非指的是所述第二面216的物理中间位置而仅表示邻近于所述第二面216的物理中间位置),进而向两侧(向上和向下两侧)挤压涂覆所述 黏着剂40。在具体实施中,可选择在所述第二面216邻近所述台阶面215的区域预留一处空白区域不涂覆所述黏着剂40,利用所述黏着剂40的重力和流动性,所述黏着剂40将覆盖所述第二面216的邻近所述台阶面215的下方区域而不会延伸至所述台阶面215,从而实现将所述黏着剂40涂覆于所述套筒22和所述第一光学透镜21的第二面216之间的技术目的。特别地,在这种实施模式中,优选地,可在所述套筒22的内侧面与所述第二面216之间预留小于等于10um的缝隙。值得一提的是,即便有部分所述黏着剂40从所述第二面216溢出,其也将流动至所述台阶面215上,即,所述台阶面215可以防止所述黏着剂40溢出。
值得一提的是,在布设所述黏着剂40时,形成于所述台阶面215的所述凹槽32可充当溢胶槽,并且,当部分所述黏着剂40被填充至所述凹槽32内时,所述紧固结构30的所述凸起31与所述凹槽32之间的结合强度可被进一步地加强。也就是说,形成于所述台阶面215的所述凹槽32具有多重效果:不仅充当了所述紧固结构30的一部分;同时,还充当了溢胶槽起到防止溢胶的作用;并且,还能够加强所述紧固结构30的结合强度。
图7图示了根据本申请实施例的所述第一镜头部分20的一变形实施的示意图。如图7所示,在该变形实施中,所述紧固结构30包括凹陷地形成于所述套筒22的下表面的至少一凹槽32和突出地形成于所述凸起部212的台阶面215的至少一凸起31,以至少部分地通过所述至少一凸起31和所述至少一凹槽32之间的配合,所述套筒22紧固于所述第一光学透镜21。也就是,在该变形实施中,所述凸起31与所述凹槽32的位置发生对调。
应可以理解,在本申请其他实施例中,所述紧固结构30还可以形成于其他位置,例如,所述紧固结构30形成于所述凸起部212的第二面216与所述套筒22的内表面之间。在一个示例中,所述凸起部212的侧表面214包括位于所述凸起部212与所述结构区211的过渡处的台阶面215和自所述台阶面215向上延伸的第二面216,所述至少一凹槽32凹陷地形成于所述第二面216,所述至少一凸起31突出地形成于所述套筒22的内表面。在另一示例中,所述凸起部212的侧表面214包括位于所述凸起部212与所述结构区211的过渡处的台阶面215和自所述台阶面215向上延伸的第二面216,所述至少一凸起31形成于所述第二面216,所述至少一凹槽32凹陷地形成于所述套筒22的内表面。
应可以观察到,在如图5至7所示意的实施例中,所述紧固结构30通过凸起31与凹槽32之间的嵌合(或者说,卡合)实现紧固的技术效果。本领域普通技术人员应可以理解,在本申请其他示例中,所述紧固结构30还可以通过其他紧固机构实现,例如,通过螺纹配合、捆扎机构、插销配合等。例如,在如图8所示意的所述第一镜头部分20的又一变形实施例中,所述紧固结构30包括形成于所述套筒22的内表面的第一螺纹部31A和形成于所述凸起部212的侧表面214的第二螺纹部32A,以至少部分地通过所述第一螺纹部31A和所述第二螺纹部32A之间的配合,所述套筒22紧固于所述第一光学透镜21。
也可以观察到,在如图5至8所示意的实施例中,所述凸起部212的侧表面214包括第二面216和台阶面215,本领域普通技术人员应可以理解,在本申请其他示例中,所述凸起部212的侧表面214可仅包括所述第二面216而不设置所述台阶面215。在这种变形实施中,所述紧固结构30可形成于所述凸起部212的侧表面214与所述套筒22之间。例如,在如图9所示意的所述第一镜头部分20的又一变形实施例中,所述紧固结构30包括一体成型于所述套筒22的至少一凸起31和凹陷地形成于所述凸起部212的侧表面214的至少一凹槽32,以至少部分地通过所述至少一凸起31和所述至少一凹槽32之间的配合,所述套筒22紧固于所述第一光学透镜21;再如,在如图10所示意的所述第一镜头部分20的又一变形实施例中,所述紧固结构30包括凹陷地形成于所述套筒22的至少一凹槽32和突出地形成于所述凸起部212的侧表面214的至少一凸起31,以至少部分地通过所述至少一凸起31和所述至少一凹槽32之间的配合,所述套筒22紧固于所述第一光学透镜21。当然,在这种变形实施例中,所述紧固结构还可以形成于所述第一光学透镜的结构区的上表面与所述套筒的下表面之间,对此,并不为本申请所局限。
值得一提的是,本申请实施例的所述紧固结构30所设置的位置和所述紧固结构30的具体实施方式可相互替换和组合,以形成新的实施形式,对此,并不为本申请所局限。
