[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020194544A1 - 工業ギア用潤滑油組成物およびその製造方法 - Google Patents

工業ギア用潤滑油組成物およびその製造方法 Download PDF

Info

Publication number
WO2020194544A1
WO2020194544A1 PCT/JP2019/012999 JP2019012999W WO2020194544A1 WO 2020194544 A1 WO2020194544 A1 WO 2020194544A1 JP 2019012999 W JP2019012999 W JP 2019012999W WO 2020194544 A1 WO2020194544 A1 WO 2020194544A1
Authority
WO
WIPO (PCT)
Prior art keywords
lubricating oil
oil composition
ethylene
mass
group
Prior art date
Application number
PCT/JP2019/012999
Other languages
English (en)
French (fr)
Inventor
昌太 阿部
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to PCT/JP2019/012999 priority Critical patent/WO2020194544A1/ja
Priority to ES19920834T priority patent/ES2985405T3/es
Priority to EP19920834.9A priority patent/EP3950893B1/en
Priority to US17/442,585 priority patent/US20220186133A1/en
Priority to KR1020217033661A priority patent/KR20210139403A/ko
Priority to CN201980094149.1A priority patent/CN113574140A/zh
Publication of WO2020194544A1 publication Critical patent/WO2020194544A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M111/00Lubrication compositions characterised by the base-material being a mixture of two or more compounds covered by more than one of the main groups C10M101/00 - C10M109/00, each of these compounds being essential
    • C10M111/04Lubrication compositions characterised by the base-material being a mixture of two or more compounds covered by more than one of the main groups C10M101/00 - C10M109/00, each of these compounds being essential at least one of them being a macromolecular organic compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M143/00Lubricating compositions characterised by the additive being a macromolecular hydrocarbon or such hydrocarbon modified by oxidation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M101/00Lubricating compositions characterised by the base-material being a mineral or fatty oil
    • C10M101/02Petroleum fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/08Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen
    • C10M105/32Esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M107/00Lubricating compositions characterised by the base-material being a macromolecular compound
    • C10M107/02Hydrocarbon polymers; Hydrocarbon polymers modified by oxidation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M107/00Lubricating compositions characterised by the base-material being a macromolecular compound
    • C10M107/02Hydrocarbon polymers; Hydrocarbon polymers modified by oxidation
    • C10M107/04Polyethene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M171/00Lubricating compositions characterised by purely physical criteria, e.g. containing as base-material, thickener or additive, ingredients which are characterised exclusively by their numerically specified physical properties, i.e. containing ingredients which are physically well-defined but for which the chemical nature is either unspecified or only very vaguely indicated
    • C10M171/02Specified values of viscosity or viscosity index
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/04Monomers containing three or four carbon atoms
    • C08F210/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/1006Petroleum or coal fractions, e.g. tars, solvents, bitumen used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/102Aliphatic fractions
    • C10M2203/1025Aliphatic fractions used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/022Ethene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/022Ethene
    • C10M2205/0225Ethene used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/026Butene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/028Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms
    • C10M2205/0285Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/026Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings with tertiary alkyl groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/283Esters of polyhydroxy compounds
    • C10M2207/2835Esters of polyhydroxy compounds used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/287Partial esters
    • C10M2207/289Partial esters containing free hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/08Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
    • C10M2209/084Acrylate; Methacrylate
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/011Cloud point
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/02Viscosity; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/04Molecular weight; Molecular weight distribution
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/065Saturated Compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/02Pour-point; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/08Resistance to extreme temperature
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/10Inhibition of oxidation, e.g. anti-oxidants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/04Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/135Steam engines or turbines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2070/00Specific manufacturing methods for lubricant compositions

