WO2020116858A1 - 이차전지용 양극 활물질, 이의 제조 방법, 이를 포함하는 이차전지용 양극 - Google Patents
이차전지용 양극 활물질, 이의 제조 방법, 이를 포함하는 이차전지용 양극 Download PDFInfo
- Publication number
- WO2020116858A1 WO2020116858A1 PCT/KR2019/016579 KR2019016579W WO2020116858A1 WO 2020116858 A1 WO2020116858 A1 WO 2020116858A1 KR 2019016579 W KR2019016579 W KR 2019016579W WO 2020116858 A1 WO2020116858 A1 WO 2020116858A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- positive electrode
- active material
- electrode active
- secondary battery
- transition metal
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/006—Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/40—Nickelates
- C01G53/42—Nickelates containing alkali metals, e.g. LiNiO2
- C01G53/44—Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/40—Nickelates
- C01G53/42—Nickelates containing alkali metals, e.g. LiNiO2
- C01G53/44—Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
- C01G53/50—Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0471—Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/485—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/50—Solid solutions
- C01P2002/52—Solid solutions containing elements as dopants
- C01P2002/54—Solid solutions containing elements as dopants one element only
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/80—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
- C01P2002/85—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/51—Particles with a specific particle size distribution
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/61—Micrometer sized, i.e. from 1-100 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/021—Physical characteristics, e.g. porosity, surface area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a positive electrode active material for a secondary battery, a manufacturing method thereof, a positive electrode for a secondary battery including the same, and a lithium secondary battery.
- the lithium secondary battery is oxidized when lithium ions are inserted/detached from the positive electrode and the negative electrode while the organic electrolyte or the polymer electrolyte is charged between the positive electrode and the negative electrode made of an active material capable of intercalation and deintercalation of lithium ions. Electrical energy is produced by the reduction reaction with.
- Lithium cobalt oxide (LiCoO 2 ) is mainly used as a positive electrode active material for lithium secondary batteries, and lithium manganese oxides such as LiMnO 2 in a layered crystal structure and LiMn 2 O 4 in a spinel crystal structure, and lithium nickel oxide (LiNiO 2 ). ) Is also considered.
- lithium composite transition metal oxide in which a part of nickel is replaced with another transition metal such as manganese or cobalt has been proposed.
- the lithium composite transition metal oxide containing nickel in a high content has an advantage of relatively good capacity characteristics.
- particle cracks may occur due to the rolling process performed in electrode manufacturing, or structural collapse may occur due to repeated insertion/release of lithium. Since particle cracks and structural collapse of the positive electrode active material cause deterioration of cell performance, it is urgent to solve these problems.
- Korean Patent Publication No. 10-2016-0053849 discloses a positive electrode active material and a secondary battery comprising the same.
- One object of the present invention is to provide a positive electrode active material for a secondary battery that can prevent particle cracking of the positive electrode active material and improve structural stability.
- Another object of the present invention is to provide a positive electrode active material for a secondary battery is significantly improved life performance at high temperatures.
- Another object of the present invention is to provide a method for manufacturing a positive electrode active material for a secondary battery described above.
- another object of the present invention is to provide a positive electrode for a secondary battery and a lithium secondary battery including the positive electrode active material for a secondary battery.
- the present invention is a lithium composite transition metal oxide particles containing at least one of manganese (Mn) and aluminum (Al) containing nickel (Ni) and cobalt (Co), wherein the lithium composite transition metal oxide particles are It provides a positive electrode active material for a secondary battery, wherein nickel (Ni) is 60 mol% or more of all metals except lithium, a doping element is doped to the lithium composite transition metal oxide particles, and the particle strength is 210 MPa to 290 MPa.
- the present invention includes nickel (Ni) and cobalt (Co), and includes at least one or more of manganese (Mn) and aluminum (Al), and the transition of the nickel (Ni) to 60 mol% or more of all metals Mixing a metal hydroxide and a lithium compound and performing primary firing to produce lithium composite transition metal oxide particles; And mixing the lithium composite transition metal oxide particle with a doping source containing the doping element and performing secondary firing to dope the doping element into the lithium composite transition metal oxide particle, the positive electrode active material for a secondary battery described above. It provides a method of manufacturing.
- the present invention is a positive electrode current collector; And a positive electrode active material layer formed on the positive electrode current collector, wherein the positive electrode active material layer includes the positive electrode active material for a secondary battery described above.
- the present invention is the positive electrode for a secondary battery described above; A negative electrode facing the positive electrode for the secondary battery; A separator interposed between the anode and the cathode for the secondary battery; And it provides a lithium secondary battery comprising an electrolyte.
- the positive electrode active material for a secondary battery of the present invention is doped with a doping element, and has a specific particle strength range. Accordingly, the positive electrode active material significantly improves the structural stability of the particles, and cracking problems of the particles can be prevented.
- the positive electrode active material for a secondary battery of the present invention has excellent structural stability and particle strength is adjusted to a specific range, the positive electrode for a secondary battery and a lithium secondary battery including the positive electrode active material for a secondary battery described above have significantly improved life characteristics at high temperatures. Can be.
- the capacity retention rate (capacity retention) which is the ratio of the discharge capacity according to each charge and discharge cycle to the initial discharge capacity ).
- FIG. 2 is a scanning electron microscope (SEM) photograph for checking whether the positive electrode active material particles are broken after 400 charge/discharge cycles at a high temperature (45° C.) in a lithium secondary battery including the positive electrode active material for a secondary battery of Example 1. .
- FIG. 3 is a scanning electron microscope (SEM) photograph for checking whether the positive electrode active material particles are broken after 400 charge/discharge cycles at a high temperature (45° C.) in the lithium secondary battery including the positive electrode active material for a secondary battery of Example 2. .
- FIG. 4 is a scanning electron microscope (SEM) photograph for checking whether the positive electrode active material particles are broken after 400 charge/discharge cycles at a high temperature (45° C.) in a lithium secondary battery including the positive electrode active material for a secondary battery of Example 3. .
- FIG. 5 is a scanning electron microscope (SEM) photograph for checking whether the positive electrode active material particles are broken after 400 charge/discharge cycles at a high temperature (45° C.) in the lithium secondary battery including the positive electrode active material for a secondary battery of Example 4. .
- FIG. 6 is a scanning electron microscope (SEM) photograph for checking whether the positive electrode active material particles are broken after 400 charge/discharge cycles at a high temperature (45° C.) in a lithium secondary battery including the positive electrode active material for a secondary battery of Comparative Example 1. .
- SEM 7 is a scanning electron microscope (SEM) photograph for checking whether the positive electrode active material particles are broken after 400 charge/discharge cycles at a high temperature (45° C.) in a lithium secondary battery including the positive electrode active material for a secondary battery of Comparative Example 2; .
- FIG. 8 is a scanning electron microscope (SEM) photograph for checking whether the positive electrode active material particles are broken after 400 charge/discharge cycles at a high temperature (45° C.) in a lithium secondary battery including the positive electrode active material for a secondary battery of Comparative Example 3. .
- SEM scanning electron microscope
- SEM 10 is a scanning electron microscope (SEM) photograph for checking whether the positive electrode active material particles are broken after 400 charge/discharge cycles at a high temperature (45° C.) in a lithium secondary battery including the positive electrode active material for a secondary battery of Comparative Example 5; .
- FIG. 11 is a scanning electron microscope (SEM) photograph for checking whether the positive electrode active material particles are broken after 400 charge/discharge cycles at a high temperature (45° C.) in a lithium secondary battery including the positive electrode active material for a secondary battery of Comparative Example 6. .
- EDS 12 is a graph obtained by analyzing the distribution and content of doping elements according to positions in the positive electrode active material for a secondary battery of Example 1 through an Energy Dispersive Spectrometer (EDS).
- EDS Energy Dispersive Spectrometer
- FIG. 13 is a graph obtained by analyzing the distribution and content of doping elements according to positions in the positive electrode active material for a secondary battery of Comparative Example 4 through EDS.
- the average particle diameter (D 50 ) may be defined as a particle diameter corresponding to 50% of the volume cumulative amount in a particle size distribution curve of particles.
- the average particle diameter (D 50 ) can be measured, for example, using a laser diffraction method.
- the laser diffraction method can generally measure a particle diameter of several mm from a submicron region, and can obtain results of high reproducibility and high resolution.
- the present invention relates to a positive electrode active material for a secondary battery, specifically to a positive electrode active material for a lithium secondary battery.
- the positive electrode active material for a secondary battery of the present invention is a lithium composite transition metal oxide particle containing at least one of manganese (Mn) and aluminum (Al) containing nickel (Ni) and cobalt (Co), and the lithium composite transition In the metal oxide particles, the nickel (Ni) is 60 mol% or more of all metals except lithium, and a doping element is doped into the lithium composite transition metal oxide particles, and the particle strength is 210 MPa to 290 MPa.
- the positive electrode active material for a secondary battery lithium composite transition metal oxide particles containing nickel in a high content are doped with a doping element, and have a specific particle strength range. Accordingly, the positive electrode active material for a secondary battery may have a high level of particle strength and high structural stability. Accordingly, the positive electrode active material for a secondary battery can be significantly prevented from cracking or particle cracking during rolling of the electrode. In addition, as the positive electrode active material for a secondary battery has improved particle strength and structural stability, lifespan characteristics at high temperatures may be remarkably improved.
- the positive electrode active material for a secondary battery has a particle strength of 210 MPa to 290 MPa.
- the positive electrode active material for a secondary battery has the above-described particle strength range, thereby effectively preventing particle cracking during rolling, preventing structure collapse of particles due to lithium insertion/desorption due to charging/discharging of the battery, and Excellent durability can be imparted.
- the particle strength of the positive electrode active material for a secondary battery is less than 210 MPa, it is difficult to implement the above-described particle cracking and to improve the durability of the particles, and if it exceeds 290 MPa, there is a fear that the output of the battery may be inhibited, and the particles become too high in strength. Rolling may be difficult, and in severe cases, the electrode may be damaged, which is undesirable in terms of life characteristics.
- the particle strength of the positive electrode active material for a secondary battery may be preferably 215 MPa to 275 MPa, more preferably 223 MPa to 250 MPa, even more preferably 232 MPa to 245 MPa in terms of further improving the durability, structural stability, and life characteristics of the particles. .
- the above-described particle strength can be measured by dropping the positive electrode active material particles on a plate through a particle strength meter and gradually applying pressure through the meter to quantify the force at which the particle breaks.
- the particle strength range of the positive electrode active material for a secondary battery may be implemented by adjusting the type of doping element, controlling the content of the doping element, controlling the degree of distribution in the particles of the doping element, and adjusting the average particle diameter (D 50 ) of the positive electrode active material.
- the positive electrode active material for a secondary battery is lithium composite transition metal oxide particles containing nickel (Ni) and cobalt (Co), and containing at least one of manganese (Mn) and aluminum (Al).
- the lithium composite transition metal oxide particles include nickel (Ni) and cobalt (Co), and at least one of manganese (Mn) and aluminum (Al).
- the lithium composite transition metal oxide particles may be high-content nickel (High-Ni) lithium composite transition metal oxide particles in which the nickel (Ni) contained therein is 60 mol% or more of all metals except lithium.
- the lithium composite transition metal oxide particles may contain at least 61 mol% of the nickel (Ni) contained therein, excluding lithium.
- the lithium composite transition metal oxide particles may be a lithium composite transition metal oxide in which the ratio (Li/Me) of the number of moles of lithium (Li) to the number of moles of all metals except lithium is 1 or more, and accordingly, the capacity characteristics and output of the battery Characteristics can be improved.
- the lithium composite transition metal oxide has a ratio of the number of moles of lithium (Li) to the number of moles of all metals except lithium (Li/Me) of 1 to 1.3, specifically 1.01 to 1.25, and more specifically 1.02 to 1.2 Can be When (Li/Me) is in the above-mentioned range, it is good in terms of expressing excellent capacity and output characteristics of the battery.
- the lithium composite transition metal oxide particles may be doped with doping elements.
- the doping element may be doped in the lithium composite transition metal oxide particles.
- the doping element may be doped with the lithium composite transition metal oxide particles to improve structural stability and particle strength of lithium composite transition metal oxide particles, particularly lithium composite transition metal oxide particles containing nickel in a high content.
- the doping element is from 6 mol% to 10 mol%, preferably from 6.5 mol% to 9.8 mol%, more preferably from 7.5 mol% to 9.5 mol%, relative to all metals except lithium among the lithium composite transition metal oxide particles. It can be doped, when in the above-described range, the effect of preventing particle cracking during rolling due to the improvement in particle strength, preventing structural collapse due to improvement in structural stability, and improving the performance of life at room temperature and high temperature can be more preferably implemented. .
- the doping element may include at least one selected from the group consisting of P, B, Al, Si, W, Zr and Ti, preferably at least one selected from the group consisting of B, W, Zr and Ti It may include, more preferably W and at least one selected from the group consisting of Zr, more preferably may include W.
- the doping element is a component capable of realizing a more desirable effect in terms of improving particle strength and structural stability, and is preferable in terms of resistance reduction and output characteristics because it can expand the lithium's moving channel to an appropriate level.
- the doping element may be doped to reduce the content of the doping element from the surface to the center of the lithium composite transition metal oxide particle. That is, the higher the content from the center of the particle to the surface, the higher the content of the doping element can be contained, and thus, the strength and structural stability of the particle can be improved.
- the doping element distribution in the particles of this tendency is, for example, instead of a method of firing a transition metal hydroxide, a lithium compound and a doping source at the same time when preparing a positive electrode active material, the primary firing product is performed by first firing the transition metal hydroxide and lithium compound. After manufacturing, the primary firing material and the doping source may be second-fired to be implemented by a method of further doping doping elements on the surface.
- the doping element is 70 mol% or more of the total number of doping element moles, preferably 85 mol% or more, in a region corresponding to a distance of 60% to 100% from the center of the particle with respect to the semi-diameter of the lithium composite transition metal oxide particle. Can be doped.
- the doping element is more doped in a region closer to the surface than the center of the particle, so that the above-described effect of improving particle strength and preventing structure collapse can be more preferably implemented.
- the above-described tendency of the doping content distribution of the doping element may be evaluated indirectly by analyzing an energy dispersive spectrometer (EDS) of the particle section of the positive electrode active material.
- EDS energy dispersive spectrometer
- the degree of doping of the doping element can be predicted through EDS analysis of each region from the center to the surface of the positive electrode active material particle.
- the lithium composite transition metal oxide particles may have a value obtained by substituting the concentration of the doping element at the particle surface and the center of the particle analyzed by Energy Dispersive Spectrometer (EDS) into Equation 1 below to be 0.7 to 1.