应可以理解,本申请实施例的所述光学镜头10采用“小头部”的光学设计,以允许所述终端设备的显示屏所开设的光窗可进一步地缩减,从而进一步地提高所述终端设备的“屏幕比”。更具体地,当所述光学镜头10装 配于终端设备时,所述第一镜头部分20能更为深入地嵌合于所述终端设备的显示屏的光窗内,以使得形成于所述第一光学透镜21的光学区能更邻近于所述光窗的顶部,以获得较大的视场角和通光量,从而确保摄像模组具有较高的成像质量。
同时,所述第一镜头部分20包括形成于所述第一光学透镜21和所述套筒22之间的紧固结构30,以通过所述紧固结构30加强所述套筒22于所述第一光学透镜21之间的结合强度,以防止所述套筒22自所述第一光学透镜21脱落或分离。同时,通过所述紧固结构30,所述套筒22能够更为贴合地附着于所述第一光学透镜21的周围,以获得更佳的防杂散光效果。
示意性摄像模组和终端设备
根据本申请另一方面,还提供一种摄像模组。图11图示了根据本申请实施例的摄像模组。如图11所示,所述摄像模组60包括如上所述的光学镜头10和感光组件50,所述光学镜头10被保持于所述感光组件的感光组件50。应可以理解,所述摄像模组60可被实施为定焦摄像模组或者动焦摄像模组,对此,并不为本申请所局限。
当被实施为动焦摄像模组时,所述摄像模组60进一步包括设置于所述光学镜头10和所述感光组件50之间的驱动元件,以通过所述驱动元件调整所述光学镜头10相对于所述感光组件50的位置关系。
值得一提的是,在本申请实施例中,所述光学镜头10的光学机构总长小于或等于4.5mm,所述凸起部212的高度与所述光学镜头10的光学机构总称之间的比值小于或等于0.16。这里,所述光学镜头10的光学机构总长(Total Track Length,TTL)表示所述光学镜头10的所述第一光学透镜21的上表面的最高点的切面与所述摄像模组60的成像面之间的距离。这样,所述光学镜头10具有紧凑且小型的尺寸结构配置。
特别地,如图13所示,根据本申请实施例的所述摄像模组10可被配置为终端设备80的前置摄像模组,用于满足用户的自拍等需求,所述终端设备80包括但不限于智能手机、平板电脑、可穿戴设备等。图12图示了根据本申请实施例的所述摄像模组被组装于所述终端设备的示意图。如图12所示,当所述摄像模组60被装配于终端设备80时,所述光学镜头10的头部能更为深入地嵌合于所述终端设备80的显示屏81的光窗810内,以使得 形成于所述光学镜头10的光学区能更邻近于所述光窗810的顶部,以获得较大的视场角和通光量,从而确保所述摄像模组60具有较高的成像质量。
特别地,在所述摄像模组60被组装于所述终端设备80后,所述凸起部212的上表面213与所述光窗810的顶端之间的距离范围为0.01-0.5mm,以使得所述光学镜头10具有较大的视场角(例如,大于或等于60°)和较大通光量。并且,在本申请实施例中,所述光学镜头10具有相对较小的头部尺寸,因此,所述显示屏81的所述光窗810的的直径可得到缩减,以使得所述终端设备80的“屏占比”可得以提升。具体来说,在本申请实施例中,所述光窗810的尺寸可小于等于3mm,优选地,可实现小于等于2.5mm。
本领域的技术人员应理解,上述描述及附图中所示的本发明的实施例只作为举例而并不限制本发明。本发明的目的已经完整并有效地实现。本发明的功能及结构原理已在实施例中展示和说明,在没有背离所述原理下,本发明的实施方式可以有任何变形或修改。
Claims (25)
- 一种光学镜头,其特征在于,包括:第一镜头部分,包括第一光学透镜和套筒,所述第一光学透镜具有结构区和自所述结构区的上表面向上延伸的凸起部,所述凸起部具有上表面和自所述上表面往下延伸至所述结构区的上表面的侧表面,其中,所述第一镜头部分还包括形成于所述第一光学透镜和所述套筒之间的紧固结构,通过所述紧固结构,所述套筒被紧固于所述第一光学透镜;以及与所述第一镜头部分装配的第二镜头部分,包括镜筒和安装于所述镜筒内的至少一第二光学透镜。
- 根据权利要求1所述的光学镜头,其中,所述紧固结构形成于所述凸起部的侧表面与所述套筒之间。
- 根据权利要求1所述的光学镜头,其中,所述紧固结构形成于所述结构区的上表面与所述套筒的下表面之间。
- 根据权利要求2所述的光学镜头,其中,所述紧固结构包括一体成型于所述套筒的至少一凸起和凹陷地形成于所述凸起部的侧表面的至少一凹槽,以至少部分地通过所述至少一凸起和所述至少一凹槽之间的配合,所述套筒紧固于所述第一光学透镜。