Definitions

  • the present invention relates to a lubricating oil composition for industrial gears and a method for producing the same.
  • Gears of reduction gears and transmissions used in industrial equipment such as machine tools and wind power generators generally tend to have a higher load than gears for automobiles, and there are cases where gear wear becomes a problem. There are many.
  • a lubricating oil having a higher viscosity and easily forming an oil film than a lubricating oil for automobiles is applied. Further, in order to reduce the maintenance cost caused by the replacement of the lubricating oil, a lubricating oil having excellent long-term stability is required (Non-Patent Document 1).
  • a certain polymer soluble in the lubricating oil base is used as a viscosity improver for the purpose of reducing the temperature dependence of viscosity.
  • ⁇ -olefin polymers and polybutenes have been widely used as such viscosity improvers (Patent Documents 1 and 2).
  • the ⁇ -olefin polymer has a problem that the shear stability is not sufficient and the long-term stability is inferior.
  • polybutene has a drawback that it is inferior in temperature viscosity characteristics, low temperature characteristics, and heat resistance stability.
  • Patent Document 4 discloses a lubricating oil composition containing a specific lubricating oil base oil and a specific ethylene- ⁇ -olefin copolymer, which has both of these characteristics and can be suitably applied to industrial gears. ..
  • Patent Document 5 describes a method for producing a liquid random copolymer of ethylene and ⁇ -olefin, and describes that this copolymer is useful as a lubricating oil.
  • the conventional lubricating oil composition provides a lubricating oil composition for industrial gears, which has extremely excellent temperature-viscosity characteristics, that is, oil film retention at high temperature and low-temperature viscosity characteristics, and is also excellent in heat-resistant oxidation stability. From this point of view, there was room for further improvement.
  • a lubricating oil composition for industrial gears having excellent performance As a result of diligent studies to develop a lubricating oil composition for industrial gears having excellent performance, the present inventors have made ethylene- ⁇ -, which is produced by using a specific catalyst for a specific lubricating oil base oil. It has been found that a lubricating oil composition containing an olefin (co) polymer and satisfying a specific condition can solve the above-mentioned problems, and has completed the present invention. Specifically, the following aspects can be mentioned.
  • (B) is contained in an amount of 90 to 10% by mass (however, the total amount of the lubricating oil base oil (A) and the copolymer (B) is 100% by mass), and has the following characteristics of (C1).
  • the kinematic viscosity at 100 ° C is 1 to 100 mm 2 / s
  • the viscosity index is 100 or more
  • the pour point is 0 ° C or less
  • the kinematic viscosity at 40 ° C is 100 to 10,000 mm 2 / s (method ( ⁇ )) It is selected from the group consisting of (a) a crosslinked metallocene compound represented by the following formula 1, (b) (i) an organoaluminum oxy compound, and (ii) a compound that reacts with the crosslinked metallocene compound to form an ion pair.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 8 , R 9 and R 12 are independently hydrogen atoms, hydrocarbon groups or silicon-containing hydrocarbon groups and are adjacent to each other. A plurality of groups are optionally connected to each other to form a ring structure.
  • R 6 and R 11 are identical to each other and are hydrogen atoms, hydrocarbon groups or silicon-containing hydrocarbon groups.
  • R 7 and R 10 are identical to each other and are hydrogen atoms, hydrocarbon groups or silicon-containing hydrocarbon groups.
  • R 6 and R 7 optionally combine with hydrocarbons having 2 to 3 carbon atoms to form a ring structure.
  • R 11 and R 10 optionally combine with hydrocarbons having 2 to 3 carbon atoms to form a ring structure.
  • R 6 , R 7 , R 10 and R 11 are not hydrogen atoms at the same time;
  • Y is a carbon atom or a silicon atom;
  • R 13 and R 14 are independently aryl groups;
  • M is Ti, Zr or Hf;
  • Q is a neutral ligand that can independently coordinate to a halogen, a hydrocarbon group, an anionic ligand or a lone electron pair;
  • j is an integer of 1 to 4.
  • At least one of the substituents (R 1 , R 2 , R 3 and R 4 ) bonded to the cyclopentadienyl group of the metallocene compound represented by the above formula 1 is a hydrocarbon group having 4 or more carbon atoms.
  • R e + is, H +, carbenium cation, oxonium cation, ammonium cation, a ferrocenium cation having a phosphonium cation, a cycloheptyltrienyl cation or a transition metal,
  • R f ⁇ R i is , Each independently is a hydrocarbon group having 1 to 20 carbon atoms.
  • An industrial gear containing 90 to 10% by mass of a copolymer (however, the total amount of the lubricating oil base oil (A) and the copolymer is 100% by mass) and having the following characteristics (C1).
  • Lubricating oil composition (A1) The kinematic viscosity at 100 ° C. is 1 to 100 mm 2 / s (A2) The viscosity index is 100 or more (A3) The pour point is 0 ° C. or less (B1) The ethylene unit is 40 to 60.
  • B2 Containing 60-40 mol% of ⁇ -olefin units of 3-20 mol% and 3-20 carbon atoms (B2) Number average molecular weight (Mn) of 500-10,000 as measured by gel permeation chromatography (GPC) , And having a molecular weight distribution of 3 or less (Mw / Mn, Mw are weight average molecular weights) (B3) having a 100 ° C. kinematic viscosity of 30 to 5,000 mm 2 / s (B4) 30 to -45. Having a pour point at ° C. (B5) Having a bromine value of 0.1 g / 100 g or less (C1) The kinematic viscosity at 40 ° C.
  • a gear oil for wind power generation comprising the lubricating oil composition according to any one of the above [1] to [14].
  • a gear oil for a machine tool / molding machine comprising the lubricating oil composition according to any one of the above [1] to [14].
  • a method for manufacturing a lubricating oil composition for industrial gears The step of producing a liquid random copolymer (B) of ethylene and ⁇ -olefin by the following method ( ⁇ ), and the following (A1) in an amount of 10 to 90% by mass in the lubricating oil composition.
  • the lubricating oil base oil (A) having the characteristics of (A3) and the liquid random copolymer (B) in an amount of 90 to 10% by mass in the lubricating oil composition (however, the lubricating oil group).
  • the step of producing a lubricating oil composition for industrial gear having the following characteristics (C1) by mixing the oil (A) and the copolymer (B) in a total amount of 100% by mass).
  • a method for producing a lubricating oil composition for industrial gears including.
  • (A1) The kinematic viscosity at 100 ° C is 1 to 100 mm 2 / s
  • the viscosity index is 100 or more
  • the pour point is 0 ° C or less
  • (C1) The kinematic viscosity at 40 ° C is 100 to 10,000 mm 2 / s (method ( ⁇ )) It is selected from the group consisting of (a) a crosslinked metallocene compound represented by the following formula 1, (b) (i) an organoaluminum oxy compound, and (ii) a compound that reacts with the crosslinked metallocene compound to form an ion pair.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 8 , R 9 and R 12 are independently hydrogen atoms, hydrocarbon groups or silicon-containing hydrocarbon groups and are adjacent to each other. A plurality of groups are optionally connected to each other to form a ring structure.
  • R 6 and R 11 are identical to each other and are hydrogen atoms, hydrocarbon groups or silicon-containing hydrocarbon groups.
  • R 7 and R 10 are identical to each other and are hydrogen atoms, hydrocarbon groups or silicon-containing hydrocarbon groups.
  • R 6 and R 7 optionally combine with hydrocarbons having 2 to 3 carbon atoms to form a ring structure.
  • R 11 and R 10 optionally combine with hydrocarbons having 2 to 3 carbon atoms to form a ring structure.
  • R 6 , R 7 , R 10 and R 11 are not hydrogen atoms at the same time;
  • Y is a carbon atom or a silicon atom;
  • R 13 and R 14 are independently aryl groups;
  • M is Ti, Zr or Hf;
  • Q is a neutral ligand that can independently coordinate to a halogen, a hydrocarbon group, an anionic ligand or a lone electron pair;
  • j is an integer of 1 to 4.
  • the lubricating oil composition of the present invention is a lubricating oil composition having high temperature viscosity characteristics, that is, oil film retention at high temperature and excellent low temperature viscosity characteristics, and also excellent heat resistance oxidation stability, and is an industrial gear oil, particularly. It is preferably applicable to gear oils for wind generators or gear oils for machine tools / molding machines.
  • lubricating oil composition for industrial gears according to the present invention (hereinafter, also simply referred to as “lubricating oil composition”) will be described in detail.
  • the lubricating oil composition for industrial gear according to the present invention is a liquid random copolymer (B) of ethylene and ⁇ -olefin produced by the lubricating oil base oil (A) and the method ( ⁇ ) (in the present specification, “ It is also described as “ethylene- ⁇ -olefin copolymer (B)"), and is characterized in that the kinematic viscosity at 40 ° C. is in a specific range.
  • the lubricating oil base oil (A) has the following characteristics (A1) to (A3).
  • the kinematic viscosity at 100 ° C. is 1 to 100 mm 2 / s.
  • the value of the kinematic viscosity at 100 ° C. is measured according to the method described in JIS K2283.
  • the kinematic viscosity of the lubricating oil base oil (A) at 100 ° C. is 1 to 100 mm 2 / s, preferably 1 to 10 mm 2 / s, and more preferably 2 to 8 mm 2 / s.
  • the lubricating oil composition of the present invention is excellent in terms of the balance between volatility and temperature viscosity characteristics.
  • Viscosity index is 100 or more The value of this viscosity index is measured according to the method described in JIS K2283.
  • the viscosity index of the lubricating oil base oil (A) is 100 or more, preferably 110 or more, and more preferably 120 or more. When the viscosity index is in this range, the lubricating oil composition of the present invention has excellent temperature viscosity characteristics.
  • the pour point is 0 ° C. or lower
  • the value of this pour point is measured according to the method described in ASTM D97.
  • the pour point of the lubricating oil base oil (A) is 0 ° C. or lower, preferably ⁇ 10 ° C. or lower, more preferably ⁇ 20 ° C. or lower, still more preferably ⁇ 30 ° C. or lower.
  • the lubricating oil composition of the present invention has excellent low temperature viscosity properties.
  • the lubricating oil base oil used in the present invention differs in performance and quality such as viscosity characteristics, heat resistance, and oxidation stability depending on its manufacturing method, refining method, etc., but is generally classified into mineral oil and synthetic oil. ..
  • the API American Petroleum Institute
  • the lubricating oil base oil (A) may be either a mineral oil or a synthetic oil, or may be any of groups IV in the API category. Details are described below.
  • Mineral oils belong to groups I-III in the API category described above.
  • the quality of mineral oil is as described above, and each of the above quality mineral oils can be obtained by the refining method.
  • the mineral oil specifically, the lubricating oil distillate obtained by distilling the atmospheric residual oil obtained by atmospheric distillation of crude oil under reduced pressure is subjected to solvent removal, solvent extraction, hydrocracking, and solvent removal. Examples thereof include those refined by performing one or more treatments such as wax and hydrorefining, and lubricating oil base oils such as wax isomerized mineral oil.
  • the gas-to-liquid (GTL) base oil obtained by the Fischer-Tropsch method is also a base oil that can be suitably used as a Group III mineral oil.
  • Such GTL base oils may also be treated as Group III + lubricating oil base oils, for example, the patent documents EP0776959, EP0668342, WO97 / 21788, WO00 / 15736, WO00 / 14188, WO00 / 14187, WO00 / 14183. , WO00 / 14179, WO00 / 08115, WO99 / 41332, EP1029029, WO01 / 18156 and WO01 / 57166.
  • Synthetic oils belong to Group IV, or Group V, in the API category described above.
  • Poly- ⁇ -olefins belonging to Group IV are US Pat. No. 3,382,291, US Pat. No. 3,763,244, US Pat. No. 5,171,908, US Pat. No. 3, As described in US Pat. Nos. 780,128, US Pat. No. 4,032,591, JP-A-1-163136, US Pat. No. 4,967,032, US Pat. No. 4,926,004. It can be obtained by oligomerization of higher ⁇ -olefins with acid catalysts such as boron trifluoride and chromium acid catalysts.
  • acid catalysts such as boron trifluoride and chromium acid catalysts.
  • metallocene compounds as described in JP-A-63-037102, JP-A-2005-2000447, JP-A-2005-200148, JP-A-2009-503147, and JP-A-2009-501836 can be used. It can also be obtained by a method using a catalytic system using a transition metal complex such as zirconium, titanium, or hafnium.
  • a transition metal complex such as zirconium, titanium, or hafnium.
  • the poly- ⁇ -olefin a low molecular weight oligomer of at least one olefin selected from olefins having 6 or more carbon atoms can be used.
  • a poly- ⁇ -olefin is used as the lubricating oil base oil (A)
  • a lubricating oil composition having extremely excellent temperature viscosity characteristics, low temperature viscosity characteristics, and heat resistance can be obtained.
  • Poly- ⁇ -olefins are also industrially available, and those having a kinematic viscosity of 100 ° C. of 2 mm 2 / s to 150 mm 2 / s are commercially available. Among them, it is preferable to use a poly ⁇ -olefin of 2 to 100 mm 2 / s in that a lubricating oil composition having excellent temperature and viscosity characteristics can be obtained.
  • NESTE 2000 series ExxonMobil Chemical Co., Ltd. Spectrasyn, Ineos Oligmers Co., Ltd. Duracin, Chevron Phillips Chemical Co., Ltd. Synfluid and the like can be mentioned.
  • Examples of synthetic oils belonging to Group V include alkylbenzenes, alkylnaphthalene, isobutylene oligomers or hydrides thereof, paraffins, polyoxyalkylene glycols, dialkyldiphenyl ethers, polyphenyl ethers, esters and the like.
  • alkylbenzenes and alkylnaphthalene are usually dialkylbenzene or dialkylnaphthalene having an alkyl chain length of 6 to 14 carbon atoms, and such alkylbenzenes or alkylnaphthalene are free of benzene or naphthalene and olefin.
  • the alkylated olefin used in the production of alkylbenzenes or alkylnaphthalene may be a linear or branched olefin or a combination thereof.
  • ester is preferably a fatty acid ester from the viewpoint of compatibility with the ethylene- ⁇ -olefin copolymer (B).
  • the fatty acid ester is not particularly limited, and examples thereof include the following fatty acid esters consisting only of carbon, oxygen, and hydrogen.
  • examples thereof include a polyol ester produced by reacting with.
  • esters examples include ditridecylglutarate, di-2-ethylhexyl adipate, diisodecyl adipate, ditridecyl adipate, di-2-ethylhexyl sebacate, tridecylpelargonate, di-2-ethylhexyl adipate, di-2.
  • the alcohol moiety constituting the ester is preferably an alcohol having a hydroxyl group of bifunctional or higher, and the fatty acid moiety is a fatty acid having 8 or more carbon atoms. Is preferable.
  • fatty acids fatty acids having 20 or less carbon atoms, which are easily available industrially, are superior in terms of production cost. The effect of the present invention may be sufficiently exhibited even if one type of fatty acid constituting the ester or a fatty acid ester produced by using a mixture of two or more types of acids is used.
  • fatty acid ester examples include trimethylolpropane lauric acid stearic acid mixed ester and diisodecyl adipate, which are combined with a saturated hydrocarbon component such as an ethylene- ⁇ -olefin copolymer (B).
  • a saturated hydrocarbon component such as an ethylene- ⁇ -olefin copolymer (B).
  • stabilizers such as antioxidants having polar groups, corrosion inhibitors, abrasion resistant agents, friction modifiers, flow point lowering agents, rust preventives and antifoaming agents, which will be described later.
  • the fatty acid ester is 5 to 20 when the total lubricating oil composition is 100% by mass. It is preferably contained in an amount of% by mass.
  • the amount of ester is preferably 20% by mass or less.
  • one kind of synthetic oil or mineral oil may be used alone as the lubricating oil base oil (A), or two or more kinds selected from synthetic oil and mineral oil.
  • An optional mixture of lubricating oils and the like may be used.
  • the ethylene- ⁇ -olefin copolymer (B) is a liquid random copolymer (B) of ethylene and ⁇ -olefin produced by the following method ( ⁇ ).
  • Method ( ⁇ ) It is selected from the group consisting of (a) a crosslinked metallocene compound represented by the following formula 1, (b) (i) an organoaluminum oxy compound, and (ii) a compound that reacts with the crosslinked metallocene compound to form an ion pair.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 8 , R 9 and R 12 are independently hydrogen atoms, hydrocarbon groups or silicon-containing hydrocarbon groups and are adjacent to each other. A plurality of groups are optionally connected to each other to form a ring structure.
  • R 6 and R 11 are identical to each other and are hydrogen atoms, hydrocarbon groups or silicon-containing hydrocarbon groups.
  • R 7 and R 10 are identical to each other and are hydrogen atoms, hydrocarbon groups or silicon-containing hydrocarbon groups.
  • R 6 and R 7 optionally combine with hydrocarbons having 2 to 3 carbon atoms to form a ring structure.
  • R 11 and R 10 optionally combine with hydrocarbons having 2 to 3 carbon atoms to form a ring structure.
  • R 6 , R 7 , R 10 and R 11 are not hydrogen atoms at the same time;
  • Y is a carbon atom or a silicon atom;
  • R 13 and R 14 are independently aryl groups;
  • M is Ti, Zr or Hf;
  • Q is a neutral ligand that can independently coordinate to a halogen, a hydrocarbon group, an anionic ligand or a lone electron pair;
  • j is an integer of 1 to 4.
  • the hydrocarbon group has 1 to 20, preferably 1 to 15, more preferably 4 to 10, and means, for example, an alkyl group, an aryl group, or the like, and the aryl group has 6 carbon atoms. It is ⁇ 20, preferably 6 ⁇ 15.
  • silicon-containing hydrocarbon group examples include an alkyl group or an aryl group having 3 to 20 carbon atoms containing 1 to 4 silicon atoms, and more specifically, a trimethylsilyl group and a tert-butyldimethylsilyl group. , Triphenylsilyl group and the like.
  • the cyclopentadienyl group may be substituted or unsubstituted.
  • the substituents (R 1 , R 2 , R 3 and R 4 ) bonded to the cyclopentadienyl group is a hydrocarbon group.
  • the substituent (R 1 , R 2 , R 3 and R 4 ) is a hydrocarbon group having 4 or more carbon atoms.
  • the substituent (R 2 or R 3 ) bonded to the 3-position of the cyclopentadienyl group is a hydrocarbon group having 4 or more carbon atoms (for example, an n-butyl group).
  • R 1 , R 2 , R 3 and R 4 are substituents (ie, not hydrogen atoms), the above substituents may be the same or different, with at least one substituent being carbon. It is preferably a hydrocarbon group of several 4 or more.
  • R 6 and R 11 bonded to the fluorenyl group are the same, R 7 and R 10 are the same, but R 6 , R 7 , R 10 and R 11 are simultaneously. Is not a hydrogen atom.
  • R 6 nor R 11 is preferably a hydrogen atom, and more preferably all of R 6 , R 7 , R 10 and R 11 are hydrogen. Not an atom.
  • R 6 and R 11 attached to the 2- and 7 positions of the fluorenyl group are the same hydrocarbon groups having 1 to 20 carbon atoms, preferably all tert-butyl groups, and R 7 and R 10 are.
  • the main chain portion (bonding portion, Y) connecting the cyclopentadienyl group and the fluorenyl group is a single carbon as a structural cross-linking portion that imparts steric rigidity to the crosslinked metallocene compound represented by the formula 1. It is a cross-linked portion of two covalent bonds containing an atom or a silicon atom.
  • the crosslinked atom (Y) in the crosslinked portion has two aryl groups (R 13 and R 14 ) which may be the same or different. Therefore, the cyclopentadienyl group and the fluorenyl group are bonded by a covalently bonded cross-linked portion containing an aryl group.
  • aryl groups include phenyl groups, naphthyl groups, anthracenyl groups, and substituted aryl groups, which are substituents on one or more aromatic hydrogens (sp type 2 hydrogen) of phenyl, naphthyl or anthracenyl groups. It is formed by substitution.).
  • substituent contained in the substituted aryl group include a hydrocarbon group having 1 to 20 carbon atoms, a silicon-containing hydrocarbon group having 1 to 20 carbon atoms, a halogen atom and the like, and a phenyl group is preferable.
  • R 13 and R 14 are preferably the same from the viewpoint of ease of production.
  • Q is preferably a halogen atom or a hydrocarbon group having 1 to 10 carbon atoms.
  • the halogen atom include fluorine, chlorine, bromine and iodine
  • examples of the hydrocarbon group having 1 to 10 carbon atoms include methyl, ethyl, n-propyl, isopropyl, 2-methylpropyl and 1,1-dimethylpropyl.
  • Examples include compounds in which the zirconium atom of these compounds is replaced with a hafnium atom or compounds in which a chloro ligand is replaced with a methyl group, but the crosslinked metallocene compound (a) is not limited to these examples.
  • organoaluminum oxy compound used in the catalyst system in the present invention conventional aluminoxane can be used.
  • a linear or cyclic aluminoxane represented by the following formulas 2 to 5 can be used.
  • the organoaluminum oxy compound may contain a small amount of the organoaluminum compound.
  • R is independently a hydrocarbon group having 1 to 10 carbon atoms
  • Rx is independently a hydrocarbon group having 2 to 20 carbon atoms
  • m and n are independently 2 or more. It is preferably an integer of 3 or more, more preferably 10 to 70, and most preferably 10 to 50.
  • R c is a hydrocarbon group having 1 to 10 carbon atoms
  • R d is independently a hydrogen atom, a halogen atom or a hydrocarbon group having 1 to 10 carbon atoms.
  • R is a methyl group (Me) of an organoaluminum oxy compound conventionally called "methylaluminoxane”.
  • methylaluminoxane Since the methylaluminoxane is easily available and has high polymerization activity, it is generally used as an activator in polyolefin polymerization.
  • methylaluminoxane has been used as a solution of environmentally undesirable aromatic hydrocarbons such as toluene or benzene because it is difficult to dissolve in saturated hydrocarbons. Therefore, in recent years, as an aluminoxane dissolved in a saturated hydrocarbon, a flexible body of methylaluminoxane represented by the formula 4 has been developed and used.
  • the modified methylaluminoxane represented by the formula 4 is prepared using alkylaluminum other than trimethylaluminum and trimethylaluminum as shown in US Pat. No. 4,960,878 and US Pat.
  • No. 5,041,584, for example. Prepared using trimethylaluminum and triisobutylaluminum.
  • Aluminoxane having Rx as an isobutyl group is commercially available in the form of a saturated hydrocarbon solution under the trade names of MMAO and TMAO. (See Tosoh Finechem Corporation, Tosoh Research & Technology Review, Vol 47, 55 (2003)).
  • Examples of the compound (ii) that reacts with the crosslinked metallocene compound to form an ion pair (hereinafter, referred to as “ionic compound” as necessary) contained in the catalyst system include Lewis acid, an ionic compound, and borane.
  • Bolan compounds and carborane compounds can be used, and these are Korean Patent No. 10-0551147, JP-A-1-501950, JP-A-3-179005, JP-A-3-179006, JP-A-3-207703. It is described in Japanese Patent Application Laid-Open No. 3-207704, US Patent No. 5321106, and the like.
  • a heteropoly compound, an isopoly compound, or the like can be used, and the ionic compound described in JP-A-2004-51676 can be used.
  • the ionic compound may be used alone or in admixture of two or more. More specifically, examples of Lewis acids include compounds represented by BR 3 (R is fluoride, substituted or unsubstituted alkyl groups having 1 to 20 carbon atoms (such as methyl groups), substituted or substituted.
  • An unsubstituted aryl group having 6 to 20 carbon atoms can be mentioned, and examples thereof include trifluoroborone, triphenylboron, tris (4-fluorophenyl) boron, and tris (3,5-difluoro). Examples include phenyl) boron, tris (4-fluorophenyl) boron, tris (pentafluorophenyl) boron, and tris (p-tolyl) boron.
  • the ionic compound is used, the amount used and the amount of sludge generated are relatively small as compared with the organoaluminum oxy compound, which is economically advantageous.
  • the compound represented by the following formula 6 is preferably used as the ionic compound.
  • R e + is H +, carbenium cation, oxonium cation, ammonium cation, a ferrocenium cation having a phosphonium cation, cycloheptyltrienyl cation, or a transition metal
  • R f ⁇ R i is Each is independently an organic group, preferably a hydrocarbon group having 1 to 20 carbon atoms, more preferably an aryl group, for example, a pentafluorophenyl group.
  • Examples of the carbenium cation include tris (methylphenyl) carbenium cation, tris (dimethylphenyl) carbenium cation and the like, and examples of the ammonium cation include dimethylanilinium cation and the like.
  • the compound represented by the above formula 6 is preferably N, N-dialkylanilinium salt, specifically N, N-dimethylanilinium tetraphenylborate, N, N-dimethylanilinium tetrakis (pentafluorophenyl).
  • N, N-Dimethylanilinium Tetraphenyl (3,5-Ditrifluoromethylphenyl) Borate, N, N-Diethylanilinium Tetraphenyl Borate, N, N-Diethylanilinium Tetraphenyl (Pentafluorophenyl) Borate, N, N-diethylanilinium tetrakis (3,5-ditrifluoromethylphenyl) borate, N, N-2,4,6-pentamethylanilinium tetraphenylborate, N, N-2,4,6-pentamethylanilinium Examples include tetrakis (pentafluorophenyl) borate.