- EDS Energy Dispersive Spectrometer
- H s is the concentration of doping elements on the particle surface when the lithium composite transition metal oxide particles are analyzed by EDS
- H c is the concentration of doping elements in the center of the particle when the lithium composite transition metal oxide particles are analyzed by EDS. to be.
- a doping element may be concentrated on the surface of the positive electrode active material, thereby further improving the strength of the particles and thus improving durability and lifespan characteristics to a more excellent level. have.
- the lithium composite transition metal oxide particle may have a value obtained by substituting the concentration of the doping element at the center of the particle and the particle center analyzed by EDS into Equation 1 below, and the above-described effect is more effective in the range Preferably it can be implemented.
- the lithium composite transition metal oxide particles may include a compound represented by Formula 1 below.
- M a is selected from the group consisting of Mn and Al Is at least one
- M b is at least one selected from the group consisting of P, B, Al, Si, W, Zr and Ti.
- Li may be a content corresponding to p, and may be 1 ⁇ p ⁇ 1.5, specifically 1.01 ⁇ p ⁇ 1.25, and more specifically 1.02 ⁇ p ⁇ 1.2. In the above-described range, the improvement of the output and capacity characteristics of the battery can be improved to a remarkable level.
- Ni is a content corresponding to 1-(x+y+z), for example, 0.6 ⁇ 1-(x+y+z) ⁇ 1, specifically 0.61 ⁇ 1- (x+y+z) ⁇ 1, and thus it is possible to secure a high capacity of the battery.
- Co may be included in an amount corresponding to x, that is, 0 ⁇ x ⁇ 0.2.
- x in Chemical Formula 1 exceeds 0.2, there is a fear of increasing costs.
- M a may be at least one selected from the group consisting of Mn and Al as a component capable of improving the stability of the active material and consequently improving the stability of the battery.
- M a may be included in a content corresponding to y, that is, a content of 0 ⁇ y ⁇ 0.2. If y in the formula (1) exceeds 0.2, there is a fear that the output characteristics and capacity characteristics of the battery are deteriorated.
- M b is the doping element and is at least one selected from the group consisting of P, B, Al, Si, W, Zr and Ti.
- the M 2 may be included in a content corresponding to z of 0.06 ⁇ z ⁇ 0.1, preferably 0.065 ⁇ z ⁇ 0.098, and more preferably 0.075 ⁇ z ⁇ 0.095.
- the positive electrode active material for a secondary battery may have an average particle diameter (D 50 ) of 8 ⁇ m to 30 ⁇ m, preferably 10 ⁇ m to 20 ⁇ m.
- D 50 average particle diameter
- the present invention provides a method of manufacturing a positive electrode active material for a secondary battery described above.
- the method for manufacturing a positive electrode active material for a secondary battery of the present invention includes nickel (Ni) and cobalt (Co), and includes at least one of manganese (Mn) and aluminum (Al), and the nickel (Ni) of all metals Mixing the transition metal hydroxide and a lithium compound having 60 mol% or more and performing primary firing to prepare lithium composite transition metal oxide particles; And mixing the lithium composite transition metal oxide particle with a doping source containing the doping element and performing secondary firing to dope the lithium composite transition metal oxide particle.
- the positive electrode active material for a secondary battery described above may be manufactured, and more specifically, it is possible to manufacture a positive electrode active material having a particle strength of 210 MPa to 290 MPa.
- the manufacturing method of the present invention does not prepare a lithium composite transition metal oxide by firing a transition metal hydroxide, a lithium compound and a doping source at once, but a primary firing product (lithium by primary firing of the transition metal hydroxide and lithium compound) Composite transition metal oxide) is first prepared, and the primary calcined material and the doped source are calcined to prepare a positive electrode active material for a secondary battery.
- the doping element by the doping source may be doped so that the content of the doping element decreases toward the center from the surface portion of the particle, thereby further improving the particle strength of the positive electrode active material during rolling or charging and discharging processes.
- the durability of the particles and the anti-cracking effect can be more preferably implemented.
- the doping element can improve the structural stability of the particles by the above method, it is possible to effectively prevent structural collapse and degradation of life characteristics due to lithium insertion/desorption.
- the method of manufacturing the positive electrode active material for a secondary battery of the present invention includes nickel (Ni) and cobalt (Co), and mixes a transition metal hydroxide and a lithium compound containing at least one of manganese (Mn) and aluminum (Al), and
- the first firing includes the steps of preparing lithium composite transition metal oxide particles.
- the transition metal hydroxide includes nickel (Ni) and cobalt (Co) as a precursor to a positive electrode active material for a secondary battery, and at least one of manganese (Mn) and aluminum (Al).
- the transition metal hydroxide may be a transition metal hydroxide of high content nickel (High-Ni) having a content of nickel (Ni) of 60 mol% or more among all metals contained in the transition metal hydroxide. More preferably, the content of nickel (Ni) in the total metal may be 61 mol% or more. When the content of nickel (Ni) in all metals is adjusted to the above range as in the present invention, it may be possible to secure a high capacity of the prepared positive electrode active material.
- the transition metal hydroxide may be a compound represented by Formula 2 below.
- M a1 is at least one selected from the group consisting of Mn and Al.
- x1 and y1 may be the same as x and y described in Formula 1, respectively.
- the lithium compound is a precursor of a positive electrode active material for a secondary battery together with the transition metal hydroxide.
- the lithium compound is a lithium-containing carbonate (for example, Li 2 CO 3, etc.), hydrate (for example, lithium hydroxide I hydrate (LiOH ⁇ H 2 O), etc.), hydroxide (for example, lithium hydroxide, etc.), nitrate ( For example, lithium nitrate (LiNO 3 ), etc., chloride (eg, lithium chloride (LiCl), etc.) and the like may be used, and one of these may be used alone or a mixture of two or more.
- a lithium-containing carbonate for example, Li 2 CO 3, etc.
- hydrate for example, lithium hydroxide I hydrate (LiOH ⁇ H 2 O), etc.
- hydroxide for example, lithium hydroxide, etc.
- nitrate For example, lithium nitrate (LiNO 3 ), etc.
- chloride eg, lithium chloride (LiCl), etc.
- one of these may be used alone or a mixture of two or more.
- the primary firing may be performed at 750°C to 1,000°C, preferably 800°C to 900°C, and is preferable because a positive electrode active material having a layered structure that is structurally stable in the above range can be formed.
- the primary firing can be carried out for 10 to 25 hours, preferably 13 to 18 hours, and it is preferable that a positive electrode active material having a structurally stable layered structure can be formed in the above range.
- the primary calcination can be performed in an oxygen atmosphere in order to prevent excessive generation of lithium impurities and to generate a primary calcined product having excellent grain development.
- the positive electrode active material for a secondary battery of the present invention includes mixing the lithium composite transition metal oxide particles with a doping source containing the doping element and performing secondary firing to dope the doping elements into the lithium composite transition metal oxide particles. .
- the positive electrode active material for a secondary battery of the present invention may be manufactured through secondary firing of the lithium composite transition metal oxide particles and a doping source.
- the doping source is a material that supplies a doping element doped to the positive electrode active material, and includes a doping element.
- the doping source is at least one selected from the group consisting of P, B, Al, Si, W, Zr and Ti, preferably at least one selected from the group consisting of B, W, Zr and Ti, more preferably W And it may include at least one selected from the group consisting of Zr, more preferably a doping element of W.
- the doping source may include an oxide of the above-described doping element.
- the input amount of the doping source may be appropriately adjusted in consideration of the content of the doping element (mol%) in the positive electrode active material.
- the secondary firing may be performed at 700°C to 900°C, preferably 750°C to 880°C, and in the above range, the distribution of doping elements in the positive electrode active material may be more concentrated on the surface than the particle center. It is desirable to achieve the strength range of the particles.
- the secondary firing may be performed for 3 to 12 hours, preferably 5 to 8 hours, and in the above range, the distribution of the doping element in the positive electrode active material may be more concentrated on the surface than the center of the particle. It is desirable to achieve the strength range.
- the secondary firing may be performed in an oxygen atmosphere in terms of smoothly performing doping.
- the present invention provides a positive electrode for a secondary battery comprising the positive electrode active material for a secondary battery.
- the positive electrode for a secondary battery includes a positive electrode current collector and a positive electrode active material layer formed on the positive electrode current collector and including the positive electrode active material for the secondary battery.
- the positive electrode current collector is not particularly limited as long as it does not cause a chemical change in the battery and has conductivity.
- stainless steel, aluminum, nickel, titanium, calcined carbon, or carbon, nickel, titanium on aluminum or stainless steel surfaces , Surface treatment with silver or the like can be used.
- the positive electrode current collector may typically have a thickness of 3 to 500 ⁇ m, and may form fine irregularities on the positive electrode current collector surface to increase the adhesion of the positive electrode active material.
- it can be used in various forms such as films, sheets, foils, nets, porous bodies, foams, and nonwoven fabrics.
- the positive electrode active material layer may include a conductive material and a binder together with the positive electrode active material for a secondary battery described above.
- the conductive material is used to impart conductivity to the electrode, and in a battery configured, it can be used without particular limitation as long as it has electronic conductivity without causing chemical changes.
- Specific examples include graphite such as natural graphite and artificial graphite; Carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, summer black, and carbon fiber; Metal powders or metal fibers such as copper, nickel, aluminum, and silver; Conductive whiskey such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Or a conductive polymer, such as a polyphenylene derivative, and the like, or a mixture of two or more of them may be used.
- the conductive material may be usually included in 1 to 30% by weight relative to the total weight of the positive electrode active material layer.
- the binder serves to improve adhesion between the positive electrode active material particles and the adhesion between the positive electrode active material and the positive electrode current collector.
- Specific examples include polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinyl alcohol, polyacrylonitrile, and carboxymethyl cellulose (CMC) ), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene butadiene rubber (SBR), fluorine rubber, or various copolymers thereof, and one of these may be used alone or as a mixture of two or more.
- the binder may be included in 1 to 30% by weight based on the total weight of the positive electrode active material layer.
- the positive electrode for a secondary battery may be manufactured according to a conventional positive electrode manufacturing method except for using the positive electrode active material. Specifically, a composition for forming a positive electrode active material layer including the positive electrode active material and, optionally, a binder and a conductive material may be coated on the positive electrode current collector, followed by drying and rolling. At this time, the types and contents of the positive electrode active material, the binder, and the conductive material are as described above.
- the solvent may be a solvent generally used in the art, dimethyl sulfoxide (dimethyl sulfoxide, DMSO), isopropyl alcohol (isopropyl alcohol), N-methylpyrrolidone (NMP), acetone (acetone) or Water and the like, and among these, one kind alone or a mixture of two or more kinds can be used.
- the amount of the solvent used is sufficient to dissolve or disperse the positive electrode active material, the conductive material, and the binder in consideration of the coating thickness of the slurry and the production yield, and to have a viscosity capable of exhibiting excellent thickness uniformity after coating for positive electrode manufacturing. Do.
- the positive electrode for a secondary battery may be produced by casting the composition for forming the positive electrode active material layer on a separate support, and then laminating the film obtained by peeling from the support on the positive electrode current collector.
- the present invention provides an electrochemical device comprising the anode for the secondary battery.
- the electrochemical device may be a secondary battery or a capacitor, and more specifically, a lithium secondary battery.
- the secondary battery is a positive electrode for a secondary battery described above in detail; A negative electrode facing the positive electrode for the secondary battery; A separator interposed between the anode and the cathode for the secondary battery; And electrolytes.
- the secondary battery may further include a battery container for storing the electrode assembly of the positive electrode, the negative electrode, and the separator, and a sealing member for sealing the battery container.
- the negative electrode includes a negative electrode current collector and a negative electrode active material layer positioned on the negative electrode current collector.
- the negative electrode current collector is not particularly limited as long as it has high conductivity without causing a chemical change in the battery.
- the surface of copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel Carbon, nickel, titanium, silver or the like, aluminum-cadmium alloy, or the like may be used.
- the negative electrode current collector may typically have a thickness of 3 to 500 ⁇ m, and, like the positive electrode current collector, may form fine irregularities on the surface of the current collector to enhance the bonding force of the negative electrode active material.
- it can be used in various forms such as films, sheets, foils, nets, porous bodies, foams, and nonwoven fabrics.
- the negative active material layer optionally includes a binder and a conductive material together with the negative active material.
- the negative electrode active material layer is, for example, coated on a negative electrode current collector with a negative electrode active material, and optionally a composition for forming a negative electrode comprising a binder and a conductive material, or dried or cast the negative electrode forming composition on a separate support, , It may be produced by laminating a film obtained by peeling from this support on the negative electrode current collector.
- a compound capable of reversible intercalation and deintercalation of lithium may be used.
- Specific examples include carbonaceous materials such as artificial graphite, natural graphite, graphitized carbon fibers, and amorphous carbon;
- Metallic compounds capable of alloying with lithium such as Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si alloy, Sn alloy or Al alloy;
- a complex containing the metal compound and the carbonaceous material such as a Si-C composite or a Sn-C composite, and the like, and any one or a mixture of two or more thereof may be used.
- a metal lithium thin film may be used as the negative electrode active material.
- both low crystalline carbon and high crystalline carbon may be used as the carbon material.
- Soft carbon and hard carbon are typical examples of low-crystalline carbon, and amorphous or plate-like, scaly, spherical or fibrous natural graphite or artificial graphite, and kissy graphite are examples of high-crystalline carbon. graphite), pyrolytic carbon, mesophase pitch based carbon fiber, meso-carbon microbeads, mesophase pitches and petroleum or coal tar pitch derived cokes).
- binder and the conductive material may be the same as described above for the positive electrode.
- the separator separates the negative electrode from the positive electrode and provides a passage for lithium ions.
- the battery is normally used as a separator in a lithium secondary battery, it can be used without particular limitation, and in particular, regarding ion migration of electrolytes. It is desirable to have low resistance and excellent electrolyte-moisturizing ability.
- porous polymer films such as ethylene homopolymers, propylene homopolymers, ethylene/butene copolymers, ethylene/hexene copolymers and polyolefin polymers such as ethylene/methacrylate copolymers or the like.
- a laminate structure of two or more layers of may be used.
- a conventional porous non-woven fabric for example, a high-melting point glass fiber, a polyethylene terephthalate fiber or the like may be used.
- a coated separator containing a ceramic component or a polymer material may be used to secure heat resistance or mechanical strength, and may optionally be used in a single layer or multilayer structure.
- examples of the electrolyte used in the present invention include organic liquid electrolytes, inorganic liquid electrolytes, solid polymer electrolytes, gel polymer electrolytes, solid inorganic electrolytes, molten inorganic electrolytes, and the like, which can be used in the manufacture of secondary batteries. It is not.
- the electrolyte may include an organic solvent and a lithium salt.
- the organic solvent may be used without particular limitation as long as it can serve as a medium through which ions involved in the electrochemical reaction of the battery can move.