- 根据权利要求2所述的光学镜头,其中,所述紧固结构包括凹陷地形成于所述套筒的至少一凹槽和突出地形成于所述凸起部的侧表面的至少一凸起,以至少部分地通过所述至少一凸起和所述至少一凹槽之间的配合,所述套筒紧固于所述第一光学透镜。
- 根据权利要求2所述的光学镜头,其中,所述紧固结构包括形成于所述套筒的内表面的第一螺纹部和形成于所述凸起部的侧表面的第二螺纹部,以至少部分地通过所述第一螺纹部和所述第二螺纹部之间的配合,所述套筒紧固于所述第一光学透镜。
- 根据权利要求4所述的光学镜头,其中,所述凸起部的侧表面包括位于所述凸起部与所述结构区的过渡处的台阶面和自所述台阶面向上延伸的第二面,所述至少一凹槽凹陷地形成于所述台阶面,所述至少一凸起突出地形成于所述套筒的下表面。
- 根据权利要求5所述的光学镜头,其中,所述凸起部的侧表面包括位于所述凸起部与所述结构区的过渡处的台阶面和自所述台阶面向上延伸的第二面,所述至少一凸起形成于所述台阶面,所述至少一凹槽凹陷地形成于所述套筒的下表面。
- 根据权利要求3所述的光学镜头,其中,所述紧固结构包括一体成型于所述套筒的下表面的至少一凸起和凹陷地形成于所述结构区的上表面的至少一凹槽,以至少部分地通过所述至少一凸起和所述至少一凹槽之间的配合,所述套筒紧固于所述第一光学透镜。
- 根据权利要求3所述的光学镜头,其中,所述紧固结构包括凹陷地形成于所述套筒的下表面的至少一凹槽和突出地形成于所述结构区的上表面的至少一凸起,以至少部分地通过所述至少一凸起和所述至少一凹槽之间的配合,所述套筒紧固于所述第一光学透镜。
- 根据权利要求4、5、7、8、9或10任一所述的光学镜头,其中,所述至少一凹槽包括至少二凹槽,所述至少二凹槽相对于所述光学镜头所设定的光轴对称地布置;所述至少一凸起包括至少二凸起,所述至少二凸起相对于所述光轴对称地布置。
- 根据权利要求7或8所述的光学镜头,其中,所述套筒的内表面与所述凸起部的第二面之间的间隙小于或等于10um。
- 根据权利要求12所述的光学镜头,进一步包括设置于所述套筒与所述凸起部的侧表面之间的黏着剂。
- 根据权利要求13所述的光学镜头,其中,所述黏着剂被设置于所述套筒的内表面与所述凸起部的第二面之间。
- 根据权利要求13所述的光学镜头,其中,所述黏着剂被设置于所述套筒的内表面与所述凸起部的第二面,以及,所述套筒的下表面与所述凸起部的台阶面之间。
- 根据权利要求7或8所述的光学镜头,其中,所述凸起部的第二面与所述光学镜头所设定的光轴之间的夹角小于15°。
- 根据权利要求16所述的光学镜头,其中,所述凸起部的第二面与所述光学镜头所设定的光轴相平行。
- 根据权利要求7或8所述的光学镜头,其中,所述凸起部在第二面部分的直径不大于1.2mm。
- 根据权利要求1所述的光学镜头,其中,所述凸起部的高度大于或等于0.74mm。
- 根据权利要求19所述的光学镜头,其中,所述凸起部的最高点与所述结构区的下表面之间的距离小于或等于1.3mm。
- 根据权利要求20所述的光学镜头,其中,所述凸起部的高度与所述凸起部的最高点与所述结构区的下表面之间的距离之间的比值大于或等于0.57。
- 根据权利要求1所述的光学镜头,其中,所述凸起部的上表面包括凸面,所述结构区的下表面包括对应于所述凸面的凹面。
- 一种摄像模组,其特征在于,包括:根据权利要求1-22任一所述的光学镜头;以及感光组件,其中,所述光学镜头被保持于所述感光组件的感光路径。
- 根据权利要求23所述的摄像模组,其中,所述光学镜头的光学机构总长小于或等于4.5mm,所述凸起部的高度与所述光学镜头的光学机构总称之间的比值大于或等于0.16。
- 一种终端设备,其特征在于,包括:终端设备主体;以及组装于所述终端设备主体的摄像模组,其中,所述摄像模组包括根据权利要求1-22任一所述的光学镜头。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202180038832.0A CN115698810A (zh) | 2020-06-01 | 2021-05-21 | 光学镜头、摄像模组和终端设备 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010484432.XA CN113759486A (zh) | 2020-06-01 | 2020-06-01 | 光学镜头、摄像模组和终端设备 |
CN202010484432.X | 2020-06-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021244327A1 true WO2021244327A1 (zh) | 2021-12-09 |