  • the catalyst system used in the present invention further contains (c) an organoaluminum compound, if necessary.
  • the organoaluminum compound plays a role of activating the crosslinked metallocene compound, the organoaluminum oxy compound, the ionic compound and the like.
  • organoaluminum compound preferably, organoaluminum represented by the following formula 7 and a complex alkylated product of a Group 1 metal represented by the following formula 8 and aluminum can be used.
  • M 2 AlR a 4 ...
  • Ra is a hydrocarbon group having 1 to 15 carbon atoms, preferably 1 to 4 carbon atoms.
  • organoaluminum compound represented by the formula 7 examples include easily available trimethylaluminum and triisobutylaluminum.
  • alkyl complex compound of the Group 1 metal represented by the formula 8 and aluminum examples include LiAl (C 2 H 5 ) 4 , LiAl (C 7 H 15 ) 4, and the like.
  • a compound similar to the compound represented by the formula 7 can be used.
  • an organoaluminum compound in which at least two aluminum compounds are bonded via a nitrogen atom such as (C 2 H 5 ) 2 AlN (C 2 H 5 ) Al (C 2 H 5 ) 2 , can be used.
  • the amount of the (a) crosslinked metallocene compound represented by the formula 1 is preferably 5 to 50% by weight based on the total catalyst composition. Is. And preferably, (b) (i) the amount of the organoaluminum oxy compound is 50 to 500 equivalents with respect to the number of moles of the crosslinked metallocene compound used, and (b) (ii) react with the crosslinked metallocene compound.
  • the amount of the compound forming an ion pair is 1 to 5 equivalents with respect to the number of moles of the crosslinked metallocene compound used, and (c) the amount of the organoaluminum compound is the number of moles of the crosslinked metallocene compound used. 5 to 100 equivalents.
  • the catalyst system used in the present invention may have, for example, the following [1] to [4].
  • [1] A crosslinked metallocene compound represented by the formula 1 (a), and (b) (i) an organoaluminum oxy compound
  • [2] a crosslinked metallocene compound represented by the formula 1 (b) (i) organic. Aluminum oxy compounds, and (c) organoaluminum compounds.
  • [3] A crosslinked metallocene compound represented by the formula 1 (a), (b) (ii) a compound that reacts with the crosslinked metallocene compound to form an ion pair, and (c) an organoaluminum compound.
  • [4] A crosslinked metallocene compound represented by (a) formula 1, (b) (i) an organoaluminum oxy compound, and (ii) a compound that reacts with the crosslinked metallocene compound to form an ion pair.
  • the crosslinked metallocene compound represented by the formula 1 (component (a)), (b) (i) organoaluminum oxy compound (component (b)), (ii) react with the crosslinked metallocene compound to form an ion pair.
  • the organoaluminum compound (component (c)) is introduced into the starting material monomer (mixture of ethylene and ⁇ -olefin having 3 to 20 carbon atoms) in an arbitrary order. May be good.
  • the components (a), (b) and / or (c) are introduced alone or in any order into a polymerization reactor packed with raw material monomers.
  • at least two of the components (a), (b) and / or (c) are mixed, and then the mixed catalyst composition is introduced into a polymerization reactor packed with raw material monomers.
  • the ethylene- ⁇ -olefin copolymer (B) is prepared by solution polymerization of ethylene and an ⁇ -olefin having 3 to 20 carbon atoms under the catalyst system.
  • the ⁇ -olefin having 3 to 20 carbon atoms include linear ⁇ -olefins such as propylene, 1-butene, 1-pentene and 1-hexene, isobutylene, 3-methyl-1-butene and 4-methyl-1-.
  • One or more of branched ⁇ -olefins such as penten and mixtures thereof can be used.
  • one or more ⁇ -olefins having 3 to 6 carbon atoms can be used, and more preferably propylene can be used.
  • the solution polymerization can be carried out by using an inert solvent such as propane, butane or hexane, or the olefin monomer itself as a medium.
  • an inert solvent such as propane, butane or hexane, or the olefin monomer itself as a medium.
  • the copolymerization temperature is usually 80 to 150 ° C., preferably 90 to 120 ° C.
  • the copolymerization pressure is usually atmospheric pressure to 500 kgf / cm 2 .
  • the pressure is preferably atmospheric pressure to 50 kgf / cm 2 , and these may vary depending on the reaction material, reaction conditions, and the like.
  • Polymerization can be carried out in batch, semi-continuous or continuous, preferably continuous.
  • the ethylene- ⁇ -olefin copolymer (B) has a liquid phase at room temperature and has a structure in which ⁇ -olefin units are uniformly distributed in the copolymer chain.
  • the ethylene- ⁇ -olefin copolymer (B) contains, for example, 60-40 mol%, preferably 45-55 mol%, ethylene units derived from ethylene, and, for example, 40-60 mol%, preferably 45-55 mol%. It contains 55 mol% of 3 to 20 carbon number ⁇ -olefin units derived from 3 to 20 carbon number ⁇ -olefins.
  • the number average molecular weight (Mn) of the ethylene- ⁇ -olefin copolymer (B) is, for example, 500 to 10,000, preferably 800 to 6,000, and the molecular weight distribution (Mw / Mn, Mw are weight average molecular weights). ) Is, for example, 3 or less, preferably 2 or less.
  • the number average molecular weight (Mn) and molecular weight distribution (Mw / Mn) are measured by gel permeation chromatography (GPC).
  • the ethylene- ⁇ -olefin copolymer (B) has a kinematic viscosity at 100 ° C. of, for example, 30 to 5,000, preferably 50 to 3,000 mm 2 / s, for example, 30 to -45 ° C., preferably 20 to -35. It has a pour point of ° C., for example, a bromine value of 0.1 g / 100 g or less.
  • the crosslinked metallocene compound represented by the formula 1 has a particularly high polymerization activity against the copolymerization of ethylene and ⁇ -olefin, and by using this crosslinked metallocene compound, the polymerization is selectively stopped by introducing hydrogen to the molecular terminal. The unsaturated bond of the obtained ethylene- ⁇ -olefin copolymer (B) is reduced. Further, since the ethylene- ⁇ -olefin copolymer (B) has high random copolymerizability, it has a controlled molecular weight distribution and is excellent in shear stability and viscosity characteristics.
  • the lubricating oil composition for industrial gear of the present invention containing the ethylene- ⁇ -olefin copolymer (B) has extremely excellent temperature viscosity characteristics, that is, oil film retention at high temperature and low temperature viscosity characteristics, and further. It is also considered to be excellent in heat-resistant oxidation stability.
  • the lubricating oil composition for industrial gears according to the present invention contains the lubricating oil base oil (A) and the ethylene- ⁇ -olefin copolymer (B), and has the following characteristics (C1).
  • the kinematic viscosity at 40 ° C. is 100 to 10,000 mm 2 / s.
  • the kinematic viscosity at 40 ° C. (the kinematic viscosity measured according to the method described in JIS K2283) is 100 to 10,000 mm 2 / s. It is preferably 250 to 8,000 mm 2 / s, more preferably 250 to 5,000 mm 2 / s, and even more preferably 500 to 4,000 mm 2 / s.
  • the kinematic viscosity of the lubricating oil composition for industrial gears at 40 ° C.
  • the viscosity of an industrial lubricating oil product is defined by the kinematic viscosity at 40 ° C., and the viscosity range is defined by JIS K2001 (ISO3448 compliant). A permissible range of 10% is provided on each of the upper and lower sides around each viscosity.
  • a lubricating oil having a 40 ° C. kinematic viscosity of 320 mm 2 / s is indicated as ISO VG320, and the allowable range of 40 ° C. kinematic viscosity is 288 to 352 mm 2 / s.
  • the suitable range varies depending on the part where the gear is used and the conditions of use, but ISO VG150 to ISO VG3200 are preferably used as the gear oil.
  • ISO VG150 to ISO VG3200 are preferably used as the gear oil.
  • the lubricating oil composition for industrial gears according to the present invention preferably further has the characteristic (C2).
  • Viscosity index is 130 or more
  • This viscosity index (viscosity index measured according to the method described in JIS K2283) is preferably 130 or more, more preferably 150 or more, still more preferably 170 or more, and particularly preferably 170 or more. It is 180 or more. When the viscosity index is in this range, the lubricating oil composition has excellent temperature-viscosity properties.
  • the range of the viscosity index also changes depending on the 40 ° C. kinematic viscosity, and is preferably within the range represented by the following formula (1), and more preferably within the range represented by the formula (2).
  • the pour point (pour point measured according to the method described in ASTM D97) of the lubricating oil composition for industrial gears according to the present invention is preferably 0 ° C. or lower, more preferably -10 ° C. or lower, still more preferably -20 ° C. or lower. Is. A low pour point indicates that the lubricating oil composition has excellent low temperature properties.
  • the range of the viscosity index also changes depending on the kinematic viscosity at 40 ° C., and is preferably within the range of the following formula (3), and more preferably within the range of the formula (4).
  • the lubricating oil base oil (A) is contained in an amount of 10 to 90% by mass and the ethylene- ⁇ -olefin copolymer (B) is contained in an amount of 90 to 10% by mass. Contains. However, the total of the lubricating oil base oil (A) and the ethylene- ⁇ -olefin copolymer (B) is 100% by mass.
  • the lubricating oil composition for industrial gears of the present invention preferably contains the lubricating oil base oil (A) in an amount of 20 to 90% by mass and the ethylene- ⁇ -olefin copolymer (B) in an amount of 80 to 10% by mass.
  • the lubricating oil base oil (A) is more preferably 30 to 85% by mass, and the ethylene- ⁇ -olefin copolymer (B) is 70 to 15% by mass, and more preferably the lubricating oil.
  • Each component is contained in a proportion of 40 to 80% by mass of the base oil (A) and 60 to 20% by mass of the ethylene- ⁇ -olefin copolymer (B).
  • a preferred embodiment is a mode in which 30 to 100% by mass of the lubricating oil base oil is mineral oil.
  • the ratio of mineral oil to the lubricating oil base oil (A) is high, the solubility of additives described later is excellent, and it is easily available and economical. It is more preferable that 50 to 100% by mass is mineral oil, and even more preferably 80 to 100% by mass is mineral oil.
  • Group III in the API category is preferable because it has excellent temperature-viscosity characteristics and can achieve both oil film retention at high temperature and low torque at low temperature.
  • Another preferred embodiment is an embodiment in which 30 to 100% by mass of the lubricating oil base oil is a synthetic oil and is a poly- ⁇ -olefin and / or an ester oil.
  • the ratio of the synthetic oil to the lubricating oil base oil (A) is high, the heat resistance, the temperature viscosity characteristic, and the low temperature characteristic are excellent, which is preferable. It is more preferable that 50 to 100% by mass is a synthetic oil, and even more preferably 80 to 100% by mass is a synthetic oil.
  • the lubricating oil composition for industrial gears of the present invention includes extreme pressure agents, cleaning dispersants, viscosity index improvers, antioxidants, corrosion inhibitors, abrasion resistant agents, friction modifiers, pour point depressants, and rust preventives. It may contain additives such as agents and antifoaming agents.
  • additives used in the lubricating oil composition of the present invention include the following, and these can be used alone or in combination of two or more.
  • Extreme pressure agents are a general term for substances that have an effect of preventing seizure when metals such as gears are exposed to a high load state, and are not particularly limited, but sulfides, sulfoxides, sulfones, thiophosphinates, etc. , Sulfur-based extreme pressure agents such as thiocarbonates, sulfide fats and oils, sulphide olefins; phosphoric acids such as phosphate esters, sulfite esters, phosphate ester amine salts, sulfate ester amines; chlorinated hydrocarbons, etc. Halogen compounds and the like can be exemplified. In addition, two or more of these compounds may be used in combination.
  • the extreme pressure agent may be added alone, but since the industrial gear oil in the present invention contains a saturated hydrocarbon such as a copolymer as a main component, it is a mineral oil or a synthetic hydrocarbon oil together with other additives used in advance. From the viewpoint of dispersibility, it is preferable to add the oil in a state of being dissolved in the base oil of the lubricating oil. Specifically, a so-called additive package, in which various components such as extreme pressure agent components are mixed in advance and further dissolved in a lubricating oil base oil such as mineral oil or synthetic hydrocarbon oil, is selected for the lubricating oil composition. The method of addition is more preferable.
  • Preferred additive packages include Anglamol-98A manufactured by LUBRIZOL, Anglamol-6043, Angramol 6085U, LUBRIOZOL 1047U, HITEC1532 manufactured by AFTON CHEMICAL, HITEC307 manufactured by AFTON CHEMICAL, HITEC307 manufactured by AFTON CHEMICAL, HITEC307 manufactured by AFTON CHEMICAL, etc. Can be mentioned.
  • the extreme pressure agent is used in the range of 0 to 10% by mass with respect to 100% by mass of the lubricating oil composition, if necessary.
  • abrasion resistant agent examples include inorganic or organic molybdenum compounds such as molybdenum disulfide, graphite, antimony sulfide, and polytetrafluoroethylene.
  • the wear resistant agent is used in the range of 0 to 3% by mass with respect to 100% by mass of the lubricating oil composition, if necessary.
  • examples thereof include esters, fatty acid amides, and fatty acid metal salts.
  • Examples of the amine compound include linear or branched, preferably linear aliphatic monoamines having 6 to 30 carbon atoms, linear or branched, preferably linear aliphatic polyamines, or these fats. Examples thereof include alkylene oxide adducts of group amines.
  • Examples of the imide compound include succinimide having a linear or branched alkyl group or alkenyl group having 6 to 30 carbon atoms and / or a modified compound thereof with a carboxylic acid, boric acid, phosphoric acid, sulfuric acid or the like. ..
  • Examples of the fatty acid ester include an ester of a linear or branched, preferably linear fatty acid having 7 to 31 carbon atoms and an aliphatic monohydric alcohol or an aliphatic polyhydric alcohol.
  • Examples of the fatty acid amide include an amide of a linear or branched, preferably linear fatty acid having 7 to 31 carbon atoms and an aliphatic monoamine or an aliphatic polyamine.
  • Examples of the fatty acid metal salt include alkaline earth metal salts (magnesium salt, calcium salt, etc.), zinc salts, and the like, which are linear or branched, preferably linear fatty acids having 7 to 31 carbon atoms.
  • the friction modifier is used in the range of 0.01 to 5.0% by mass with respect to 100% by mass of the lubricating oil composition, if necessary.
  • cleaning dispersant examples include metal sulfonate, metal phenate, metal phosphanate, and succinimide.
  • the cleaning dispersant is used in the range of 0 to 15% by mass with respect to 100% by mass of the lubricating oil composition, if necessary.
  • the viscosity index improver examples include ethylene- ⁇ -olefin copolymers (excluding ethylene- ⁇ -olefin copolymers (B)), olefin copolymers having a molecular weight of more than 50,000, and 100 ° C.
  • Known viscosity index improvers such as poly- ⁇ -olefins having a viscosity of 101 mm2 / s or more, methacrylate-based copolymers, and liquid polybutene can be used in combination.
  • the viscosity index improver is used in the range of 0 to 50% by mass with respect to 100% by mass of the lubricating oil composition, if necessary.
  • antioxidant examples include phenolic and amine compounds such as 2,6-di-t-butyl-4-methylphenol.
  • the antioxidant is used in the range of 0 to 3% by mass with respect to 100% by mass of the lubricating oil composition, if necessary.
  • the corrosion inhibitor examples include compounds such as benzotriazole, benzimidazole, and thiadiazole.
  • the corrosion inhibitor is used in the range of 0 to 3% by mass with respect to 100% by mass of the lubricating oil composition, if necessary.
  • rust preventive examples include various amine compounds, carboxylic acid metal salts, polyhydric alcohol esters, phosphorus compounds, sulfonates, and other compounds.
  • the rust preventive is used in the range of 0 to 3% by mass with respect to 100% by mass of the lubricating oil composition, if necessary.
  • the defoaming agent examples include silicone-based compounds such as dimethylsiloxane and silica gel dispersion, alcohol-based or ester-based compounds, and the like.
  • the defoaming agent is used in the range of 0 to 0.2% by mass with respect to 100% by mass of the lubricating oil composition, if necessary.
  • pour point depressant various known pour point depressants can be used. Specifically, a polymer compound containing an organic acid ester group is used, and a vinyl polymer containing an organic acid ester group is particularly preferably used.
  • the vinyl polymer containing an organic acid ester group include an alkyl methacrylate (co) polymer, an alkyl acrylate (co) polymer, an alkyl fumarate (co) polymer, and an alkyl maleate (co). Examples thereof include polymers and alkylated naphthalene.
  • Such a pour point lowering agent has a melting point of ⁇ 13 ° C. or lower, preferably ⁇ 15 ° C., and more preferably ⁇ 17 ° C. or lower.
  • the melting point of the pour point depressant is measured using a differential scanning calorimeter (DSC). Specifically, about 5 mg of the sample was packed in an aluminum pan, heated to 200 ° C., held at 200 ° C. for 5 minutes, cooled to ⁇ 40 ° C. at 10 ° C./min, and held at ⁇ 40 ° C. for 5 minutes. After that, it is obtained from the endothermic curve when the temperature is raised at 10 ° C./min.
  • the pour point lowering agent further has a polystyrene-equivalent weight average molecular weight in the range of 20,000 to 400,000, preferably 30,000 to 300,000, more preferably 40,000, obtained by gel permeation chromatography. It is in the range of ⁇ 200,000.
  • the pour point lowering agent is used in the range of 0 to 2% by mass with respect to 100% by mass of the lubricating oil composition, if necessary.
  • anti-emulsifiers In addition to the above additives, anti-emulsifiers, colorants, oil-based agents (oil-based improvers) and the like can be used as needed.
  • the lubricating oil composition of the present invention can be suitably used for industrial gear oils of various industrial equipment machines, and has extremely excellent temperature viscosity characteristics, that is, oil film retention at high temperature and low temperature viscosity characteristics, and is used for industrial equipment machines. It can greatly contribute to energy saving.
  • the lubricating oil composition of the present invention is extremely useful as a gear oil for wind power generation and a gear oil for machine tools / molding machines.
  • P E represents the molar fraction of the ethylene component
  • P O is ⁇ - olefin indicates molar fraction of component
  • the molar fraction of P OE is the total dyad chain ethylene - ⁇ - olefin chain Shows the rate.
  • the molecular weight distribution was measured using HLC-8320GPC of Tosoh Corporation as follows.
  • TSKgel SuperMultipore HZ-M 4 pieces
  • the column temperature was 40 ° C.
  • tetrahydrofuran manufactured by Wako Pure Chemical Industries, Ltd.
  • the developing speed was 0.35 ml / min
  • the sample concentration was set to 0.35 ml / min.
  • the sample injection volume was 5.5 g / L
  • the sample injection volume was 20 microliters
  • a differential refractometer was used as a detector.
  • As the standard polystyrene one manufactured by Tosoh Corporation (PStQuick MP-M) was used.
  • the weight average molecular weight (Mw) and the number average molecular weight (Mn) were calculated in terms of polystyrene molecular weight, and the molecular weight distribution (Mw / Mn) was calculated from these values.
  • ⁇ Viscosity characteristics> The 100 ° C. kinematic viscosity, 40 ° C. kinematic viscosity, and viscosity index were measured and calculated by the method described in JIS K2283.
  • ⁇ Pour point> The pour point was measured by the method described in ASTM D97. When the pour point is lower than -50 ° C, it is described as -50 ° C or lower.
  • the ethylene- ⁇ -olefin copolymer (B) was produced according to the following polymerization example.
  • Polymerization was initiated by press-fitting 0001 mmol and 0.001 mmol of N, N-dimethylanilinium tetrakis (pentafluorophenyl) borate with nitrogen and setting the stirring speed to 400 rpm. Then, by continuously supplying only ethylene, the total pressure was maintained at 3 MPaG, and polymerization was carried out at 150 ° C. for 5 minutes. After terminating the polymerization by adding a small amount of ethanol into the system, unreacted ethylene, propylene, and hydrogen were purged.
  • the obtained polymer solution was washed 3 times with 1000 mL of 0.2 mol / l hydrochloric acid and then 3 times with 1000 mL of distilled water, dried over magnesium sulfate, and the solvent was evaporated under reduced pressure.
  • the obtained polymer was dried under reduced pressure at 80 ° C. overnight to obtain 52.2 g of an ethylene-propylene copolymer.
  • the ethylene content of the obtained polymer was 52.9 mol%, Mw was 8,600, Mw / Mn was 1.8, B value was 1.2, and 100 ° C. kinematic viscosity was 600 mm 2 / s.
  • the obtained polymer solution was washed 3 times with 100 mL of 0.2 mol / l hydrochloric acid and then 3 times with 100 mL of distilled water, dried over magnesium sulfate, and the solvent was evaporated under reduced pressure.
  • the obtained polymer was dried under reduced pressure at 80 ° C. overnight to obtain 1.43 g of an ethylene-propylene copolymer.
  • the ethylene content of the obtained polymer was 52.4 mol%, Mw was 13,600, Mw / Mn was 1.9, B value was 1.2, and 100 ° C. kinematic viscosity was 2,000 mm 2 / s. It was.
  • ethylene was continuously supplied to maintain the total pressure at 3 MPaG, and polymerization was carried out at 150 ° C. for 5 minutes. After terminating the polymerization by adding a small amount of ethanol into the system, unreacted ethylene, propylene, and hydrogen were purged.
  • the obtained polymer solution was washed 3 times with 1000 ml of 0.2 mol / L hydrochloric acid and then 3 times with 1000 ml of distilled water, dried over magnesium sulfate, and the solvent was evaporated under reduced pressure.
  • the obtained polymer was dried under reduced pressure at 80 ° C. for 10 hours.
  • the ethylene content of the obtained polymer was 48.5 mol%, Mw was 5,000, Mw / Mn was 1.8, B value was 1.2, and 100 ° C. kinematic viscosity was 150 mm 2 / s.
  • the obtained polymer solution was washed 3 times with 100 mL of 0.2 mol / l hydrochloric acid and then 3 times with 100 mL of distilled water, dried over magnesium sulfate, and the solvent was evaporated under reduced pressure.
  • the obtained polymer was dried under reduced pressure at 80 ° C. overnight to obtain 1.43 g of an ethylene-propylene copolymer.
  • the ethylene content of the obtained polymer was 52.1 mol%, Mw was 13,800, Mw / Mn was 2.0, B value was 1.2, and 100 ° C. kinematic viscosity was 2,000 mm 2 / s. It was.
  • copolymer obtained in Polymerization Example 1 The copolymer obtained in Polymerization Example 1, the copolymer obtained in Polymerization Example 2, the copolymer obtained in Polymerization Example 3, the copolymer obtained in Polymerization Example 4, and the copolymer obtained in Polymerization Example 5.
  • the above-mentioned copolymer and the polymer obtained in Polymerization Example 6 are hereinafter referred to as polymer 1, polymer 2, polymer 3, polymer 4, polymer 5, and polymer 6, respectively.
  • Lubricating oil base oil The following lubricating oil base oil was used as the mineral oil.
  • Mineral oil-A API (American Petroleum Institute) Group III mineral oil (Yubase-6 manufactured by SK Lubricants) having a kinematic viscosity of 6.5 mm 2 / s at 100 ° C., a viscosity index of 131, and a pour point of -12.5 ° C.
  • Mineral oil-B 100 ° C. kinematic viscosity is 6.8 mm 2 / s, viscosity index is 108, and pour point is -12.5 ° C.
  • Synthetic oil-A Synthetic oil poly- ⁇ -olefin having a kinematic viscosity of 4.0 mm 2 / s at 100 ° C., a viscosity index of 123, and a pour point of -50 ° C. or lower (NEXBASE 2004 manufactured by Nest).
  • Synthetic oil-B Synthetic oil poly- ⁇ -olefin having a kinematic viscosity of 5.8 mm 2 / s at 100 ° C., a viscosity index of 138, and a pour point of -50 ° C.
  • Synthetic oil-C 100 ° C. kinematic viscosity of 4.5 mm 2 / s, viscosity index of 142, pour point of -50 ° C or less Ester-based synthetic oil trimethylol propanecaprilate (TMTC), Cognis SYNCIVE (registered trademark) ) ES TMTC.
  • Example 1 Synthetic oil-A was used as the lubricating oil base oil (A), and the copolymer (polymer 2) obtained in Polymerization Example 2 was used as the ethylene- ⁇ -olefin copolymer (B), and these and an antioxidant were used.
  • the lubricating oil composition for industrial gear was blended and adjusted so as to have a total content of 100% by mass. The amount of each component added is as shown in Table 2.
  • Table 2 shows the physical properties of the lubricating oil composition.
  • Examples 2 to 14, Comparative Examples 1 to 9 A lubricating oil composition for industrial gears was blended and prepared in the same manner as in Example 1 except that the types and amounts of the components were changed as shown in Table 2. The physical properties of the obtained lubricating oil composition are as shown in Table 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Emergency Medicine (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Lubricants (AREA)

Abstract

[課題]極めて優れた温度粘度特性を有し、さらに耐熱酸化安定性にも優れた工業ギア油を提供すること。 [解決手段]100℃における動粘度が1~100mm2/s、粘度指数が100以上、流動点が0℃以下である潤滑油基油(A)を10~90質量%、および特定の触媒を用いて製造されるエチレンとα-オレフィンとの液状ランダム共重合体(B)を90~10質量%((A)、(B)の合計を100質量%とする。)含有し、40℃における動粘度が100~10,000mm2/sである工業ギア用潤滑油組成物。

Description

工業ギア用潤滑油組成物およびその製造方法
 本発明は、工業ギア用潤滑油組成物およびその製造方法に関するものである。
 工作機械、風力発電機等の産業設備機械で使用される減速機、変速機のギアには、一般に自動車用のギアに比べて高い負荷がかかる傾向があり、ギアの摩耗が問題となるケースが多い。ギアを保護するため、自動車用の潤滑油に比べて高粘度で油膜形成しやすい潤滑油が適用される。また、潤滑油交換によって生じるメンテナンスコストを下げるために、長期安定性に優れた潤滑油が求められている(非特許文献1)。
 一方、地球規模での温暖化が進行し、温室効果ガスの一つである二酸化炭素排出量削減が急務となっている。各種産業分野でも電力消費量の削減が求められるようになってきた。消費電力量を削減するためには、使用温度に近い低温での潤滑油撹拌トルクの低減が必要であり、潤滑油の粘度を下げる方策が考えられる。しかし、基油の粘度を下げることにより高温での粘度も低くなってしまうため高温時の油膜形成が困難になり、その結果十分なギア保護性能が発現できなくなる恐れがある。また、特に寒冷地、冬季始動時のトルクを低減させるためには、低温での粘度が低いことが望ましい。
 低温での低トルクと高温での油膜形成を両立させるため、粘度の温度依存性を小さくする目的で、潤滑油基剤に可溶な、ある種のポリマーが粘度改良剤として用いられている。近年では、このような粘度改良剤としてα-オレフィン重合体やポリブテンが広く用いられている(特許文献1、2)。しかし、α-オレフィン重合体は剪断安定性が十分でなく、長期安定性に劣るという問題点があった。また、ポリブテンは温度粘度特性、低温特性、耐熱安定性が劣るという難点があった。
 これを改善するために、特定の動粘度(100℃動粘度30~350mm2/s)を有するエチレン-α-オレフィン共重合体を用いた検討が行われているが、低温での低トルクと高温での油膜形成を両立する観点では改善の余地があった(特許文献3)。
 特許文献4には、これらの特性を両立し、工業ギアに好適に適用できる、特定の潤滑油基油と特定のエチレン-α-オレフィン共重合体を含有する潤滑油組成物が開示されている。
 また、特許文献5には、エチレンおよびα-オレフィンの液状ランダム共重合体の製造方法が記載され、この共重合体が潤滑油として有用であると記載されている。
国際公開第2000/34420号 特開平08-301939号公報 特開2011-190377号公報 特開2016-69406号公報 欧州特許出願公開第2921509号明細書
出光興産 潤滑油部潤滑技術二課編著,絵とき工業用潤滑油基礎の基礎(2011),日刊工業新聞社発行
 しかしながら、従来の潤滑油組成物には、極めて優れた温度粘度特性、すなわち高温での油膜保持性および低温粘度特性を併せ持ち、さらに耐熱酸化安定性にも優れる工業ギア用潤滑油組成物を提供するという観点から、さらなる改善の余地があった。
 本発明者らは、優れた性能を有する工業ギア用潤滑油組成物を開発すべく鋭意検討をした結果、特定の潤滑油基油に対し、特定の触媒を用いて製造されるエチレン-α-オレフィン(共)重合体を含有し、特定の条件を満足する潤滑油組成物が、上記課題を解決できることを見いだし、本発明を完成するに至った。具体的には、以下の態様が挙げられる。
 〔1〕
 以下の(A1)~(A3)の特徴を有する潤滑油基油(A)を10~90質量%、および以下の方法(α)により製造されるエチレンとα-オレフィンとの液状ランダム共重合体(B)を90~10質量%(ただし、前記潤滑油基油(A)および前記共重合体(B)の合計量を100質量%とする。)含有し、以下の(C1)の特徴を有する工業ギア用潤滑油組成物。
(A1)100℃における動粘度が1~100mm2/sであること
(A2)粘度指数が100以上であること
(A3)流動点が0℃以下であること
(C1)40℃における動粘度が100~10,000mm2/sであること
(方法(α))
(a)下記式1で表される架橋メタロセン化合物、ならびに
(b)(i)有機アルミニウムオキシ化合物、および
   (ii)前記架橋メタロセン化合物と反応してイオン対を形成する化合物
からなる群から選択される少なくとも1つの化合物
を含む触媒系の下で、エチレンと炭素数3~20のα-オレフィンとの溶液重合を行う工程を含む、
 エチレンとα-オレフィンとの液状ランダム共重合体を製造するための方法(α)
Figure JPOXMLDOC01-appb-C000004
〔式1において、R1、R2、R3、R4、R5、R8、R9およびR12は、それぞれ独立に、水素原子、炭化水素基またはケイ素含有炭化水素基であり、隣接する複数の基は、任意に、互いに連結して環構造を形成しており、
 R6およびR11は、互いに同一であり、水素原子、炭化水素基またはケイ素含有炭化水素基であり、
 R7およびR10は、互いに同一であり、水素原子、炭化水素基またはケイ素含有炭化水素基であり、
 R6およびR7は、任意に、炭素数2~3の炭化水素と結合して環構造を形成し、
 R11およびR10は、任意に、炭素数2~3の炭化水素と結合して環構造を形成し、
 R6、R7、R10およびR11は、同時には水素原子ではなく;
 Yは、炭素原子またはケイ素原子であり;
 R13およびR14は、独立してアリール基であり;
 Mは、Ti、ZrまたはHfであり;
 Qは、独立してハロゲン、炭化水素基、アニオン性配位子または孤立電子対に配位可能な中性配位子であり;
 jは、1~4の整数である。〕
 〔2〕
 上記式1で表されるメタロセン化合物のシクロペンタジエニル基に結合した置換基(R1、R2、R3およびR4)のうちの少なくとも1つが炭素数4以上の炭化水素基である前記〔1〕の工業ギア用潤滑油組成物。
 〔3〕
 R6およびR11が同一であり、炭素数1~20の炭化水素基である前記〔1〕または〔2〕の工業ギア用潤滑油組成物。
 〔4〕
 上記式1で表されるメタロセン化合物のシクロペンタジエニル基の3位に結合した置換基(R2またはR3)が炭化水素基である前記〔1〕~〔3〕のいずれかの工業ギア用潤滑油組成物。
 〔5〕
 上記式1で表されるメタロセン化合物のシクロペンタジエニル基の3位に結合した炭化水素基(R2またはR3)がn-ブチル基である前記〔4〕の工業ギア用潤滑油組成物。
 〔6〕
 上記式1で表されるメタロセン化合物のフルオレニル基の2位および7位に結合した置換基(R6およびR11)がすべてtert-ブチル基である前記〔1〕~〔5〕のいずれかの工業ギア用潤滑油組成物。
 〔7〕
 前記架橋メタロセン化合物と反応してイオン対を形成する前記化合物が、下記式6で表される化合物である前記〔1〕~〔6〕のいずれかの工業ギア用潤滑油組成物。
Figure JPOXMLDOC01-appb-C000005
〔式6において、Re+は、H+、カルベニウムカチオン、オキソニウムカチオン、アンモニウムカチオン、ホスホニウムカチオン、シクロヘプチルトリエニルカチオン、または遷移金属を有するフェロセニウムカチオンであり、Rf~Riは、それぞれ独立に炭素数1~20の炭化水素基である。〕
 〔8〕
 前記アンモニウムカチオンがジメチルアニリニウムカチオンである前記〔7〕の工業ギア用潤滑油組成物。
 〔9〕
 前記触媒系がトリメチルアルミニウムおよびトリイソブチルアルミニウムからなる群から選択される有機アルミニウム化合物をさらに含む前記〔7〕または〔8〕の工業ギア用潤滑油組成物。
 〔10〕
 以下の(A1)~(A3)の特徴を有する潤滑油基油(A)を10~90質量%、および以下の(B1)~(B5)の特徴を有するエチレンとα-オレフィンとの液状ランダム共重合体を90~10質量%(ただし、前記潤滑油基油(A)および前記共重合体の合計量を100質量%とする。)含有し、以下の(C1)の特徴を有する工業ギア用潤滑油組成物。
(A1)100℃における動粘度が1~100mm2/sであること
(A2)粘度指数が100以上であること
(A3)流動点が0℃以下であること
(B1)エチレン単位を40~60モル%、および炭素数3~20のα-オレフィン単位を60~40モル%含有すること
(B2)ゲル浸透クロマトグラフィー(GPC)により測定される、500~10,000の数平均分子量(Mn)、および3以下の分子量分布(Mw/Mn、Mwは重量平均分子量である。)を有すること
(B3)30~5,000mm2/sの100℃動粘度を有すること
(B4)30~-45℃の流動点を有すること
(B5)0.1g/100g以下の臭素価を有すること
(C1)40℃における動粘度が100~10,000mm2/sであること
 〔11〕
 40℃における動粘度が250~5,000mm2/sである上記〔1〕~〔10〕のいずれかに記載の工業ギア用潤滑油組成物。
 〔12〕
 前記潤滑油基油(A)がさらに以下の(A4)~(A6)を満たす上記〔1〕~〔11〕のいずれかに記載の工業ギア用潤滑油組成物。
(A4)100℃における動粘度が1~10mm2/sであること
(A5)粘度指数が110以上であること
(A6)流動点が-10℃以下であること
 〔13〕
 前記潤滑油基油(A)のうち、30~100質量%が鉱物油である上記〔1〕~〔12〕のいずれかに記載の工業ギア用潤滑油組成物。
 〔14〕
 前記潤滑油基油(A)のうち、30~100質量%が、合成油であり、かつポリαオレフィン(PAO)および/またはエステル油である上記〔1〕~〔13〕のいずれかに記載の工業ギア用潤滑油組成物。
 〔15〕
 上記〔1〕~〔14〕のいずれかに記載の潤滑油組成物からなる風力発電用ギア油。
 〔16〕
 上記〔1〕~〔14〕のいずれかに記載の潤滑油組成物からなる工作機械/成形機用ギア油。
 〔17〕
 工業ギア用潤滑油組成物の製造方法であって、
 以下の方法(α)によりエチレンとα-オレフィンとの液状ランダム共重合体(B)を製造する工程、および
 前記潤滑油組成物中で10~90質量%となる量の、以下の(A1)~(A3)の特徴を有する潤滑油基油(A)と、前記潤滑油組成物中で90~10質量%となる量の、前記液状ランダム共重合体(B)(ただし、前記潤滑油基油(A)および前記共重合体(B)の合計量を100質量%とする。)とを混合して、以下の(C1)の特徴を有する工業ギア用潤滑油組成物を製造する工程
を含む工業ギア用潤滑油組成物の製造方法。
(A1)100℃における動粘度が1~100mm2/sであること
(A2)粘度指数が100以上であること
(A3)流動点が0℃以下であること
(C1)40℃における動粘度が100~10,000mm2/sであること
(方法(α))
(a)下記式1で表される架橋メタロセン化合物、ならびに
(b)(i)有機アルミニウムオキシ化合物、および
   (ii)前記架橋メタロセン化合物と反応してイオン対を形成する化合物
からなる群から選択される少なくとも1つの化合物
を含む触媒系の下で、エチレンと炭素数3~20のα-オレフィンとの溶液重合を行う工程を含む、
 エチレンとα-オレフィンとの液状ランダム共重合体を製造するための方法(α)
Figure JPOXMLDOC01-appb-C000006
〔式1において、R1、R2、R3、R4、R5、R8、R9およびR12は、それぞれ独立に、水素原子、炭化水素基またはケイ素含有炭化水素基であり、隣接する複数の基は、任意に、互いに連結して環構造を形成しており、
 R6およびR11は、互いに同一であり、水素原子、炭化水素基またはケイ素含有炭化水素基であり、
 R7およびR10は、互いに同一であり、水素原子、炭化水素基またはケイ素含有炭化水素基であり、
 R6およびR7は、任意に、炭素数2~3の炭化水素と結合して環構造を形成し、
 R11およびR10は、任意に、炭素数2~3の炭化水素と結合して環構造を形成し、
 R6、R7、R10およびR11は、同時には水素原子ではなく;
 Yは、炭素原子またはケイ素原子であり;
 R13およびR14は、独立してアリール基であり;
 Mは、Ti、ZrまたはHfであり;
 Qは、独立してハロゲン、炭化水素基、アニオン性配位子または孤立電子対に配位可能な中性配位子であり;
 jは、1~4の整数である。〕
 本発明の潤滑油組成物は、高い温度粘度特性、すなわち高温での油膜保持性および優れた低温粘度特性を併せ持ち、さらに耐熱酸化安定性にも優れる潤滑油組成物であり、工業ギア油、特に風力発電機用ギア油または工作機械/成形機用ギア油に好ましく適用できる。
 以下、本発明に係る工業ギア用潤滑油組成物(以下、単に「潤滑油組成物」ともいう。)について詳細に説明する。
 本発明に係る工業ギア用潤滑油組成物は、潤滑油基油(A)と方法(α)により製造されるエチレンとα-オレフィンとの液状ランダム共重合体(B)(本明細書において「エチレン-α-オレフィン共重合体(B)」とも記載する。)とを含有し、40℃における動粘度が特定の範囲にあることを特徴としている。
 <(A)潤滑油基油>
 潤滑油基油(A)は以下(A1)~(A3)の特徴を有する。
 (A1)100℃における動粘度が1~100mm2/sであること
 この100℃動粘度の値はJIS K2283に記載の方法に従い測定した場合のものである。潤滑油基油(A)の100℃における動粘度は、1~100mm2/s、好ましくは1~10mm2/s、より好ましくは2~8mm2/sである。100℃における動粘度がこの範囲にあると、本発明の潤滑油組成物は、揮発性、温度粘度特性のバランスの観点において優れる。
 (A2)粘度指数が100以上であること
 この粘度指数の値はJIS K2283に記載の方法に従い測定した場合のものである。潤滑油基油(A)の粘度指数は、100以上、好ましくは110以上、さらに好ましくは120以上である。粘度指数がこの範囲にあると、本発明の潤滑油組成物は優れた温度粘度特性を有する。
 (A3)流動点が0℃以下であること
 この流動点の値はASTM D97に記載の方法に従い測定した場合のものである。潤滑油基油(A)の流動点は、0℃以下、好ましくは-10℃以下、より好ましくは-20℃以下、さらに好ましくは-30℃以下である。流動点がこの範囲にあると、本発明の潤滑油組成物は優れた低温粘度特性を有する。
 本発明に使用される潤滑油基油は、その製造方法や精製方法等により粘度特性や耐熱性、酸化安定性等の性能・品質が異なるが、一般に鉱物油と合成油とに大別される。また、API(American Petroleum Institute)では、潤滑油基油をグループI、II、III、IV、Vの5種類に分類している。これらAPIカテゴリーはAPI Publication 1509、15th Edition、Appendix E、April 2002において定義されており、表1に示すとおりである。潤滑油基油(A)は、鉱物油、合成油のいずれでも良く、またAPIカテゴリーにおけるグループI~Vのいずれでも良い。以下に詳細を記す。
Figure JPOXMLDOC01-appb-T000007
 <鉱物油>
 鉱物油は、上述のAPIカテゴリーにおけるグループI~IIIに帰属される。
 鉱物油の品質は上述の通りであり、精製の方法により、上述したそれぞれの品質の鉱物油が得られる。鉱物油としては、具体的には、原油を常圧蒸留して得られる常圧残油を減圧蒸留して得られた潤滑油留分を、溶剤脱れき、溶剤抽出、水素化分解、溶剤脱ろう、水素化精製等の処理を1つ以上行って精製したもの、あるいはワックス異性化鉱油等の潤滑油基油が例示できる。
 また、フィッシャー・トロプシュ法によって得られたガス・トゥー・リキッド(GTL)基油もグループIII鉱物油として好適に用いることのできる基油である。このようなGTL基油は、グループIII+潤滑油基油として扱われることもあり、例えば、特許文献であるEP0776959、EP0668342、WO97/21788、WO00/15736、WO00/14188、WO00/14187、WO00/14183、WO00/14179、WO00/08115、WO99/41332、EP1029029、WO01/18156およびWO01/57166に記載されている。
 <合成油>
 合成油は、上述のAPIカテゴリーにおけるグループIV、またはグループVに帰属される。
 グループIVに帰属されるポリ-α-オレフィンは米国特許第3,382,291号公報、米国特許第3,763,244号公報、米国特許第5,171,908号公報、米国特許第3,780,128号公報、米国特許第4,032,591号公報、特開平1-163136号公報、米国特許第4,967,032号公報、米国特許4,926,004号公報に記載のように三フッ化ホウ素、クロム酸触媒等の酸触媒による高級α-オレフィンのオリゴメリゼーションにより得ることがきる。また、特開昭63-037102号公報、特開2005-200447号公報、特開2005-200448号公報、特開2009-503147号公報、特開2009-501836号公報に記載のようなメタロセン化合物を含むジルコニウム、チタン、ハフニウム等の遷移金属錯体を用いた触媒系を用いる方法等によっても得ることができる。このうちポリ-α-オレフィンとしては、炭素原子数6以上のオレフィンから選ばれる少なくとも1種のオレフィンの低分子量オリゴマーが使用できる。前記潤滑油基油(A)としてポリ-α-オレフィンを用いると、極めて温度粘度特性、低温粘度特性、さらには耐熱性に優れた潤滑油組成物が得られる。
 ポリ-α-オレフィンは、工業的にも入手可能であり、100℃動粘度2mm2/s~150mm2/sのものが市販されている。その中でも、2~100mm2/sのポリα-オレフィンを使用すると温度粘度特性に優れた潤滑油組成物が得られる点で好ましい。例えば、NESTE社製NEXBASE2000シリーズ、ExxonMobil Chemical社製Spectrasyn、Ineos Oligmers社製Durasyn、Chevron Phillips Chemical社製Synfluidなどが挙げられる。
 グループVに帰属される合成油としては、例えばアルキルベンゼン類、アルキルナフタレン類、イソブテンオリゴマーまたはその水素化物、パラフィン類、ポリオキシアルキレングリコール、ジアルキルジフェニルエーテル、ポリフェニルエーテル、エステル等が挙げられる。
 アルキルベンゼン類、アルキルナフタレン類の大部分は、通常アルキル鎖長が炭素原子数6~14のジアルキルベンゼンまたはジアルキルナフタレンであり、このようなアルキルベンゼン類またはアルキルナフタレン類は、ベンゼンまたはナフタレンとオレフィンとのフリーデルクラフトアルキル化反応によって製造される。アルキルベンゼン類またはアルキルナフタレン類の製造において使用されるアルキル化オレフィンは、線状もしくは枝分かれ状のオレフィンまたはこれらの組み合わせでもよい。これらの製造方法は、例えば、米国特許第3,909,432号に記載されている。
 また、エステルはエチレン-α-オレフィン共重合体(B)との相溶性の観点から脂肪酸エステルが好ましい。
 脂肪酸エステルとしては、特に限定されないが、以下のような炭素、酸素、水素のみからなる脂肪酸エステルが挙げられ、例えば、一塩基酸とアルコールから製造されるモノエステル;二塩基酸とアルコールとから、またはジオールと一塩基酸または酸混合物とから製造されるジエステル;ジオール、トリオール(たとえばトリメチロールプロパン)、テトラオール(たとえばペンタエリスリトール)、ヘキサオール(たとえばジペンタエリスリトール)などと一塩基酸または酸混合物とを反応させて製造したポリオールエステルなどが挙げられる。これらのエステルの例としては、ジトリデシルグルタレート、ジ-2-エチルヘキシルアジペート、ジイソデシルアジペート、ジトリデシルアジペート、ジ-2-エチルヘキシルセバケート、トリデシルペラルゴネート、ジ-2-エチルヘキシルアジペート、ジ-2-エチルヘキシルアゼレート、トリメチロールプロパンカプリレート、トリメチロールプロパンペラルゴネート、トリメチロールプロパントリヘプタノエート、ペンタエリスリトール-2-エチルヘキサノエート、ペンタエリスリトールペラルゴネート、ペンタエリスリトールテトラヘプタノエートなどが挙げられる。
 エチレン-α-オレフィン共重合体(B)との相溶性の観点から、エステルを構成するアルコール部位としては、水酸基が2官能以上のアルコールが好ましく、脂肪酸部位としては、炭素数が8以上の脂肪酸が好ましい。ただし、脂肪酸については製造コストの点において、工業的に入手が容易である炭素数が20以下の脂肪酸が優位である。エステルを構成する脂肪酸は1種でもよく、2種以上の酸混合物を用いて製造される脂肪酸エステルを用いても、本発明の効果は十分に発揮される。脂肪酸エステルとしては、より具体的には、トリメチロールプロパンラウリン酸ステアリン酸混合トリエステルやジイソデシルアジペートなどが挙げられ、これらはエチレン-α-オレフィン共重合体(B)のような飽和炭化水素成分と、後述する極性基を有する酸化防止剤、腐食防止剤、耐摩耗剤、摩擦調整剤、流動点降下剤、防錆剤および消泡剤等の安定剤との相溶性の点から好ましい。
 本発明の潤滑油組成物は、潤滑油基油(A)として合成油、特にポリ-α-オレフィンを用いる場合、潤滑油組成物全体を100質量%としたときに、脂肪酸エステルを5~20質量%の量で含むことが好ましい。5質量%以上の脂肪酸エステルを含有することにより、各種内燃機関、工業機械内部における樹脂やエラストマーといった潤滑油封止材に対し、良好な適合性が得られる。具体的には、潤滑油封止材の膨潤を抑制できる。酸化安定性または耐熱性の観点から、エステルの量は20質量%以下であることが好ましい。潤滑油組成物に鉱物油が含まれる場合、鉱物油そのものが潤滑油封止剤の膨潤抑制効果を有するため、脂肪酸エステルは必ずしも要さない。
 本発明の潤滑油組成物においては、潤滑油基油(A)として、合成油または鉱物油を1種単独で用いてもよく、また、合成油、鉱物油の中から選ばれる2種以上の潤滑油の任意混合物等を使用してもよい。
 <(B)エチレン-α-オレフィン共重合体>
 エチレン-α-オレフィン共重合体(B)は、以下の方法(α)により製造されるエチレンとα-オレフィンとの液状ランダム共重合体(B)である。
(方法(α))
(a)下記式1で表される架橋メタロセン化合物、ならびに
(b)(i)有機アルミニウムオキシ化合物、および
   (ii)前記架橋メタロセン化合物と反応してイオン対を形成する化合物
からなる群から選択される少なくとも1つの化合物
を含む触媒系の下で、エチレンと炭素数3~20のα-オレフィンとの溶液重合を行う工程を含む、
 エチレンとα-オレフィンとの液状ランダム共重合体を製造するための方法(α)。
Figure JPOXMLDOC01-appb-C000008
〔式1において、R1、R2、R3、R4、R5、R8、R9およびR12は、それぞれ独立に、水素原子、炭化水素基またはケイ素含有炭化水素基であり、隣接する複数の基は、任意に、互いに連結して環構造を形成しており、
 R6およびR11は、互いに同一であり、水素原子、炭化水素基またはケイ素含有炭化水素基であり、
 R7およびR10は、互いに同一であり、水素原子、炭化水素基またはケイ素含有炭化水素基であり、
 R6およびR7は、任意に、炭素数2~3の炭化水素と結合して環構造を形成し、
 R11およびR10は、任意に、炭素数2~3の炭化水素と結合して環構造を形成し、
 R6、R7、R10およびR11は、同時には水素原子ではなく;
 Yは、炭素原子またはケイ素原子であり;
 R13およびR14は、独立してアリール基であり;
 Mは、Ti、ZrまたはHfであり;
 Qは、独立してハロゲン、炭化水素基、アニオン性配位子または孤立電子対に配位可能な中性配位子であり;
 jは、1~4の整数である。〕
 ここで、前記炭化水素基は、炭素数が1~20、好ましくは1~15、より好ましくは4~10であり、例えばアルキル基、アリール基等を意味し、アリール基は、炭素数が6~20、好ましくは6~15である。
 前記ケイ素含有炭化水素基の例としては、1~4個のケイ素原子を含む炭素原子数3~20のアルキル基またはアリール基が挙げられ、より詳細には、トリメチルシリル基、tert-ブチルジメチルシリル基、トリフェニルシリル基等が挙げられる。
 式1で表される架橋メタロセン化合物において、シクロペンタジエニル基は置換されていても無置換でもよい。
 式1で表される架橋メタロセン化合物において、
(i)シクロペンタジエニル基に結合した置換基(R1、R2、R3およびR4)のうち少なくとも1つが炭化水素基であることが好ましく、
(ii)置換基(R1、R2、R3およびR4)のうち少なくとも1つが炭素数4以上の炭化水素基であることがより好ましく、
(iii)シクロペンタジエニル基の3位に結合した置換基(R2またはR3)が炭素数4以上の炭化水素基(例えば、n-ブチル基)であることが最も好ましい。
 R1、R2、R3およびR4のうち少なくとも2つが置換基である(すなわち、水素原子ではない)場合、上記の置換基は同一でも異なっていてもよく、少なくとも1つの置換基が炭素数4以上の炭化水素基であることが好ましい。
 式1で表されるメタロセン化合物において、フルオレニル基に結合したR6およびR11は同一であり、R7およびR10は同一であるが、R6、R7、R10およびR11は、同時には水素原子ではない。ポリ-α-オレフィンの高温溶液重合においては、重合活性を向上させるため、好ましくはR6もR11も水素原子ではなく、より好ましくはR6、R7、R10およびR11のいずれも水素原子ではない。例えば、フルオレニル基の2位および7位に結合したR6およびR11は、炭素数1~20の同一の炭化水素基であり、好ましくはすべてtert-ブチル基であり、R7およびR10は、炭素数1~20の同一の炭化水素基、好ましくはすべてtert-ブチル基である。
 シクロペンタジエニル基とフルオレニル基とを連結する主鎖部(結合部、Y)は、式1で表される前記架橋メタロセン化合物に立体的剛性を付与する構造架橋部としての、1個の炭素原子またはケイ素原子を含む2つの共有結合の架橋部である。架橋部中の架橋原子(Y)は、同一であっても異なっていてもよい2個のアリール基(R13およびR14)を有する。したがって、前記シクロペンタジエニル基と前記フルオレニル基とは、アリール基を含む共有結合架橋部によって結合されている。アリール基の例としては、フェニル基、ナフチル基、アントラセニル基、および置換アリール基(これは、フェニル基、ナフチル基またはアントラセニル基の1個以上の芳香族水素(sp2型水素)を置換基で置換して形成されたものである。)が挙げられる。前記置換アリール基が有する置換基の例としては、炭素数1~20の炭化水素基、炭素数1~20のケイ素含有炭化水素基、ハロゲン原子などが挙げられ、好ましくはフェニル基が挙げられる。式1で表される前記架橋メタロセン化合物において、好ましくは、製造容易性の観点からR13とR14とは同一である。
 式1で表される架橋メタロセン化合物において、Qは、好ましくは、ハロゲン原子または炭素数1~10の炭化水素基である。ハロゲン原子としては、フッ素、塩素、臭素またはヨウ素が挙げられ、炭素数1~10の炭化水素基としては、メチル、エチル、n-プロピル、イソプロピル、2-メチルプロピル、1,1-ジメチルプロピル、2,2-ジメチルプロピル、1,1-ジエチルプロピル、1-エチル-1-メチルプロピル、1,1,2,2-テトラメチルプロピル、sec-ブチル、tert-ブチル、1,1-ジメチルブチル、1,1,3-トリメチルブチル、ネオペンチル、シクロヘキシルメチル、シクロヘキシル、1-メチル-1-シクロヘキシルなどが挙げられる。また、jが2以上の整数の場合、Qは同一であっても異なっていてもよい。
 このような架橋メタロセン化合物(a)としては、
 エチレン[η5-(3-tert-ブチル-5-メチルシクロペンタジエニル)](η5-フルオレニル)ジルコニウムジクロリド、エチレン[η5-(3-tert-ブチル-5-メチルシクロペンタジエニル)][η5-(3,6-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、エチレン[η5-(3-tert-ブチル-5-メチルシクロペンタジエニル)][η5-(2,7-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、エチレン[η5-(3-tert-ブチル-5-メチルシクロペンタジエニル)](オクタメチルオクタヒドロジベンズフルオレニル)ジルコニウムジクロリド、エチレン[η5-(3-tert-ブチル-5-メチルシクロペンタジエニル)](ベンゾフルオレニル)ジルコニウムジクロリド、エチレン[η5-(3-tert-ブチル-5-メチルシクロペンタジエニル)](ジベンゾフルオレニル)ジルコニウムジクロリド、エチレン[η5-(3-tert-ブチル-5-メチルシクロペンタジエニル)](オクタヒドロジベンゾフルオレニル)ジルコニウムジクロリド、エチレン[η5-(3-tert-ブチル-5-メチルシクロペンタジエニル)][η5-(2,7-ジフェニル-3,6-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、エチレン[η5-(3-tert-ブチル-5-メチルシクロペンタジエニル)][η5-(2,7-ジメチル-3,6-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、
 エチレン[η5-(3-tert-ブチルシクロペンタジエニル)](η5-フルオレニル)ジルコニウムジクロリド、エチレン[η5-(3-tert-ブチルシクロペンタジエニル)][η5-(3,6-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、エチレン[η5-(3-tert-ブチルシクロペンタジエニル)][η5-(2,7-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、エチレン[η5-(3-tert-ブチルシクロペンタジエニル)](オクタメチルオクタヒドロジベンズフルオレニル)ジルコニウムジクロリド、エチレン[η5-(3-tert-ブチルシクロペンタジエニル)](ベンゾフルオレニル)ジルコニウムジクロリド、エチレン[η5-(3-tert-ブチルシクロペンタジエニル)](ジベンゾフルオレニル)ジルコニウムジクロリド、エチレン[η5-(3-tert-ブチルシクロペンタジエニル)](オクタヒドロジベンゾフルオレニル)ジルコニウムジクロリド、エチレン[η5-(3-tert-ブチルシクロペンタジエニル)][η5-(2,7-ジフェニル-3,6-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、エチレン[η5-(3-tert-ブチルシクロペンタジエニル)][η5-(2,7-ジメチル-3,6-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、
 エチレン[η5-(3-n-ブチルシクロペンタジエニル)](η5-フルオレニル)ジルコニウムジクロリド、エチレン[η5-(3-n-ブチルシクロペンタジエニル)][η5-(3,6-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、エチレン[η5-(3-n-ブチルシクロペンタジエニル)][η5-(2,7-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、エチレン[η5-(3-n-ブチルシクロペンタジエニル)](オクタメチルオクタヒドロジベンズフルオレニル)ジルコニウムジクロリド、エチレン[η5-(3-n-ブチルシクロペンタジエニル)](ベンゾフルオレニル)ジルコニウムジクロリド、エチレン[η5-(3-n-ブチルシクロペンタジエニル)](ジベンゾフルオレニル)ジルコニウムジクロリド、エチレン[η5-(3-n-ブチルシクロペンタジエニル)](オクタヒドロジベンゾフルオレニル)ジルコニウムジクロリド、エチレン[η5-(3-n-ブチルシクロペンタジエニル)][η5-(2,7-ジフェニル-3,6-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、エチレン[η5-(3-n-ブチルシクロペンタジエニル)][η5-(2,7-ジメチル-3,6-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、
 ジフェニルメチレン[η5-(3-tert-ブチル-5-メチルシクロペンタジエニル)](η5-フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン[η5-(3-tert-ブチル-5-メチルシクロペンタジエニル)][η5-(3,6-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、ジフェニルメチレン[η5-(3-tert-ブチル-5-メチルシクロペンタジエニル)][η5-(2,7-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、ジフェニルメチレン[η5-(3-tert-ブチル-5-メチルシクロペンタジエニル)](オクタメチルオクタヒドロジベンズフルオレニル)ジルコニウムジクロリド、ジフェニルメチレン[η5-(3-tert-ブチル-5-メチルシクロペンタジエニル)](ベンゾフルオレニル)ジルコニウムジクロリド、ジフェニルメチレン[η5-(3-tert-ブチル-5-メチルシクロペンタジエニル)](ジベンゾフルオレニル)ジルコニウムジクロリド、ジフェニルメチレン[η5-(3-tert-ブチル-5-メチルシクロペンタジエニル)](オクタヒドロジベンゾフルオレニル)ジルコニウムジクロリド、ジフェニルメチレン[η5-(3-tert-ブチル-5-メチルシクロペンタジエニル)][η5-(2,7-ジフェニル-3,6-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、ジフェニルメチレン[η5-(3-tert-ブチル-5-メチルシクロペンタジエニル)][η5-(2,7-ジメチル-3,6-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、
 ジフェニルメチレン[η5-(3-tert-ブチルシクロペンタジエニル)](η5-フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン[η5-(3-tert-ブチルシクロペンタジエニル)][η5-(3,6-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、ジフェニルメチレン[η5-(3-tert-ブチルシクロペンタジエニル)][η5-(2,7-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、ジフェニルメチレン[η5-(3-tert-ブチルシクロペンタジエニル)](オクタメチルオクタヒドロジベンズフルオレニル)ジルコニウムジクロリド、ジフェニルメチレン[η5-(3-tert-ブチルシクロペンタジエニル)](ベンゾフルオレニル)ジルコニウムジクロリド、ジフェニルメチレン[η5-(3-tert-ブチルシクロペンタジエニル)](ジベンゾフルオレニル)ジルコニウムジクロリド、ジフェニルメチレン[η5-(3-tert-ブチルシクロペンタジエニル)](オクタヒドロジベンゾフルオレニル)ジルコニウムジクロリド、ジフェニルメチレン[η5-(3-tert-ブチルシクロペンタジエニル)][η5-(2,7-ジフェニル-3,6-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、ジフェニルメチレン[η5-(3-tert-ブチルシクロペンタジエニル)][η5-(2,7-ジメチル-3,6-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、
 ジフェニルメチレン[η5-(3-n-ブチルシクロペンタジエニル)](η5-フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン[η5-(3-n-ブチルシクロペンタジエニル)][η5-(3,6-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、ジフェニルメチレン[η5-(3-n-ブチルシクロペンタジエニル)][η5-(2,7-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、ジフェニルメチレン[η5-(3-n-ブチルシクロペンタジエニル)](オクタメチルオクタヒドロジベンズフルオレニル)ジルコニウムジクロリド、ジフェニルメチレン[η5-(3-n-ブチルシクロペンタジエニル)](ベンゾフルオレニル)ジルコニウムジクロリド、ジフェニルメチレン[η5-(3-n-ブチルシクロペンタジエニル)](ジベンゾフルオレニル)ジルコニウムジクロリド、ジフェニルメチレン[η5-(3-n-ブチルシクロペンタジエニル)](オクタヒドロジベンゾフルオレニル)ジルコニウムジクロリド、ジフェニルメチレン[η5-(3-n-ブチルシクロペンタジエニル)][η5-(2,7-ジフェニル-3,6-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、ジフェニルメチレン[η5-(3-n-ブチルシクロペンタジエニル)][η5-(2,7-ジメチル-3,6-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、
 ジ(p-トリル)メチレン[η5-(3-tert-ブチル-5-メチルシクロペンタジエニル)](η5-フルオレニル)ジルコニウムジクロリド、ジ(p-トリル)メチレン[η5-(3-tert-ブチル-5-メチルシクロペンタジエニル)][η5-(3,6-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、ジ(p-トリル)メチレン[η5-(3-tert-ブチル-5-メチルシクロペンタジエニル)][η5-(2,7-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、ジ(p-トリル)メチレン[η5-(3-tert-ブチル-5-メチルシクロペンタジエニル)](オクタメチルオクタヒドロジベンズフルオレニル)ジルコニウムジクロリド、ジ(p-トリル)メチレン[η5-(3-tert-ブチル-5-メチルシクロペンタジエニル)](ベンゾフルオレニル)ジルコニウムジクロリド、ジ(p-トリル)メチレン[η5-(3-tert-ブチル-5-メチルシクロペンタジエニル)](ジベンゾフルオレニル)ジルコニウムジクロリド、ジ(p-トリル)メチレン[η5-(3-tert-ブチル-5-メチルシクロペンタジエニル)](オクタヒドロジベンゾフルオレニル)ジルコニウムジクロリド、ジ(p-トリル)メチレン[η5-(3-tert-ブチル-5-メチルシクロペンタジエニル)][η5-(2,7-ジフェニル-3,6-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、ジ(p-トリル)メチレン[η5-(3-tert-ブチル-5-メチルシクロペンタジエニル)][η5-(2,7-ジメチル-3,6-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、
 ジ(p-トリル)メチレン[η5-(3-tert-ブチルシクロペンタジエニル)](η5-フルオレニル)ジルコニウムジクロリド、ジ(p-トリル)メチレン[η5-(3-tert-ブチルシクロペンタジエニル)][η5-(3,6-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、ジ(p-トリル)メチレン[η5-(3-tert-ブチルシクロペンタジエニル)][η5-(2,7-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、ジ(p-トリル)メチレン[η5-(3-tert-ブチルシクロペンタジエニル)](オクタメチルオクタヒドロジベンズフルオレニル)ジルコニウムジクロリド、ジ(p-トリル)メチレン[η5-(3-tert-ブチルシクロペンタジエニル)](ベンゾフルオレニル)ジルコニウムジクロリド、ジ(p-トリル)メチレン[η5-(3-tert-ブチルシクロペンタジエニル)](ジベンゾフルオレニル)ジルコニウムジクロリド、ジ(p-トリル)メチレン[η5-(3-tert-ブチルシクロペンタジエニル)](オクタヒドロジベンゾフルオレニル)ジルコニウムジクロリド、ジ(p-トリル)メチレン[η5-(3-tert-ブチルシクロペンタジエニル)][η5-(2,7-ジフェニル-3,6-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、ジ(p-トリル)メチレン[η5-(3-tert-ブチルシクロペンタジエニル)][η5-(2,7-ジメチル-3,6-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、
 ジ(p-トリル)メチレン[η5-(3-n-ブチルシクロペンタジエニル)](η5-フルオレニル)ジルコニウムジクロリド、ジ(p-トリル)メチレン[η5-(3-n-ブチルシクロペンタジエニル)][η5-(3,6-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、ジ(p-トリル)メチレン[η5-(3-n-ブチルシクロペンタジエニル)][η5-(2,7-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、ジ(p-トリル)メチレン[η5-(3-n-ブチルシクロペンタジエニル)](オクタメチルオクタヒドロジベンズフルオレニル)ジルコニウムジクロリド、ジ(p-トリル)メチレン[η5-(3-n-ブチルシクロペンタジエニル)](ベンゾフルオレニル)ジルコニウムジクロリド、ジ(p-トリル)メチレン[η5-(3-n-ブチルシクロペンタジエニル)](ジベンゾフルオレニル)ジルコニウムジクロリド、ジ(p-トリル)メチレン[η5-(3-n-ブチルシクロペンタジエニル)](オクタヒドロジベンゾフルオレニル)ジルコニウムジクロリド、ジ(p-トリル)メチレン[η5-(3-n-ブチルシクロペンタジエニル)](2,7-ジフェニル-3,6-ジ-tert-ブチルフルオレニル)ジルコニウムジクロリド、ジ(p-トリル)メチレン[η5-(3-n-ブチルシクロペンタジエニル)][η5-(2,7-ジメチル-3,6-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド等が挙げられる。
 これらの化合物のジルコニウム原子をハフニウム原子に置き換えた化合物またはクロロ配位子をメチル基に置き換えた化合物などが例示されるが、架橋メタロセン化合物(a)はこれらの例示に限定されない。
 本発明における前記触媒系に使用される前記有機アルミニウムオキシ化合物としては、従来のアルミノキサンを使用できる。例えば、下記式2~5で表される直鎖状または環状のアルミノキサンを使用できる。前記有機アルミニウムオキシ化合物には、少量の有機アルミニウム化合物が含まれていてもよい。
Figure JPOXMLDOC01-appb-C000009
 式2~4において、Rは独立して炭素数1~10の炭化水素基であり、Rxは独立して炭素数2~20の炭化水素基であり、mおよびnは独立して2以上、好ましくは3以上、より好ましくは10~70、最も好ましくは10~50の整数である。
Figure JPOXMLDOC01-appb-C000010
 式5において、Rcは炭素数1~10の炭化水素基であり、Rdは独立して水素原子、ハロゲン原子または炭素数1~10の炭化水素基である。
 式2または式3において、Rは、従来「メチルアルミノキサン」と呼ばれている有機アルミニウムオキシ化合物のメチル基(Me)である。
 前記メチルアルミノキサンは、容易に入手可能であり、かつ高い重合活性を有するので、ポリオレフィン重合における活性剤として一般的に使用されている。しかしながら、メチルアルミノキサンは、飽和炭化水素に溶解させ難いため、環境的に望ましくないトルエンまたはベンゼンのような芳香族炭化水素の溶液として使用されてきた。そのため、近年、飽和炭化水素に溶解させたアルミノキサンとして、式4で表されるメチルアルミノキサンの可撓性体(flexible body)が開発され、使用されている。式4で表されるこの修飾メチルアルミノキサンは、米国特許第4960878号明細書、米国特許第5041584号明細書に示されるように、トリメチルアルミニウムおよびトリメチルアルミニウム以外のアルキルアルミニウムを用いて調製され、例えば、トリメチルアルミニウムおよびトリイソブチルアルミニウムを用いて調製される。Rxがイソブチル基であるアルミノキサンは、飽和炭化水素溶液の形でMMAO、TMAOの商品名で市販されている。(Tosoh Finechem Corporation、Tosoh Research&Technology Review、Vol 47、55(2003)を参照のこと)。
 前記触媒系に含まれる(ii)前記架橋メタロセン化合物と反応してイオン対を形成する化合物(以下、必要に応じて「イオン性化合物」という。)としては、ルイス酸、イオン性化合物、ボラン、ボラン化合物、カルボラン化合物を使用でき、これらは韓国特許第10-0551147号公報、特開平1-501950号公報、特開平3-179005号公報、特開平3-179006号公報、特開平3-207703号公報、特開平3-207704号公報、米国特許第5321106号明細書等に記載されている。必要に応じて、ヘテロポリ化合物、イソポリ化合物等を使用でき、特開2004-51676号公報に記載のイオン性化合物を使用できる。前記イオン性化合物は、1種単独でまたは2種以上を混合して使用できる。より詳細には、ルイス酸の例としては、BR3で表される化合物(Rはフッ化物、置換されたもしくは無置換の炭素数1~20のアルキル基(メチル基など)、置換されたもしくは無置換の炭素数6~20のアリール基(フェニル基など)などである。)が挙げられ、例えばトリフルオロボロン、トリフェニルボロン、トリス(4-フルオロフェニル)ボロン、トリス(3,5-ジフルオロフェニル)ボロン、トリス(4-フルオロフェニル)ボロン、トリス(ペンタフルオロフェニル)ボロン、およびトリス(p-トリル)ボロンが挙げられる。前記イオン性化合物を用いると、有機アルミニウムオキシ化合物と比較して、その使用量およびスラッジ発生量が比較的少なく、経済的に有利である。本発明においては、前記イオン性化合物として、下記式6で表される化合物が使用されることが好ましい。
Figure JPOXMLDOC01-appb-C000011
 式6において、Re+は、H+、カルベニウムカチオン、オキソニウムカチオン、アンモニウムカチオン、ホスホニウムカチオン、シクロヘプチルトリエニルカチオン、または遷移金属を有するフェロセニウムカチオンであり、Rf~Riは、それぞれ独立に有機基、好ましくは炭素数1~20の炭化水素基、より好ましくはアリール基、例えばペンタフルオロフェニル基である。前記カルベニウムカチオンの例としては、トリス(メチルフェニル)カルベニウムカチオン、トリス(ジメチルフェニル)カルベニウムカチオンなどが挙げられ、前記アンモニウムカチオンの例としては、ジメチルアニリニウムカチオンなどが挙げられる。
 上記式6で表される化合物としては、好ましくはN,N-ジアルキルアニリニウム塩、具体的にはN,N-ジメチルアニリニウムテトラフェニルボレート、N,N-ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、N,N-ジメチルアニリニウムテトラキス(3,5-ジトリフルオロメチルフェニル)ボレート、N,N-ジエチルアニリニウムテトラフェニルボレート、N,N-ジエチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、 N,N-ジエチルアニリニウムテトラキス(3,5-ジトリフルオロメチルフェニル)ボレート、N,N-2,4,6-ペンタメチルアニリニウムテトラフェニルボレート、N,N-2,4,6-ペンタメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレートなどが挙げられる。
 本発明に用いられる前記触媒系は、必要に応じて、さらに(c)有機アルミニウム化合物を含む。前記有機アルミニウム化合物は、前記架橋メタロセン化合物、前記有機アルミニウムオキシ化合物、前記イオン性化合物などを活性化する役割を果たす。前記有機アルミニウム化合物としては、好ましくは下記式7で表される有機アルミニウム、および下記式8で表される第1族金属とアルミニウムとの錯アルキル化物を使用できる。
   Ra mAl(ORb)npq …(式7)
 式7において、Ra及びRbは、それぞれ独立に、炭素数1~15、好ましくは炭素数1~4の炭化水素基であり、Xはハロゲン原子であり、mは0<m≦3の整数であり、nは0≦n≦3の整数であり、pは0<p≦3の整数であり、qは0≦q<3の整数であり、m+n+p+q=3である。
   M2AlRa 4 …(式8)
 式8において、M2はLi、NaまたはKを表し、Raは炭素数1~15、好ましくは炭素数1~4の炭化水素基である。
 式7で表される有機アルミニウム化合物の例としては、入手容易なトリメチルアルミニウム、トリイソブチルアルミニウムなどが挙げられる。式8で表される第1族金属とアルミニウムとのアルキル錯体化合物の例としては、LiAl(C25)4、LiAl(C715)4などが挙げられる。式7で表される化合物に類似する化合物を使用できる。例えば、(C25)2AlN(C25)Al(C25)2のように、少なくとも2つのアルミニウム化合物が窒素原子を介して結合した有機アルミニウム化合物を用いることができる。
 前記エチレン-α-オレフィン共重合体(B)を製造するための方法において、式1で表される(a)架橋メタロセン化合物の量は、好ましくは全触媒組成物に対して5~50重量%である。そして、好ましくは、(b)(i)有機アルミニウムオキシ化合物の量は、使用される架橋メタロセン化合物のモル数に対して50~500当量であり、(b)(ii)前記架橋メタロセン化合物と反応してイオン対を形成する化合物の量は、使用される架橋メタロセン化合物のモル数に対して1~5当量であり、(c)有機アルミニウム化合物の量は、使用される架橋メタロセン化合物のモル数に対して5~100当量である。
 本発明で用いられる前記触媒系は、例えば以下の[1]~[4]を有していてもよい。
[1](a)式1で表される架橋メタロセン化合物、および(b)(i)有機アルミニウムオキシ化合物
[2](a)式1で表される架橋メタロセン化合物、(b)(i)有機アルミニウムオキシ化合物、および(c)有機アルミニウム化合物。
[3](a)式1で表される架橋メタロセン化合物、(b)(ii)前記架橋メタロセン化合物と反応してイオン対を形成する化合物、および(c)有機アルミニウム化合物。
[4](a)式1で表される架橋メタロセン化合物、ならびに(b)(i)有機アルミニウムオキシ化合物、および(ii)前記架橋メタロセン化合物と反応してイオン対を形成する化合物。
 (a)式1で表される架橋メタロセン化合物(成分(a))、(b)(i)有機アルミニウムオキシ化合物(成分(b))、(ii)架橋メタロセン化合物と反応してイオン対を形成する化合物、および/または(c)有機アルミニウム化合物(成分(c))は、出発原料モノマー(エチレンと炭素数3~20のα-オレフィンとの混合物)に対して、任意の順序で導入されてもよい。例えば、成分(a)、(b)および/または(c)は、原料モノマーが充填されている重合反応器に、単独でまたは任意の順序で導入される。あるいは、必要に応じて、成分(a)、(b)および/または(c)のうち少なくとも2つの成分を混合した後、混合触媒組成物が、原料モノマーが充填された重合反応器に導入される。
 前記エチレン-α-オレフィン共重合体(B)は、前記触媒系の下でのエチレンと炭素数3~20のα-オレフィンとの溶液重合によって調製される。炭素数3~20のα-オレフィンとしては、プロピレン、1-ブテン、1-ペンテン、1-ヘキセンなどの直鎖状α-オレフィン、イソブチレン、3-メチル-1-ブテン、4-メチル-1-ペンテンなどの分岐状α-オレフィン、およびそれらの混合物のうちの1種以上を使用できる。好ましくは1種以上の炭素数3~6のα-オレフィンを使用でき、より好ましくはプロピレンを使用できる。前記溶液重合は、プロパン、ブタン、ヘキサンなどの不活性溶媒、またはオレフィン単量体そのものを媒体として使用することにより実施できる。本発明のエチレンとα-オレフィンとの共重合において、共重合の温度は、通常80~150℃、好ましくは90~120℃であり、共重合の圧力は、通常大気圧~500kgf/cm2、好ましくは大気圧~50kgf/cm2であり、これらは反応材料、反応条件などに応じて変動し得る。
 重合は回分式、半連続式または連続式で実施でき、好ましくは連続式で実施される。
 前記エチレン-α-オレフィン共重合体(B)は、室温で液相であり、α-オレフィン単位がコポリマー鎖中に均一に分布した構造を有する。前記エチレン-α-オレフィン共重合体(B)は、たとえば60~40モル%、好ましくは45~55モル%の、エチレンから誘導されるエチレン単位、およびたとえば40~60モル%、好ましくは45~55モル%の、炭素数3~20のα-オレフィンから誘導される炭素数3~20のα-オレフィン単位を含む。
 前記エチレン-α-オレフィン共重合体(B)の数平均分子量(Mn)は、たとえば500~10,000、好ましくは800~6,000であり、分子量分布(Mw/Mn、Mwは重量平均分子量)は、たとえば3以下、好ましくは2以下である。数平均分子量(Mn)および分子量分布(Mw/Mn)はゲルパーミエーションクロマトグラフィー(GPC)により測定される。
 前記エチレン-α-オレフィン共重合体(B)は、たとえば30~5,000、好ましくは50~3,000mm2/sの100℃動粘度、たとえば30~-45℃、好ましくは20~-35℃の流動点、たとえば0.1g/100g以下の臭素価を有する。
 式1で示される架橋メタロセン化合物は、特にエチレンとα-オレフィンとの共重合に対する重合活性が高く、この架橋メタロセン化合物を用いることで分子末端への水素導入により重合が選択的に停止するため、得られるエチレン-α-オレフィン共重合体(B)の不飽和結合が少なくなる。また、エチレン-α-オレフィン共重合体(B)は、ランダム共重合性が高いため、制御された分子量分布を有し、剪断安定性、粘度特性に優れる。このため、エチレン-α-オレフィン共重合体(B)を含む本発明の工業ギア用潤滑油組成物は、極めて優れた温度粘度特性、すなわち高温での油膜保持性および低温粘度特性を併せ持ち、さらに耐熱酸化安定性にも優れると考えられる。
 <工業ギア用潤滑油組成物>
 本発明に係る工業ギア用潤滑油組成物は、前記潤滑油基油(A)および前記エチレン-α-オレフィン共重合体(B)を含有し、以下の(C1)の特徴を有する。
 (C1)40℃における動粘度が100~10,000mm2/sであること
 この40℃における動粘度(JIS K2283に記載の方法に従い測定される動粘度)は、100~10,000mm2/s、好ましくは250~8,000mm2/s、より好ましくは250~5,000mm2/s、さらに好ましくは500~4,000mm2/sである。工業ギア用潤滑油組成物の40℃における動粘度が10,000mm2/sを過度に超えると潤滑油組成物を撹拌する際の撹拌トルクが上昇し、潤滑油組成物を用いたギアを有する機器の省エネルギー性が劣り、10mm2/sを過度に下回ると潤滑油組成物の油膜を保持できずに十分な潤滑性が得られない。
 一般的に工業用潤滑油の製品の粘度は40℃動粘度によって規定されており、粘度範囲はJIS K2001(ISO3448準拠)によって定められている。各粘度を中心として上下それぞれに10%の許容範囲が設けられている。例えば40℃動粘度が320mm2/sである潤滑油はISO VG320と表示し、許容される40℃動粘度の範囲は288~352mm2/sである。ギアが使用されている部位、使用条件によって適する範囲が異なるが、ギア油にはISO VG150からISO VG3200が好ましく用いられる。性能を比較する際には、同等粘度グレードの潤滑油組成物同士を比較することが通常行われる。
 本発明に係る工業ギア用潤滑油組成物は、さらに(C2)の特徴を有することが好ましい。
 (C2)粘度指数が130以上であること
 この粘度指数)JIS K2283に記載の方法に従い測定される粘度指数)は、好ましくは130以上、より好ましくは150以上、さらに好ましくは170以上、特に好ましくは180以上である。粘度指数がこの範囲であると、潤滑油組成物は優れた温度粘度特性を有する。
 一般的に40℃動粘度が大きくなると、粘度指数も大きくなる傾向がある。したがって粘度指数の範囲は、40℃動粘度によっても変わり、以下の式(1)で表される範囲内であることが好ましく、式(2)で表される範囲内であることがさらに好ましい。
   Y≧17.64LN(X)+58.8   ・・・式(1)
   Y≧17.64LN(X)+68.8   ・・・式(2)
(ここで、Yは粘度指数、Xは40℃動粘度(単位:mm2/s)を示す。
 本発明に係る工業ギア用潤滑油組成物の流動点(ASTM D97に記載の方法に従って測定される流動点)は好ましくは0℃以下、より好ましくは-10℃以下、さらに好ましくは-20℃以下である。流動点が低いことは、潤滑油組成物が低温特性に優れることを示す。
 40℃動粘度が大きくなると、流動点も大きくなる傾向がある。したがって粘度指数の範囲は 40℃動粘度によっても変わり、以下の式(3)の範囲内であることが好ましく、式(4)の範囲内であることがさらに好ましい。
   Z≦10.29LN(X)-82.4   ・・・式(3)
   Z≦10.29LN(X)-87.4   ・・・式(4)
(ここで、Zは流動点(単位:度)、Xは40℃動粘度(単位:mm2/s)を示す。)
 なお上記式(1)~(4)は、後述する実施例のデータに基づいて導き出されたものである。
 本発明の工業ギア用潤滑油組成物は、前記潤滑油基油(A)を10~90質量%と前記エチレン-α-オレフィン共重合体(B)を90~10質量%の割合で各成分を含有する。ただし、前記潤滑油基油(A)と前記エチレン-α-オレフィン共重合体(B)の合計を100質量%とする。本発明の工業ギア用潤滑油組成物は、好ましくは、前記潤滑油基油(A)を20~90質量%、前記エチレン-α-オレフィン共重合体(B)を80~10質量%の割合で、さらに好ましくは、前記潤滑油基油(A)を30~85質量%、前記エチレン-α-オレフィン共重合体(B)を70~15質量%の割合で、さらに好ましくは、前記潤滑油基油(A)を40~80質量%、前記エチレン-α-オレフィン共重合体(B)を60~20質量%の割合で各成分を含有する。
 好ましい一態様としては、潤滑油基油のうち、30~100質量%が鉱物油である態様が挙げられる。潤滑油基油(A)に占める鉱物油の割合が高いと後述する添加剤の溶解性に優れるほか、入手容易で経済性に優れている。50~100質量%が鉱物油であるとより好ましく、80~100質量%が鉱物油であるとさらに好ましい。鉱物油の中では、APIカテゴリーにおけるグループIIIが、温度粘度特性に優れ、高温での油膜保持と低温での低トルクとを両立できるため、好ましい。
 別の好ましい一態様としては、潤滑油基油のうち、30~100質量%が、合成油であって、かつポリ-α-オレフィンおよび/またはエステル油である態様が挙げられる。潤滑油基油(A)に占める合成油の割合が高いと、耐熱性、温度粘度特性、低温特性が優れており、好ましい。50~100質量%が合成油であるとより好ましく、80~100質量%が合成油であるとさらに好ましい。
 また、本発明の工業ギア用潤滑油組成物は、極圧剤、清浄分散剤、粘度指数向上剤、酸化防止剤、腐食防止剤、耐摩耗剤、摩擦調整剤、流動点降下剤、防錆剤および消泡剤等の添加剤を含んでいてもよい。
 本発明の潤滑油組成物に用いられる添加剤としては下記のものを例示することができ、これらを1種単独でまたは2種以上組み合わせて用いることができる。
 極圧剤は、ギア等の金属同士が高負荷状態に晒された場合に、焼付け防止の効果を有するものの総称であり、特に限定されないが、スルフィド類、スルホキシド類、スルホン類、チオホスフィネート類、チオカーボネート類、硫化油脂、硫化オレフィンなどのイオウ系極圧剤;リン酸エステル、亜リン酸エステル、リン酸エステルアミン塩、亜リン酸エステルアミン類などのリン酸類;塩素化炭化水素などのハロゲン系化合物などを例示することができる。また、これらの化合物を2種類以上併用してもよい。
 なお、極圧潤滑条件に至るまでに、炭化水素、または潤滑油組成物を構成する他の有機成分が、加熱、せん断により極圧潤滑条件以前に炭化してしまい、金属表面に炭化物被膜を形成する可能性がある。このため、極圧剤単独の使用では、炭化物被膜により極圧剤と金属表面の接触が阻害され、極圧剤の十分な効果が期待できないおそれがある。
 極圧剤は単独で添加してもよいが、本発明における工業ギア油は共重合体といった飽和炭化水素を主成分とするため、予め使用する他の添加剤とともに、鉱物油もしくは合成炭化水素油等の潤滑油基油に溶解させた状態で添加した方が、分散性の観点から好ましい。具体的には、極圧剤成分などの諸成分をあらかじめ配合し、更に鉱物油もしくは合成炭化水素油等の潤滑油基油に溶解させた、いわゆる添加剤パッケージを選択して潤滑油組成物に添加する方法がより好ましい。
 好ましい添加剤パッケージとしては、LUBRIZOL社製Anglamol-98A、Anglamol-6043、Angramol 6085U、LUBRIZOL 1047U、AFTON CHEMICAL社製HITEC1532、AFTON CHEMICAL社製HITEC307、AFTON CHEMICAL社製HITEC3339、RHEIN CHEMIE社製Additin RC 9410等が挙げられる。
 極圧剤は、必要に応じて潤滑油組成物100質量%に対して0~10質量%の範囲で用いられる。
 耐摩耗剤としては、二硫化モリブデンなどの無機または有機モリブデン化合物、グラファイト、硫化アンチモン、ポリテトラフルオロエチレンなどを例示することができる。耐摩耗剤は、必要に応じて潤滑油組成物100質量%に対して0~3質量%の範囲で用いられる。
 摩擦調整剤としては、炭素数6~30のアルキル基又はアルケニル基、特に炭素数6~30の直鎖アルキル基又は直鎖アルケニル基を分子中に少なくとも1個有する、アミン化合物、イミド化合物、脂肪酸エステル、脂肪酸アミド、脂肪酸金属塩等を例示することができる。
 アミン化合物としては、炭素数6~30の直鎖状若しくは分枝状、好ましくは直鎖状の脂肪族モノアミン、直鎖状若しくは分枝状、好ましくは直鎖状の脂肪族ポリアミン、又はこれら脂肪族アミンのアルキレンオキシド付加物等が例示できる。イミド化合物としては、炭素数6~30の直鎖状若しくは分岐状のアルキル基又はアルケニル基を有するコハク酸イミド及び/又はそのカルボン酸、ホウ酸、リン酸、硫酸等による変性化合物等が挙げられる。脂肪酸エステルとしては、炭素数7~31の直鎖状又は分枝状、好ましくは直鎖状の脂肪酸と、脂肪族1価アルコール又は脂肪族多価アルコールとのエステル等が例示できる。脂肪酸アミドとしては、炭素数7~31の直鎖状又は分枝状、好ましくは直鎖状の脂肪酸と、脂肪族モノアミン又は脂肪族ポリアミンとのアミド等が例示できる。脂肪酸金属塩としては、炭素数7~31の直鎖状又は分枝状、好ましくは直鎖状の脂肪酸の、アルカリ土類金属塩(マグネシウム塩、カルシウム塩等)や亜鉛塩等が挙げられる。
 摩擦調整剤は、必要に応じて潤滑油組成物100質量%に対して0.01~5.0質量%の範囲で用いられる。
 清浄分散剤としては、金属スルホネート、金属フェネート、金属フォスファネート、コハク酸イミドなどを例示することができる。清浄分散剤は、必要に応じて潤滑油組成物100質量%に対して0~15質量%の範囲で用いられる。
 粘度指数向上剤としては、エチレン-α-オレフィン共重合体(エチレン-α-オレフィン共重合体(B)を除く。)の他に、分子量が50,000を超えるようなオレフィンコポリマー、100℃動粘度101mm2/s以上のポリ-α-オレフィン、メタクリレート系共重合体、液状ポリブテン等の既知の粘度指数向上剤を併用することができる。粘度指数向上剤は、必要に応じて潤滑油組成物100質量%に対して0~50質量%の範囲で用いられる。
 酸化防止剤としては、2,6-ジ-t-ブチル-4-メチルフェノールなどのフェノール系やアミン系の化合物が挙げられる。酸化防止剤は、必要に応じて潤滑油組成物100質量%に対して0~3質量%の範囲で用いられる。
 腐食防止剤としては、ベンゾトリアゾール、ベンゾイミダゾール、チアジアゾール等の化合物が挙げられる。腐食防止剤は、必要に応じて潤滑油組成物100質量%に対して0~3質量%の範囲で用いられる。
 防錆剤としては、各種アミン化合物、カルボン酸金属塩、多価アルコールエステル、リン化合物、スルホネートなどの化合物が挙げられる。防錆剤は、必要に応じて潤滑油組成物100質量%に対して0~3質量%の範囲で用いられる。
 消泡剤としては、ジメチルシロキサン、シリカゲル分散体などのシリコーン系化合物、アルコール系またはエステル系の化合物などを例示することができる。消泡剤は、必要に応じて潤滑油組成物100質量%に対して0~0.2質量%の範囲で用いられる。
 流動点降下剤としては、種々公知の流動点降下剤を使用し得る。具体的には、有機酸エステル基を含有する高分子化合物が用いられ、有機酸エステル基を含有するビニル重合体が特に好適に用いられる。有機酸エステル基を含有するビニル重合体としては例えばメタクリル酸アルキルの(共)重合体、アクリル酸アルキルの(共)重合体、フマル酸アルキルの(共)重合体、マレイン酸アルキルの(共)重合体、アルキル化ナフタレン等が挙げられる。
 このような流動点降下剤は、融点が-13℃以下であり、好ましくは-15℃、さらに好ましくは-17℃以下である。流動点降下剤の融点は、示差走査型熱量計(DSC)を用いて測定される。具体的には、試料約5mgをアルミパンに詰めて200℃まで昇温し、200℃で5分間保持した後、10℃/分で-40℃まで冷却し、-40℃で5分保持した後、10℃/分で昇温する際の吸熱曲線から求める。
 上記流動点降下剤はさらに、ゲルパーミエーションクロマトグラフィーによって得られるポリスチレン換算重量平均分子量が20,000~400,000の範囲にあり、好ましくは30,000~300,000、より好ましくは40,000~200,000の範囲にある。
 流動点降下剤は、必要に応じて潤滑油組成物100質量%に対して0~2質量%の範囲で用いられる。
 上記の添加剤以外にも、抗乳化剤、着色剤、油性剤(油性向上剤)などを必要に応じて用いることができる。
 <用途>
 本発明の潤滑油組成物は、種々の産業設備機械の工業ギア油に好適に使用でき、極めて優れた温度粘度特性、すなわち高温での油膜保持性および低温粘度特性を有し、産業設備機械の省エネルギー化に大きく寄与できる。本発明の潤滑油組成物は、特に風力発電用ギア油、工作機械用/成形機用ギア油として極めて有用である。
 以下、実施例に基づいて本発明をさらに具体的に説明するが、本発明はこれら実施例に限定されるものではない。
 [評価方法]
 下記実施例および比較例等において、エチレン-α-オレフィン共重合体および工業ギア油の物性等は以下の方法で測定した。
 <エチレン含有量(mol%)>
 日本分光社製フーリエ変換赤外分光光度計FT/IR-610またはFT/IR-6100を用い、長鎖メチレン基の横揺れ振動に基づく721cm-1付近の吸収とプロピレンの骨格振動に基づく1155cm-1付近の吸収との吸光度比(D1155cm-1/D721cm-1)を算出し、予め作成しておいた検量線(ASTM D3900での標準試料を使って作成)よりエチレン含有量(重量%)を求めた。次に、得られたエチレン含有量(重量%)を用い、下記式に従ってエチレン含有量(mol%)を求めた。
Figure JPOXMLDOC01-appb-M000012
 <B値>
 o-ジクロロベンゼン/ベンゼン-d6(4/1[vol/vol%])を測定溶媒とし、測定温度120℃、スペクトル幅250ppm、パルス繰り返し時間5.5秒、かつパルス幅4.7μ秒(45oパルス)の測定条件下(100MHz、日本電子ECX400P)、または測定温度120℃、スペクトル幅250ppm、パルス繰り返し時間5.5秒、かつパルス幅5.0μ秒(45oパルス)の測定条件下(125 MHz、ブルカー・バイオスピンAVANCEIIIcryo-500)にて13C-NMRスペクトルを測定し、下記式[1]に基づきB値を算出した。ピークの帰属は前述の公知文献を参考にして行った。
Figure JPOXMLDOC01-appb-M000013
 式[1]中、PEはエチレン成分の含有モル分率を示し、POはα-オレフィン成分の含有モル分率を示し、POEは全dyad連鎖のエチレン-α-オレフィン連鎖のモル分率を示す。
 <分子量分布>
 分子量分布は、東ソー株式会社HLC-8320GPCを用いて以下のようにして測定した。分離カラムとして、TSKgel SuperMultiporeHZ-M(4本)を用い、カラム温度を40℃とし、移動相にはテトラヒドロフラン(和光純薬社製)を用い、展開速度を0.35ml/分とし、試料濃度を5.5g/Lとし、試料注入量を20マイクロリットルとし、検出器として示差屈折計を用いた。標準ポリスチレンとしては、東ソー社製(PStQuick MP-M)のものを用いた。汎用校正の手順に従い、ポリスチレン分子量換算として重量平均分子量(Mw)並びに数平均分子量(Mn)を算出し、これらの値から分子量分布(Mw/Mn)を算出した。
 <粘度特性>
 100℃動粘度、40℃動粘度、および粘度指数は、JIS K2283に記載の方法により、測定、算出した。
 <流動点>
 流動点はASTM D97に記載の方法により測定した。なお、流動点が-50℃を下回る場合は、-50℃以下と記載した。
 <-40℃粘度>
 低温粘度特性として、ASTM D2983に準拠し、-40℃にてブルックフィールド粘度計により-40℃粘度を測定した。
 <耐熱酸化安定性>
 耐熱酸化安定性に関しては、JIS K2514に記載の内燃機関用潤滑油酸価安定度試験(ISOT)の方法に準拠し、試験時間72時間後のラッカー度を評価した。
 [エチレン-α-オレフィン共重合体(B)の製造]
 エチレン-α-オレフィン共重合体(B)は以下の重合例に従い製造した。
 [重合例1]
 充分に窒素置換した内容積2Lのステンレス製オートクレーブにヘプタン760ml、プロピレン120gを装入し、系内の温度を150℃に昇温した後、水素0.85MPa、エチレン0.19MPaを供給することにより全圧を3MPaGとした。次に、トリイソブチルアルミニウム0.4mmol、ジフェニルメチレン[η5-(3-n-ブチルシクロペンタジエニル)][η5-(2,7-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド0.0002mmol、及びN,N-ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート0.002mmolを窒素で圧入し、撹拌回転数を400rpmにすることにより重合を開始した。その後、エチレンを連続的に供給することにより全圧を3MPaGに保ち、150℃で5分間重合を行った。少量のエタノールを系内に添加することにより重合を停止した後、未反応のエチレン、プロピレン、水素をパージした。得られたポリマー溶液は、0.2mol/Lの塩酸1000mlで3回、次いで蒸留水1000mlで3回洗浄し、硫酸マグネシウムで乾燥後、溶媒を減圧留去した。得られたポリマーは80℃の減圧下で10時間乾燥した。得られたポリマーのエチレン含有量は49.5mol%、Mwは5,100、Mw/Mnは1.7、B値は1.2、100℃動粘度は150mm2/sであった。
 [重合例2]
 充分に窒素置換した内容積2Lのステンレス製オートクレーブにヘプタン710mLおよびプロピレン145gを装入し、系内の温度を150℃に昇温した後、水素0.40MPa、エチレン0.27MPaを供給することにより全圧を3MPaGとした。次にトリイソブチルアルミニウム0.4mmol、ジフェニルメチレン[η5-(3-n-ブチルシクロペンタジエニル)][η5-(2,7-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド0.0001mmolおよびN,N-ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート0.001mmolを窒素で圧入し、攪拌回転数を400rpmにすることにより重合を開始した。その後、エチレンのみを連続的に供給することにより全圧を3MPaGに保ち、150℃で5分間重合を行った。少量のエタノールを系内に添加することにより重合を停止した後、未反応のエチレン、プロピレン、水素をパージした。得られたポリマー溶液を、0.2mol/lの塩酸1000mLで3回、次いで蒸留水1000mLで3回洗浄し、硫酸マグネシウムで乾燥後、溶媒を減圧留去した。得られたポリマーを80℃の減圧下で一晩乾燥し、エチレン-プロピレン共重合体52.2gを得た。得られたポリマーのエチレン含有量は52.9mol%、Mwは8,600、Mw/Mnは1.8、B値は1.2であり、100℃動粘度は600mm2/sであった。
 [重合例3]
 充分に窒素置換した内容積1Lのガラス製重合器にヘプタン250mLを装入し、系内の温度を50℃に昇温した後、エチレンを25L/h、プロピレンを75L/h、水素を100L/hの流量で連続的に重合器内に供給し、撹拌回転数600rpmで撹拌した。次にトリイソブチルアルミニウム0.2mmolを重合器に装入し、およびN,N-ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート0.023mmolとジフェニルメチレン[η5-(3-n-ブチルシクロペンタジエニル)][η5-(2,7-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド0.00230mmolをトルエン中で15分以上予備混合したものを重合器に装入することにより重合を開始した。その後、エチレン、プロピレン、水素の連続的供給を継続し、50℃で15分間重合を行った。少量のイソブチルアルコールを系内に添加することにより重合を停止した後、未反応のモノマーをパージした。得られたポリマー溶液を、0.2mol/lの塩酸100mLで3回、次いで蒸留水100mLで3回洗浄し、硫酸マグネシウムで乾燥後、溶媒を減圧留去した。得られたポリマーを80℃の減圧下で一晩乾燥し、エチレン-プロピレン共重合体1.43gを得た。得られたポリマーのエチレン含有量は52.4mol%、Mwは13,600、Mw/Mnは1.9、B値は1.2であり、100℃動粘度は2,000mm2/sであった。
 [重合例4]
 充分に窒素置換した内容積2Lのステンレス製オートクレーブにヘプタン760ml、プロピレン120gを装入し、系内の温度を150℃に昇温した後、水素0.85MPa、エチレン0.19MPaを供給することにより全圧を3MPaGとした。次に、トリイソブチルアルミニウム0.4mmol、ジメチルシリルビス(インデニル)ジルコニウムジクロリド0.0002mmol、及びMMAO0.059mmolを窒素で圧入し、撹拌回転数を400rpmにすることにより重合を開始した。その後、エチレンを連続的に供給することにより全圧を3MPaGに保ち、150℃で5分間重合を行った。少量のエタノールを系内に添加することにより重合を停止した後、未反応のエチレン、プロピレン、水素をパージした。得られたポリマー溶液は、0.2mol/Lの塩酸1000mlで3回、次いで蒸留水1000mlで3回洗浄し、硫酸マグネシウムで乾燥後、溶媒を減圧留去した。得られたポリマーは80℃の減圧下で10時間乾燥した。得られたポリマーのエチレン含有量は48.5mol%、Mwは5,000、Mw/Mnは1.8、B値は1.2、100℃動粘度は150mm2/sであった。
 [重合例5]
 充分に窒素置換した内容積2Lのステンレス製オートクレーブにヘプタン710mLおよびプロピレン145gを装入し、系内の温度を150℃に昇温した後、水素0.40MPa、エチレン0.27MPaを供給することにより全圧を3MPaGとした。次にトリイソブチルアルミニウム0.4mmol、ジメチルシリルビス(インデニル)ジルコニウムジクロリド0.0001mmolおよびMMAO0.029mmolを窒素で圧入し、攪拌回転数を400rpmにすることにより重合を開始した。その後、エチレンのみを連続的に供給することにより全圧を3MPaGに保ち、150℃で5分間重合を行った。少量のエタノールを系内に添加することにより重合を停止した後、未反応のエチレン、プロピレン、水素をパージした。得られたポリマー溶液を、0.2mol/lの塩酸1000mLで3回、次いで蒸留水1000mLで3回洗浄し、硫酸マグネシウムで乾燥後、溶媒を減圧留去した。得られたポリマーを80℃の減圧下で一晩乾燥し、エチレン-プロピレン共重合体52.2gを得た。得られたポリマーのエチレン含有量は53.3mol%、Mwは8,500、Mw/Mnは1.9、B値は1.2であり、100℃動粘度は600mm2/sであった。
 [重合例6]
 充分に窒素置換した内容積1Lのガラス製重合器にヘプタン250mLを装入し、系内の温度を50℃に昇温した後、エチレンを25L/h、プロピレンを75L/h、水素を100L/hの流量で連続的に重合器内に供給し、撹拌回転数600rpmで撹拌した。次にトリイソブチルアルミニウム0.2mmolを重合器に装入し、次いでMMAO0.688mmolとジメチルシリルビス(インデニル)ジルコニウムジクロリド0.00230mmolをトルエン中で15分以上予備混合したものを重合器に装入することにより重合を開始した。その後、エチレン、プロピレン、水素の連続的供給を継続し、50℃で15分間重合を行った。少量のイソブチルアルコールを系内に添加することにより重合を停止した後、未反応のモノマーをパージした。得られたポリマー溶液を、0.2mol/lの塩酸100mLで3回、次いで蒸留水100mLで3回洗浄し、硫酸マグネシウムで乾燥後、溶媒を減圧留去した。得られたポリマーを80℃の減圧下で一晩乾燥し、エチレン-プロピレン共重合体1.43gを得た。得られたポリマーのエチレン含有量は52.1mol%、Mwは13,800、Mw/Mnは2.0、B値は1.2であり、100℃動粘度は2,000mm2/sであった。
 重合例1で得られた共重合体、重合例2で得られた共重合体、重合例3で得られた共重合体、重合例4で得られた共重合体、重合例5で得られた共重合体、および重合例6で得られた共重合体を、以下、それぞれ、重合体1、重合体2、重合体3、重合体4、重合体5、および重合体6と記載する。
 [工業ギア用潤滑油組成物の調製]
 以下の潤滑油組成物の調製において用いられたエチレン-α-オレフィン共重合体以外の成分は以下のとおりである。
 潤滑油基油;鉱物油として以下の潤滑油基油を用いた。
鉱物油-A:100℃動粘度が6.5mm2/s、粘度指数が131、流動点が-12.5℃であるAPI(American Petroleum Institute)Group III鉱物油(SK Lubricants社製Yubase-6)
鉱物油-B:100℃動粘度が6.8mm2/s、粘度指数が108、流動点が-12.5℃であるAPI(American Petroleum Institute)Group I鉱物油(JX日鉱日石エネルギー製スーパーオイルN-32)
 また合成油としては以下の潤滑油基油を用いた。
合成油-A:100℃動粘度が4.0mm2/s、粘度指数が123、流動点が-50℃以下である合成油ポリ-α-オレフィン(Neste社製NEXBASE2004)
合成油-B:100℃動粘度が5.8mm2/s、粘度指数が138、流動点が-50℃以下である合成油ポリ-α-オレフィン(Neste社製NEXBASE2006)
合成油-C:100℃動粘度が4.5mm2/s、粘度指数が142、流動点が-50℃以下であるエステル系合成油トリメチロールプロパンカプリレート(TMTC)、Cognis製SYNATIVE(登録商標) ES TMTC。
 潤滑油基油、およびエチレン-α-オレフィン共重合体に加え、以下の各種添加剤を用いた。
流動点降下剤-A;BASF社製IRGAFLOW 720P
流動点降下剤-B;BASF社製IRGAFLOW 649P
添加剤パッケージ-A;Afton Chemical社製HITEC-3339
添加剤パッケージ-B;LUBRIZOL社製Anglamol-6085U
添加剤パッケージ-C;LUBRIZOL社製LUBRIZOL 1047U
酸化防止剤;フェノール系酸化防止剤(BASF社製Irganox L135)
ポリブテン;エチレン-αオレフィン共重合体と同様にGPCにて測定した重量平均分子量が8,400であり、100℃動粘度が3,800mm2/sである液状ポリブテン(JX日鉱日石エネルギー社製日石ポリブテンHV-1900)。
 <工業ギア用潤滑油組成物>
 [実施例1]
 潤滑油基油(A)として合成油-Aを、エチレン-α-オレフィン共重合体(B)として重合例2で得られた共重合体(重合体2)を用い、これらと酸化防止剤とを合わせて100質量%となるよう、工業ギア用潤滑油組成物を配合調整した。それぞれの成分の添加量は表2に示す通りである。潤滑油組成物の物性を表2に示す。
 [実施例2~14、比較例1~9]
 成分の種類および添加量を表2に記載のとおり変更した以外は実施例1と同様にして、工業ギア用潤滑油組成物を配合調製した。得られた潤滑油組成物の物性等は表2に示す通りである。
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015

Claims (17)

  1.  以下の(A1)~(A3)の特徴を有する潤滑油基油(A)を10~90質量%、および以下の方法(α)により製造されるエチレンとα-オレフィンとの液状ランダム共重合体(B)を90~10質量%(ただし、前記潤滑油基油(A)および前記共重合体(B)の合計量を100質量%とする。)含有し、以下の(C1)の特徴を有する工業ギア用潤滑油組成物。
    (A1)100℃における動粘度が1~100mm2/sであること
    (A2)粘度指数が100以上であること
    (A3)流動点が0℃以下であること
    (C1)40℃における動粘度が100~10,000mm2/sであること
    (方法(α))
    (a)下記式1で表される架橋メタロセン化合物、ならびに
    (b)(i)有機アルミニウムオキシ化合物、および
       (ii)前記架橋メタロセン化合物と反応してイオン対を形成する化合物
    からなる群から選択される少なくとも1つの化合物
    を含む触媒系の下で、エチレンと炭素数3~20のα-オレフィンとの溶液重合を行う工程を含む、
     エチレンとα-オレフィンとの液状ランダム共重合体を製造するための方法(α)
    Figure JPOXMLDOC01-appb-C000001
    〔式1において、R1、R2、R3、R4、R5、R8、R9およびR12は、それぞれ独立に、水素原子、炭化水素基またはケイ素含有炭化水素基であり、隣接する複数の基は、任意に、互いに連結して環構造を形成しており、
     R6およびR11は、互いに同一であり、水素原子、炭化水素基またはケイ素含有炭化水素基であり、
     R7およびR10は、互いに同一であり、水素原子、炭化水素基またはケイ素含有炭化水素基であり、
     R6およびR7は、任意に、炭素数2~3の炭化水素と結合して環構造を形成し、
     R11およびR10は、任意に、炭素数2~3の炭化水素と結合して環構造を形成し、
     R6、R7、R10およびR11は、同時には水素原子ではなく;
     Yは、炭素原子またはケイ素原子であり;
     R13およびR14は、独立してアリール基であり;
     Mは、Ti、ZrまたはHfであり;
     Qは、独立してハロゲン、炭化水素基、アニオン性配位子または孤立電子対に配位可能な中性配位子であり;
     jは、1~4の整数である。〕
  2.  上記式1で表されるメタロセン化合物のシクロペンタジエニル基に結合した置換基(R1、R2、R3およびR4)のうちの少なくとも1つが炭素数4以上の炭化水素基である請求項1に記載の工業ギア用潤滑油組成物。
  3.  R6およびR11が同一であり、炭素数1~20の炭化水素基である請求項1または2に記載の工業ギア用潤滑油組成物。
  4.  上記式1で表されるメタロセン化合物のシクロペンタジエニル基の3位に結合した置換基(R2またはR3)が炭化水素基である請求項1~3のいずれか一項に記載の工業ギア用潤滑油組成物。
  5.  上記式1で表されるメタロセン化合物のシクロペンタジエニル基の3位に結合した炭化水素基(R2またはR3)がn-ブチル基である請求項4に記載の工業ギア用潤滑油組成物。
  6.  上記式1で表されるメタロセン化合物のフルオレニル基の2位および7位に結合した置換基(R6およびR11)がすべてtert-ブチル基である請求項1~5のいずれか一項に記載の工業ギア用潤滑油組成物。
  7.  前記架橋メタロセン化合物と反応してイオン対を形成する前記化合物が、下記式6で表される化合物である請求項1~6のいずれか一項に記載の工業ギア用潤滑油組成物。
    Figure JPOXMLDOC01-appb-C000002
    〔式6において、Re+は、H+、カルベニウムカチオン、オキソニウムカチオン、アンモニウムカチオン、ホスホニウムカチオン、シクロヘプチルトリエニルカチオン、または遷移金属を有するフェロセニウムカチオンであり、Rf~Riは、それぞれ独立に炭素数1~20の炭化水素基である。〕
  8.  前記アンモニウムカチオンがジメチルアニリニウムカチオンである請求項7に記載の工業ギア用潤滑油組成物。
  9.  前記触媒系がトリメチルアルミニウムおよびトリイソブチルアルミニウムからなる群から選択される有機アルミニウム化合物をさらに含む請求項7または8に記載の工業ギア用潤滑油組成物。
  10.  以下の(A1)~(A3)の特徴を有する潤滑油基油(A)を10~90質量%、および以下の(B1)~(B5)の特徴を有するエチレンとα-オレフィンとの液状ランダム共重合体を90~10質量%(ただし、前記潤滑油基油(A)および前記共重合体の合計量を100質量%とする。)含有し、以下の(C1)の特徴を有する工業ギア用潤滑油組成物。
    (A1)100℃における動粘度が1~100mm2/sであること
    (A2)粘度指数が100以上であること
    (A3)流動点が0℃以下であること
    (B1)エチレン単位を40~60モル%、および炭素数3~20のα-オレフィン単位を60~40モル%含有すること
    (B2)ゲル浸透クロマトグラフィー(GPC)により測定される、500~10,000の数平均分子量(Mn)、および3以下の分子量分布(Mw/Mn、Mwは重量平均分子量である。)を有すること
    (B3)30~5,000mm2/sの100℃動粘度を有すること
    (B4)30~-45℃の流動点を有すること
    (B5)0.1g/100g以下の臭素価を有すること
    (C1)40℃における動粘度が100~10,000mm2/sであること
  11.  40℃における動粘度が250~5,000mm2/sである請求項1~10のいずれか一項に記載の工業ギア用潤滑油組成物。
  12.  前記潤滑油基油(A)がさらに以下の(A4)~(A6)を満たす請求項1~11のいずれか一項に記載の工業ギア用潤滑油組成物。
    (A4)100℃における動粘度が1~10mm2/sであること
    (A5)粘度指数が110以上であること
    (A6)流動点が-10℃以下であること
  13.  前記潤滑油基油(A)のうち、30~100質量%が鉱物油である請求項1~12のいずれか一項に記載の工業ギア用潤滑油組成物。
  14.  前記潤滑油基油(A)のうち、30~100質量%が合成油であり、かつポリαオレフィン(PAO)および/またはエステル油である請求項1~13のいずれか一項に記載の工業ギア用潤滑油組成物。
  15.  請求項1~14のいずれか一項に記載の潤滑油組成物からなる風力発電用ギア油。
  16.  請求項1~14のいずれか一項に記載の潤滑油組成物からなる工作機械/成形機用ギア油。
  17.  工業ギア用潤滑油組成物の製造方法であって、
     以下の方法(α)によりエチレンとα-オレフィンとの液状ランダム共重合体(B)を製造する工程、および
     前記潤滑油組成物中で10~90質量%となる量の、以下の(A1)~(A3)の特徴を有する潤滑油基油(A)と、前記潤滑油組成物中で90~10質量%となる量の、前記液状ランダム共重合体(B)(ただし、前記潤滑油基油(A)および前記共重合体(B)の合計量を100質量%とする。)とを混合して、以下の(C1)の特徴を有する工業ギア用潤滑油組成物を製造する工程
    を含む工業ギア用潤滑油組成物の製造方法。
    (A1)100℃における動粘度が1~100mm2/sであること
    (A2)粘度指数が100以上であること
    (A3)流動点が0℃以下であること
    (C1)40℃における動粘度が100~10,000mm2/sであること
    (方法(α))
    (a)下記式1で表される架橋メタロセン化合物、ならびに
    (b)(i)有機アルミニウムオキシ化合物、および
       (ii)前記架橋メタロセン化合物と反応してイオン対を形成する化合物
    からなる群から選択される少なくとも1つの化合物
    を含む触媒系の下で、エチレンと炭素数3~20のα-オレフィンとの溶液重合を行う工程を含む、
     エチレンとα-オレフィンとの液状ランダム共重合体を製造するための方法(α)
    Figure JPOXMLDOC01-appb-C000003
    〔式1において、R1、R2、R3、R4、R5、R8、R9およびR12は、それぞれ独立に、水素原子、炭化水素基またはケイ素含有炭化水素基であり、隣接する複数の基は、任意に、互いに連結して環構造を形成しており、
     R6およびR11は、互いに同一であり、水素原子、炭化水素基またはケイ素含有炭化水素基であり、
     R7およびR10は、互いに同一であり、水素原子、炭化水素基またはケイ素含有炭化水素基であり、
     R6およびR7は、任意に、炭素数2~3の炭化水素と結合して環構造を形成し、
     R11およびR10は、任意に、炭素数2~3の炭化水素と結合して環構造を形成し、
     R6、R7、R10およびR11は、同時には水素原子ではなく;
     Yは、炭素原子またはケイ素原子であり;
     R13およびR14は、独立してアリール基であり;
     Mは、Ti、ZrまたはHfであり;
     Qは、独立してハロゲン、炭化水素基、アニオン性配位子または孤立電子対に配位可能な中性配位子であり;
     jは、1~4の整数である。〕
PCT/JP2019/012999 2019-03-26 2019-03-26 工業ギア用潤滑油組成物およびその製造方法 WO2020194544A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2019/012999 WO2020194544A1 (ja) 2019-03-26 2019-03-26 工業ギア用潤滑油組成物およびその製造方法
ES19920834T ES2985405T3 (es) 2019-03-26 2019-03-26 Composición de aceite lubricante para engranajes industriales y método para producir la misma
EP19920834.9A EP3950893B1 (en) 2019-03-26 2019-03-26 Lubricating oil composition for industrial gears and method for producing same
US17/442,585 US20220186133A1 (en) 2019-03-26 2019-03-26 Lubricating oil composition for industrial gears and method for producing the same
KR1020217033661A KR20210139403A (ko) 2019-03-26 2019-03-26 공업 기어용 윤활유 조성물 및 그의 제조 방법
CN201980094149.1A CN113574140A (zh) 2019-03-26 2019-03-26 工业齿轮用润滑油组合物及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/012999 WO2020194544A1 (ja) 2019-03-26 2019-03-26 工業ギア用潤滑油組成物およびその製造方法

Publications (1)

Publication Number Publication Date
WO2020194544A1 true WO2020194544A1 (ja) 2020-10-01

Family

ID=72609711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/012999 WO2020194544A1 (ja) 2019-03-26 2019-03-26 工業ギア用潤滑油組成物およびその製造方法

Country Status (6)

Country Link
US (1) US20220186133A1 (ja)
EP (1) EP3950893B1 (ja)
KR (1) KR20210139403A (ja)
CN (1) CN113574140A (ja)
ES (1) ES2985405T3 (ja)
WO (1) WO2020194544A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024200848A1 (en) * 2023-03-31 2024-10-03 Totalenergies Onetech Industrial gear oil

Citations (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3382291A (en) 1965-04-23 1968-05-07 Mobil Oil Corp Polymerization of olefins with bf3
US3763244A (en) 1971-11-03 1973-10-02 Ethyl Corp Process for producing a c6-c16 normal alpha-olefin oligomer having a pour point below about- f.
US3780128A (en) 1971-11-03 1973-12-18 Ethyl Corp Synthetic lubricants by oligomerization and hydrogenation
US3909432A (en) 1973-11-26 1975-09-30 Continental Oil Co Preparation of synthetic hydrocarbon lubricants
US4032591A (en) 1975-11-24 1977-06-28 Gulf Research & Development Company Preparation of alpha-olefin oligomer synthetic lubricant
JPS6337102A (ja) 1986-08-01 1988-02-17 Mitsui Petrochem Ind Ltd 液状変性α−オレフイン重合体
JPH01163136A (ja) 1987-11-12 1989-06-27 Neste Oy ポリ‐α‐オレフイン型潤滑油の製造方法
JPH01501950A (ja) 1987-01-30 1989-07-06 エクソン・ケミカル・パテンツ・インク 触媒、これらの触媒の製法およびこれらの触媒を使用する重合プロセス
US4926004A (en) 1988-12-09 1990-05-15 Mobil Oil Corporation Regeneration of reduced supported chromium oxide catalyst for alpha-olefin oligomerization
US4960878A (en) 1988-12-02 1990-10-02 Texas Alkyls, Inc. Synthesis of methylaluminoxanes
US4967032A (en) 1989-09-05 1990-10-30 Mobil Oil Corporation Process for improving thermal stability of synthetic lubes
JPH03179005A (ja) 1989-10-10 1991-08-05 Fina Technol Inc メタロセン触媒
JPH03179006A (ja) 1989-10-10 1991-08-05 Fina Technol Inc シンジオタクチツク重合体の製造方法および製造用触媒
US5041584A (en) 1988-12-02 1991-08-20 Texas Alkyls, Inc. Modified methylaluminoxane
JPH03207704A (ja) 1989-10-30 1991-09-11 Fina Technol Inc オレフイン重合触媒
JPH03207703A (ja) 1989-10-30 1991-09-11 Fina Technol Inc オレフイン重合触媒の製造法
US5171908A (en) 1991-11-18 1992-12-15 Mobil Oil Corporation Synthetic polyolefin lubricant oil
US5321106A (en) 1990-07-03 1994-06-14 The Dow Chemical Company Addition polymerization catalyst with oxidative activation
EP0668342A1 (en) 1994-02-08 1995-08-23 Shell Internationale Researchmaatschappij B.V. Lubricating base oil preparation process
JPH08301939A (ja) 1995-03-08 1996-11-19 Kuraray Co Ltd イソブチレン重合体及びその製造方法
EP0776959A2 (en) 1995-11-28 1997-06-04 Shell Internationale Researchmaatschappij B.V. Process for producing lubricating base oils
WO1997021788A1 (en) 1995-12-08 1997-06-19 Exxon Research And Engineering Company Biodegradable high performance hydrocarbon base oils
WO1999041332A1 (en) 1998-02-13 1999-08-19 Exxon Research And Engineering Company Low viscosity lube basestock
WO2000008115A1 (en) 1998-08-04 2000-02-17 Exxon Research And Engineering Company A lubricant base oil having improved oxidative stability
WO2000014183A1 (en) 1998-09-04 2000-03-16 Exxon Research And Engineering Company Production on synthetic lubricant and lubricant base stock without dewaxing
WO2000014179A1 (en) 1998-09-04 2000-03-16 Exxon Research And Engineering Company Premium synthetic lubricant base stock
WO2000014188A2 (en) 1998-09-04 2000-03-16 Exxon Research And Engineering Company Premium wear resistant lubricant
WO2000014187A2 (en) 1998-09-04 2000-03-16 Exxon Research And Engineering Company Premium synthetic lubricants
WO2000015736A2 (en) 1998-09-11 2000-03-23 Exxon Research And Engineering Company Wide-cut synthetic isoparaffinic lubricating oils
WO2000034420A1 (fr) 1998-12-09 2000-06-15 Mitsui Chemicals, Inc. Modificateur de viscosite pour huile lubrifiante et composition d'huile lubrifiante
EP1029029A1 (en) 1997-10-20 2000-08-23 Mobil Oil Corporation Isoparaffinic lube basestock compositions
WO2001018156A1 (fr) 1999-09-08 2001-03-15 Total Raffinage Distribution S.A. Nouvelle huile de base hydrocarbonee pour lubrifiants a indice de viscosite tres eleve
WO2001057166A1 (en) 2000-02-04 2001-08-09 Mobil Oil Corporation Formulated lubricant oils containing high-performance base oils derived from highly paraffinic hydrocarbons
JP2004051676A (ja) 2002-07-16 2004-02-19 Mitsui Chemicals Inc エチレン系共重合体の製造方法
JP2005200447A (ja) 2004-01-13 2005-07-28 Mitsui Chemicals Inc 潤滑油添加剤および潤滑油組成物
JP2005200448A (ja) 2004-01-13 2005-07-28 Mitsui Chemicals Inc 潤滑油添加剤および潤滑油組成物
JP2009501836A (ja) 2005-07-19 2009-01-22 エクソンモービル・ケミカル・パテンツ・インク ポリαオレフィン組成物およびこれを生成するためのプロセス
US20090088543A1 (en) * 2007-09-28 2009-04-02 Chevron Phillips Chemical Company Lp Polymerization catalysts for producing polymers with low melt elasticity
JP2011190377A (ja) 2010-03-16 2011-09-29 Mitsui Chemicals Inc 潤滑油組成物
EP2921509A1 (en) 2012-11-19 2015-09-23 Daelim Industrial Co., Ltd. Copolymer of ethylene and alpha-olefin, and method for preparing same
WO2015147215A1 (ja) * 2014-03-28 2015-10-01 三井化学株式会社 エチレン/α-オレフィン共重合体および潤滑油
JP2016069406A (ja) 2014-09-26 2016-05-09 三井化学株式会社 工業ギア用潤滑油組成物
JP2016098342A (ja) * 2014-11-25 2016-05-30 三井化学株式会社 潤滑油組成物
JP2016188318A (ja) * 2015-03-30 2016-11-04 三井化学株式会社 オレフィン重合用触媒ならびにそれを用いたオレフィン重合体の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6320262B2 (ja) * 2014-09-26 2018-05-09 三井化学株式会社 潤滑油組成物

Patent Citations (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3382291A (en) 1965-04-23 1968-05-07 Mobil Oil Corp Polymerization of olefins with bf3
US3763244A (en) 1971-11-03 1973-10-02 Ethyl Corp Process for producing a c6-c16 normal alpha-olefin oligomer having a pour point below about- f.
US3780128A (en) 1971-11-03 1973-12-18 Ethyl Corp Synthetic lubricants by oligomerization and hydrogenation
US3909432A (en) 1973-11-26 1975-09-30 Continental Oil Co Preparation of synthetic hydrocarbon lubricants
US4032591A (en) 1975-11-24 1977-06-28 Gulf Research & Development Company Preparation of alpha-olefin oligomer synthetic lubricant
JPS6337102A (ja) 1986-08-01 1988-02-17 Mitsui Petrochem Ind Ltd 液状変性α−オレフイン重合体
JPH01501950A (ja) 1987-01-30 1989-07-06 エクソン・ケミカル・パテンツ・インク 触媒、これらの触媒の製法およびこれらの触媒を使用する重合プロセス
JPH01163136A (ja) 1987-11-12 1989-06-27 Neste Oy ポリ‐α‐オレフイン型潤滑油の製造方法
US5041584A (en) 1988-12-02 1991-08-20 Texas Alkyls, Inc. Modified methylaluminoxane
US4960878A (en) 1988-12-02 1990-10-02 Texas Alkyls, Inc. Synthesis of methylaluminoxanes
US4926004A (en) 1988-12-09 1990-05-15 Mobil Oil Corporation Regeneration of reduced supported chromium oxide catalyst for alpha-olefin oligomerization
US4967032A (en) 1989-09-05 1990-10-30 Mobil Oil Corporation Process for improving thermal stability of synthetic lubes
JPH03179006A (ja) 1989-10-10 1991-08-05 Fina Technol Inc シンジオタクチツク重合体の製造方法および製造用触媒
JPH03179005A (ja) 1989-10-10 1991-08-05 Fina Technol Inc メタロセン触媒
JPH03207704A (ja) 1989-10-30 1991-09-11 Fina Technol Inc オレフイン重合触媒
JPH03207703A (ja) 1989-10-30 1991-09-11 Fina Technol Inc オレフイン重合触媒の製造法
US5321106A (en) 1990-07-03 1994-06-14 The Dow Chemical Company Addition polymerization catalyst with oxidative activation
US5171908A (en) 1991-11-18 1992-12-15 Mobil Oil Corporation Synthetic polyolefin lubricant oil
EP0668342A1 (en) 1994-02-08 1995-08-23 Shell Internationale Researchmaatschappij B.V. Lubricating base oil preparation process
JPH08301939A (ja) 1995-03-08 1996-11-19 Kuraray Co Ltd イソブチレン重合体及びその製造方法
EP0776959A2 (en) 1995-11-28 1997-06-04 Shell Internationale Researchmaatschappij B.V. Process for producing lubricating base oils
WO1997021788A1 (en) 1995-12-08 1997-06-19 Exxon Research And Engineering Company Biodegradable high performance hydrocarbon base oils
EP1029029A1 (en) 1997-10-20 2000-08-23 Mobil Oil Corporation Isoparaffinic lube basestock compositions
WO1999041332A1 (en) 1998-02-13 1999-08-19 Exxon Research And Engineering Company Low viscosity lube basestock
WO2000008115A1 (en) 1998-08-04 2000-02-17 Exxon Research And Engineering Company A lubricant base oil having improved oxidative stability
WO2000014183A1 (en) 1998-09-04 2000-03-16 Exxon Research And Engineering Company Production on synthetic lubricant and lubricant base stock without dewaxing
WO2000014179A1 (en) 1998-09-04 2000-03-16 Exxon Research And Engineering Company Premium synthetic lubricant base stock
WO2000014188A2 (en) 1998-09-04 2000-03-16 Exxon Research And Engineering Company Premium wear resistant lubricant
WO2000014187A2 (en) 1998-09-04 2000-03-16 Exxon Research And Engineering Company Premium synthetic lubricants
WO2000015736A2 (en) 1998-09-11 2000-03-23 Exxon Research And Engineering Company Wide-cut synthetic isoparaffinic lubricating oils
WO2000034420A1 (fr) 1998-12-09 2000-06-15 Mitsui Chemicals, Inc. Modificateur de viscosite pour huile lubrifiante et composition d'huile lubrifiante
WO2001018156A1 (fr) 1999-09-08 2001-03-15 Total Raffinage Distribution S.A. Nouvelle huile de base hydrocarbonee pour lubrifiants a indice de viscosite tres eleve
WO2001057166A1 (en) 2000-02-04 2001-08-09 Mobil Oil Corporation Formulated lubricant oils containing high-performance base oils derived from highly paraffinic hydrocarbons
JP2004051676A (ja) 2002-07-16 2004-02-19 Mitsui Chemicals Inc エチレン系共重合体の製造方法
JP2005200447A (ja) 2004-01-13 2005-07-28 Mitsui Chemicals Inc 潤滑油添加剤および潤滑油組成物
JP2005200448A (ja) 2004-01-13 2005-07-28 Mitsui Chemicals Inc 潤滑油添加剤および潤滑油組成物
JP2009501836A (ja) 2005-07-19 2009-01-22 エクソンモービル・ケミカル・パテンツ・インク ポリαオレフィン組成物およびこれを生成するためのプロセス
JP2009503147A (ja) 2005-07-19 2009-01-29 エクソンモービル・ケミカル・パテンツ・インク 低粘度ポリ−アルファ−オレフィンの生成プロセス
US20090088543A1 (en) * 2007-09-28 2009-04-02 Chevron Phillips Chemical Company Lp Polymerization catalysts for producing polymers with low melt elasticity
JP2011190377A (ja) 2010-03-16 2011-09-29 Mitsui Chemicals Inc 潤滑油組成物
EP2921509A1 (en) 2012-11-19 2015-09-23 Daelim Industrial Co., Ltd. Copolymer of ethylene and alpha-olefin, and method for preparing same
WO2015147215A1 (ja) * 2014-03-28 2015-10-01 三井化学株式会社 エチレン/α-オレフィン共重合体および潤滑油
JP2016069406A (ja) 2014-09-26 2016-05-09 三井化学株式会社 工業ギア用潤滑油組成物
JP2016098342A (ja) * 2014-11-25 2016-05-30 三井化学株式会社 潤滑油組成物
JP2016188318A (ja) * 2015-03-30 2016-11-04 三井化学株式会社 オレフィン重合用触媒ならびにそれを用いたオレフィン重合体の製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"The Daily Industrial News", NIKKAN KOGYO SHIMBUN, LTD, article "Illustrated guide to the introductory basics of industrial lubricating oil (2011"
"Tosoh Research Technology Review", vol. 47, 2003, TOSOH FINECHEM CORPORATION, pages: 55
See also references of EP3950893A4

Also Published As

Publication number Publication date
CN113574140A (zh) 2021-10-29
EP3950893A4 (en) 2022-08-17
EP3950893A1 (en) 2022-02-09
ES2985405T3 (es) 2024-11-05
US20220186133A1 (en) 2022-06-16
EP3950893C0 (en) 2024-07-17
KR20210139403A (ko) 2021-11-22
EP3950893B1 (en) 2024-07-17

Similar Documents

Publication Publication Date Title
WO2020194550A1 (ja) グリース組成物およびその製造方法
WO2020194544A1 (ja) 工業ギア用潤滑油組成物およびその製造方法
AU2019257480B2 (en) Lubricant composition for gear oil
WO2020194549A1 (ja) 潤滑油組成物およびその製造方法
WO2020194545A1 (ja) 作動油用潤滑油組成物およびその製造方法
WO2020194551A1 (ja) 圧縮機油用潤滑油組成物およびその製造方法
WO2020194542A1 (ja) 潤滑油組成物およびその製造方法
WO2020194548A1 (ja) 自動車ギア用潤滑油組成物およびその製造方法
WO2020194547A1 (ja) 自動車変速機油用潤滑油組成物およびその製造方法
WO2020194546A1 (ja) 内燃機関用潤滑油組成物およびその製造方法
KR102730694B1 (ko) 윤활유 조성물 및 그의 제조 방법
WO2020194543A1 (ja) 内燃機関用潤滑油組成物およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19920834

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217033661

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019920834

Country of ref document: EP

Effective date: 20211026

NENP Non-entry into the national phase

Ref country code: JP