- the organic solvent methyl acetate (methyl acetate), ethyl acetate (ethyl acetate), ⁇ -butyrolactone ( ⁇ -butyrolactone), ⁇ -caprolactone ( ⁇ -caprolactone), such as ester solvents; Ether-based solvents such as dibutyl ether or tetrahydrofuran; Ketone solvents such as cyclohexanone; Aromatic hydrocarbon-based solvents such as benzene and fluorobenzene; Dimethylcarbonate (DMC), diethylcarbonate (DEC), methylethylcarbonate (MEC), ethylmethylcarbonate (EMC), ethylene carbonate (EC), propylene carbonate (propylene carbonate, PC) and other carbonate-based solvents; Alcohol solvents such as ethyl alcohol and iso
- carbonate-based solvents are preferred, and cyclic carbonates (for example, ethylene carbonate or propylene carbonate) having high ionic conductivity and high dielectric constant capable of increasing the charge and discharge performance of the battery, and low-viscosity linear carbonate-based compounds (for example, a mixture of ethyl methyl carbonate, dimethyl carbonate or diethyl carbonate) is more preferable.
- the mixture of the cyclic carbonate and the chain carbonate in a volume ratio of about 1:1 to about 1:9 may be used to exhibit excellent electrolyte performance.
- the lithium salt may be used without particular limitation as long as it is a compound capable of providing lithium ions used in a lithium secondary battery.
- the lithium salt is LiPF 6 , LiClO 4 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAl0 4 , LiAlCl 4 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiN(C 2 F 5 SO 3 ) 2 , LiN(C 2 F 5 SO 2 ) 2 , LiN(CF 3 SO 2 ) 2 .
- LiCl, LiI, or LiB(C 2 O 4 ) 2 and the like can be used.
- the concentration of the lithium salt is preferably used within the range of 0.1 to 2.0M. When the concentration of the lithium salt is included in the above range, since the electrolyte has an appropriate conductivity and viscosity, it can exhibit excellent electrolyte performance, and lithium ions can be effectively moved.
- the electrolyte includes haloalkylene carbonate-based compounds such as difluoro ethylene carbonate, pyridine, and tree for the purpose of improving the life characteristics of the battery, suppressing the decrease in battery capacity, and improving the discharge capacity of the battery.
- haloalkylene carbonate-based compounds such as difluoro ethylene carbonate, pyridine, and tree for the purpose of improving the life characteristics of the battery, suppressing the decrease in battery capacity, and improving the discharge capacity of the battery.
- Ethylphosphite triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphate triamide, nitrobenzene derivative, sulfur, quinone imine dye, N-substituted oxazolidinone, N,N-substituted imida
- One or more additives such as zolidine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2-methoxy ethanol, or aluminum trichloride may also be included. At this time, the additive may be included in an amount of 0.1 to 5% by weight based on the total weight of the electrolyte.
- the secondary battery including the positive electrode active material for a secondary battery according to the present invention stably exhibits excellent discharge capacity, output characteristics and capacity retention rate, portable devices such as mobile phones, notebook computers, digital cameras, and hybrid electric vehicles It is useful for electric vehicle fields such as (hybrid electric vehicle, HEV).
- HEV hybrid electric vehicle
- the present invention provides a battery module including the secondary battery as a unit cell and a battery pack including the same.
- the battery module or battery pack includes a power tool;
- An electric vehicle including an electric vehicle (EV), a hybrid electric vehicle, and a plug-in hybrid electric vehicle (PHEV); Alternatively, it can be used as a power supply for any one or more of medium and large-sized devices in a power storage system.
- EV electric vehicle
- PHEV plug-in hybrid electric vehicle
- Example 1 Preparation of a positive electrode active material for a secondary battery
- Transition metal hydroxide Ni 0 . 7 Co 0 . 1 Mn 0 .2 (OH) 2 were mixed and lithium hydroxide LiOH.
- the ratio of the number of moles of lithium (Li) to the total number of moles of the transition metal in the transition metal hydroxide Li/Me was mixed with the transition metal hydroxide and lithium hydroxide so as to be adjusted to 1.03.
- the mixture was first calcined in an oxygen atmosphere at 850° C. for 15 hours, and a primary calcined product Li 1.03 Ni 0.7 Co 0.1 Mn 0.2 O 2 was prepared.
- the lithium composite transition metal oxide and WO 3 were mixed as a doping source. At this time, the lithium composite transition metal oxide and the doping source were mixed so that the doping element W contained in the doping source was doped at 7 mol% relative to all metals except lithium in the prepared positive electrode active material.
- the mixture was second calcined at 800° C. for 7 hours in an oxygen atmosphere, so that the positive electrode active material Li 1.03 Ni 0.63 Co 0.1 Mn 0.2 W 0.07 O 2 doped with element W was doped with the lithium composite transition metal oxide (average particle size (D 50 ) 11 ⁇ m).
- Example 2 It was carried out in the same manner as in Example 1, except that the doping element W contained in the doping source was mixed with the lithium composite transition metal oxide and a doping source so as to be doped at 9 mol% relative to all metals except lithium in the positive electrode active material.
- 03 Ni 0 . 63 Co 0 . 1 Mn 0 . 2 Zr 0 . 07 O 2 average particle diameter (D 50 ) 11 ⁇ m) was prepared.
- Example 4 Preparation of a positive electrode active material for a secondary battery
- Example 4 It was carried out in the same manner as in Example 1, except that the doping element W contained in the doping source was mixed with the lithium composite transition metal oxide and a doping source so as to be doped at 10 mol% relative to all metals except lithium in the positive electrode active material.
- Example 1 except that the lithium composite transition metal oxide and the doping source were mixed so that ZrO 2 was used as the doping source, and the doping element Zr was doped at 1 mol% relative to all metals except lithium in the positive electrode active material.
- a cathode active material for a secondary battery of Comparative Example 2 Li 1.03 Ni 0.69 Co 0.1 Mn 0.2 Zr 0.01 O 2 (average particle diameter (D 50 ) 11 ⁇ m) was prepared.
- Example 3 except that WO 3 was used as a doping source, and the lithium composite transition metal oxide and a doping source were mixed so that the doping element W was doped at 1 mol% relative to all metals except lithium in the positive electrode active material.
- a cathode active material for a secondary battery of Comparative Example 3 Li 1.03 Ni 0.69 Co 0.1 Mn 0.2 W 0.01 O 2 (average particle diameter (D 50 ) 11 ⁇ m) was prepared.
- Transition metal hydroxide Ni 0 . 7 Co 0 . 1 Mn 0 .2 (OH) a WO 3 were mixed with a 2, and a lithium hydroxide LiOH and doping source.
- the ratio of the number of moles of lithium (Li) to the total number of moles of the transition metal of the transition metal hydroxide Li/Me was mixed so that the transition metal hydroxide and lithium oxide were adjusted to 1.03.
- the lithium composite transition metal oxide and the doping source were mixed so that the doping element W contained in the doping source was doped at 7 mol% relative to all metals except lithium in the positive electrode active material.
- the mixture was calcined at 850° C. for 15 hours in an oxygen atmosphere, and a doping element W was a positive electrode active material doped with the lithium composite transition metal oxide, having an average particle diameter (D 50 ) of 11 ⁇ m Li 1.03 Ni 0.63 Co 0.1 Mn 0.2 W 0.07 O 2 (average particle diameter (D 50 ) 11 ⁇ m) was prepared.
- Example 1 and with the exception that WO 3 is used as a doping source, and the lithium composite transition metal oxide and a doping source are mixed so that the doping element W is doped at 5 mol% relative to all metals except lithium in the positive electrode active material.
- a cathode active material for a secondary battery of Comparative Example 5 Li 1.03 Ni 0.65 Co 0.1 Mn 0.2 W 0.05 O 2 (average particle diameter (D 50 ) 11 ⁇ m) was prepared.
- Transition metal hydroxide Ni 0 . 7 Co 0 . 1 Mn 0 .2 (OH) 2 were mixed and lithium hydroxide LiOH.
- the ratio of the number of moles of lithium (Li) to the total number of moles of the transition metal in the transition metal hydroxide Li/Me was mixed with the transition metal hydroxide and lithium hydroxide so as to be adjusted to 1.03.
- the mixture was first calcined in an oxygen atmosphere at 950° C. for 20 hours, and a primary calcined product Li 1.03 Ni 0.7 Co 0.1 Mn 0.2 O 2 was prepared.
- the lithium composite transition metal oxide and WO 3 were mixed as a doping source. At this time, the lithium composite transition metal oxide and the doping source were mixed so that the doping element W contained in the doping source was doped at 20 mol% relative to all metals except lithium in the prepared positive electrode active material.
- the mixture was second calcined at 900° C. for 10 hours in an oxygen atmosphere, so that the positive electrode active material Li 1.03 Ni 0.5 Co 0.1 Mn 0.2 W 0.2 O 2 doped element W was doped with the lithium composite transition metal oxide (average particle size (D 50 ) 11 ⁇ m).
- Example 1 The particle strength of the positive electrode active material was added dropwise to the positive electrode active material particles of Example 1 on a plate through a particle strength meter (micro compression testing machine, manufactured by MCT-W500, manufactured by Shimadzu), and gradually applied pressure through the meter. It was measured by quantifying the force at the point where the particles break.
- a particle strength meter micro compression testing machine, manufactured by MCT-W500, manufactured by Shimadzu
- Example Comparative example One 2 3 4
- the positive electrode active material of Example 1, a carbon black conductive material and a PVdF binder were mixed in a weight ratio of 96.5:1.5:2 in an N-methylpyrrolidone solvent to prepare a positive electrode slurry, which was coated on one surface of an aluminum current collector and then 130 After drying at °C and rolling to a porosity of 25% to prepare a positive electrode for a secondary battery.
- a mixture of artificial graphite and natural graphite as a negative electrode active material in a ratio of 5:5, superC as a conductive material, and SBR/CMC as a binder in a weight ratio of 96:1:3 are prepared to prepare a negative electrode slurry, and this is a copper current collector. After coating on one side of the, dried at 130 °C and rolled to a porosity of 30% to prepare a negative electrode.
- An electrode assembly is manufactured by interposing a separator of porous polyethylene between the anode and a cathode for a secondary battery prepared above, placed inside the case of the electrode assembly, and then injecting an electrolyte into the case to prepare the lithium secondary battery of Example 1 Did.
- the electrolyte is dissolved in an organic solvent in which ethylene carbonate (EC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC) are mixed at a volume ratio of 3:4:3, so that lithium hexafluorophosphate (LiPF 6 ) is 1M in concentration.
- EC ethylene carbonate
- DMC dimethyl carbonate
- EMC ethyl methyl carbonate
- the lithium secondary batteries of the examples and comparative examples prepared as described above were charged/discharged under the conditions of 1C/1C within a range of 3.0 to 4.25V driving voltage at a temperature of high temperature (45°C).
- the capacity retention rate which is the ratio of the discharge capacity according to each charge/discharge cycle to the initial capacity, was measured and is shown in FIG. 1, and the initial capacity after 400 charge/discharge cycles was performed.
- Table 2 shows the capacity retention rate of 400 cycles, which is the ratio of the discharge capacity at the 400th cycle.
- the lithium secondary battery made of the positive electrode active material of the embodiments satisfying the particle strength of the present invention shows a superior capacity retention rate at high temperatures compared to those of the comparative examples. It can be seen that the life characteristics are excellent.
- Example 1 and Comparative Example 4 were analyzed through EDS (Energy Dispersive Spectrometer) (device name: FE-SEM, manufactured by Bruker).
- Example 1 was evaluated to be about 99% by weight and Comparative Example 4 was about 40% by weight.
- H s is the concentration of doping elements on the particle surface when the lithium composite transition metal oxide particles are analyzed by EDS
- H c is a doping element centered on the particle when the lithium composite transition metal oxide particles are analyzed by EDS. Concentration).
- the positive electrode active material of Example 1 was formed to have a large number of doping elements distributed on the surface, so the particle strength was high, and as shown in Experimental Examples 2 and 3, the excellent durability, the effect of preventing particle cracking, and improving the life characteristics You can see that it is implemented.
- the positive electrode active material of Comparative Example 4 is because the doping element is generally evenly distributed over the active material particles, it is difficult to satisfy the required particle strength, and it can be seen that it shows a poor effect in terms of durability and life characteristics.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
본 발명은 니켈(Ni) 및 코발트(Co)를 포함하고, 망간(Mn) 및 알루미늄(Al) 중 적어도 1종 이상을 포함하는 리튬 복합 전이금속 산화물 입자이며, 상기 리튬 복합 전이금속 산화물 입자는 상기 니켈(Ni)이 리튬을 제외한 전체 금속 중 60몰% 이상이고, 상기 리튬 복합 전이금속 산화물 입자에 도핑 원소가 도핑되고, 입자 강도가 210MPa 내지 290MPa인, 이차전지용 양극 활물질에 관한 것이다.
Description
관련출원과의 상호 인용
본 출원은 2018년 12월 3일자 한국특허출원 제10-2018-0153838호에 기초한 우선권의 이익을 주장하며, 해당 한국특허출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 이차전지용 양극 활물질, 이의 제조 방법, 이를 포함하는 이차전지용 양극 및 리튬 이차전지에 관한 것이다.
최근 휴대전화, 노트북 컴퓨터, 전기 자동차 등 전지를 사용하는 전자기구의 급속한 보급에 수반하여 소형 경량이면서도 상대적으로 고용량인 이차전지의 수요가 급속히 증대되고 있다. 특히, 리튬 이차전지는 경량이고 고에너지 밀도를 가지고 있어 휴대 기기의 구동 전원으로서 각광을 받고 있다. 이에 따라, 리튬 이차전지의 성능 향상을 위한 연구개발 노력이 활발하게 진행되고 있다.
리튬 이차전지는 리튬 이온의 삽입(intercalation) 및 탈리(deintercalation)가 가능한 활물질로 이루어진 양극과 음극 사이에 유기 전해액 또는 폴리머 전해액을 충전시킨 상태에서 리튬 이온이 양극 및 음극에서 삽입/탈리될 때의 산화와 환원 반응에 의해 전기 에너지가 생산된다.
리튬 이차전지의 양극 활물질로는 리튬 코발트 산화물(LiCoO2)이 주로 사용되고 있고, 그 외에 층상 결정구조의 LiMnO2, 스피넬 결정구조의 LiMn2O4 등의 리튬 망간 산화물과, 리튬 니켈 산화물(LiNiO2)의 사용도 고려되고 있다.
최근에는 니켈의 일부를 망간, 코발트 등의 다른 전이 금속으로 치환한 형태의 리튬 복합 전이금속 산화물이 제안되고 있다. 특히, 니켈을 고함량으로 포함하는 리튬 복합 전이금속 산화물의 경우 상대적으로 용량 특성이 우수하다는 장점이 있다.