Family
ID=78782511
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/095177 WO2021244327A1 (zh) | 2020-06-01 | 2021-05-21 | 光学镜头、摄像模组和终端设备 |
Country Status (2)
Country | Link |
---|---|
CN (2) | CN113759486A (zh) |
WO (1) | WO2021244327A1 (zh) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1600892A (en) * | 1977-02-08 | 1981-10-21 | Canon Kk | Interchangeable lens mounting systems |
CN207528992U (zh) * | 2017-10-25 | 2018-06-22 | 瑞声科技(新加坡)有限公司 | 镜头模组 |
JP2019148696A (ja) * | 2018-02-27 | 2019-09-05 | 株式会社タムロン | レンズフード、及び、レンズフードとレンズ鏡筒との接続構造 |
CN210323546U (zh) * | 2019-08-16 | 2020-04-14 | 宁波舜宇光电信息有限公司 | 屏下摄像组件、摄像模组和光学镜头 |
CN210323547U (zh) * | 2019-08-16 | 2020-04-14 | 宁波舜宇光电信息有限公司 | 屏下摄像组件、摄像模组和光学镜头 |
CN210323544U (zh) * | 2019-08-14 | 2020-04-14 | 宁波舜宇光电信息有限公司 | 屏下摄像组件、摄像模组和光学镜头 |
CN210442561U (zh) * | 2019-09-12 | 2020-05-01 | 宁波舜宇光电信息有限公司 | 分体式镜头、摄像模组和终端设备 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001051177A (ja) * | 1999-08-11 | 2001-02-23 | Fuji Photo Film Co Ltd | 撮影レンズ保持方法 |
JP5026198B2 (ja) * | 2007-08-28 | 2012-09-12 | 日立マクセル株式会社 | レンズユニット、レンズモジュール、カメラモジュール及びカメラモジュール搭載回路基板の製造方法 |
CN102053325B (zh) * | 2009-10-30 | 2013-07-31 | 鸿富锦精密工业(深圳)有限公司 | 镜头模组 |
CN206489285U (zh) * | 2016-12-30 | 2017-09-12 | 上饶市宇瞳光学有限公司 | 一种凸透镜及镜头 |
-
2020
- 2020-06-01 CN CN202010484432.XA patent/CN113759486A/zh active Pending
-
2021
- 2021-05-21 WO PCT/CN2021/095177 patent/WO2021244327A1/zh active Application Filing
- 2021-05-21 CN CN202180038832.0A patent/CN115698810A/zh active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1600892A (en) * | 1977-02-08 | 1981-10-21 | Canon Kk | Interchangeable lens mounting systems |
CN207528992U (zh) * | 2017-10-25 | 2018-06-22 | 瑞声科技(新加坡)有限公司 | 镜头模组 |
JP2019148696A (ja) * | 2018-02-27 | 2019-09-05 | 株式会社タムロン | レンズフード、及び、レンズフードとレンズ鏡筒との接続構造 |
CN210323544U (zh) * | 2019-08-14 | 2020-04-14 | 宁波舜宇光电信息有限公司 | 屏下摄像组件、摄像模组和光学镜头 |