그러나 상술한 양극 활물질의 경우 전극 제조에서의 압연 공정 수행에 의한 입자 크랙이 발생하거나, 리튬의 삽입/탈리가 반복됨에 따른 구조 붕괴가 발생할 수 있다. 이러한 양극 활물질의 입자 크랙, 구조 붕괴 등은 셀 성능 악화의 원인이 되므로, 이러한 문제의 해결이 시급한 실정이다.
한국공개특허 제10-2016-0053849호는 양극 활물질 및 이를 포함하는 이차 전지를 개시하고 있다.
본 발명의 일 과제는 양극 활물질의 입자 크랙이 방지되고, 구조적 안정성을 향상시킬 수 있는 이차전지용 양극 활물질을 제공하는 것이다.
또한, 본 발명의 다른 과제는 고온에서의 수명 성능이 현저하게 개선된 이차전지용 양극 활물질을 제공하는 것이다.
또한, 본 발명의 또 다른 과제는 전술한 이차전지용 양극 활물질의 제조방법을 제공하는 것이다.
또한, 본 발명의 또 다른 과제는 전술한 이차전지용 양극 활물질을 포함하는 이차전지용 양극 및 리튬 이차전지를 제공하는 것이다.
본 발명은 니켈(Ni) 및 코발트(Co)를 포함하고, 망간(Mn) 및 알루미늄(Al) 중 적어도 1종 이상을 포함하는 리튬 복합 전이금속 산화물 입자이며, 상기 리튬 복합 전이금속 산화물 입자는 상기 니켈(Ni)이 리튬을 제외한 전체 금속 중 60몰% 이상이고, 상기 리튬 복합 전이금속 산화물 입자에 도핑 원소가 도핑되고, 입자 강도가 210MPa 내지 290MPa인, 이차전지용 양극 활물질을 제공한다.
또한, 본 발명은 니켈(Ni) 및 코발트(Co)를 포함하고, 망간(Mn) 및 알루미늄(Al) 중 적어도 1종 이상을 포함하며, 전체 금속 중 상기 니켈(Ni)이 60몰% 이상인 전이금속 수산화물 및 리튬 화합물을 혼합하고 1차 소성하여 리튬 복합 전이금속 산화물 입자를 제조하는 단계; 및 상기 리튬 복합 전이금속 산화물 입자와, 상기 도핑 원소를 포함하는 도핑 소스를 혼합하고 2차 소성하여 상기 도핑 원소를 상기 리튬 복합 전이금속 산화물 입자에 도핑시키는 단계를 포함하는, 전술한 이차전지용 양극 활물질의 제조방법을 제공한다.
또한, 본 발명은 양극 집전체; 및 상기 양극 집전체 상에 형성된 양극 활물질층을 포함하고, 상기 양극 활물질층은 전술한 이차전지용 양극 활물질을 포함하는, 이차전지용 양극을 제공한다.
또한, 본 발명은 전술한 이차전지용 양극; 상기 이차전지용 양극과 대향하는 음극; 상기 이차전지용 양극과 음극 사이에 개재되는 세퍼레이터; 및 전해질을 포함하는, 리튬 이차전지를 제공한다.
본 발명의 이차전지용 양극 활물질은 도핑 원소가 도핑되고, 특정 입자 강도 범위를 가진다. 이에 따라 상기 양극 활물질은 입자의 구조적 안정성이 현저하게 개선되며, 입자의 크랙 문제가 방지될 수 있다.
또한, 본 발명의 이차전지용 양극 활물질은 구조적 안정성이 우수하고 입자 강도가 특정 범위로 조절되어, 전술한 이차전지용 양극 활물질을 포함하는 이차전지용 양극 및 리튬 이차전지는 고온에서의 수명 특성이 현저하게 개선될 수 있다.
도 1은 실시예 1 내지 4 및 비교예 1 내지 6의 이차전지용 양극 활물질을 각각 포함하는 리튬 이차전지에 있어서, 초기 방전 용량에 대한 각 충방전 사이클에 따른 방전 용량의 비율인 용량 유지율(capacity retention)을 나타낸 그래프이다.
도 2는 실시예 1의 이차전지용 양극 활물질을 포함하는 리튬 이차전지에 있어서, 고온(45℃)에서 충방전 400회 실시한 이후의 양극 활물질 입자 깨짐 여부를 확인하기 위한 주사전파현미경(SEM) 사진이다.
도 3은 실시예 2의 이차전지용 양극 활물질을 포함하는 리튬 이차전지에 있어서, 고온(45℃)에서 충방전 400회 실시한 이후의 양극 활물질 입자 깨짐 여부를 확인하기 위한 주사전파현미경(SEM) 사진이다.
도 4는 실시예 3의 이차전지용 양극 활물질을 포함하는 리튬 이차전지에 있어서, 고온(45℃)에서 충방전 400회 실시한 이후의 양극 활물질 입자 깨짐 여부를 확인하기 위한 주사전파현미경(SEM) 사진이다.
도 5는 실시예 4의 이차전지용 양극 활물질을 포함하는 리튬 이차전지에 있어서, 고온(45℃)에서 충방전 400회 실시한 이후의 양극 활물질 입자 깨짐 여부를 확인하기 위한 주사전파현미경(SEM) 사진이다.
도 6은 비교예 1의 이차전지용 양극 활물질을 포함하는 리튬 이차전지에 있어서, 고온(45℃)에서 충방전 400회 실시한 이후의 양극 활물질 입자 깨짐 여부를 확인하기 위한 주사전파현미경(SEM) 사진이다.
도 7은 비교예 2의 이차전지용 양극 활물질을 포함하는 리튬 이차전지에 있어서, 고온(45℃)에서 충방전 400회 실시한 이후의 양극 활물질 입자 깨짐 여부를 확인하기 위한 주사전파현미경(SEM) 사진이다.
도 8은 비교예 3의 이차전지용 양극 활물질을 포함하는 리튬 이차전지에 있어서, 고온(45℃)에서 충방전 400회 실시한 이후의 양극 활물질 입자 깨짐 여부를 확인하기 위한 주사전파현미경(SEM) 사진이다.
도 9는 비교예 4의 이차전지용 양극 활물질을 포함하는 리튬 이차전지에 있어서, 고온(45℃)에서 충방전 400회 실시한 이후의 양극 활물질 입자 깨짐 여부를 확인하기 위한 주사전파현미경(SEM) 사진이다.
도 10은 비교예 5의 이차전지용 양극 활물질을 포함하는 리튬 이차전지에 있어서, 고온(45℃)에서 충방전 400회 실시한 이후의 양극 활물질 입자 깨짐 여부를 확인하기 위한 주사전파현미경(SEM) 사진이다.
도 11은 비교예 6의 이차전지용 양극 활물질을 포함하는 리튬 이차전지에 있어서, 고온(45℃)에서 충방전 400회 실시한 이후의 양극 활물질 입자 깨짐 여부를 확인하기 위한 주사전파현미경(SEM) 사진이다.
도 12는 실시예 1의 이차전지용 양극 활물질에 있어서, 위치에 따른 도핑 원소 분포 및 함량을 EDS(Energy Dispersive Spectrometer)를 통해 분석한 그래프이다.
도 13은 비교예 4의 이차전지용 양극 활물질에 있어서, 위치에 따른 도핑 원소 분포 및 함량을 EDS를 통해 분석한 그래프이다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 명세서에서 사용되는 용어는 단지 예시적인 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도는 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
본 명세서에서 평균 입경(D50)은 입자의 입경 분포 곡선에 있어서, 체적 누적량의 50%에 해당하는 입경으로 정의할 수 있다. 상기 평균 입경(D50)은 예를 들어, 레이저 회절법(laser diffraction method)을 이용하여 측정할 수 있다. 상기 레이저 회절법은 일반적으로 서브미크론(submicron) 영역에서부터 수 mm 정도의 입경의 측정이 가능하며, 고 재현성 및 고 분해성의 결과를 얻을 수 있다.
이하, 본 발명에 대해 구체적으로 설명한다.
<이차전지용 양극 활물질>
본 발명은 이차전지용 양극 활물질에 관한 것으로, 구체적으로는 리튬 이차전지용 양극 활물질에 관한 것이다.
본 발명의 이차전지용 양극 활물질은 니켈(Ni) 및 코발트(Co)를 포함하고, 망간(Mn) 및 알루미늄(Al) 중 적어도 1종 이상을 포함하는 리튬 복합 전이금속 산화물 입자이며, 상기 리튬 복합 전이금속 산화물 입자는 상기 니켈(Ni)이 리튬을 제외한 전체 금속 중 60몰% 이상이고, 상기 리튬 복합 전이금속 산화물 입자에 도핑 원소가 도핑되고, 입자 강도가 210MPa 내지 290MPa이다.
상기 이차전지용 양극 활물질은 니켈이 고함량으로 함유된 리튬 복합 전이금속 산화물 입자가 도핑 원소로 도핑되어 있으며, 특정 입자 강도 범위를 갖는다. 이에 따라 상기 이차전지용 양극 활물질은 높은 수준의 입자 강도를 가지며, 높은 구조적 안정성을 가질 수 있다. 이에 따라 상기 이차전지용 양극 활물질은 전극의 압연 시 크랙(crack) 또는 입자 깨짐 현상이 현저히 방지될 수 있다. 또한, 상기 이차전지용 양극 활물질은 향상된 입자 강도 및 구조적 안정성을 가짐에 따라 고온에서의 수명 특성이 현저히 향상될 수 있다.
상기 이차전지용 양극 활물질은 입자 강도가 210MPa 내지 290MPa이다. 상기 이차전지용 양극 활물질은 전술한 입자 강도 범위를 가짐으로써, 압연 시의 입자 깨짐 현상을 효과적으로 방지할 수 있으며, 전지의 충방전에 따른 리튬의 삽입/탈리로 인한 입자의 구조 붕괴를 방지하며 입자에 우수한 내구성을 부여할 수 있다.
상기 이차전지용 양극 활물질의 입자 강도가 210MPa 미만이면 전술한 입자 깨짐 방지, 입자의 내구성 향상 효과 구현이 어려우며, 290MPa 초과이면 전지의 출력을 저해할 우려가 있고, 입자가 강도가 지나치게 높아짐에 따라 입자의 압연이 어려울 수 있으며, 심한 경우 전극이 손상될 수 있어 수명 특성 측면에서 바람직하지 않다.
상기 이차전지용 양극 활물질의 입자 강도는 입자의 내구성, 구조적 안정성, 수명 특성을 더욱 향상시키는 측면에서 바람직하게는 215MPa 내지 275MPa, 보다 바람직하게는 223MPa 내지 250MPa, 보다 더 바람직하게는 232MPa 내지 245MPa일 수 있다.
전술한 입자 강도는 입자강도 측정기를 통해 플레이트 위에 양극활물질 입자를 적하하고, 측정기를 통해 서서히 압력을 가하여 입자가 부서지는 지점의 힘을 수치화하여 측정할 수 있다.
상기 이차전지용 양극 활물질의 입자 강도 범위는 도핑 원소의 종류, 도핑 원소 함량의 조절, 도핑 원소의 입자 내 분포 정도 조절, 양극 활물질의 평균 입경(D50) 조절 등에 의해 구현될 수 있다.
상기 이차전지용 양극 활물질은 니켈(Ni) 및 코발트(Co)를 포함하고, 망간(Mn) 및 알루미늄(Al) 중 적어도 1종 이상을 포함하는 리튬 복합 전이금속 산화물 입자이다.
상기 리튬 복합 전이금속 산화물 입자는 니켈(Ni) 및 코발트(Co)를 포함하고, 망간(Mn) 및 알루미늄(Al) 중 적어도 1종 이상을 포함한다.
상기 리튬 복합 전이금속 산화물 입자는 이에 함유된 상기 니켈(Ni)이 리튬을 제외한 전체 금속 중 60몰% 이상인 고함량 니켈(High-Ni)의 리튬 복합 전이금속 산화물 입자일 수 있다. 바람직하게는 상기 리튬 복합 전이금속 산화물 입자는 이에 함유된 상기 니켈(Ni)이 리튬을 제외한 전체 금속 중 61몰% 이상일 수 있다. 본 발명과 같이 전체 금속 중 니켈(Ni)의 함량이 상술한 범위인 고함량 니켈(High-Ni)의 리튬 복합 전이금속 산화물 입자를 사용하면 보다 더 고용량 확보가 가능할 수 있다.
상기 리튬 복합 전이금속 산화물 입자는 리튬을 제외한 전체 금속의 몰수에 대한 리튬(Li)의 몰수의 비율 (Li/Me)이 1 이상인 리튬 복합 전이금속 산화물일 수 있으며, 이에 따라 전지의 용량 특성, 출력 특성을 개선할 수 있다.
구체적으로 상기 리튬 복합 전이금속 산화물은 리튬을 제외한 전체 금속의 몰수에 대한 리튬(Li)의 몰수의 비율 (Li/Me)이 1 내지 1.3, 구체적으로는 1.01 내지 1.25, 보다 구체적으로는 1.02 내지 1.2일 수 있다. 상기 (Li/Me)이 상술한 범위에 있을 때 전지의 우수한 용량 및 출력 특성 발현 측면에서 좋다.
상기 리튬 복합 전이금속 산화물 입자는 도핑 원소가 도핑된 것일 수 있다. 상기 도핑 원소는 상기 리튬 복합 전이금속 산화물 입자 내에 도핑될 수 있다.
상기 도핑 원소는 상기 리튬 복합 전이금속 산화물 입자에 도핑되어, 리튬 복합 전이금속 산화물 입자, 특히 니켈을 고함량으로 함유하는 리튬 복합 전이금속 산화물 입자의 구조적 안정성 및 입자 강도를 향상시킬 수 있다.
상기 도핑 원소는 상기 리튬 복합 전이금속 산화물 입자 중 리튬을 제외한 전체 금속에 대하여 6몰% 내지 10몰%, 바람직하게는 6.5몰% 내지 9.8몰%, 보다 바람직하게는 7.5몰% 내지 9.5몰%로 도핑될 수 있으며, 상술한 범위에 있을 때 입자 강도 향상에 따른 압연 시 입자 크랙의 방지 효과, 구조적 안정성 향상에 따른 구조 붕괴 방지, 상온 및 고온에서의 수명 성능 개선 효과가 더욱 바람직하게 구현될 수 있다.
상기 도핑 원소는 P, B, Al, Si, W, Zr 및 Ti로 이루어진 군에서 선택된 적어도 1종을 포함할 수 있고, 바람직하게는 B, W, Zr 및 Ti로 이루어진 군에서 선택된 적어도 1종을 포함할 수 있으며, 보다 바람직하게는 W 및 Zr로 이루어진 군에서 선택된 적어도 1종, 보다 바람직하게는 W를 포함할 수 있다. 상기 도핑 원소는 입자 강도 및 구조적 안정성 향상 측면에서 더욱 바람직한 효과를 구현할 수 있는 성분이며, 리튬의 이동 채널을 적절한 수준으로 확장시킬 수 있어 저항 감소 및 출력 특성 측면에서 바람직하다.
상기 도핑 원소는 상기 리튬 복합 전이금속 산화물 입자의 표면으로부터 중심까지 도핑 원소의 함량이 감소되도록 도핑될 수 있다. 즉, 입자의 중심부에서 표면부로 갈 수록 도핑 원소가 고함량으로 함유될 수 있으며, 이에 따라 입자의 강도 및 구조적 안정성 향상이 더 바람직하게 구현될 수 있다. 이러한 경향의 입자 내에서의 도핑 원소 분포는 예를 들면 양극 활물질 제조 시 전이금속 수산화물, 리튬 화합물 및 도핑 소스를 한번에 소성시키는 방법 대신, 전이금속 수산화물 및 리튬 화합물을 1차 소성하여 1차 소성물을 제조한 후, 상기 1차 소성물과 도핑 소스를 2차 소성하여 표면부에 도핑 원소를 더 도핑시키는 방법으로 구현될 수 있다.
상기 도핑 원소는 상기 리튬 복합 전이금속 산화물 입자의 반직경에 대하여, 입자 중심으로부터 60% 내지 100%의 거리에 해당하는 영역에 전체 도핑 원소 몰수의 70몰% 이상, 바람직하게는 85몰% 이상으로 도핑될 수 있다. 상술한 범위에 있을 때, 입자의 중심보다 표면에 가까운 영역에 도핑 원소가 더 많이 도핑됨으로써, 전술한 입자 강도 향상 및 구조 붕괴 방지 효과가 더 바람직하게 구현될 수 있다.
상술한 도핑 원소의 도핑 함량 분포 경향은 양극 활물질의 입자 단면을 EDS(Energy Dispersive Spectrometer) 분석하여 간접적으로 평가될 수 있다. 구체적으로 양극 활물질 입자의 중심으로부터 표면까지의 각 영역에 대한 EDS 분석을 통하여 도핑 원소의 도핑 정도를 예측할 수 있다.
또한, 상기 리튬 복합 전이금속 산화물 입자는 EDS(Energy Dispersive Spectrometer)로 분석한 입자 표면과 입자 중심의 도핑 원소 농도를 하기 수학식 1에 대입하여 얻은 값이 0.7 내지 1일 수 있다.
[수학식 1]
(Hs-Hc)/Hs
수학식 1 중, Hs는 상기 리튬 복합 전이금속 산화물 입자를 EDS로 분석하였을 때 입자 표면의 도핑 원소 농도이고 Hc는 상기 리튬 복합 전이금속 산화물 입자를 EDS로 분석하였을 때 입자 중심의 도핑 원소 농도이다.
상기 수학식 1로 얻은 값이 0.7 내지 1을 만족할 경우에는 양극 활물질 표면부에 도핑 원소가 집중될 수 있어, 입자의 강도가 더욱 향상되고 이에 따라 내구성 및 수명 특성 향상이 더욱 우수한 수준으로 향상될 수 있다.
바람직하게는 상기 리튬 복합 전이금속 산화물 입자는 EDS 분석한 입자 표면과 입자 중심의 도핑 원소 농도를 하기 수학식 1에 대입하여 얻은 값이 0.9 내지 1일 수 있으며, 상기 범위일 때 전술한 효과가 더욱 바람직하게 구현될 수 있다.
상기 리튬 복합 전이금속 산화물 입자는 하기 화학식 1로 표시되는 화합물을 포함할 수 있다.
[화학식 1]
LipNi1-x-y-zCoxMa
yMb
zO2
화학식 1 중, 1.0≤p≤1.5, 0<x≤0.2, 0<y≤0.2, 0.06≤z≤0.1, 0<x+y+z≤0.4이고, Ma은 Mn 및 Al으로 이루어지는 군으로부터 선택되는 적어도 1종이고, Mb는 P, B, Al, Si, W, Zr 및 Ti으로 이루어지는 군으로부터 선택되는 적어도 1종이다.
상기 화학식 1로 표시되는 화합물에 있어서, Li은 p에 해당하는 함량일 수 있고, 1≤p≤1.5, 구체적으로는 1.01≤p≤1.25, 보다 구체적으로는 1.02≤p≤1.2일 수 있다. 상술한 범위일 때 전지의 출력 및 용량 특성 개선이 현저한 수준으로 향상될 수 있다.
상기 화학식 1로 표시되는 화합물에 있어서, Ni은 1-(x+y+z)에 해당하는 함량, 예를 들어, 0.6≤1-(x+y+z)<1, 구체적으로 0.61≤1-(x+y+z)<1로 포함될 수 있으며, 이에 따라 전지의 고용량 확보가 가능하다.
상기 화학식 1의 리튬 복합 전이금속 산화물에 있어서, Co는 x에 해당하는 함량, 즉 0<x≤0.2으로 포함될 수 있다. 상기 화학식 1의 x가 0.2를 초과할 경우 비용 증가의 우려가 있다.
상기 화학식 1로 표시되는 화합물에 있어서, Ma은 활물질의 안정성을 향상시키고, 그 결과로서 전지의 안정성을 개선시킬 수 있는 성분으로서 Mn 및 Al으로 이루어지는 군으로부터 선택되는 적어도 1종일 수 있다. 수명 특성 개선 효과를 고려할 때, 상기 Ma은 y에 해당하는 함량, 즉 0<y≤0.2의 함량으로 포함될 수 있다. 상기 화학식 1의 y이 0.2를 초과하면 오히려 전지의 출력 특성 및 용량 특성이 저하될 우려가 있다.
상기 화학식 1로 표시되는 화합물에 있어서, Mb은 상기 도핑 원소이며, P, B, Al, Si, W, Zr 및 Ti으로 이루어지는 군으로부터 선택되는 적어도 1종이다. 상기 M2은 z에 해당하는 함량 0.06≤z≤0.1, 바람직하게는 0.065≤z≤0.098, 보다 바람직하게는 0.075≤z≤0.095로 포함될 수 있다.
상기 이차전지용 양극 활물질은 평균 입경(D50)이 8㎛ 내지 30㎛, 바람직하게는 10㎛ 내지 20㎛일 수 있다. 상술한 범위에 있을 때, 압연이 원활하게 이루어질 수 있고, 구조적 안정성이 향상될 수 있으며, 전술한 출력 특성 및 수명 특성 향상 효과가 우수한 수준으로 구현될 수 있어 바람직하다.
<이차전지용 양극 활물질의 제조방법>
또한, 본 발명은 전술한 이차전지용 양극 활물질의 제조방법을 제공한다.
본 발명의 이차전지용 양극 활물질의 제조방법은 니켈(Ni) 및 코발트(Co)를 포함하고, 망간(Mn) 및 알루미늄(Al) 중 적어도 1종 이상을 포함하며, 전체 금속 중 상기 니켈(Ni)이 60몰% 이상인 전이금속 수산화물 및 리튬 화합물을 혼합하고 1차 소성하여 리튬 복합 전이금속 산화물 입자를 제조하는 단계; 및 상기 리튬 복합 전이금속 산화물 입자와, 상기 도핑 원소를 포함하는 도핑 소스를 혼합하고 2차 소성하여 상기 도핑 원소를 상기 리튬 복합 전이금속 산화물 입자에 도핑시키는 단계를 포함한다.
상기 제조방법에 따라 전술한 이차전지용 양극 활물질이 제조될 수 있으며, 보다 구체적으로 210MPa 내지 290MPa의 입자 강도를 가지는 양극 활물질의 제조가 가능하다.
또한, 본 발명의 제조방법은 전이금속 수산화물, 리튬 화합물 및 도핑 소스를 한번에 소성시켜 리튬 복합 전이금속 산화물을 제조하는 것이 아니라, 전이금속 수산화물 및 리튬 화합물의 1차 소성에 의한 1차 소성물(리튬 복합 전이금속 산화물)을 먼저 제조하고, 상기 1차 소성물과 도핑 소스를 2차 소성하여 이차전지용 양극 활물질을 제조한다. 이에 따라, 도핑 소스에 의한 도핑 원소가 입자의 표면부에서 중심으로 갈수록 도핑 원소의 함량이 감소하도록 도핑될 수 있으며, 이에 따라 양극 활물질의 입자 강도를 더욱 향상시킬 수 있어 압연 시 또는 충방전 공정에서의 입자의 내구성 향상 및 크랙 방지 효과가 더욱 바람직하게 구현될 수 있다. 또한, 상기 방법에 의해 도핑 원소가 입자의 구조적 안정성을 향상시킬 수 있으므로, 리튬의 삽입/탈리에 의한 구조 붕괴 및 수명 특성 저하를 효과적으로 방지할 수 있다.
본 발명의 이차전지용 양극 활물질의 제조방법은 니켈(Ni) 및 코발트(Co)를 포함하고, 망간(Mn) 및 알루미늄(Al) 중 적어도 1종 이상을 포함하는 전이금속 수산화물 및 리튬 화합물을 혼합하고 1차 소성하여 리튬 복합 전이금속 산화물 입자를 제조하는 단계를 포함한다.
상기 전이금속 수산화물은 이차전지용 양극 활물질의 전구체가 되는 성분으로서 니켈(Ni) 및 코발트(Co)를 포함하고, 망간(Mn) 및 알루미늄(Al) 중 적어도 1종 이상을 포함한다.
상기 전이금속 수산화물은 전이금속 수산화물에 함유된 전체 금속 중 니켈(Ni)의 함량이 60몰% 이상인 고함량 니켈(High-Ni)의 전이금속 수산화물일 수 있다. 보다 바람직하게는 전체 금속 중 니켈(Ni)의 함량이 61몰% 이상일 수 있다. 본 발명과 같이 전체 금속 중 니켈(Ni)의 함량이 상술한 범위로 조절될 때에는 제조된 양극 활물질의 고용량 확보가 가능할 수 있다.
상기 전이금속 수산화물은 하기 화학식 2로 표시되는 화합물일 수 있다.
[화학식 2]
Ni1-x1-y1Cox1Ma1
y1(OH)2
화학식 2 중, 0<x1≤0.2, 0<y1≤0.2, 0<x1+y1≤0.4이고, Ma1은 Mn 및 Al으로 이루어지는 군으로부터 선택되는 적어도 1종이다.
상기 화학식 2 중, x1 및 y1은 각각 상기 화학식 1에서 설명한 x 및 y와 동일할 수 있다.
상기 리튬 화합물은 상기 전이금속 수산화물과 함께 이차전지용 양극 활물질의 전구체이다.
상기 리튬 화합물은 리튬 함유 탄산염(예를 들어, Li2CO3 등), 수화물(예를 들어 수산화리튬 I수화물(LiOH·H2O) 등), 수산화물(예를 들어 수산화리튬 등), 질산염(예를 들어, 질산리튬(LiNO3) 등), 염화물(예를 들어, 염화리튬(LiCl) 등) 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다.
상기 1차 소성은 750℃ 내지 1,000℃, 바람직하게는 800℃ 내지 900℃에서 수행될 수 있으며, 상기 범위일 때 구조적으로 안정한 층상 구조(layered)의 양극 활물질이 형성될 수 있어 바람직하다.
상기 1차 소성은 10 내지 25시간, 바람직하게는 13 내지 18시간 동안 수행될 수 있으며, 상기 범위일 때 구조적으로 안정한 층상 구조의 양극 활물질이 형성될 수 있어 바람직하다.
상기 1차 소성은 리튬 불순물의 과도한 생성을 방지하고, 결정립 발달이 우수한 1차 소성물을 생성하는 측면에서 산소 분위기에서 수행될 수 있다.
본 발명의 이차전지용 양극 활물질은 상기 리튬 복합 전이금속 산화물 입자와, 상기 도핑 원소를 포함하는 도핑 소스를 혼합하고 2차 소성하여 상기 도핑 원소를 상기 리튬 복합 전이금속 산화물 입자에 도핑시키는 단계를 포함한다.
상기 상기 리튬 복합 전이금속 산화물 입자와 도핑 소스와의 2차 소성을 통해 본 발명의 이차전지용 양극 활물질이 제조될 수 있다.
상기 도핑 소스는 양극 활물질에 도핑되는 도핑 원소를 공급하는 물질로서, 도핑 원소를 포함한다.
상기 도핑 소스는 P, B, Al, Si, W, Zr 및 Ti로 이루어진 군에서 선택된 적어도 1종, 바람직하게는 B, W, Zr 및 Ti로 이루어진 군에서 선택된 적어도 1종, 보다 바람직하게는 W 및 Zr로 이루어진 군에서 선택된 적어도 1종, 보다 바람직하게는 W의 도핑 원소를 포함할 수 있다. 구체적으로, 상기 도핑 소스는 상술한 도핑 원소의 산화물을 포함할 수 있다.
상기 도핑 소스의 투입량은 양극 활물질 내 도핑 원소의 함량(몰%) 등을 고려하여 적절히 조절될 수 있다.
상기 2차 소성은 700℃ 내지 900℃, 바람직하게는 750℃ 내지 880℃에서 수행될 수 있으며, 상기 범위일 때 양극 활물질에서의 도핑 원소의 분포가 입자 중심보다 표면에 더 집중될 수 있어 전술한 입자의 강도 범위 달성에 바람직하다.
상기 2차 소성은 3 내지 12시간, 바람직하게는 5 내지 8시간 동안 수행될 수 있으며, 상기 범위일 때 양극 활물질에서의 도핑 원소의 분포가 입자 중심보다 표면에 더 집중될 수 있어 전술한 입자의 강도 범위 달성에 바람직하다.
상기 2차 소성은 도핑을 원활하게 수행하기 위한 측면에서 산소 분위기에서 수행될 수 있다.
<이차전지용 양극 및 이차전지>
또한, 본 발명은 상기 이차전지용 양극 활물질을 포함하는 이차전지용 양극을 제공한다.
구체적으로, 상기 이차전지용 양극은 양극 집전체 및 상기 양극 집전체 상에 형성되며 상기 이차전지용 양극 활물질을 포함하는 양극 활물질층을 포함한다.
상기 양극 집전체는 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소 또는 알루미늄이나 스테인레스 스틸 표면에 탄소, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 또, 상기 양극 집전체는 통상적으로 3 내지 500㎛의 두께를 가질 수 있으며, 상기 양극 집전체 표면 상에 미세한 요철을 형성하여 양극 활물질의 접착력을 높일 수도 있다. 예를 들어 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 양극 활물질층은 앞서 설명한 이차전지용 양극 활물질과 함께, 도전재 및 바인더를 포함할 수 있다.