CN210323546U (zh) * | 2019-08-16 | 2020-04-14 | 宁波舜宇光电信息有限公司 | 屏下摄像组件、摄像模组和光学镜头 |
CN210323547U (zh) * | 2019-08-16 | 2020-04-14 | 宁波舜宇光电信息有限公司 | 屏下摄像组件、摄像模组和光学镜头 |
CN210442561U (zh) * | 2019-09-12 | 2020-05-01 | 宁波舜宇光电信息有限公司 | 分体式镜头、摄像模组和终端设备 |
Also Published As
Publication number | Publication date |
---|---|
CN113759486A (zh) | 2021-12-07 |
CN115698810A (zh) | 2023-02-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10670828B2 (en) | Optical image capturing system with thin mounting components | |
US7821724B2 (en) | Photographing optical lens assembly | |
TWI728690B (zh) | 成像鏡頭、相機模組及電子裝置 | |
US20170139175A1 (en) | Lens Module | |
TWI498592B (zh) | 光學成像鏡頭及應用該光學成像鏡頭的電子裝置 | |
US10785391B2 (en) | Optical image capturing module | |
US10558009B2 (en) | Optical image capturing system and electronic device | |
CN210442561U (zh) | 分体式镜头、摄像模组和终端设备 | |
US10809492B2 (en) | Optical image capturing module | |
CN112394465B (zh) | 分体式镜头及其组装方法、摄像模组和终端设备 | |
TWI774845B (zh) | 光學成像模組 | |
US10819890B2 (en) | Optical image capturing module with multi-lens frame and manufacturing method thereof | |
CN210534409U (zh) | 分体式镜头、摄像模组和终端设备 | |
US10642003B2 (en) | Optical image capturing module | |
US11048066B2 (en) | Optical image capturing module | |
US10609264B1 (en) | Optical image capturing module | |
WO2021244327A1 (zh) | 光学镜头、摄像模组和终端设备 | |
US10816749B2 (en) | Optical image capturing module and system with multi-lens frame and manufacturing method thereof | |
WO2021027431A1 (zh) | 屏下摄像组件、摄像模组和光学镜头及其制作方法 | |
WO2020258326A1 (zh) | 镜头模组 | |
CN112731610B (zh) | 光学镜头及其组装方法和摄像模组 | |
CN210323536U (zh) | 分体式镜头和摄像模组 | |
TWI774824B (zh) | 光學成像模組 | |
WO2021031732A1 (zh) | 分体式镜头及其组装方法、摄像模组和终端设备 | |
US9933591B2 (en) | Lens module |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21817982 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21817982 Country of ref document: EP Kind code of ref document: A1 |