상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성을 갖는 것이면 특별한 제한 없이 사용가능하다. 구체적인 예로는 천연 흑연이나 인조 흑연 등의 흑연; 카본 블랙, 아세틸렌블랙, 케첸블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 또는 폴리페닐렌 유도체 등의 전도성 고분자 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 도전재는 통상적으로 양극 활물질층 총 중량에 대하여 1 내지 30 중량%로 포함될 수 있다.
상기 바인더는 양극 활물질 입자들 간의 부착 및 양극 활물질과 양극 집전체와의 접착력을 향상시키는 역할을 한다. 구체적인 예로는 폴리비닐리덴플로라이드(PVDF), 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐알코올, 폴리아크릴로니트릴(polyacrylonitrile), 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 또는 이들의 다양한 공중합체 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 바인더는 양극 활물질 층 총 중량에 대하여 1 내지 30 중량%로 포함될 수 있다.
상기 이차전지용 양극은 상기한 양극 활물질을 이용하는 것을 제외하고는 통상의 양극 제조방법에 따라 제조될 수 있다. 구체적으로, 상기한 양극 활물질 및 선택적으로, 바인더 및 도전재를 포함하는 양극 활물질 층 형성용 조성물을 양극 집전체 상에 도포한 후, 건조 및 압연함으로써 제조될 수 있다. 이때 상기 양극 활물질, 바인더, 도전재의 종류 및 함량은 앞서 설명한 바와 같다.
상기 용매로는 당해 기술분야에서 일반적으로 사용되는 용매일 수 있으며, 디메틸셀폭사이드(dimethyl sulfoxide, DMSO), 이소프로필 알코올(isopropyl alcohol), N-메틸피롤리돈(NMP), 아세톤(acetone) 또는 물 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 용매의 사용량은 슬러리의 도포 두께, 제조 수율을 고려하여 상기 양극 활물질, 도전재 및 바인더를 용해 또는 분산시키고, 이후 양극제조를 위한 도포시 우수한 두께 균일도를 나타낼 수 있는 점도를 갖도록 하는 정도면 충분하다.
또, 다른 방법으로, 상기 이차전지용 양극은 상기 양극 활물질 층 형성용 조성물을 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 양극 집전체 상에 라미네이션함으로써 제조될 수도 있다.
또한, 본 발명은 상기 이차전지용 양극을 포함하는 전기화학소자가 제공된다. 상기 전기화학소자는 구체적으로 이차전지 또는 커패시터 등일 수 있으며, 보다 구체적으로는 리튬 이차전지일 수 있다.
상기 이차전지는 구체적으로 전술한 이차전지용 양극; 상기 이차전지용 양극과 대향하는 음극; 상기 이차전지용 양극과 음극 사이에 개재되는 세퍼레이터; 및 전해질을 포함한다. 또한, 상기 이차전지는 상기 양극, 음극, 세퍼레이터의 전극 조립체를 수납하는 전지용기, 및 상기 전지용기를 밀봉하는 밀봉 부재를 선택적으로 더 포함할 수 있다.
상기 이차전지에 있어서, 상기 음극은 음극 집전체 및 상기 음극 집전체 상에 위치하는 음극 활물질층을 포함한다.
상기 음극 집전체는 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인레스 스틸의 표면에 탄소, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또, 상기 음극 집전체는 통상적으로 3 내지 500㎛의 두께를 가질 수 있으며, 양극 집전체와 마찬가지로, 상기 집전체 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있다. 예를 들어, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 음극 활물질층은 음극 활물질과 함께 선택적으로 바인더 및 도전재를 포함한다. 상기 음극 활물질층은 일례로서 음극 집전체 상에 음극 활물질, 및 선택적으로 바인더 및 도전재를 포함하는 음극 형성용 조성물을 도포하고 건조하거나, 또는 상기 음극 형성용 조성물을 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 음극 집전체 상에 라미네이션함으로써 제조될 수도 있다.
상기 음극 활물질로는 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물이 사용될 수 있다. 구체적인 예로는 인조흑연, 천연흑연, 흑연화 탄소섬유, 비정질탄소 등의 탄소질 재료; Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si합금, Sn합금 또는 Al합금 등 리튬과 합금화가 가능한 금속질 화합물; SiOβ(0 < β < 2), SnO2, 바나듐 산화물, 리튬 바나듐 산화물과 같이 리튬을 도프 및 탈도프할 수 있는 금속산화물; 또는 Si-C 복합체 또는 Sn-C 복합체과 같이 상기 금속질 화합물과 탄소질 재료를 포함하는 복합물 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 또한, 상기 음극활물질로서 금속 리튬 박막이 사용될 수도 있다. 또, 탄소재료는 저결정 탄소 및 고결정성 탄소 등이 모두 사용될 수 있다. 저결정성 탄소로는 연화탄소 (soft carbon) 및 경화탄소 (hard carbon)가 대표적이며, 고결정성 탄소로는 무정형, 판상, 인편상, 구형 또는 섬유형의 천연 흑연 또는 인조 흑연, 키시흑연 (Kish graphite), 열분해 탄소 (pyrolytic carbon), 액정피치계 탄소섬유 (mesophase pitch based carbon fiber), 탄소 미소구체 (meso-carbon microbeads), 액정피치 (Mesophase pitches) 및 석유와 석탄계 코크스 (petroleum or coal tar pitch derived cokes) 등의 고온 소성탄소가 대표적이다.
또, 상기 바인더 및 도전재는 앞서 양극에서 설명한 바와 동일한 것일 수 있다.
한편, 상기 이차전지에 있어서, 세퍼레이터는 음극과 양극을 분리하고 리튬 이온의 이동 통로를 제공하는 것으로, 통상 리튬 이차전지에서 세퍼레이터로 사용되는 것이라면 특별한 제한 없이 사용가능하며, 특히 전해질의 이온 이동에 대하여 저저항이면서 전해액 함습 능력이 우수한 것이 바람직하다. 구체적으로는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름 또는 이들의 2층 이상의 적층 구조체가 사용될 수 있다. 또 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포가 사용될 수도 있다. 또, 내열성 또는 기계적 강도 확보를 위해 세라믹 성분 또는 고분자 물질이 포함된 코팅된 세퍼레이터가 사용될 수도 있으며, 선택적으로 단층 또는 다층 구조로 사용될 수 있다.
또, 본 발명에서 사용되는 전해질로는 이차전지 제조 시 사용 가능한 유기계 액체 전해질, 무기계 액체 전해질, 고체 고분자 전해질, 겔형 고분자 전해질, 고체 무기 전해질, 용융형 무기 전해질 등을 들 수 있으며, 이들로 한정되는 것은 아니다.
구체적으로, 상기 전해질은 유기 용매 및 리튬염을 포함할 수 있다.
상기 유기 용매로는 전지의 전기 화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 할 수 있는 것이라면 특별한 제한없이 사용될 수 있다. 구체적으로 상기 유기 용매로는, 메틸 아세테이트(methyl acetate), 에틸 아세테이트(ethyl acetate), γ-부티로락톤(γ-butyrolactone), ε-카프로락톤(ε-caprolactone) 등의 에스테르계 용매; 디부틸 에테르(dibutyl ether) 또는 테트라히드로퓨란(tetrahydrofuran) 등의 에테르계 용매; 시클로헥사논(cyclohexanone) 등의 케톤계 용매; 벤젠(benzene), 플루오로벤젠(fluorobenzene) 등의 방향족 탄화수소계 용매; 디메틸카보네이트(dimethylcarbonate, DMC), 디에틸카보네이트(diethylcarbonate, DEC), 메틸에틸카보네이트(methylethylcarbonate, MEC), 에틸메틸카보네이트(ethylmethylcarbonate, EMC), 에틸렌카보네이트(ethylene carbonate, EC), 프로필렌카보네이트(propylene carbonate, PC) 등의 카보네이트계 용매; 에틸알코올, 이소프로필 알코올 등의 알코올계 용매; R-CN(R은 C2 내지 C20의 직쇄상, 분지상 또는 환 구조의 탄화수소기이며, 이중결합 방향 환 또는 에테르 결합을 포함할 수 있다) 등의 니트릴류; 디메틸포름아미드 등의 아미드류; 1,3-디옥솔란 등의 디옥솔란류; 또는 설포란(sulfolane)류 등이 사용될 수 있다. 이중에서도 카보네이트계 용매가 바람직하고, 전지의 충방전 성능을 높일 수 있는 높은 이온전도도 및 고유전율을 갖는 환형 카보네이트(예를 들면, 에틸렌카보네이트 또는 프로필렌카보네이트 등)와, 저점도의 선형 카보네이트계 화합물(예를 들면, 에틸메틸카보네이트, 디메틸카보네이트 또는 디에틸카보네이트 등)의 혼합물이 보다 바람직하다. 이 경우 환형 카보네이트와 사슬형 카보네이트는 약 1:1 내지 약 1:9의 부피비로 혼합하여 사용하는 것이 전해액의 성능이 우수하게 나타날 수 있다.
상기 리튬염은 리튬 이차전지에서 사용되는 리튬 이온을 제공할 수 있는 화합물이라면 특별한 제한 없이 사용될 수 있다. 구체적으로 상기 리튬염은, LiPF6, LiClO4, LiAsF6, LiBF4, LiSbF6, LiAl04, LiAlCl4, LiCF3SO3, LiC4F9SO3, LiN(C2F5SO3)2, LiN(C2F5SO2)2, LiN(CF3SO2)2. LiCl, LiI, 또는 LiB(C2O4)2 등이 사용될 수 있다. 상기 리튬염의 농도는 0.1 내지 2.0M 범위 내에서 사용하는 것이 좋다. 리튬염의 농도가 상기 범위에 포함되면, 전해질이 적절한 전도도 및 점도를 가지므로 우수한 전해질 성능을 나타낼 수 있고, 리튬 이온이 효과적으로 이동할 수 있다.
상기 전해질에는 상기 전해질 구성 성분들 외에도 전지의 수명특성 향상, 전지 용량 감소 억제, 전지의 방전 용량 향상 등을 목적으로 예를 들어, 디플루오로 에틸렌카보네이트 등과 같은 할로알킬렌카보네이트계 화합물, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사인산 트리아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올 또는 삼염화 알루미늄 등의 첨가제가 1종 이상 더 포함될 수도 있다. 이때 상기 첨가제는 전해질 총 중량에 대하여 0.1 내지 5 중량%로 포함될 수 있다.
상기와 같이 본 발명에 따른 이차전지용 양극 활물질을 포함하는 이차전지는 우수한 방전 용량, 출력 특성 및 용량 유지율을 안정적으로 나타내기 때문에, 휴대전화, 노트북 컴퓨터, 디지털 카메라 등의 휴대용 기기, 및 하이브리드 전기자동차(hybrid electric vehicle, HEV) 등의 전기 자동차 분야 등에 유용하다.
이에 따라, 본 발명은 상기 이차전지를 단위 셀로 포함하는 전지 모듈 및 이를 포함하는 전지팩을 제공한다.
상기 전지모듈 또는 전지팩은 파워 툴(Power Tool); 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차, 및 플러그인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV)를 포함하는 전기차; 또는 전력 저장용 시스템 중 어느 하나 이상의 중대형 디바이스 전원으로 이용될 수 있다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
실시예
실시예 1: 이차전지용 양극 활물질의 제조
전이금속 수산화물 Ni0
.
7Co0
.
1Mn0
.2(OH)2 및 리튬 수산화물 LiOH를 혼합하였다. 이때, 전이금속 수산화물의 전이금속의 총 몰 수에 대한 리튬(Li)의 몰수의 비율 Li/Me는 1.03으로 조절되도록 전이금속 수산화물과 리튬 수산화물을 혼합하였다.
상기 혼합물을 850℃에서 15시간 동안 산소 분위기에서 1차 소성시켰으며, 1차 소성물 Li1.03Ni0.7Co0.1Mn0.2O2을 제조하였다.
상기 리튬 복합 전이금속 산화물과 도핑 소스로서 WO3를 혼합하였다. 이때, 도핑 소스 내 포함된 도핑 원소 W가 제조된 양극 활물질 내 리튬을 제외한 전체 금속에 대하여 7몰%로 도핑되도록 상기 리튬 복합 전이금속 산화물과 도핑 소스를 혼합하였다. 상기 혼합물을 800℃에서 7시간 동안 산소 분위기에서 2차 소성시켜, 도핑 원소 W가 상기 리튬 복합 전이금속 산화물에 도핑된 양극 활물질 Li1.03Ni0.63Co0.1Mn0.2W0.07O2(평균 입경(D50) 11㎛)을 제조하였다.
실시예 2: 이차전지용 양극 활물질의 제조
도핑 소스 내 포함된 도핑 원소 W가 양극 활물질 내 리튬을 제외한 전체 금속에 대하여 9몰%로 도핑되도록 상기 리튬 복합 전이금속 산화물과 도핑 소스를 혼합한 것을 제외하고는, 실시예 1과 동일한 방법으로 실시예 2의 이차전지용 양극 활물질 Li1.03Ni0.61Co0.1Mn0.2W0.09O2(평균 입경(D50) 11㎛)을 제조하였다.
실시예 3: 이차전지용 양극 활물질의 제조
도핑 소스로서 ZrO2를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 실시예 3의 이차전지용 양극 활물질 Li1
.
03Ni0
.
63Co0
.
1Mn0
.
2Zr0
.
07O2(평균 입경(D50) 11㎛)를 제조하였다.
실시예 4: 이차전지용 양극 활물질의 제조
도핑 소스 내 포함된 도핑 원소 W가 양극 활물질 내 리튬을 제외한 전체 금속에 대하여 10몰%로 도핑되도록 상기 리튬 복합 전이금속 산화물과 도핑 소스를 혼합한 것을 제외하고는, 실시예 1과 동일한 방법으로 실시예 4의 이차전지용 양극 활물질 Li1.03Ni0.6Co0.1Mn0.2W0.1O2(평균 입경(D50) 11㎛)을 제조하였다.
비교예 1: 이차전지용 양극 활물질의 제조
실시예 1에서 제조된 1차 소성물 Li1
.
03Ni0
.
7Co0
.
1Mn0
.
2O2(평균 입경(D50) 11㎛)을 비교예 1의 이차전지용 양극 활물질(평균 입경(D50) 11㎛)로 사용하였다.
비교예 2: 이차전지용 양극 활물질의 제조
도핑 소스로서 ZrO2를 사용하고, 도핑 원소 Zr이 양극 활물질 내 리튬을 제외한 전체 금속에 대하여 1몰%로 도핑되도록 상기 리튬 복합 전이금속 산화물과 도핑 소스를 혼합한 것을 제외하고는, 실시예 1과 동일한 방법으로 비교예 2의 이차전지용 양극 활물질 Li1.03Ni0.69Co0.1Mn0.2Zr0.01O2(평균 입경(D50) 11㎛)을 제조하였다.
비교예 3: 이차전지용 양극 활물질의 제조
도핑 소스로서 WO3을 사용하고, 도핑 원소 W이 양극 활물질 내 리튬을 제외한 전체 금속에 대하여 1몰%로 도핑되도록 상기 리튬 복합 전이금속 산화물과 도핑 소스를 혼합한 것을 제외하고는, 실시예 1과 동일한 방법으로 비교예 3의 이차전지용 양극 활물질 Li1.03Ni0.69Co0.1Mn0.2W0.01O2(평균 입경(D50) 11㎛)을 제조하였다.
비교예 4: 이차전지용 양극 활물질의 제조
전이금속 수산화물 Ni0
.
7Co0
.
1Mn0
.2(OH)2 및 리튬 수산화물 LiOH 및 도핑 소스로서 WO3을 혼합하였다.
이때, 전이금속 수산화물의 전이금속의 총 몰 수에 대한 리튬(Li)의 몰수의 비율 Li/Me는 1.03으로 조절되도록 전이금속 수산화물과 리튬 산화물을 혼합하였다. 도핑 소스 내 포함된 도핑 원소 W이 양극 활물질 내 리튬을 제외한 전체 금속에 대하여 7몰%로 도핑되도록 상기 리튬 복합 전이금속 산화물과 도핑 소스를 혼합하였다.
상기 혼합물을 850℃에서 15시간 동안 산소 분위기에서 소성하여, 도핑 원소 W가 상기 리튬 복합 전이금속 산화물에 도핑된 양극 활물질로서, 평균 입경(D50) 11㎛인 Li1.03Ni0.63Co0.1Mn0.2W0.07O2(평균 입경(D50) 11㎛)을 제조하였다.
비교예 5: 이차전지용 양극 활물질의 제조
도핑 소스로서 WO3을 사용하고, 도핑 원소 W이 양극 활물질 내 리튬을 제외한 전체 금속에 대하여 5몰%로 도핑되도록 상기 리튬 복합 전이금속 산화물과 도핑 소스를 혼합한 것을 제외하고는, 실시예 1과 동일한 방법으로 비교예 5의 이차전지용 양극 활물질 Li1.03Ni0.65Co0.1Mn0.2W0.05O2(평균 입경(D50) 11㎛)을 제조하였다.
비교예 6: 이차전지용 양극 활물질의 제조
전이금속 수산화물 Ni0
.
7Co0
.
1Mn0
.2(OH)2 및 리튬 수산화물 LiOH를 혼합하였다. 이때, 전이금속 수산화물의 전이금속의 총 몰 수에 대한 리튬(Li)의 몰수의 비율 Li/Me는 1.03으로 조절되도록 전이금속 수산화물과 리튬 수산화물을 혼합하였다.
상기 혼합물을 950℃에서 20시간 동안 산소 분위기에서 1차 소성시켰으며, 1차 소성물 Li1.03Ni0.7Co0.1Mn0.2O2을 제조하였다.
상기 리튬 복합 전이금속 산화물과 도핑 소스로서 WO3를 혼합하였다. 이때, 도핑 소스 내 포함된 도핑 원소 W가 제조된 양극 활물질 내 리튬을 제외한 전체 금속에 대하여 20몰%로 도핑되도록 상기 리튬 복합 전이금속 산화물과 도핑 소스를 혼합하였다. 상기 혼합물을 900℃에서 10시간 동안 산소 분위기에서 2차 소성시켜, 도핑 원소 W가 상기 리튬 복합 전이금속 산화물에 도핑된 양극 활물질 Li1.03Ni0.5Co0.1Mn0.2W0.2O2(평균 입경(D50) 11㎛)을 제조하였다.
실험예
실험예 1: 입자 강도 측정
실시예 1-4 및 비교예 1-6의 양극 활물질의 입자 강도를 측정하여 하기 표 1에 나타내었다.
<입자 강도 측정>
실시예 1 양극 활물질의 입자 강도는 입자강도 측정기(micro compression testing machine, 기기명: MCT-W500, Shimadzu사 제조)를 통해 플레이트 위에 실시예 1의 양극활물질 입자를 적하하고, 측정기를 통해 서서히 압력을 가하여 입자가 부서지는 지점의 힘을 수치화하여 측정되었다.
또한, 실시예 2 내지 4, 비교예 1 내지 6의 양극 활물질의 입자 강도를 위 방법과 동일한 방법으로 측정하였다.
각 실시예 및 비교예마다 총 10번의 실험을 반복하여 그 평균값을 실시예 및 비교예의 입자 강도로 하였으며, 그 값을 하기 표 1에 나타내었다.
실시예 | 비교예 | |||||||||
1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | 5 | 6 | |
입자 강도(MPa) | 226.2 | 237.3 | 218.5 | 253.4 | 114.7 | 171.7 | 182.2 | 190.1 | 183.2 | 298.2 |
실험예 2: 고온 수명 특성 평가
실시예 1-4 및 비교예 1-6의 양극 활물질의 고온 수명 특성을 평가하여 하기 도 1 및 표 2에 나타내었다.
<리튬 이차전지의 제조>
실시예 1의 양극 활물질, 카본블랙 도전재 및 PVdF바인더를 N-메틸피롤리돈 용매 중에서 96.5:1.5:2의 중량비로 혼합하여 양극슬러리를 제작하고, 이를 알루미늄 집전체의 일면에 도포한 후 130℃에서 건조 후 공극률 25%로 압연하여 이차전지용 양극을 제조하였다.
다음으로, 음극 활물질로서 인조흑연과 천연흑연이 5:5로 혼합된 혼합물, 도전재로서 superC, 바인더로서 SBR/CMC를 96:1:3의 중량비로 혼합하여 음극 슬러리를 제작하고 이를 구리 집전체의 일면에 도포한 후 130℃에서 건조 후 공극률 30%로 압연하여 음극을 제조하였다.
상기에서 제조된 이차전지용 양극과 음극 사이에 다공성 폴리에틸렌의 세퍼레이터를 개재하여 전극 조립체를 제조하고, 상기 전극 조립체의 케이스 내부에 위치시킨 후 케이스 내부로 전해액을 주입하여 실시예 1의 리튬 이차전지를 제조하였다. 이때 전해액은 에틸렌카보네이트(EC), 디메틸카보네이트(DMC), 에틸메틸카보네이트(EMC)를 3:4:3의 부피비로 혼합한 유기용매에 리튬헥사플루오로포스페이트(LiPF6)를 농도 1M이 되도록 용해하여 제조되었다.
또한, 실시예 2 내지 4 및 비교예 1 내지 6의 이차전지용 양극 활물질 각각을 실시예 1의 이차전지용 양극 활물질 대신 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 실시예 2 내지 4 및 비교예 1 내지 6의 리튬 이차전지를 각각 제조하였다.
<고온 수명 특성 평가 방법>
상기와 같이 제조된 실시예 및 비교예들의 리튬 이차전지에 대해 고온(45℃)의 온도에서 3.0 내지 4.25V 구동전압 범위 내에서 1C/1C의 조건으로 충/방전을 실시하였다.
각 실시예 및 비교예들에 있어서, 초기 용량에 대한 각 충방전 사이클에 따른 방전 용량의 비율인 용량 유지율(capacity retention)을 측정하여 도 1에 나타내었고, 충방전 400회 실시 후의 초기 용량에 대한 400 사이클째의 방전용량의 비율인 400회 사이클 용량유지율을 표 2에 나타내었다.
45℃에서의 400회 사이클 용량유지율(%) | |
실시예 1 | 87.7 |
실시예 2 | 90.4 |
실시예 3 | 86.2 |
실시예 4 | 85.3 |
비교예 1 | 64.2 |
비교예 2 | 75.9 |
비교예 3 | 80.2 |
비교예 4 | 83.9 |
비교예 5 | 82.4 |
비교예 6 | 73.8 |
도 1 및 표 2를 참조하면, 본 발명의 입자 강도를 만족하는 실시예들의 양극 활물질로 제조된 리튬 이차전지는 비교예들의 경우에 비해 고온에서 우수한 용량 유지율을 보임을 확인할 수 있으며, 이에 따라 고온 수명 특성이 우수한 것을 알 수 있다.
실험예 3: 입자 깨짐 여부 관찰
실험예 2의 조건으로 고온(45℃)에서 충방전 400회 실시한 이후의 양극 활물질 입자 깨짐 여부를 주사전파현미경(SEM)을 통해 관찰하였다.
실시예 1 내지 4의 SEM 사진은 도 2 내지 5에, 비교예 1 내지 6의 SEM 사진은 도 5 내지 도 11에 나타내었다.
도 2 내지 도 11을 참조하면, 본 발명의 입자 강도를 만족하는 실시예들의 양극 활물질은 입자 깨짐이 거의 관찰되지 않았다. 그러나, 비교예들은 충방전 사이클 수행 후 입자 깨짐이 많이 발생하는 것을 알 수 있어, 이에 따라 구조적 안정성, 내구성이 좋지 않으며, 이에 따라 수명 특성이 좋지 않을 것임을 확인할 수 있다.
실험예 4: EDS 관찰
실시예 1 및 비교예 4의 도핑 원소 분포 및 함량을 EDS(Energy Dispersive Spectrometer)를 통해 분석하였다(기기명: FE-SEM, Bruker사 제조).
EDS 분석으로서 실시예 1 및 비교예 4의 입자 단면을 SEM으로 형상 분석한 후, EMAX 프로그램을 이용하여 입자의 특정 영역의 도핑 원소 함량을 정량 분석하였다.
실시예 1 및 비교예 4의 표면으로부터 중심까지의 도핑 원소 W 함량을 각각 도 12 및 도 13에 나타낸다. 상기 도 12 및 도 13에 따르면, 상기 리튬 복합 전이금속 산화물 입자의 반직경에 대하여, 입자 중심으로부터 60% 내지 100%의 거리에 해당하는 영역에 있어서, 전체 도핑량에 대한 해당 영역 도핑량은 실시예 1은 약 99중량%이고, 비교예 4는 약 40중량%인 것으로 평가되었다.
또한, 실시예 1의 양극 활물질의 입자 단면을 EDS 분석하였을 때, 입자 표면과 입자 중심의 도핑 원소 농도를 하기 수학식 1에 대입하여 얻은 값이 1이었다. 또한, 비교예 1의 양극 활물질의 입자 단면을 EDS 분석하였을 때, 입자 표면과 입자 중심의 도핑 원소 농도를 하기 수학식 1에 대입하여 얻은 값이 0.25였다.
[수학식 1]
(Hs-Hc)/Hs
(수학식 1 중, Hs는 상기 리튬 복합 전이금속 산화물 입자를 EDS로 분석하였을 때 입자 표면의 도핑 원소 농도이고 Hc는 상기 리튬 복합 전이금속 산화물 입자를 EDS로 분석하였을 때 입자 중심의 도핑 원소 농도임).
상기 결과를 검토하면, 실시예 1의 양극 활물질은 표면에 도핑 원소가 다수 분포되도록 형성되었으므로, 입자 강도가 높고, 실험예 2, 3에서 나타낸 바와 같이 우수한 내구성, 입자 깨짐 방지 및 수명 특성 향상 효과가 구현되는 것을 알 수 있다.
그러나, 비교예 4의 양극 활물질은 도핑 원소가 활물질 입자에 대체적으로 고루 분포된 것이므로, 요구되는 입자 강도 만족이 어렵고, 내구성, 수명 특성 측면에서 좋지 않은 효과를 보임을 알 수 있다.
Claims (15)
- 니켈(Ni) 및 코발트(Co)를 포함하고, 망간(Mn) 및 알루미늄(Al) 중 적어도 1종 이상을 포함하는 리튬 복합 전이금속 산화물 입자이며,상기 리튬 복합 전이금속 산화물 입자는 상기 니켈(Ni)이 리튬을 제외한 전체 금속 중 60몰% 이상이고,상기 리튬 복합 전이금속 산화물 입자에 도핑 원소가 도핑되고,입자 강도가 210MPa 내지 290MPa인, 이차전지용 양극 활물질.
- 청구항 1에 있어서,상기 도핑 원소는 리튬을 제외한 전체 금속에 대하여 6몰% 내지 10몰%로 도핑되는, 이차전지용 양극 활물질.
- 청구항 1에 있어서,상기 도핑 원소는 P, B, Al, Si, W, Zr 및 Ti로 이루어진 군에서 선택된 적어도 1종을 포함하는, 이차전지용 양극 활물질.
- 청구항 1에 있어서,상기 리튬 복합 전이금속 산화물 입자는 하기 화학식 1로 표시되는 화합물을 포함하는, 이차전지용 양극 활물질.[화학식 1]LipNi1-x-y-zCoxMa yMb zO2화학식 1 중, 1.0≤p≤1.5, 0<x≤0.2, 0<y≤0.2, 0.06≤z≤0.1, 0<x+y+z≤0.4이고,Ma은 Mn 및 Al으로 이루어지는 군으로부터 선택되는 적어도 1종이고,Mb는 P, B, Al, Si, W, Zr 및 Ti으로 이루어지는 군으로부터 선택되는 적어도 1종이다.
- 청구항 1에 있어서,평균 입경(D50)이 8㎛ 내지 30㎛인, 이차전지용 양극 활물질.
- 청구항 1에 있어서,상기 도핑 원소는 상기 리튬 복합 전이금속 산화물 입자의 표면으로부터 중심까지 도핑 원소의 농도가 감소하도록 도핑되는, 이차전지용 양극 활물질.
- 청구항 1에 있어서,상기 리튬 복합 전이금속 산화물 입자의 반직경에 대하여, 입자 중심으로부터 60% 내지 100%의 거리에 해당하는 영역에 상기 도핑 원소가 전체 도핑 원소 몰수의 70몰% 이상으로 도핑되는, 이차전지용 양극 활물질.
- 청구항 1에 있어서,상기 리튬 복합 전이금속 산화물 입자는 EDS(Energy Dispersive Spectrometer)로 분석한 입자 표면과 입자 중심의 도핑 원소 농도를 하기 수학식 1에 대입하여 얻은 값이 0.7 내지 1인, 이차전지용 양극 활물질:[수학식 1](Hs-Hc)/Hs수학식 1 중, Hs는 상기 리튬 복합 전이금속 산화물 입자를 EDS로 분석하였을 때 입자 표면의 도핑 원소 농도이고, Hc는 상기 리튬 복합 전이금속 산화물 입자를 EDS로 분석하였을 때 입자 중심의 도핑 원소 농도이다.
- 니켈(Ni) 및 코발트(Co)를 포함하고, 망간(Mn) 및 알루미늄(Al) 중 적어도 1종 이상을 포함하며, 전체 금속 중 상기 니켈(Ni)이 60몰% 이상인 전이금속 수산화물 및 리튬 화합물을 혼합하고 1차 소성하여 리튬 복합 전이금속 산화물 입자를 제조하는 단계; 및상기 리튬 복합 전이금속 산화물 입자와, 상기 도핑 원소를 포함하는 도핑 소스를 혼합하고 2차 소성하여 상기 도핑 원소를 상기 리튬 복합 전이금속 산화물 입자에 도핑시키는 단계를 포함하는, 청구항 1에 따른 이차전지용 양극 활물질의 제조방법.
- 청구항 9에 있어서,상기 도핑 소스는 P, B, Al, Si, W, Zr 및 Ti로 이루어진 군에서 선택된 적어도 1종의 도핑 원소를 포함하는, 이차전지용 양극 활물질의 제조방법.
- 청구항 9에 있어서,상기 1차 소성은 10 내지 25시간 동안 수행되는, 이차전지용 양극 활물질의 제조방법.
- 청구항 9에 있어서,상기 1차 소성은 750 내지 1,000℃에서 수행되는, 이차전지용 양극 활물질의 제조방법.
- 청구항 9에 있어서,상기 2차 소성은 3 내지 12시간 동안 수행되는, 이차전지용 양극 활물질의 제조방법.
- 청구항 9에 있어서,상기 2차 소성은 700 내지 900℃에서 수행되는, 이차전지용 양극 활물질의 제조방법.
- 양극 집전체; 및상기 양극 집전체 상에 형성된 양극 활물질층을 포함하고,상기 양극 활물질층은 청구항 1에 따른 이차전지용 양극 활물질을 포함하는, 이차전지용 양극.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/294,923 US12046750B2 (en) | 2018-12-03 | 2019-11-28 | Positive electrode active material for secondary battery, preparation method thereof, and positive electrode for secondary battery including same |
CN201980076406.9A CN113646930B (zh) | 2018-12-03 | 2019-11-28 | 二次电池用正极活性材料、其制备方法及包含其的二次电池正极 |
JP2021530229A JP7214299B2 (ja) | 2018-12-03 | 2019-11-28 | 二次電池用正極活物質、この製造方法、これを含む二次電池用正極 |
EP19894008.2A EP3869595A4 (en) | 2019-11-28 | Positive electrode active material for rechargeable battery, production method therefor and rechargeable battery positive electrode comprising same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020180153838A KR102533811B1 (ko) | 2018-12-03 | 2018-12-03 | 이차전지용 양극 활물질, 이의 제조 방법, 이를 포함하는 이차전지용 양극 및 리튬 이차전지 |
KR10-2018-0153838 | 2018-12-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020116858A1 true WO2020116858A1 (ko) | 2020-06-11 |
Family
ID=70973936
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2019/016579 WO2020116858A1 (ko) | 2018-12-03 | 2019-11-28 | 이차전지용 양극 활물질, 이의 제조 방법, 이를 포함하는 이차전지용 양극 |
Country Status (5)
Country | Link |
---|---|
US (1) | US12046750B2 (ko) |
JP (1) | JP7214299B2 (ko) |
KR (1) | KR102533811B1 (ko) |
CN (1) | CN113646930B (ko) |
WO (1) | WO2020116858A1 (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2023515154A (ja) * | 2020-06-15 | 2023-04-12 | エルジー・ケム・リミテッド | 正極活物質の製造方法 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20210146521A (ko) * | 2020-05-27 | 2021-12-06 | 주식회사 엘지에너지솔루션 | 리튬 이차전지의 퇴화 원인 진단 방법 |
WO2023080286A1 (ko) * | 2021-11-05 | 2023-05-11 | 주식회사 엘 앤 에프 | 이차전지용 양극 활물질 |
WO2023132641A1 (ko) * | 2022-01-07 | 2023-07-13 | 주식회사 릴엠 | 이차전지용 집전체 및 그의 제조 방법 |
CN114436347B (zh) * | 2022-03-21 | 2024-02-20 | 宁波容百新能源科技股份有限公司 | 一种高镍三元正极材料及其制备方法和应用 |
CN115101713B (zh) * | 2022-08-26 | 2022-11-11 | 蜂巢能源科技股份有限公司 | 一种锂离子电池极片及电池 |
WO2023147726A1 (zh) * | 2022-09-23 | 2023-08-10 | 北京当升材料科技股份有限公司 | 含锂氧化物正极材料前驱体和含锂氧化物正极材料及其制备方法与应用、正极片及其应用 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20150050509A (ko) * | 2013-10-31 | 2015-05-08 | 주식회사 엘지화학 | 양극 활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지 |
KR20160053849A (ko) | 2016-04-05 | 2016-05-13 | 한양대학교 산학협력단 | 양극활물질, 및 이를 포함하는 이차 전지 |
KR20180077090A (ko) * | 2016-12-28 | 2018-07-06 | 주식회사 엘지화학 | 리튬 이차전지용 양극활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지 |
KR101882878B1 (ko) * | 2017-09-25 | 2018-07-30 | 주식회사 엘 앤 에프 | 리튬 이차 전지용 양극 활물질, 및 이를 포함하는 리튬 이차 전지 |
KR20180110249A (ko) * | 2017-03-27 | 2018-10-10 | 전자부품연구원 | 표면 도핑 처리된 리튬이차전지용 양극 활물질 및 그의 제조 방법 |
KR20180115644A (ko) * | 2017-04-13 | 2018-10-23 | 한양대학교 산학협력단 | 양극활물질, 그 제조 방법, 및 이를 포함하는 리튬이차전지 |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7241532B2 (en) | 2002-03-28 | 2007-07-10 | Mitsubishi Chemical Corporation | Positive-electrode material for lithium secondary battery, secondary battery employing the same, and process for producing positive-electrode material for lithium secondary battery |
WO2004082046A1 (ja) | 2003-03-14 | 2004-09-23 | Seimi Chemical Co., Ltd. | リチウム二次電池用正極活物質粉末 |
JP5389620B2 (ja) * | 2009-11-27 | 2014-01-15 | 株式会社日立製作所 | リチウムイオン二次電池用正極材料およびそれを用いたリチウムイオン二次電池 |
US8871113B2 (en) | 2010-03-31 | 2014-10-28 | Samsung Sdi Co., Ltd. | Positive active material, and positive electrode and lithium battery including positive active material |
JP5971109B2 (ja) | 2011-12-20 | 2016-08-17 | 住友金属鉱山株式会社 | ニッケル複合水酸化物とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池 |
KR101689213B1 (ko) | 2012-06-21 | 2016-12-23 | 삼성에스디아이 주식회사 | 리튬 이차 전지용 양극 활물질, 그 제조방법, 이를 포함한 리튬 이차 전지용 양극 및 이를 구비한 리튬 이차 전지 |
CN103715424B (zh) | 2014-01-06 | 2016-06-08 | 中国科学院宁波材料技术与工程研究所 | 一种核壳结构正极材料及其制备方法 |
KR101791744B1 (ko) * | 2014-09-30 | 2017-10-30 | 주식회사 엘지화학 | 양극 활물질 및 이의 제조방법 |
KR102312369B1 (ko) | 2014-12-16 | 2021-10-12 | 에스케이이노베이션 주식회사 | 리튬 이차 전지 |
KR20160081545A (ko) * | 2014-12-31 | 2016-07-08 | 주식회사 에코프로 | 양극활물질 및 이의 제조 방법 |
JP6034413B2 (ja) | 2015-01-29 | 2016-11-30 | 輔仁大學學校財團法人輔仁大學 | リチウムイオン電池の金属勾配ドープ正極材料 |
KR20170009557A (ko) | 2015-07-17 | 2017-01-25 | 주식회사 엘지화학 | 양극 활물질 입자 강도 변경을 통해 안전성이 향상된 원통형 이차전지 |
WO2017095081A1 (ko) | 2015-11-30 | 2017-06-08 | 주식회사 엘지화학 | 이차전지용 양극활물질, 이를 포함하는 이차전지용 양극 및 이차전지 |
KR102012427B1 (ko) | 2015-11-30 | 2019-08-21 | 주식회사 엘지화학 | 이차전지용 양극활물질, 이를 포함하는 이차전지용 양극 및 이차전지 |
PL3425703T3 (pl) * | 2016-03-04 | 2020-03-31 | Lg Chem, Ltd. | Materiał aktywny katody do baterii akumulatorowej, sposób jego wytwarzania oraz zawierająca go bateria akumulatorowa |
JP2018085221A (ja) | 2016-11-24 | 2018-05-31 | 株式会社豊田自動織機 | リチウムイオン二次電池 |
JP6256956B1 (ja) | 2016-12-14 | 2018-01-10 | 住友化学株式会社 | リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池 |
KR102176633B1 (ko) * | 2017-02-28 | 2020-11-09 | 주식회사 엘지화학 | 리튬 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지 |
KR102402388B1 (ko) | 2017-04-28 | 2022-05-26 | 삼성에스디아이 주식회사 | 양극 활물질, 이를 채용한 양극과 리튬 이차 전지, 및 상기 양극 활물질의 제조방법 |
WO2019087492A1 (ja) * | 2017-10-31 | 2019-05-09 | 住友金属鉱山株式会社 | 非水系電解質二次電池用正極活物質とその製造方法、及び正極活物質を用いた非水系電解質二次電池 |
HUE067364T2 (hu) | 2018-01-24 | 2024-10-28 | Lg Energy Solution Ltd | Pozitív elektróda aktív anyag szekunder akkumulátorhoz, eljárás annak elõállítására, és a pozitív elektróda aktív anyagot tartalmazó lítium szekunder akkumulátor |
-
2018
- 2018-12-03 KR KR1020180153838A patent/KR102533811B1/ko active IP Right Grant
-
2019
- 2019-11-28 JP JP2021530229A patent/JP7214299B2/ja active Active
- 2019-11-28 US US17/294,923 patent/US12046750B2/en active Active
- 2019-11-28 WO PCT/KR2019/016579 patent/WO2020116858A1/ko unknown
- 2019-11-28 CN CN201980076406.9A patent/CN113646930B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20150050509A (ko) * | 2013-10-31 | 2015-05-08 | 주식회사 엘지화학 | 양극 활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지 |
KR20160053849A (ko) | 2016-04-05 | 2016-05-13 | 한양대학교 산학협력단 | 양극활물질, 및 이를 포함하는 이차 전지 |
KR20180077090A (ko) * | 2016-12-28 | 2018-07-06 | 주식회사 엘지화학 | 리튬 이차전지용 양극활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지 |
KR20180110249A (ko) * | 2017-03-27 | 2018-10-10 | 전자부품연구원 | 표면 도핑 처리된 리튬이차전지용 양극 활물질 및 그의 제조 방법 |
KR20180115644A (ko) * | 2017-04-13 | 2018-10-23 | 한양대학교 산학협력단 | 양극활물질, 그 제조 방법, 및 이를 포함하는 리튬이차전지 |
KR101882878B1 (ko) * | 2017-09-25 | 2018-07-30 | 주식회사 엘 앤 에프 | 리튬 이차 전지용 양극 활물질, 및 이를 포함하는 리튬 이차 전지 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2023515154A (ja) * | 2020-06-15 | 2023-04-12 | エルジー・ケム・リミテッド | 正極活物質の製造方法 |
JP7366487B2 (ja) | 2020-06-15 | 2023-10-23 | エルジー・ケム・リミテッド | 正極活物質の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JP7214299B2 (ja) | 2023-01-30 |
KR20200067009A (ko) | 2020-06-11 |
KR102533811B1 (ko) | 2023-05-19 |
CN113646930A (zh) | 2021-11-12 |
US20220020983A1 (en) | 2022-01-20 |
EP3869595A1 (en) | 2021-08-25 |
US12046750B2 (en) | 2024-07-23 |
CN113646930B (zh) | 2024-09-13 |
JP2022510653A (ja) | 2022-01-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021029652A1 (ko) | 리튬 이차전지용 양극 및 이를 포함하는 리튬 이차전지 | |
WO2019194510A1 (ko) | 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지 | |
WO2019147017A1 (ko) | 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지 | |
WO2020116858A1 (ko) | 이차전지용 양극 활물질, 이의 제조 방법, 이를 포함하는 이차전지용 양극 | |
WO2021049918A1 (ko) | 이차전지용 양극재 및 이를 포함하는 리튬 이차전지 | |
WO2021015511A1 (ko) | 리튬 이차전지용 양극 활물질의 제조 방법 및 상기 제조 방법에 의해 제조된 양극 활물질 | |
WO2021107684A1 (ko) | 리튬 이차전지용 양극 활물질의 제조 방법 및 상기 방법에 의해 제조된 리튬 이차전지용 양극 활물질 | |
WO2021154035A1 (ko) | 리튬 이차전지용 양극 활물질 및 이의 제조 방법 | |
WO2020149679A1 (ko) | 리튬 이차전지 및 이의 제조방법 | |
WO2020122511A1 (ko) | 이차전지용 양극, 이의 제조 방법 및 이를 포함하는 리튬 이차전지 | |
WO2021187907A1 (ko) | 리튬 이차전지용 양극재, 이를 포함하는 양극 및 리튬 이차전지 | |
WO2021125873A1 (ko) | 리튬 이차전지용 양극, 상기 양극을 포함하는 리튬 이차전지 | |
WO2021101281A1 (ko) | 리튬 이차전지용 양극 활물질의 제조 방법, 상기 제조 방법에 의해 제조된 양극 활물질 | |
WO2021112606A1 (ko) | 리튬 이차전지용 양극 활물질, 상기 양극 활물질의 제조 방법 | |
WO2022203434A1 (ko) | 양극 활물질의 제조방법 | |
WO2020067830A1 (ko) | 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지 | |
WO2022010225A1 (ko) | 음극 및 상기 음극을 포함하는 이차 전지 | |
WO2022149951A1 (ko) | 양극 활물질의 제조방법 및 양극 활물질 | |
WO2018124593A1 (ko) | 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지 | |
WO2021029650A1 (ko) | 리튬 이차전지용 양극 및 이를 포함하는 리튬 이차전지 | |
WO2021080384A1 (ko) | 양극 활물질, 이를 포함하는 양극 및 리튬 이차전지 | |
WO2023027504A1 (ko) | 양극 활물질 및 양극 활물질의 제조 방법 | |
WO2023224446A1 (ko) | 양극 활물질 및 이를 포함하는 양극 | |
WO2022158899A1 (ko) | 양극 활물질의 제조방법 및 양극 활물질 | |
WO2023224449A1 (ko) | 양극 활물질 및 이의 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19894008 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021530229 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2019894008 Country of ref document: EP Effective date: 20210520 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |