[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2016098342A - 潤滑油組成物 - Google Patents

潤滑油組成物 Download PDF

Info

Publication number
JP2016098342A
JP2016098342A JP2014237787A JP2014237787A JP2016098342A JP 2016098342 A JP2016098342 A JP 2016098342A JP 2014237787 A JP2014237787 A JP 2014237787A JP 2014237787 A JP2014237787 A JP 2014237787A JP 2016098342 A JP2016098342 A JP 2016098342A
Authority
JP
Japan
Prior art keywords
group
viscosity
ethylene
lubricating oil
oil composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014237787A
Other languages
English (en)
Other versions
JP6326355B2 (ja
Inventor
昌太 阿部
Shota Abe
昌太 阿部
良輔 金重
Ryosuke Kanashige
良輔 金重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2014237787A priority Critical patent/JP6326355B2/ja
Publication of JP2016098342A publication Critical patent/JP2016098342A/ja
Application granted granted Critical
Publication of JP6326355B2 publication Critical patent/JP6326355B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Lubricants (AREA)

Abstract

【課題】高い剪断安定性を維持しながら40℃以下において流動性が優れ、機関への撹拌抵抗の低い内燃機関用潤滑油組成物を提供すること。【解決手段】潤滑油基油と、エチレン含有率が30〜85モル%、100℃動粘度が10〜5,000mm2/s、分子量分布が2.5以下、B値が1.1以上、不飽和結合量が炭素原子1000個あたり0.5個未満であるエチレン−α−オレフィン共重合体を含有し、100℃動粘度が12.5mm2/s以上26.1mm2/s未満であり、前記潤滑油基油が、100℃動粘度が2〜10mm2/s、粘度指数が95以上、流動点が−10℃以下である鉱物油、および/または100℃動粘度が1〜10mm2/s、粘度指数が120以上、流動点が−30℃以下である合成油からなる内燃機関用潤滑油組成物。【選択図】なし

Description

本発明は、内燃機関用潤滑油組成物、特に高出力内燃機関用潤滑油組成物に関するものである。
石油製品は一般に温度が変わると粘度が大きく変化する、いわゆる粘度の温度依存性を有している。例えば、自動車等に用いられる潤滑油等では粘度の温度依存性が小さいことが好ましい。そこで潤滑油には、粘度の温度依存性を小さくする目的で、潤滑油基剤に可溶な、ある種のポリマーが粘度調整剤(粘度指数向上剤ともいう)として用いられている。近年では、このような粘度調整剤としてOCP(オレフィンコポリマー)が広く用いられており、潤滑油の性能を更に改善するためOCPについて特許文献1に例示されるような種々の改良がなされている。
一方で、近年の環境負荷低減要求が高まる中で、内燃機関の燃費向上が強く求められている。その対応策の一つに、エンジン油の燃費向上技術があり、普通自動車においては低粘度化によるトルク低減を目的としたエンジン油の低粘度化が進んでいる。しかしながら、建設機械や重機械等の大排気量エンジンや船舶用クロスヘッド型ディーゼルエンジン油といった高出力型エンジンにおいては、エンジンピストンやクランクに対し多大な負荷が掛かるため、これら機関各部の保護を目的とし、表1に示すSAE(Society of Automotive Engineers)で定められる粘度規格では、40以上の高粘度エンジン油が多く用いられており、低粘度化することが困難である。また、普通自動車、自動2輪車におけるレース用車両、もしくは大型2輪等の大排気量自動2輪車についても、普通自動車や、小型、中型2輪車と比較しエンジンは高回転領域で使用され、エンジン油はより高温化し粘度低下が生じるため、高粘度エンジン油が使用される。
エンジン油において、粘度指数向上剤は潤滑油が高温時に適正な粘度を保持するために用いられるが、普通自動車用エンジン油に用いられる一般の粘度指数向上剤は分子量が比較的高く、剪断応力による分子切断が生じ、潤滑油の粘度低下を引き起こしやすい。このため特に上述のような過酷な条件にて使用される高粘度エンジン油に一般の粘度指数向上剤を使用することは不適である。このため、比較的低分子量の粘度調整剤が用いられているが、剪断による粘度低下は抑えられるものの、粘度指数向上能に劣るため、粘度の温度依存性が大きく、低温環境下、具体的には40℃以下における潤滑油の流動性が悪く、内燃機関始動時の撹拌抵抗が普通自動車用のエンジン油に比べ極めて大きく内燃機関の燃費に悪影響を与える。
Figure 2016098342
国際公開第00/34420号
このような従来技術における問題点に鑑みて本発明が解決しようとする課題は、自動車の省燃費化・省エネルギー化の観点から、高い剪断安定性を維持しながら粘度の温度依存性の低い、すなわち40℃以下において流動性が優れ機関への撹拌抵抗の低い内燃機関用潤滑油組成物を提供することにある。
本発明者らは、優れた性能を有する潤滑油組成物を開発すべく鋭意検討をした結果、特定の潤滑油基油に対し、特定のエチレン−α−オレフィン共重合体を含有し、特定の条件を満足する潤滑油組成物が、上記課題を解決できることを見いだし、本発明を完成するに至った。本発明としては、具体的には、以下の態様が挙げられる。
〔1〕 潤滑油基油と、以下の(C1)〜(C5)の特徴を有するエチレン−α−オレフィン共重合体(C)とを含有し、100℃における動粘度が12.5mm2/s以上26.1mm2/s未満であり、
前記潤滑油基油が、以下の(A1)〜(A3)の特徴を有する鉱物油(A)、および/または(B1)〜(B3)の特徴を有する合成油(B)からなる
内燃機関用潤滑油組成物。
(A1)100℃における動粘度が2〜10mm2/sであること
(A2)粘度指数が95以上であること
(A3)流動点が−10℃以下であること
(B1)100℃における動粘度が1〜10mm2/sであること
(B2)粘度指数が120以上であること
(B3)流動点が−30℃以下であること
(C1)エチレン含有率が30〜85モル%の範囲にあること
(C2)100℃における動粘度が10〜5,000mm2/sであること
(C3)ゲルパーミエーションクロマトグラフィー(GPC)により測定し、ポリスチレン換算により得られた分子量において、分子量分布(Mw/Mn)が2.5以下であること
(C4)下記式[1]
Figure 2016098342
(式中、PEはエチレン成分の含有モル分率を示し、POはα−オレフィン成分の含有モル分率を示し、POEは全dyad連鎖のエチレン−α−オレフィン連鎖のモル分率を示す。)
で表されるB値が、1.1以上であること
(C5)1H−NMRにより測定した不飽和結合量が炭素原子1000個あたり0.5個未満であること
〔2〕 前記エチレン−α−オレフィン共重合体(C)のエチレン含有率が40〜70モル%の範囲にある上記〔1〕に記載の内燃機関用潤滑油組成物。
〔3〕 前記エチレン−α−オレフィン共重合体(C)の100℃における動粘度が35〜2,500mm2/sである上記〔1〕または〔2〕に記載の内燃機関用潤滑油組成物。
〔4〕 前記エチレン−α−オレフィン共重合体(C)のα−オレフィンがプロピレンである上記〔1〕〜〔3〕のいずれかに記載の内燃機関用潤滑油組成物。
〔5〕 前記合成油(B)として、エステル、およびエステル以外の合成油を含有する上記〔1〕〜〔4〕のいずれかに記載の内燃機関用潤滑油組成物。
〔6〕 上記〔1〕〜〔5〕のいずれかに記載の内燃機関用潤滑油組成物からなるディーゼルエンジン油。
〔7〕 少なくとも20mg−KOH/gの全塩基価を有する上記〔1〕〜〔5〕のいずれかに記載の内燃機関用潤滑油組成物。
本発明の潤滑油組成物は、同一の潤滑油基油を含む従来の潤滑油に比べて、高い剪断安定性を維持し、極めて優れた温度粘度特性および優れた低温流動性を示す潤滑油組成物であり、内燃機関油の省燃費化に寄与する。
以下、本発明に係る内燃機関用潤滑油組成物(以下、単に「潤滑油組成物」ともいう。)について詳細に説明する。
本発明に係る内燃機関用潤滑油組成物は、潤滑油基油とエチレン−α−オレフィン共重合体(C)とを含有し、100℃における動粘度が12.5mm2/s以上26.1mm2/s未満であり、前記潤滑油基油が鉱物油(A)および/または合成油(B)からなることを特徴としている。
<潤滑油基油>
本発明に使用される潤滑油基油は、その製造方法や精製方法等により粘度特性や耐熱性、酸化安定性等の性能・品質が異なる。API(American Petroleum Institute)では、潤滑油基油をグループI、II、III、IV、Vの5種類に分類している。これらAPIカテゴリーはAPI Publication 1509、15th Edition、Appendix E、April 2002において定義されており、表2に示すとおりである。
Figure 2016098342
<(A)鉱物油>
鉱物油(A)は、以下(A1)〜(A3)の特徴を有する。本発明における鉱物油(A)は、上述のAPIカテゴリーにおけるグループI〜IIIに帰属される。
(A1)100℃における動粘度が2〜10mm2/sであること
この動粘度の値はJIS K2283に記載の方法に従い測定した場合のものである。鉱物油(A)の100℃における動粘度は、2〜10mm2/s、好ましくは2.5〜8mm2/s、より好ましくは3.5〜6.5mm2/sである。100℃における動粘度がこの範囲にあると、本発明の潤滑油組成物は、揮発性、温度粘度特性の点において優れる。
(A2)粘度指数が95以上であること
この粘度指数の値はJIS K2283に記載の方法に従い測定した場合のものである。鉱物油(A)の粘度指数は、95以上、好ましくは105以上、より好ましくは120以上である。粘度指数がこの範囲にあると、本発明の潤滑油組成物は、優れた温度粘度特性を有する。
(A3)流動点が−10℃以下であること
この流動点の値はASTM D97に記載の方法に従い測定した場合のものである。鉱物油(A)の流動点は、−10℃以下、好ましくは−12℃以下である。流動点がこの範囲にあると、本発明の潤滑油組成物は、鉱物油(A)を流動点降下剤と併用した際に優れた低温粘度特性を有する。
鉱物油の品質は上述の通りであり、精製の方法により、上述したそれぞれの品質の鉱物油が得られる。鉱物油(A)としては、具体的には、原油を常圧蒸留して得られる常圧残油を減圧蒸留して得られた潤滑油留分を、溶剤脱れき、溶剤抽出、水素化分解、溶剤脱ろう、水素化精製等の処理を1つ以上行って精製したもの、あるいはワックス異性化鉱油等の潤滑油基油が例示できる。
また、フィッシャー・トロプシュ法によって得られたガス・トゥー・リキッド(GTL)基油もグループIII鉱物油として好適に用いることのできる基油である。このようなGTL基油は、グループIII+潤滑油基油として扱われることもあり、例えば、特許文献であるEP0776959、EP0668342、WO97/21788、WO00/15736、WO00/14188、WO00/14187、WO00/14183、WO00/14179、WO00/08115、WO99/41332、EP1029029、WO01/18156およびWO01/57166に記載されている。
本発明の潤滑油組成物においては、潤滑油基油として、鉱物油(A)を単独で用いてもよく、また、合成油(B)および鉱物油(A)の中から選ばれる2種以上の潤滑油の任意混合物等を使用してもよい。
<(B)合成油>
合成油(B)は以下(B1)〜(B3)の特徴を有する。本発明における合成油(B)は、上述のAPIカテゴリーにおけるグループIVまたはグループVに帰属される。
(B1)100℃における動粘度が1〜10mm2/sであること
この動粘度の値はJIS K2283に記載の方法に従い測定した場合のものである。合成油(B)の100℃における動粘度は、1〜10mm2/s、好ましくは2〜8mm2/s、より好ましくは3.5〜6mm2/sである。100℃における動粘度がこの範囲にあると、本発明の潤滑油組成物は、揮発性、温度粘度特性の点において優れる。
(B2)粘度指数が120以上であること
この粘度指数の値はJIS K2283に記載の方法に従い測定した場合のものである。合成油(B)の粘度指数は、120以上、好ましくは125以上である。粘度指数がこの範囲にあると、本発明の潤滑油組成物は、優れた温度粘度特性を有する。
(B3)流動点が−30℃以下であること
この流動点の値はASTM D97に記載の方法に従い測定した場合のものである。合成油(B)の流動点は、−30℃以下、好ましくは−40℃以下、より好ましくは−50℃以下、さらに好ましくは−60℃以下である。流動点がこの範囲にあると、本発明の潤滑油組成物は、優れた低温粘度特性を有する。
グループIVに帰属されるポリ−α−オレフィンは米国特許第3,780,128号公報、米国特許第4,032,591号公報、特開平1−163136号公報等に記載のように、酸触媒により高級α−オレフィンをオリゴメリゼーションすることにより得ることができる。このうちポリ−α−オレフィンとしては、炭素原子数8以上のオレフィンから選ばれる少なくとも1種のオレフィンの低分子量オリゴマーが使用できる。前記潤滑油基油としてポリ−α−オレフィンを用いると、極めて温度粘度特性、低温粘度特性、さらには耐熱性に優れた潤滑油組成物が得られる。
ポリ−α−オレフィンは、工業的にも入手可能であり、100℃動粘度が2mm2/s〜10mm2/sのものが市販されている。例えば、NESTE社製NEXBASE2000シリーズ、ExxonMobil Chemical社製Spectrasyn、Ineos Oligmers社製Durasyn、Chevron Phillips Chemical社製Synfluidなどが挙げられる。
グループVに帰属される合成油としては、例えばアルキルベンゼン類、アルキルナフタレン類、イソブテンオリゴマーまたはその水素化物、パラフィン類、ポリオキシアルキレングリコール、ジアルキルジフェニルエーテル、ポリフェニルエーテル、エステル等が挙げられる。
アルキルベンゼン類、アルキルナフタレン類の大部分は、通常アルキル鎖長が炭素原子数6〜14のジアルキルベンゼンまたはジアルキルナフタレンであり、このようなアルキルベンゼン類またはアルキルナフタレン類は、ベンゼンまたはナフタレンとオレフィンとのフリーデルクラフトアルキル化反応によって製造される。アルキルベンゼン類またはアルキルナフタレン類の製造において使用されるアルキル化オレフィンは、線状もしくは枝分かれ状のオレフィンまたはこれらの組み合わせでもよい。これらの製造方法は、例えば、米国特許第3,909,432号に記載されている。
また、エステルはエチレン−α−オレフィン共重合体(C)との相溶性の観点から脂肪酸エステルが好ましい。
脂肪酸エステルとしては、特に限定されないが、以下のような炭素、酸素、水素のみからなる脂肪酸エステルが挙げられ、例えば、一塩基酸とアルコールから製造されるモノエステル;二塩基酸とアルコールとから、またはジオールと一塩基酸または酸混合物とから製造されるジエステル;ジオール、トリオール(たとえばトリメチロールプロパン)、テトラオール(たとえばペンタエリスリトール)、ヘキサオール(たとえばジペンタエリスリトール)などと一塩基酸または酸混合物とを反応させて製造したポリオールエステルなどが挙げられる。これらのエステルの例としては、ジトリデシルグルタレート、ジ−2−エチルヘキシルアジペート、ジイソデシルアジペート、ジトリデシルアジペート、ジ−2−エチルヘキシルセバケート、トリデシルペラルゴネート、ジ−2−エチルヘキシルアジペート、ジ−2−エチルヘキシルアゼレート、トリメチロールプロパンカプリレート、トリメチロールプロパンペラルゴネート、トリメチロールプロパントリヘプタノエート、ペンタエリスリトール−2−エチルヘキサノエート、ペンタエリスリトールペラルゴネート、ペンタエリスリトールテトラヘプタノエートなどが挙げられる。
エチレン−α−オレフィン共重合体(C)との相溶性の観点から、エステルを構成するアルコール部位としては、水酸基が2官能以上のアルコールが好ましく、脂肪酸部位としては、炭素数が8以上の脂肪酸が好ましい。ただし、脂肪酸については製造コストの点において、工業的に入手が容易である炭素数が20以下の脂肪酸が優位である。エステルを構成する脂肪酸は1種でもよく、2種以上の酸混合物を用いて製造される脂肪酸エステルを用いても、本発明の効果は十分に発揮される。脂肪酸エステルとしては、より具体的には、トリメチロールプロパンラウリン酸ステアリン酸混合トリエステルやジイソデシルアジペートなどが挙げられ、これらはエチレン−α−オレフィン共重合体(C)のような飽和炭化水素成分と、後述する極性基を有する酸化防止剤、腐食防止剤、耐摩耗剤、摩擦調整剤、流動点降下剤、防錆剤および消泡剤等との相溶性の点から好ましい。
本発明の潤滑油組成物は、潤滑油基油として合成油(B)、特にポリ−α−オレフィンを用いる場合、潤滑油組成物全体を100質量%としたときに、脂肪酸エステルを5〜20質量%の量で含むことが好ましい。5質量%以上の脂肪酸エステルを含有することにより、各種内燃機関、工業機械内部における樹脂やエラストマーといった潤滑油封止材に対し、良好な適合性が得られる。具体的には、潤滑油封止材の膨潤を抑制できる。酸化安定性または耐熱性の観点から、エステルの量は20質量%以下であることが好ましい。潤滑油組成物に鉱物油が含まれる場合、鉱物油そのものが潤滑油封止剤の膨潤抑制効果を有するため、脂肪酸エステルは必ずしも要さない。
<(C)エチレン−α−オレフィン共重合体>
エチレン−α−オレフィン共重合体(C)は以下(C1)〜(C5)の特徴を有する。
(C1)エチレン含有率が30〜85モル%であること
エチレン−α−オレフィン共重合体(C)のエチレン含量は、通常30〜85モル%、好ましくは40〜70モル%、特に好ましくは45〜65モル%である。これよりも過度に低いと潤滑油組成物の粘度温度特性が悪化し、これよりも過度に高いと分子内のエチレン連鎖が伸びることにより結晶性が発現する場合があり、潤滑油組成物の低温粘度特性が悪化する。
エチレン−α−オレフィン共重合体(C)のエチレン含量は、「高分子分析ハンドブック」(朝倉書店 発行 P163〜170)に記載の方法に従って13C−NMRで測定される。また、この方法により求められた試料を既知試料として、フーリエ変換赤外分光(FT−IR)を用いて測定することも可能である。
(C2)100℃における動粘度が10〜5,000mm2/sであること
この動粘度の値はJIS K2283に記載の方法により測定した場合のものである。エチレン−α−オレフィン共重合体(C)の100℃における動粘度は、10〜5,000mm2/s、好ましくは20〜2,500mm2/s、より好ましくは35〜2,500mm2/s、さらに好ましくは90〜2,500mm2/s、特に好ましくは300〜2,500mm2/sである。エチレン−α−オレフィン共重合体(C)の100℃における動粘度が上記範囲内であると、潤滑油組成物の低温粘度特性の点で好ましい。
(C3)分子量分布が2.5以下であること
エチレン−α−オレフィン共重合体(C)の分子量分布は、ゲルパーミエーションクロマトグラフィー(GPC)によって後述する方法に従い測定し、標準ポリスチレン換算により得られた重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)として算出される。このMw/Mnは2.5以下であり、好ましくは2.3以下、より好ましくは2.0以下である。分子量分布がこの範囲を過度に超えると、高温環境での使用において低分子量成分の揮発による潤滑油組成物の粘度変化、もしくは潤滑油組成物の剪断安定性の悪化が生じる。また、エチレン−α−オレフィン共重合体(C)の分子量分布は少なくとも1.4以上あることが好ましい。分子量分布がこの範囲にあると、潤滑油組成物の粘度温度特性および低温粘度特性が優れる。
(C4)B値が1.1以上であること
エチレン−α−オレフィン共重合体(C)の下記式[1]で表されるB値は、1.1以上、好ましくは1.2以上である。
Figure 2016098342
式[1]中、PEはエチレン成分の含有モル分率を示し、POはα−オレフィン成分の含有モル分率を示し、POEは全dyad連鎖のエチレン−α−オレフィン連鎖のモル分率を示す。
上記B値が大きいほど、ブロック的な連鎖が少なく、エチレンおよびα−オレフィンの分布が一様であり、組成分布の狭い共重合体であることを示している。このブロック的連鎖の長さが共重合体の物性面における特性に影響を及ぼすことになり、B値が大きいほどブロック的連鎖が短く、エチレン−α−オレフィン共重合体(C)の流動点が低くなって、潤滑油組成物は良好な低温粘度特性を示す。
B値は、共重合体中における共重合モノマー連鎖分布のランダム性を示す指標であり、上記式[1]中のPE、POおよびPOEは、13C−NMRスペクトルを測定し、J. C. Randall [Macromolecules, 15, 353 (1982)]、J. Ray [Macromolecules, 10, 773 (1977)]らの報告に基づいて求めることができる。
B値の具体的な測定条件は実施例に記載した通りである。
(C5)1H−NMRにより測定した不飽和結合量が炭素原子1000個あたり0.5個未満であること
エチレン−α−オレフィン共重合体(C)の分子が有する、1H−NMRで測定される、ビニル、ビニリデン、二置換オレフィンおよび三置換オレフィン等に由来する二重結合の合計個数(以下「不飽和結合量」ともいう。)は、1000個の炭素原子に対し0.5個未満、好ましくは0.3個未満、より好ましくは0.2個未満、さらに好ましくは0.1個未満である。不飽和結合量が当該範囲内にあると、潤滑油組成物の耐熱性が良好となる。不飽和結合量の具体的な測定条件は実施例に記載した通りである。
エチレン−α−オレフィン共重合体(C)はさらに(C6)の特徴を有することが好ましい。
(C6)融点が観測されないこと
エチレン−α−オレフィン共重合体(C)には示差走査熱量分析(DSC)において融点が観測されないことが好ましい。ここで、融点(Tm)が観測されないとは、示差走査型熱量測定(DSC)で測定される融解熱量(ΔH)(単位:J/g)が実質的に計測されないことをいう。融解熱量(ΔH)が実質的に計測されないとは、示差走査熱量計(DSC)測定においてピークが観測されないか、あるいは観測された融解熱量が1J/g以下であることである。エチレン−α−オレフィン共重合体(C)の融点(Tm)および融解熱量(ΔH)は、示差走査熱量計(DSC)測定を行い、−100℃まで冷却してから昇温速度10℃/分で150℃まで昇温したときにDSC曲線をJIS K7121を参考に解析し求められる。融点が観測されないと低温で結晶成分が生じないため低温粘度の上昇が抑制され、潤滑油組成物は低温粘度特性に優れる。
エチレン−α−オレフィン共重合体(C)に用いられるα−オレフィンとしては、プロピレン、1−ブテン、1−ペンテン、3−メチル−1−ブテン、1−ヘキセン、4−メチル−1−ペンテン、3−メチル−1−ペンテン、1−オクテン、1−デセン、1−ドデセン、1−テトラデセン、1−ヘキサデセン、1−オクタデセン、1−エイコセン、ビニルシクロヘキサンなどの炭素数3〜20の直鎖状または分岐状のα−オレフィンを例示することができる。α−オレフィンとしては、炭素数3〜10の直鎖状または分岐状のα−オレフィンが好ましく、プロピレン、1−ブテン、1−ヘキセンおよび1−オクテンがより好ましく、得られる共重合体を用いた潤滑油組成物の剪断安定性の点からプロピレンが最も好ましい。これらのα−オレフィンは1種単独で、または2種以上組み合わせて用いることができる。
また、極性基含有モノマー、芳香族ビニル化合物、および環状オレフィンから選択される少なくとも1種の他のモノマーを反応系に共存させて重合を進めることもできる。エチレンおよび炭素数が3〜20のα−オレフィンとの合計100質量部に対して、他のモノマーは、例えば20質量部以下、好ましくは10質量部以下の量で用いることができる。
極性基含有モノマーとしては、アクリル酸、メタクリル酸、フマル酸、無水マレイン酸などのα,β−不飽和カルボン酸類、およびこれらのナトリウム塩等の金属塩類、アクリル酸メチル、アクリル酸エチル、アクリル酸n−プロピル、メタクリル酸メチル、メタクリル酸エチルなどのα,β−不飽和カルボン酸エステル類、酢酸ビニル、プロピオン酸ビニルなどのビニルエステル類、アクリル酸グリシジル、メタクリル酸グリシジルなどの不飽和グリシジル類などを例示することができる。
芳香族ビニル化合物としては、スチレン、o−メチルスチレン、m−メチルスチレン、p−メチルスチレン、o,p−ジメチルスチレン、メトキシスチレン、ビニル安息香酸、ビニル安息香酸メチル、ビニルベンジルアセテート、ヒドロキシスチレン、p−クロロスチレン、ジビニルベンゼン、α−メチルスチレン、アリルベンゼンなどを例示することができる。
環状オレフィンとしては、シクロペンテン、シクロヘプテン、ノルボルネン、5−メチル−2−ノルボルネン、テトラシクロドデセンなどの炭素数3〜30、好ましくは3〜20の環状オレフィン類を例示することができる。
エチレン−α−オレフィン共重合体(C)の製造方法は特に限定されないが、特公平2−1163号公報、特公平2−7998号公報に記載されているようなバナジウム化合物と有機アルミニウム化合物とからなるバナジウム系触媒による方法が挙げられる。また、高い重合活性で共重合体を製造する方法として特開昭61−221207号、特公平7−121969号公報、特許第2796376号公報に記載されているようなジルコノセンなどのメタロセン化合物と有機アルミニウムオキシ化合物(アルミノキサン)からなる触媒系を用いる方法等を用いてもよく、得られる共重合体の塩素含量、およびプロピレンの2,1−挿入が低減できるため、より好ましい。バナジウム系触媒による方法では、メタロセン系触媒を用いる方法に対し、助触媒に塩素化合物をより多く使用するため、得られるエチレン−α−オレフィン共重合体中(C)に微量の塩素が残存する可能性がある。
一方、メタロセン系触媒を用いる方法では、実質的に塩素を残存させないため、内燃機関、機械等における金属部分の腐食の可能性を考慮する必要がなくなる。塩素含量は100ppm以下であることが好ましく、50ppm以下であることがより好ましく、20ppm以下であることがさらに好ましく、5ppm以下であることが特に好ましい。塩素含量は種々の公知の方法で定量することができる。本発明における具体的な測定方法は実施例に記載した通りである。
また、プロピレンの2,1−挿入低減は、共重合体分子内のエチレン連鎖をより低減することが可能になり、エチレンの分子内結晶性を抑制できることから、潤滑油組成物の粘度温度特性および低温粘度特性を向上させることができる。プロピレンの2,1−挿入量は特開平7−145212号公報に記載された方法に従って13C−NMR測定の解析によって求められ、好ましくは1%未満、さらに好ましくは0〜0.5%、より好ましくは0〜0.1%である。15.0〜17.5ppmの範囲にピークが観察されないものが特に好ましい。
特に以下のような方法を用いることにより、分子量制御、分子量分布、非晶性およびB値の点において良好な性能バランスを有するエチレン−α−オレフィン共重合体(C)が得られる。
エチレン−α−オレフィン共重合体(C)は、下記一般式[I]で表される架橋メタロセン化合物(a)、ならびに、有機金属化合物(b−1)、有機アルミニウムオキシ化合物(b−2)および前記架橋メタロセン化合物(a)と反応してイオン対を形成する化合物(b−3)からなる群より選ばれる少なくとも1種の化合物(b)を含むオレフィン重合触媒の存在下で、エチレンと炭素数が3〜20のα−オレフィンとを共重合することにより製造することができる。
Figure 2016098342
<架橋メタロセン化合物>
架橋メタロセン化合物(a)は、上記式[I]で表される。式[I]中のY、M、R1〜R14、Q、nおよびjを以下に説明する。
(Y、M、R1〜R14、Q、nおよびj)
Yは、第14族原子であり、例えば、炭素原子、ケイ素原子、ゲルマニウム原子およびスズ原子が挙げられ、好ましくは炭素原子またはケイ素原子であり、より好ましくは炭素原子である。
Mは、チタン原子、ジルコニウム原子またはハフニウム原子であり、好ましくはジルコニウム原子である。
1〜R12は、水素原子、炭素数1〜20の炭化水素基、ケイ素含有基、窒素含有基、酸素含有基、ハロゲン原子およびハロゲン含有基からなる群より選ばれる原子または置換基であり、それぞれ同一でも異なっていてもよい。また、R1からR12までの隣接した置換基は互いに結合して環を形成していてもよく、互いに結合していなくてもよい。
ここで、炭素数1〜20の炭化水素基としては、炭素数1〜20のアルキル基、炭素数3〜20の環状飽和炭化水素基、炭素数2〜20の鎖状不飽和炭化水素基、炭素数3〜20の環状不飽和炭化水素基、炭素数1〜20のアルキレン基、炭素数6〜20のアリーレン基等が例示される。
炭素数1〜20のアルキル基としては、直鎖状飽和炭化水素基であるメチル基、エチル基、n−プロピル基、アリル(allyl)基、n−ブチル基、n−ペンチル基、n−ヘキシル基、n−ヘプチル基、n−オクチル基、n−ノニル基、n−デカニル基など、分岐状飽和炭化水素基であるイソプロピル基、イソブチル基、s−ブチル基、t−ブチル基、t−アミル基、ネオペンチル基、3−メチルペンチル基、1,1−ジエチルプロピル基、1,1−ジメチルブチル基、1−メチル−1−プロピルブチル基、1,1−プロピルブチル基、1,1−ジメチル−2−メチルプロピル基、1−メチル−1−イソプロピル−2−メチルプロピル基、シクロプロピルメチル基などが例示される。アルキル基の炭素数は好ましくは1〜6である。
炭素数3〜20の環状飽和炭化水素基としては、環状飽和炭化水素基であるシクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、ノルボルネニル基、1−アダマンチル基、2−アダマンチル基など、環状飽和炭化水素基の水素原子が炭素数1〜17の炭化水素基で置き換えられた基である3−メチルシクロペンチル基、3−メチルシクロヘキシル基、4−メチルシクロヘキシル基、4−シクロヘキシルシクロヘキシル基、4−フェニルシクロヘキシル基などが例示される。環状飽和炭化水素基の炭素数は好ましくは5〜11である。
炭素数2〜20の鎖状不飽和炭化水素基としては、アルケニル基であるエテニル基(ビニル基)、1−プロペニル基、2−プロペニル基(アリル基)、1−メチルエテニル基(イソプロペニル基)など、アルキニル基であるエチニル基、1−プロピニル基、2−プロピニル基(プロパルギル基)などが例示される。鎖状不飽和炭化水素基の炭素数は好ましくは2〜4である。
炭素数3〜20の環状不飽和炭化水素基としては、環状不飽和炭化水素基であるシクロペンタジエニル基、ノルボルニル基、フェニル基、ナフチル基、インデニル基、アズレニル基、フェナントリル基、アントラセニル基など、環状不飽和炭化水素基の水素原子が炭素数1〜15の炭化水素基で置き換えられた基である3−メチルフェニル基(m−トリル基)、4−メチルフェニル基(p−トリル基)、4−エチルフェニル基、4−t−ブチルフェニル基、4−シクロヘキシルフェニル基、ビフェニリル基、3,4−ジメチルフェニル基、3,5−ジメチルフェニル基、2,4,6−トリメチルフェニル基(メシチル基)など、直鎖状炭化水素基または分岐状飽和炭化水素基の水素原子が炭素数3〜19の環状飽和炭化水素基または環状不飽和炭化水素基で置き換えられた基であるベンジル基、クミル基などが例示される。環状不飽和炭化水素基の炭素数は好ましくは6〜10である。
炭素数1〜20のアルキレン基としては、メチレン基、エチレン基、ジメチルメチレン基(イソプロピリデン基)、エチルメチレン基、メチルエチレン基、n−プロピレン基などが例示される。アルキレン基の炭素数は好ましくは1〜6である。
炭素数6〜20のアリーレン基としては、o−フェニレン基、m−フェニレン基、p−フェニレン基、4,4’−ビフェニリレン基などが例示される。アリ−レン基の炭素数は好ましくは6〜12である。
ケイ素含有基としては、炭素数1〜20の炭化水素基において、炭素原子がケイ素原子で置き換えられた基であるトリメチルシリル基、トリエチルシリル基、t−ブチルジメチルシリル基、トリイソプロピルシリル基等のアルキルシリル基、ジメチルフェニルシリル基、メチルジフェニルシリル基、t−ブチルジフェニルシリル基等のアリールシリル基、ペンタメチルジシラニル基、トリメチルシリルメチル基などが例示される。アルキルシリル基の炭素数は1〜10が好ましく、アリールシリル基の炭素数は6〜18が好ましい。
窒素含有基としては、アミノ基や、上述した炭素数1〜20の炭化水素基またはケイ素含有基において、=CH−構造単位が窒素原子で置き換えられた基、−CH2-構造単位が炭素数1〜20の炭化水素基が結合した窒素原子で置き換えられた基、または−CH3構造単位が炭素数1〜20の炭化水素基が結合した窒素原子またはニトリル基で置き換えられた基であるジメチルアミノ基、ジエチルアミノ基、N−モルフォリニル基、ジメチルアミノメチル基、シアノ基、ピロリジニル基、ピペリジニル基、ピリジニル基など、N−モルフォリニル基およびニトロ基などが例示される。窒素含有基としては、ジメチルアミノ基、N−モルフォリニル基が好ましい。
酸素含有基としては、水酸基や、上述した炭素数1〜20の炭化水素基、ケイ素含有基または窒素含有基において、−CH2−構造単位が酸素原子またはカルボニル基で置き換えられた基、または−CH3構造単位が炭素数1〜20の炭化水素基が結合した酸素原子で置き換えられた基であるメトキシ基、エトキシ基、t−ブトキシ基、フェノキシ基、トリメチルシロキシ基、メトキシエトキシ基、ヒドロキシメチル基、メトキシメチル基、エトキシメチル基、t−ブトキシメチル基、1−ヒドロキシエチル基、1−メトキシエチル基、1−エトキシエチル基、2−ヒドロキシエチル基、2−メトキシエチル基、2−エトキシエチル基、n−2−オキサブチレン基、n−2−オキサペンチレン基、n−3−オキサペンチレン基、アルデヒド基、アセチル基、プロピオニル基、ベンゾイル基、トリメチルシリルカルボニル基、カルバモイル基、メチルアミノカルボニル基、カルボキシ基、メトキシカルボニル基、カルボキシメチル基、エトカルボキシメチル基、カルバモイルメチル基、フラニル基、ピラニル基などが例示される。酸素含有基としては、メトキシ基が好ましい。
ハロゲン原子としては、第17族元素であるフッ素、塩素、臭素、ヨウ素などが例示される。
ハロゲン含有基としては、上述した炭素数1〜20の炭化水素基、ケイ素含有基、窒素含有基または酸素含有基において、水素原子がハロゲン原子によって置換された基であるトリフルオロメチル基、トリブロモメチル基、ペンタフルオロエチル基、ペンタフルオロフェニル基などが例示される。
Qは、ハロゲン原子、炭素数1〜20の炭化水素基、アニオン配位子および孤立電子対で配位可能な中性配位子から、同一のまたは異なる組合せで選ばれる。
ハロゲン原子および炭素数1〜20の炭化水素基の詳細は、上述のとおりである。Qがハロゲン原子である場合は、塩素原子が好ましい。Qが炭素数1〜20の炭化水素基である場合は、該炭化水素基の炭素数は1〜7であることが好ましい。
アニオン配位子としては、メトキシ基、t−ブトキシ基、フェノキシ基などのアルコキシ基、アセテート、ベンゾエートなどのカルボキシレート基、メシレート、トシレートなどのスルホネート基などを例示することができる。
孤立電子対で配位可能な中性配位子としては、トリメチルホスフィン、トリエチルホスフィン、トリフェニルホスフィン、ジフェニルメチルホスフィンなどの有機リン化合物、テトラヒドロフラン、ジエチルエーテル、ジオキサン、1,2−ジメトキシエタンなどのエーテル化合物などを例示することができる。
jは1〜4の整数であり、好ましくは2である。
nは1〜4の整数であり、好ましくは1または2であり、さらに好ましくは1である。
13およびR14は水素原子、炭素数1〜20の炭化水素基、アリール基、置換アリール基、ケイ素含有基、窒素含有基、酸素含有基、ハロゲン原子およびハロゲン含有基からなる群より選ばれる原子または置換基であり、それぞれ同一でも異なっていてもよい。また、R13およびR14は互いに結合して環を形成していてもよく、互いに結合していなくてもよい。
炭素数1〜20の炭化水素基、ケイ素含有基、窒素含有基、酸素含有基、ハロゲン原子およびハロゲン含有基の詳細については、上述の通りである。
アリール基としては、前述した炭素数3〜20の環状不飽和炭化水素基の例と一部重複するが、芳香族化合物から誘導された置換基であるフェニル基、1−ナフチル基、2−ナフチル基、アントラセニル基、フェナントレニル基、テトラセニル基、クリセニル基、ピレニル基、インデニル基、アズレニル基、ピロリル基、ピリジル基、フラニル基、チオフェニル基などが例示される。アリール基としては、フェニル基または2−ナフチル基が好ましい。
前記芳香族化合物としては、芳香族炭化水素および複素環式芳香族化合物であるベンゼン、ナフタレン、アントラセン、フェナントレン、テトラセン、クリセン、ピレン、インデン、アズレン、ピロール、ピリジン、フラン、チオフェンなどが例示される。
置換アリール基としては、前述した炭素数3〜20の環状不飽和炭化水素基の例と一部重複するが、前記アリール基が有する1以上の水素原子が炭素数1〜20の炭化水素基、アリール基、ケイ素含有基、窒素含有基、酸素含有基、ハロゲン原子およびハロゲン含有基からなる群より選ばれる少なくとも1種の置換基により置換されてなる基が挙げられ、具体的には3−メチルフェニル基(m−トリル基)、4−メチルフェニル基(p−トリル基)、3−エチルフェニル基、4−エチルフェニル基、3,4−ジメチルフェニル基、3,5−ジメチルフェニル基、ビフェニリル基、4−(トリメチルシリル)フェニル基、4−アミノフェニル基、4−(ジメチルアミノ)フェニル基、4−(ジエチルアミノ)フェニル基、4−モルフォリニルフェニル基、4−メトキシフェニル基、4−エトキシフェニル基、4−フェノキシフェニル基、3,4−ジメトキシフェニル基、3,5−ジメトキシフェニル基、3−メチル−4−メトキシフェニル基、3,5−ジメチル−4−メトキシフェニル基、3−(トリフルオロメチル)フェニル基、4−(トリフルオロメチル)フェニル基、3−クロロフェニル基、4−クロロフェニル基、3−フルオロフェニル基、4−フルオロフェニル基、5−メチルナフチル基、2−(6−メチル)ピリジル基などが例示される。
上記式[I]で表される架橋メタロセン化合物(a)において、nは1であることが好ましい。このような架橋メタロセン化合物(以下「架橋メタロセン化合物(a−1)」ともいう。)は、下記一般式[II]で表わされる。
Figure 2016098342
式[II]において、Y、M、R1、R2、R3、R4、R5、R6、R7、R8、R9、R10、R11、R12、R13、R14、Qおよびjの定義等は、上述のとおりである。
架橋メタロセン化合物(a−1)は、上記式[I]におけるnが2〜4の整数である化合物に比べ、製造工程が簡素化され、製造コストが低減され、ひいてはこの架橋メタロセン化合物(a−1)を用いることでエチレン−α−オレフィン共重合体(C)の製造コストが低減されるという利点が得られる。
上記式[II]で表される架橋メタロセン化合物(a−1)において、R1、R2、R3およびR4は全て水素であることが好ましい。このような架橋メタロセン化合物(以下「架橋メタロセン化合物(a−2)」ともいう。)は、下記一般式[III]で表わされる。
Figure 2016098342
式[III]において、Y、M、R5、R6、R7、R8、R9、R10、R11、R12、R13、R14、Qおよびjの定義等は、上述のとおりである。
架橋メタロセン化合物(a−2)は、上記式[I]におけるR1、R2、R3およびR4のいずれか一つ以上が水素原子以外の置換基で置換された化合物に比べ、製造工程が簡素化され、製造コストが低減され、ひいてはこの架橋メタロセン化合物(a−2)を用いることでエチレン−α−オレフィン共重合体(C)の製造コストが低減されるという利点が得られる。また、一般に高温重合を行うことにより、エチレン−α−オレフィン共重合体(C)のランダム性は低下することが知られているが、該架橋メタロセン化合物(a−2)を含むオレフィン重合触媒の存在下でエチレンと炭素数3〜20のα−オレフィンから選ばれる1種以上のモノマ−とを共重合する場合、高温重合であっても、得られるエチレン−α−オレフィン共重合体(C)のランダム性が高いという利点も得られる。
上記式[III]で表される架橋メタロセン化合物(a−2)において、R13およびR14のいずれか一方が、アリール基または置換アリール基であることが好ましい。このような架橋メタロセン化合物(a−3)は、R13およびR14がいずれもアリール基および置換アリール基以外の置換基である場合に比べ、生成するエチレン−α−オレフィン共重合体(C)中の二重結合量が少ないという利点が得られる。
架橋メタロセン化合物(a−3)において、R13およびR14のいずれか一方が、アリール基または置換アリール基であり、他方が炭素数1〜20のアルキル基であることがさらに好ましく、R13およびR14のいずれか一方が、アリール基または置換アリール基であり、他方がメチル基であることが特に好ましい。このような架橋メタロセン化合物(以下「架橋メタロセン化合物(a−4)」ともいう。)は、R13およびR14がいずれもアリール基または置換アリール基である場合に比べ、生成するエチレン−α−オレフィン共重合体(C)中の二重結合量と重合活性とのバランスに優れ、この架橋メタロセン化合物を用いることでエチレン−α−オレフィン共重合体(C)の製造コストが低減されるという利点が得られる。
ある一定の重合器内全圧および温度の条件下で重合を実施する場合において、水素導入による水素分圧の上昇は重合モノマーであるオレフィンの分圧の低下を引き起こし、とりわけ水素分圧が高い領域において重合速度を低下させるという問題を生じる。重合反応器はその設計上許容される内部全圧が制限されているため、特に低分子量のオレフィン重合体を製造する際に過度な水素導入を必要とすると、オレフィン分圧が著しく低下するため、重合活性が低下する場合がある。しかしながら、架橋メタロセン化合物(a−4)を用いて本発明におけるエチレン−α−オレフィン共重合体(C)を製造する場合、上記架橋メタロセン化合物(a−3)を用いる場合に比べ、重合反応器に導入する水素量が低減され、重合活性が向上し、エチレン−α−オレフィン共重合体(C)の製造コストが低減されるという利点が得られる。
上記架橋メタロセン化合物(a−4)において、R6およびR11は隣接した置換基と互いに結合して環を形成していてもよい、炭素数1〜20のアルキル基および炭素数1〜20のアルキレン基であることが好ましい。このような架橋メタロセン化合物(以下「架橋メタロセン化合物(a−5)」ともいう。)は、R6およびR11が炭素数1〜20のアルキル基および炭素数1〜20のアルキレン基以外の置換基で置換された化合物に比べ、製造工程が簡素化され、製造コストが低減され、ひいてはこの架橋メタロセン化合物(a−5)を用いることでエチレン−α−オレフィン共重合体(C)の製造コストが低減されるという利点が得られる。
上記一般式[I]で表される架橋メタロセン化合物(a)、上記一般式[II]で表される架橋メタロセン化合物(a−1)、上記一般式[III]で表される架橋メタロセン化合物(a−2)、ならびに上記架橋メタロセン化合物(a−3)、(a−4)および(a−5)において、Mはジルコニウム原子であることがさらに好ましい。Mがジルコニウム原子である上記架橋メタロセン化合物を含むオレフィン重合触媒の存在下でエチレンと炭素数3〜20のα−オレフィンから選ばれる1種以上のモノマーとを共重合する場合、Mがチタン原子またはハフニウム原子である場合に比べ重合活性が高く、エチレン−α−オレフィン共重合体(C)の製造コストが低減されるという利点が得られる。
このような架橋メタロセン化合物(a)としては、
[ジメチルメチレン(η5−シクロペンタジエニル)(η5−フルオレニル)]ジルコニウムジクロリド、[ジメチルメチレン(η5−シクロペンタジエニル)(η5−2,7−ジ−t−ブチルフルオレニル)]ジルコニウムジクロリド、[ジメチルメチレン(η5−シクロペンタジエニル)(η5−3,6−ジ−t−ブチルフルオレニル)]ジルコニウムジクロリド、[ジメチルメチレン(η5−シクロペンタジエニル)(η5−オクタメチルオクタヒドロジベンゾフルオレニル)]ジルコニウムジクロリド、[ジメチルメチレン(η5−シクロペンタジエニル)(η5−テトラメチルオクタヒドロジベンゾフルオレニル)]ジルコニウムジクロリド、
[シクロヘキシリデン(η5−シクロペンタジエニル)(η5−フルオレニル)]ジルコニウムジクロリド、[シクロヘキシリデン(η5−シクロペンタジエニル)(η5−2,7−ジ−t−ブチルフルオレニル)]ジルコニウムジクロリド、[シクロヘキシリデン(η5−シクロペンタジエニル)(η5−3,6−ジ−t−ブチルフルオレニル)]ジルコニウムジクロリド、[シクロヘキシリデン(η5−シクロペンタジエニル)(η5−オクタメチルオクタヒドロジベンゾフルオレニル)]ジルコニウムジクロリド、[シクロヘキシリデン(η5−シクロペンタジエニル)(η5−テトラメチルオクタヒドロジベンゾフルオレニル)]ジルコニウムジクロリド、
[ジフェニルメチレン(η5−シクロペンタジエニル)(η5−フルオレニル)]ジルコニウムジクロリド、[ジフェニルメチレン(η5−シクロペンタジエニル)(η5−2,7−ジ−t−ブチルフルオレニル)]ジルコニウムジクロリド、ジフェニルメチレン(η5−2−メチル−4−t−ブチルシクロペンタジエニル)(η5−2,7−ジ−t−ブチルフルオレニル)]ジルコニウムジクロリド、[ジフェニルメチレン(η5−シクロペンタジエニル)(η5−3,6−ジ−t−ブチルフルオレニル)]ジルコニウムジクロリド、[ジフェニルメチレン(η5−シクロペンタジエニル)(η5−オクタメチルオクタヒドロジベンゾフルオレニル)]ジルコニウムジクロリド、ジフェニルメチレン{η5−(2−メチル−4−i−プロピルシクロペンタジエニル)}(η5−オクタメチルオクタヒドロジベンゾフルオレニル)]ジルコニウムジクロリド、[ジフェニルメチレン(η5−シクロペンタジエニル)(η5−テトラメチルオクタヒドロジベンゾフルオレニル)]ジルコニウムジクロリド、
[メチルフェニルメチレン(η5−シクロペンタジエニル)(η5−フルオレニル)]ジルコニウムジクロリド、[メチルフェニルメチレン(η5−シクロペンタジエニル)(η5−2,7−ジ−t−ブチルフルオレニル)]ジルコニウムジクロリド、[メチルフェニルメチレン(η5−シクロペンタジエニル)(η5−3,6−ジ−t−ブチルフルオレニル)]ジルコニウムジクロリド、[メチルフェニルメチレン(η5−シクロペンタジエニル)(η5−オクタメチルオクタヒドロジベンゾフルオレニル)]ジルコニウムジクロリド、[メチルフェニルメチレン(η5−シクロペンタジエニル)(η5−テトラメチルオクタヒドロジベンゾフルオレニル)]ジルコニウムジクロリド、
[メチル(3−メチルフェニル)メチレン(η5−シクロペンタジエニル)(η5−フルオレニル)]ジルコニウムジクロリド、[メチル(3−メチルフェニル)メチレン(η5−シクロペンタジエニル)(η5−2,7−ジ−t−ブチルフルオレニル)]ジルコニウムジクロリド、[メチル(3−メチルフェニル)メチレン(η5−シクロペンタジエニル)(η5−3,6−ジ−t−ブチルフルオレニル)]ジルコニウムジクロリド、[メチル(3−メチルフェニル)メチレン(η5−シクロペンタジエニル)(η5−オクタメチルオクタヒドロジベンゾフルオレニル)]ジルコニウムジクロリド、[メチル(3−メチルフェニル)メチレン(η5−シクロペンタジエニル)(η5−テトラメチルオクタヒドロジベンゾフルオレニル)]ジルコニウムジクロリド、
[ジフェニルシリレン(η5−シクロペンタジエニル)(η5−フルオレニル)]ジルコニウムジクロリド、[ジフェニルシリレン(η5−シクロペンタジエニル)(η5−2,7−ジ−t−ブチルフルオレニル)]ジルコニウムジクロリド、[ジフェニルシリレン(η5−シクロペンタジエニル)(η5−3,6−ジ−t−ブチルフルオレニル)]ジルコニウムジクロリド、[ジフェニルシリレン(η5−シクロペンタジエニル)(η5−オクタメチルオクタヒドロジベンゾフルオレニル)]ジルコニウムジクロリド、[ジフェニルシリレン(η5−シクロペンタジエニル)(η5−テトラメチルオクタヒドロジベンゾフルオレニル)]ジルコニウムジクロリド、
[ビス(3−メチルフェニル)シリレン(η5−シクロペンタジエニル)(η5−フルオレニル)]ジルコニウムジクロリド、[ビス(3−メチルフェニル)シリレン(η5−シクロペンタジエニル)(η5−2,7−ジ−t−ブチルフルオレニル)]ジルコニウムジクロリド、[ビス(3−メチルフェニル)シリレン(η5−シクロペンタジエニル)(η5−3,6−ジ−t−ブチルフルオレニル)]ジルコニウムジクロリド、[ビス(3−メチルフェニル)シリレン(η5−シクロペンタジエニル)(η5−オクタメチルオクタヒドロジベンゾフルオレニル)]ジルコニウムジクロリド、[ビス(3−メチルフェニル)シリレン(η5−シクロペンタジエニル)(η5−テトラメチルオクタヒドロジベンゾフルオレニル)]ジルコニウムジクロリド、
[ジシクロヘキシルシリレン(η5−シクロペンタジエニル)(η5−フルオレニル)]ジルコニウムジクロリド、[ジシクロヘキシルシリレン(η5−シクロペンタジエニル)(η5−2,7−ジ−t−ブチルフルオレニル)]ジルコニウムジクロリド、[ジシクロヘキシルシリレン(η5−シクロペンタジエニル)(η5−3,6−ジ−t−ブチルフルオレニル)]ジルコニウムジクロリド、[ジシクロヘキシルシリレン(η5−シクロペンタジエニル)(η5−オクタメチルオクタヒドロジベンゾフルオレニル)]ジルコニウムジクロリド、[ジシクロヘキシルシリレン(η5−シクロペンタジエニル)(η5−テトラメチルオクタヒドロジベンゾフルオレニル)]ジルコニウムジクロリド、
[エチレン(η5−シクロペンタジエニル)(η5−フルオレニル)]ジルコニウムジクロリド、[エチレン(η5−シクロペンタジエニル)(η5−2,7−ジ−t−ブチルフルオレニル)]ジルコニウムジクロリド、[エチレン(η5−シクロペンタジエニル)(η5−3,6−ジ−t−ブチルフルオレニル)]ジルコニウムジクロリド、[エチレン(η5−シクロペンタジエニル)(η5−オクタメチルオクタヒドロジベンゾフルオレニル)]ジルコニウムジクロリド、[エチレン(η5−シクロペンタジエニル)(η5−テトラメチルオクタヒドロジベンゾフルオレニル)]ジルコニウムジクロリド、等が挙げられる。
これらの化合物のジルコニウム原子をハフニウム原子に置き換えた化合物またはクロロ配位子をメチル基に置き換えた化合物などが例示されるが、架橋メタロセン化合物(a)はこれらの例示に限定されない。尚、例示した架橋メタロセン化合物(a)の構成部分であるη5−テトラメチルオクタヒドロジベンゾフルオレニルは4,4,7,7−テトラメチル−(5a,5b,11a,12,12a−η5)−1,2,3,4,7,8,9,10−オクタヒドロジベンゾ[b,H]フルオレニル基、η5−オクタメチルオクタヒドロジベンゾフルオレニルは1,1,4,4,7,7,10,10−オクタメチル−(5a,5b,11a,12,12a−η5)−1,2,3,4,7,8,9,10−オクタヒドロジベンゾ[b,H]フルオレニル基をそれぞれ表わす。
<化合物(b)>
本発明で使用される重合触媒は、上記の架橋メタロセン化合物(a)、ならびに有機金属化合物(b−1)、有機アルミニウムオキシ化合物(b−2)および架橋メタロセン化合物(a)と反応してイオン対を形成する化合物(b−3)からなる群より選ばれる少なくとも1種の化合物(b)を含む。
有機金属化合物(b−1)として、具体的には下記のような周期律表第1、2族および第12、13族の有機金属化合物が用いられる。
(b−1a)一般式 Ra mAl(ORbnpq
(式中、RaおよびRbは、互いに同一でも異なっていてもよく、炭素数1〜15、好ましくは1〜4の炭化水素基を示し、Xはハロゲン原子を示し、mは0<m≦3、nは0≦n<3、pは0≦p<3、qは0≦q<3の数であり、かつm+n+p+q=3である)
で表される有機アルミニウム化合物。
このような化合物として、トリメチルアルミニウム、トリエチルアルミニウム、トリ−n−ブチルアルミニウム、トリ−n−ヘキシルアルミニウム、トリ−n−オクチルアルミニウムなどのトリ−n−アルキルアルミニウム、トリイソプロピルアルミニウム、トリイソブチルアルミニウム、トリsec−ブチルアルミニウム、トリ−t−ブチルアルミニウム、トリ−2−メチルブチルアルミニウム、トリ−3−メチルヘキシルアルミニウム、トリ−2−エチルヘキシルアルミニウムなどのトリ分岐状アルキルアルミニウム、トリシクロヘキシルアルミニウム、トリシクロオクチルアルミニウムなどのトリシクロアルキルアルミニウム、トリフェニルアルミニウム、トリ(4−メチルフェニル)アルミニウムなどのトリアリールアルミニウム、ジイソプロピルアルミニウムハイドライド、ジイソブチルアルミニウムハイドライドなどのジアルキルアルミニウムハイドライド、一般式(i−C49xAly(C510z(式中、x、y、zは正の数であり、z≦2xである。)で表されるイソプレニルアルミニウムなどのアルケニルアルミニウム、イソブチルアルミニウムメトキシド、イソブチルアルミニウムエトキシドなどのアルキルアルミニウムアルコキシド、ジメチルアルミニウムメトキシド、ジエチルアルミニウムエトキシド、ジブチルアルミニウムブトキシドなどのジアルキルアルミニウムアルコキシド、エチルアルミニウムセスキエトキシド、ブチルアルミニウムセスキブトキシドなどのアルキルアルミニウムセスキアルコキシド、一般式Ra 2.5Al(ORb0.5などで表される平均組成を有する部分的にアルコキシ化されたアルキルアルミニウム、ジエチルアルミニウムフェノキシド、ジエチルアルミニウム(2,6−ジ−t−ブチル−4−メチルフェノキシド)などのアルキルアルミニウムアリーロキシド、ジメチルアルミニウムクロリド、ジエチルアルミニウムクロリド、ジブチルアルミニウムクロリド、ジエチルアルミニウムブロミド、ジイソブチルアルミニウムクロリドなどのジアルキルアルミニウムハライド、エチルアルミニウムセスキクロリド、ブチルアルミニウムセスキクロリド、エチルアルミニウムセスキブロミドなどのアルキルアルミニウムセスキハライド、エチルアルミニウムジクロリドなどのアルキルアルミニウムジハライドなどの部分的にハロゲン化されたアルキルアルミニウム、ジエチルアルミニウムヒドリド、ジブチルアルミニウムヒドリドなどのジアルキルアルミニウムヒドリド、エチルアルミニウムジヒドリド、プロピルアルミニウムジヒドリドなどのアルキルアルミニウムジヒドリドおよびその他の部分的に水素化されたアルキルアルミニウム、エチルアルミニウムエトキシクロリド、ブチルアルミニウムブトキシクロリド、エチルアルミニウムエトキシブロミドなどの部分的にアルコキシ化およびハロゲン化されたアルキルアルミニウムなどを例示することができる。また、上記一般式Ra mAl(ORbnpqで表される化合物に類似する化合物も使用することができ、例えば窒素原子を介して2以上のアルミニウム化合物が結合した有機アルミニウム化合物を挙げることができる。このような化合物として具体的には、(C252AlN(C25)Al(C252などを挙げることができる。
(b−1b)一般式 M2AlRa 4(式中、M2はLi、NaまたはKを示し、Raは炭素数1〜15、好ましくは1〜4の炭化水素基を示す。)で表される周期律表第1族金属とアルミニウムとの錯アルキル化物。
このような化合物として、LiAl(C254、LiAl(C7154などを例示することができる。
(b−1c)一般式 Rab3(式中、RaおよびRbは、互いに同一でも異なっていてもよく、炭素数1〜15、好ましくは1〜4の炭化水素基を示し、M3はMg、ZnまたはCdである。)で表される周期律表第2族または第12族金属のジアルキル化合物。
有機アルミニウムオキシ化合物(b−2)としては、従来公知のアルミノキサンをそのまま使用することができる。具体的には、下記一般式[IV]で表わされる化合物および下記一般式[V]で表わされる化合物を挙げることができる。
Figure 2016098342
式[IV]および[V]中、Rは炭素数1〜10の炭化水素基、nは2以上の整数を示す。
特にRがメチル基であるメチルアルミノキサンであってnが3以上、好ましくは10以上のものが利用される。これらアルミノキサン類に若干の有機アルミニウム化合物が混入していても差し支えない。
本発明においてエチレンと炭素数が3以上のα−オレフィンとの共重合を高温で行う場合には、特開平2−78687号公報に例示されているようなベンゼン不溶性の有機アルミニウムオキシ化合物も適用することができる。また、特開平2−167305号公報に記載されている有機アルミニウムオキシ化合物、特開平2−24701号公報、特開平3−103407号公報に記載されている二種類以上のアルキル基を有するアルミノキサンなども好適に利用できる。なお、本発明で用いられることのある「ベンゼン不溶性の有機アルミニウムオキシ化合物」とは、60℃のベンゼンに溶解するAl成分がAl原子換算で通常10%以下、好ましくは5%以下、特に好ましくは2%以下であり、ベンゼンに対して不溶性または難溶性である化合物である。
また、有機アルミニウムオキシ化合物(b−2)として、下記一般式[VI]で表されるような修飾メチルアルミノキサン等も挙げることができる。
Figure 2016098342
式[VI]中、Rは炭素数1〜10の炭化水素基、mおよびnはそれぞれ独立に2以上の整数を示す。
この修飾メチルアルミノキサンはトリメチルアルミニウムとトリメチルアルミニウム以外のアルキルアルミニウムを用いて調製されるものである。このような化合物は一般にMMAOと呼ばれている。このようなMMAOは米国特許4960878号公報および米国特許5041584号公報で挙げられている方法で調製することができる。また、東ソー・ファインケム社等からもトリメチルアルミニウムとトリイソブチルアルミニウムを用いて調製した、Rがイソブチル基であるものがMMAOやTMAOといった名称で市販されている。このようなMMAOは各種溶媒への溶解性および保存安定性を改良したアルミノキサンであり、具体的には上記式[IV]で表わされる化合物および[V]で表わされる化合物のうちのベンゼンに対して不溶性または難溶性の化合物とは違い、脂肪族炭化水素や脂環族炭化水素に溶解する。
さらに、有機アルミニウムオキシ化合物(b−2)として、下記一般式[VII]で表されるボロンを含んだ有機アルミニウムオキシ化合物も挙げることができる。
Figure 2016098342
式[VII]中、Rcは炭素数1〜10の炭化水素基を示す。Rdは、互いに同一でも異なっていてもよく、水素原子、ハロゲン原子または炭素数1〜10の炭化水素基を示す。
架橋メタロセン化合物(a)と反応してイオン対を形成する化合物(b−3)(以下、「イオン化イオン性化合物」または単に「イオン性化合物」と略称する場合がある。)としては、特開平1−501950号公報、特開平1−502036号公報、特開平3−179005号公報、特開平3−179006号公報、特開平3−207703号公報、特開平3−207704号公報、米国特許5321106号公報などに記載されたルイス酸、イオン性化合物、ボラン化合物およびカルボラン化合物などを挙げることができる。さらに、ヘテロポリ化合物およびイソポリ化合物も挙げることができる。
本発明において好ましく使用されるイオン化イオン性化合物は、下記一般式[VIII]で表されるホウ素化合物である。
Figure 2016098342
式[VIII]中、Re+としては、H+、カルベニウムカチオン、オキソニウムカチオン、アンモニウムカチオン、ホスホニウムカチオン、シクロヘプチルトリエニルカチオン、遷移金属を有するフェロセニウムカチオンなどが挙げられる。Rf〜Riは、互いに同一でも異なっていてもよく、炭素数1〜20の炭化水素基、ケイ素含有基、窒素含有基、酸素含有基、ハロゲン原子およびハロゲン含有基から選ばれる置換基であり、好ましくは置換アリール基である。
上記カルベニウムカチオンとして具体的には、トリフェニルカルベニウムカチオン、トリス(4−メチルフェニル)カルベニウムカチオン、トリス(3,5−ジメチルフェニル)カルベニウムカチオンなどの三置換カルベニウムカチオンなどが挙げられる。
上記アンモニウムカチオンとして具体的には、トリメチルアンモニウムカチオン、トリエチルアンモニウムカチオン、トリ(n−プロピル)アンモニウムカチオン、トリイソプロピルアンモニウムカチオン、トリ(n−ブチル)アンモニウムカチオン、トリイソブチルアンモニウムカチオンなどのトリアルキル置換アンモニウムカチオン、N,N−ジメチルアニリニウムカチオン、N,N−ジエチルアニリニウムカチオン、N,N−2,4,6−ペンタメチルアニリニウムカチオンなどのN,N−ジアルキルアニリニウムカチオン、ジイソプロピルアンモニウムカチオン、ジシクロヘキシルアンモニウムカチオンなどのジアルキルアンモニウムカチオンなどが挙げられる。
上記ホスホニウムカチオンとして具体的には、トリフェニルホスホニウムカチオン、トリス(4−メチルフェニル)ホスホニウムカチオン、トリス(3,5−ジメチルフェニル)ホスホニウムカチオンなどのトリアリールホスホニウムカチオンなどが挙げられる。
e+としては、上記具体例のうち、カルベニウムカチオン、アンモニウムカチオンなどが好ましく、特にトリフェニルカルベニウムカチオン、N,N−ジメチルアニリニウムカチオン、N,N−ジエチルアニリニウムカチオンが好ましい。
本発明において好ましく使用されるイオン化イオン性化合物のうち、カルベニウムカチオンを含む化合物として、トリフェニルカルベニウムテトラフェニルボレート、トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレート、トリフェニルカルベニウムテトラキス{3,5−ジ−(トリフルオロメチル)フェニル}ボレート、トリス(4−メチルフェニル)カルベニウムテトラキス(ペンタフルオロフェニル)ボレート、トリス(3,5−ジメチルフェニル)カルベニウムテトラキス(ペンタフルオロフェニル)ボレートなどを例示することができる。
本発明において好ましく使用されるイオン化イオン性化合物のうち、トリアルキル置換アンモニウムカチオンを含む化合物として、トリエチルアンモニウムテトラフェニルボレート、トリプロピルアンモニウムテトラフェニルボレート、トリ(n−ブチル)アンモニウムテトラフェニルボレート、トリメチルアンモニウムテトラキス(4−メチルフェニル)ボレート、トリメチルアンモニウムテトラキス(2−メチルフェニル)ボレート、トリ(n−ブチル)アンモニウムテトラキス(ペンタフルオロフェニル)ボレート、トリエチルアンモニウムテトラキス(ペンタフルオロフェニル)ボレート、トリプロピルアンモニウムテトラキス(ペンタフルオロフェニル)ボレート、トリプロピルアンモニウムテトラキス(2,4−ジメチルフェニル)ボレート、トリ(n−ブチル)アンモニウムテトラキス(3,5−ジメチルフェニル)ボレート、トリ(n−ブチル)アンモニウムテトラキス{4−(トリフルオロメチル)フェニル}ボレート、トリ(n−ブチル)アンモニウムテトラキス{3,5−ジ(トリフルオロメチル)フェニル}ボレート、トリ(n−ブチル)アンモニウムテトラキス(2−メチルフェニル)ボレート、ジオクタデシルメチルアンモニウムテトラフェニルボレート、ジオクタデシルメチルアンモニウムテトラキス(4−メチルフェニル)ボレート、ジオクタデシルメチルアンモニウムテトラキス(4−メチルフェニル)ボレート、ジオクタデシルメチルアンモニウムテトラキス(ペンタフルオロフェニル)ボレート、ジオクタデシルメチルアンモニウムテトラキス(2,4−ジメチルフェニル)ボレート、ジオクタデシルメチルアンモニウムテトラキス(3,5−ジメチルフェニル)ボレート、ジオクタデシルメチルアンモニウムテトラキス{4−(トリフルオロメチル)フェニル}ボレート、ジオクタデシルメチルアンモニウムテトラキス{3,5−ジ(トリフルオロメチル)フェニル}ボレート、ジオクタデシルメチルアンモニウムなどを例示することができる。
本発明において好ましく使用されるイオン化イオン性化合物のうち、N,N−ジアルキルアニリニウムカチオンを含む化合物として、N,N−ジメチルアニリニウムテトラフェニルボレート、N,N−ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、N,N−ジメチルアニリニウムテトラキス{3,5−ジ(トリフルオロメチル)フェニル}ボレート、N,N−ジエチルアニリニウムテトラフェニルボレート、N,N−ジエチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、N,N−ジエチルアニリニウムテトラキス{3,5−ジ(トリフルオロメチル)フェニル}ボレート、N,N−2,4,6−ペンタメチルアニリニウムテトラフェニルボレート、N,N−2,4,6−ペンタメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレートなどを例示することができる。
本発明において好ましく使用されるイオン化イオン性化合物のうち、ジアルキルアンモニウムカチオンを含む化合物として、ジ−n−プロピルアンモニウムテトラキス(ペンタフルオロフェニル)ボレート、ジシクロヘキシルアンモニウムテトラフェニルボレートなどを例示することができる。
その他、特開2004−51676号公報によって例示されているイオン性化合物も制限無く使用が可能である。
上記のイオン性化合物(b−3)は、1種単独で用いてもよく2種以上を混合して用いでもよい。
有機金属化合物(b−1)としては、市販品のために入手が容易なトリメチルアルミニウム、トリエチルアルミニウムおよびトリイソブチルアルミニウムが好ましい。このうち、取り扱いが容易なトリイソブチルアルミニウムが特に好ましい。
有機アルミニウムオキシ化合物(b−2)としては、市販品のために入手が容易なメチルアルミノキサン、およびトリメチルアルミニウムとトリイソブチルアルミニウムを用いて調製したMMAOが好ましい。このうち、各種溶媒への溶解性および保存安定性が改良されたMMAOが特に好ましい。
イオン性化合物(b−3)としては、市販品として入手が容易であり、かつ重合活性向上への寄与が大きいことから、トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートおよびN,N−ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレートが好ましい。
化合物(b)としては、重合活性が大きく向上することから、トリイソブチルアルミニウムとトリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートとの組合せ、およびトリイソブチルアルミニウムとN,N−ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレートとの組合せが特に好ましい。
<担体(c)>
本発明では、オレフィン重合触媒の構成成分として、必要に応じて担体(c)を用いてもよい。
本発明で用いてもよい担体(c)は、無機または有機の化合物であって、顆粒状ないしは微粒子状の固体である。このうち無機化合物としては、多孔質酸化物、無機塩化物、粘土、粘土鉱物またはイオン交換性層状化合物が好ましい。
多孔質酸化物として、具体的にはSiO2、Al23、MgO、ZrO、TiO2、B23、CaO、ZnO、BaO、ThO2など、またはこれらを含む複合物または混合物、例えば天然または合成ゼオライト、SiO2−MgO、SiO2−Al23、SiO2−TiO2、SiO2−V25、SiO2−Cr23、SiO2−TiO2−MgOなどを使用することができる。これらのうち、SiO2および/またはAl23を主成分とするものが好ましい。このような多孔質酸化物は、種類および製法によりその性状は異なるが、本発明に好ましく用いられる担体は、粒径が0.5〜300μm、好ましくは1.0〜200μmであって、比表面積が50〜1000m2/g、好ましくは100〜700m2/gの範囲にあり、細孔容積が0.3〜3.0cm3/gの範囲にある。このような担体は、必要に応じて100〜1000℃、好ましくは150〜700℃で焼成してから使用される。
無機塩化物としては、MgCl2、MgBr2、MnCl2、MnBr2等が用いられる。無機塩化物は、そのまま用いてもよいし、ボールミル、振動ミルにより粉砕した後に用いてもよい。また、アルコールなどの溶媒に無機塩化物を溶解させた後、析出剤によって微粒子状に析出させたものを用いてもよい。
粘土は、通常粘土鉱物を主成分として構成される。また、イオン交換性層状化合物は、イオン結合などによって、構成される面が互いに弱い結合力で平行に積み重なった結晶構造を有する化合物であり、含まれるイオンが交換可能なものである。大部分の粘土鉱物はイオン交換性層状化合物である。また、これらの粘土、粘土鉱物、イオン交換性層状化合物としては、天然産のものに限らず、人工合成物を使用することもできる。また、粘土、粘土鉱物またはイオン交換性層状化合物として、粘土、粘土鉱物、また、六方細密パッキング型、アンチモン型、CdCl2型、CdI2型などの層状の結晶構造を有するイオン結晶性化合物などを例示することができる。このような粘土、粘土鉱物としては、カオリン、ベントナイト、木節粘土、ガイロメ粘土、アロフェン、ヒシンゲル石、パイロフィライト、ウンモ群、モンモリロナイト群、バーミキュライト、リョクデイ石群、パリゴルスカイト、カオリナイト、ナクライト、ディッカイト、ハロイサイトなどが挙げられ、イオン交換性層状化合物としては、α−Zr(HAsO42・H2O、α−Zr(HPO42、α−Zr(KPO42・3H2O、α−Ti(HPO42、α−Ti(HAsO42・H2O、α−Sn(HPO42・H2O、γ−Zr(HPO42、γ−Ti(HPO42、γ−Ti(NH4PO42・H2Oなどの多価金属の結晶性酸性塩などが挙げられる。本発明で用いられる粘土、粘土鉱物には、化学処理を施すことも好ましい。化学処理としては、表面に付着している不純物を除去する表面処理、粘土の結晶構造に影響を与える処理など、何れも使用できる。化学処理として、具体的には、酸処理、アルカリ処理、塩類処理、有機物処理などが挙げられる。
イオン交換性層状化合物は、イオン交換性を利用し、層間の交換性イオンを別の大きな嵩高いイオンと交換することにより、層間が拡大した状態の層状化合物であってもよい。このような嵩高いイオンは、層状構造を支える支柱的な役割を担っており、通常、ピラーと呼ばれる。また、このように層状化合物の層間に別の物質(ゲスト化合物)を導入することをインターカレーションという。ゲスト化合物としては、TiCl4、ZrCl4などの陽イオン性無機化合物、Ti(OR)4、Zr(OR)4、PO(OR)3、B(OR)3などの金属アルコキシド(Rは炭化水素基など)、[Al134(OH)247+、[Zr4(OH)142+、[Fe3O(OCOCH36+などの金属水酸化物イオンなどが挙げられる。これらの化合物は1種単独でまたは2種以上組み合わせて用いられる。また、これらの化合物をインターカレーションする際に、Si(OR)4、Al(OR)3、Ge(OR)4などの金属アルコキシド(Rは炭化水素基など)などを加水分解重縮合して得た重合物、SiO2などのコロイド状無機化合物などを共存させることもできる。また、ピラーとしては、上記金属水酸化物イオンを層間にインターカレーションした後に加熱脱水することにより生成する酸化物などが挙げられる。
これらのうち、好ましいものは粘土または粘土鉱物であり、特に好ましいものはモンモリロナイト、バーミキュライト、ペクトライト、テニオライトおよび合成雲母である。
担体(c)としての有機化合物としては、粒径が0.5〜300μmの範囲にある顆粒状ないしは微粒子状固体を挙げることができる。具体的には、エチレン、プロピレン、1−ブテン、4−メチル−1−ペンテンなどの炭素原子数が2〜14のα−オレフィンを主成分として生成される(共)重合体またはビニルシクロヘキサン、スチレンを主成分として生成される(共)重合体、およびそれらの変成体を例示することができる。
ランダム性の高いエチレン−α−オレフィン共重合体(C)を生成可能なオレフィン重合触媒を使用する重合方法により、高温重合が可能となる。すなわち、該オレフィン重合触媒を使用することにより、高温重合時に生成するエチレン−α−オレフィン共重合体(C)のランダム性の低下を抑制することができる。溶液重合においては、生成したエチレン−α−オレフィン共重合体(C)を含む重合溶液の粘度が高温で低下するため、低温重合時に比べて重合器内のエチレン−α−オレフィン共重合体(C)の濃度を上げることが可能となり、結果として重合器当りの生産性が向上する。本発明におけるエチレンおよびα−オレフィンの共重合は、溶液重合、懸濁重合(スラリー重合)などの液相重合法または気相重合法のいずれにおいても実施できるが、このように、本発明の効果を最大限享受し得るという観点からは溶液重合が特に好ましい。
オレフィン重合触媒の各成分の使用法、添加順序は任意に選ばれる。また、触媒中の各成分の少なくとも2つ以上は予め接触されていてもよい。
架橋メタロセン化合物(a)(以下「成分(a)」ともいう。)は、反応容積1リットル当り、通常10-9〜10-1モル、好ましくは10-8〜10-2モルになるような量で用いられる。
有機金属化合物(b−1)(以下「成分(b−1)」ともいう。)は、成分(b−1)と、成分(a)中の遷移金属原子(M)とのモル比[(b−1)/M]が、通常0.01〜50,000、好ましくは0.05〜10,000となるような量で用いられる。
有機アルミニウムオキシ化合物(b−2)(以下「成分(b−2)」ともいう。)は、成分(b−2)中のアルミニウム原子と、成分(a)中の遷移金属原子(M)とのモル比[(b−2)/M]が、通常10〜5,000、好ましくは20〜2,000となるような量で用いられる。
イオン性化合物(b−3)(以下「成分(b−3)」ともいう。)は、成分(b−3)と、成分(a)中の遷移金属原子(M)とのモル比[(b−3)/M]が、通常1〜10,000、好ましくは1〜5,000となるような量で用いられる。
重合温度は、通常−50℃〜300℃であり、好ましくは30〜250℃、より好ましくは100℃〜250℃、さらに好ましくは130℃〜200℃である。前記範囲の重合温度領域では温度が高くなるに従い、重合時の溶液粘度が低下し、重合熱の除熱も容易となる。重合圧力は、通常、常圧〜10MPaゲージ圧(MPa−G)、好ましくは常圧〜8MPa−Gである。
重合反応は、回分式、半連続式、連続式のいずれの方法においても行うことができる。さらに、重合を反応条件の異なる二つ以上の重合器で連続的に行うことも可能である。
得られる共重合体の分子量は、重合系中の水素濃度や重合温度を変化させることによって調節することができる。さらに、使用する成分(b)の量により調節することもできる。水素を添加する場合、その量は生成する共重合体1kgあたり0.001〜5,000NL程度が適当である。
液相重合法において用いられる重合溶媒は、通常、不活性炭化水素溶媒であり、好ましくは常圧下における沸点が50℃〜200℃の飽和炭化水素である。重合溶媒としては、具体的には、プロパン、ブタン、ペンタン、ヘキサン、ヘプタン、オクタン、デカン、ドデカン、灯油などの脂肪族炭化水素、シクロペンタン、シクロヘキサン、メチルシクロペンタンなどの脂環族炭化水素が挙げられ、特に好ましくは、ヘキサン、ヘプタン、オクタン、デカン、シクロヘキサンが挙げられる。重合対象であるα−オレフィン自身を重合溶媒として用いることもできる。尚、ベンゼン、トルエン、キシレンなどの芳香族炭化水素類やエチレンクロリド、クロルベンゼン、ジクロロメタンなどのハロゲン化炭化水素も重合溶媒として使用することができるが、環境への負荷軽減の視点および人体健康への影響の最少化の視点からは、これらの使用は好ましくない。
オレフィン重合体の100℃における動粘度は重合体の分子量に依存する。すなわち高分子量であれば高粘度となり、低分子量であれば低粘度となるため、上述の分子量調整により100℃における動粘度を調整する。また、減圧蒸留のような従来公知の方法により得られた重合体の低分子量成分を除去することで、得られる重合体の分子量分布(Mw/Mn)を調整することができる。さらに得られた重合体について、従来公知の方法により水素添加(以下水添ともいう。)を行ってもよい。水添により得られた重合体の2重結合が低減されれば、酸化安定性および耐熱性が向上する。
得られたエチレン−α−オレフィン共重合体(C)は、1種単独で用いてもよく、また、異なる分子量のものや異なるモノマー組成のものを2種類以上組み合わせてもよい。
また、エチレン−α−オレフィン共重合体(C)は、官能基をグラフト変性させてもよく、また、これらをさらに2次変性してもよい。例えば、特開昭61−126120号公報や特許第2593264号公報などに記載される方法など、2次変性としては特表2008−508402号公報などに記載される方法などが挙げられる。
<内燃機関用潤滑油組成物>
本発明に係る内燃機関用潤滑油組成物は、前記鉱物油(A)および/または合成油(B)からなる潤滑油基油ならびに前記エチレン−α−オレフィン共重合体(C)を含有する。
本発明に係る内燃機関用潤滑油組成物の100℃における動粘度は12.5mm2/s以上26.1mm2/s未満である。この動粘度の値は、JIS K2283に記載の方法により測定した場合のものである。内燃機関用潤滑油組成物の100℃における動粘度が26.1mm2/sを過度に超えると潤滑油の内燃機関各部への撹拌抵抗が増加し、省燃費性能が劣る。100℃における動粘度が12.5mm2/sよりも過度に小さいと金属接触が生じる可能性がある。100℃における動粘度は好ましくは13.0mm2/s以上26.1mm2/s未満であり、より好ましくは15.0mm2/s以上26.1mm2/s未満、さらに好ましくは16.3mm2/s以上26.1mm2/s未満である。この範囲において良好な剪断安定性を維持した状態で、高い省燃費性能が得られる。
さらに、本発明の内燃機関用潤滑油組成物のASTM D6278に準拠したBoschインジェクターを用いたKurt Orbahn剪断試験にて90サイクル試験後の100℃における動粘度の低下率は、通常、0.5%未満である。すなわち、本発明の内燃機関用潤滑油組成物は極めて高い剪断安定性を有する。本試験での粘度低下率が0.5%未満であれば、建設機械や重機械等の大排気量エンジンや船舶用クロスヘッド型ディーゼルエンジン油といった高出力型エンジンや、普通自動車、自動2輪車におけるレース用車両、もしくは大型2輪等の大排気量自動2輪車等の高回転型エンジンに好適に用いることができる。
本発明の内燃機関用潤滑油組成物において、前記鉱物油(A)および/または合成油(B)からなる潤滑油基油と前記エチレン−α−オレフィン共重合体(C)との配合割合は、目的とする用途における要求特性を満たせば特に制限されるものではないが、通常、前記潤滑油基油と前記エチレン−α−オレフィン共重合体(C)との質量比(潤滑油基油の質量/共重合体(C)の質量)は99/1〜30/70である。
また、本発明の内燃機関用潤滑油組成物は、清浄分散剤、粘度調整剤、酸化防止剤、腐食防止剤、耐摩耗剤、摩擦調整剤、流動点降下剤、防錆剤および消泡剤等の添加剤を含んでいてもよい。
本発明の潤滑油組成物に用いられる添加剤としては下記のものを例示することができ、これらを1種単独でまたは2種以上組み合わせて用いることができる。
清浄分散剤としては、金属スルホネート、金属フェネート、金属フォスファネート、コハク酸イミドなどを例示することができる。アルカリ金属およびアルカリ土類金属サリチレート、フェナートおよびスルホネート洗浄剤は、本発明の潤滑油組成物において好ましい。具体的には、例えば、カルシウム、またはマグネシウムのスルホネート;フィネート;サリチレート;コハク酸イミド;ベンジルアミンなどを例示することができる。清浄分散剤は、必要に応じて潤滑油組成物100質量%に対して0〜18質量%の範囲で用いられる。
特に船舶用高出力型エンジンに用いられる清浄分散剤は、ISO 3771に記載の方法によって測定される全塩基価が30〜350mg KOH/gであり、潤滑油組成物100質量%に対して0.5〜18質量%の範囲にて配合され、潤滑油組成物の全塩基価が20mg KOH/g以上となるよう調整される。
粘度調整剤としては、分子量が50,000未満のメタクリレート系共重合体、液状ポリブテン、鉱物油であるブライトストック等の既知の粘度調整剤を併用することができる。粘度調整剤は、必要に応じて潤滑油組成物100質量%に対して0〜50質量%の範囲で用いられる。
酸化防止剤としては、2,6−ジ−t−ブチル−4−メチルフェノールなどのフェノール系やアミン系の化合物が挙げられる。酸化防止剤は、必要に応じて潤滑油組成物100質量%に対して0〜3質量%の範囲で用いられる。
腐食防止剤としては、ベンゾトリアゾール、ベンゾイミダゾール、チアジアゾール等の化合物が挙げられる。腐食防止剤は、必要に応じてグリース組成物100質量%に対して0〜3質量%の範囲で用いられる。
耐摩耗剤としては、二硫化モリブデンなどの無機または有機モリブデン化合物、グラファイト、硫化アンチモン、ポリテトラフルオロエチレンなどを例示することができる。耐摩耗剤は、必要に応じて潤滑油組成物100質量%に対して0〜3質量%の範囲で用いられる。
摩擦調整剤としては、炭素数6〜30のアルキル基又はアルケニル基、特に炭素数6〜30の直鎖アルキル基又は直鎖アルケニル基を分子中に少なくとも1個有する、アミン化合物、イミド化合物、脂肪酸エステル、脂肪酸アミド、脂肪酸金属塩等を例示することができる。
アミン化合物としては、炭素数6〜30の直鎖状若しくは分枝状、好ましくは直鎖状の脂肪族モノアミン、直鎖状若しくは分枝状、好ましくは直鎖状の脂肪族ポリアミン、又はこれら脂肪族アミンのアルキレンオキシド付加物等が例示できる。イミド化合物としては、炭素数6〜30の直鎖状若しくは分岐状のアルキル基又はアルケニル基を有するコハク酸イミド及び/又はそのカルボン酸、ホウ酸、リン酸、硫酸等による変性化合物等が挙げられる。脂肪酸エステルとしては、炭素数7〜31の直鎖状又は分枝状、好ましくは直鎖状の脂肪酸と、脂肪族1価アルコール又は脂肪族多価アルコールとのエステル等が例示できる。脂肪酸アミドとしては、炭素数7〜31の直鎖状又は分枝状、好ましくは直鎖状の脂肪酸と、脂肪族モノアミン又は脂肪族ポリアミンとのアミド等が例示できる。脂肪酸金属塩としては、炭素数7〜31の直鎖状又は分枝状、好ましくは直鎖状の脂肪酸の、アルカリ土類金属塩(マグネシウム塩、カルシウム塩等)や亜鉛塩等が挙げられる。
摩擦調整剤は、必要に応じて潤滑油組成物100質量%に対して0〜5.0質量%の範囲で用いられる。
流動点降下剤としては、種々公知の流動点降下剤を使用し得る。具体的には、有機酸エステル基を含有する高分子化合物が用いられ、有機酸エステル基を含有するビニル重合体が特に好適に用いられる。有機酸エステル基を含有するビニル重合体としては例えばメタクリル酸アルキルの(共)重合体、アクリル酸アルキルの(共)重合体、フマル酸アルキルの(共)重合体、マレイン酸アルキルの(共)重合体、アルキル化ナフタレン等が挙げられる。
このような流動点降下剤は、融点が−13℃以下であり、好ましくは−15℃、さらに好ましくは−17℃以下である。流動点降下剤の融点は、示差走査型熱量計(DSC)を用いて測定される。具体的には、試料約5mgをアルミパンに詰めて200℃まで昇温し、200℃で5分間保持した後、10℃/分で−40℃まで冷却し、−40℃で5分保持した後、10℃/分で昇温する際の吸熱曲線から求める。
上記流動点降下剤はさらに、ゲルパーミエーションクロマトグラフィーによって得られるポリスチレン換算重量平均分子量が20,000〜400,000の範囲にあり、好ましくは30,000〜300,000、より好ましくは40,000〜200,000の範囲にある。
流動点降下剤は、必要に応じて潤滑油組成物100質量%に対して0〜2質量%の範囲で用いられる。
防錆剤としては、各種アミン化合物、カルボン酸金属塩、多価アルコールエステル、リン化合物、スルホネートなどの化合物が挙げられる。防錆剤は、必要に応じて潤滑油組成物100質量%に対して0〜3質量%の範囲で用いられる。
消泡剤としては、ジメチルシロキサン、シリカゲル分散体などのシリコーン系化合物、アルコール系またはエステル系の化合物などを例示することができる。消泡剤は、必要に応じて潤滑油組成物100質量%に対して0〜0.2質量%の範囲で用いられる。
上記の添加剤以外にも、抗乳化剤、着色剤、油性剤(油性向上剤)などを必要に応じて用いることができる。
内燃機関用潤滑油においては、この用途のために各種必要添加剤を配合し、鉱物油もしくは合成炭化水素油等の潤滑油に濃縮溶解させた、いわゆるDIパッケージが工業的に供給されており、このようなDIパッケージを本発明の潤滑油組成物に適用することもできる。
<用途>
本発明の潤滑油組成物は、SAE粘度規格40以上の内燃機関油に好適に使用でき、良好な剪断安定性を維持しながら40℃以下において高い流動性が得られるため、建設機械や重機械等の大排気量エンジンや船舶用クロスヘッド型ディーゼルエンジン油といった高出力型エンジンや、普通自動車、自動2輪車におけるレース用車両、もしくは大型2輪等の大排気量自動2輪車等の高回転型エンジンの省燃費エンジン油として好適に使用できる。
以下、実施例に基づいて本発明をさらに具体的に説明するが、本発明はこれら実施例に限定されるものではない。
[評価方法]
下記実施例および比較例等において、エチレン−α−オレフィン共重合体および内燃機関油用潤滑油組成物の物性等は以下の方法で測定した。
<エチレン含有量(mol%)>
日本分光社製フーリエ変換赤外分光光度計FT/IR−610またはFT/IR−6100を用い、長鎖メチレン基の横揺れ振動に基づく721cm-1付近の吸収とプロピレンの骨格振動に基づく1155cm-1付近の吸収との吸光度比(D1155cm-1/D721cm-1)を算出し、予め作成しておいた検量線(ASTM D3900での標準試料を使って作成)よりエチレン含有量(重量%)を求めた。次に、得られたエチレン含有量(重量%)を用い、下記式に従ってエチレン含有量(mol%)を求めた。
Figure 2016098342
<B値>
o−ジクロロベンゼン/ベンゼン−d6(4/1[vol/vol%])を測定溶媒とし、測定温度120℃、スペクトル幅250ppm、パルス繰り返し時間5.5秒、かつパルス幅4.7・sec(45oパルス)の測定条件下(100MHz、日本電子ECX400P)、または測定温度120℃、スペクトル幅250ppm、パルス繰り返し時間5.5秒、かつパルス幅5.0・sec(45oパルス)の測定条件下(125 MHz、ブルカー・バイオスピンAVANCEIIIcryo−500)にて13C−NMRスペクトルを測定し、下記式[1]に基づきB値を算出した。
Figure 2016098342
式[1]中、PEはエチレン成分の含有モル分率を示し、POはα−オレフィン成分の含有モル分率を示し、POEは全dyad連鎖のエチレン−α−オレフィン連鎖のモル分率を示す。
<分子量分布>
分子量分布は、東ソー株式会社HLC−8320GPCを用いて以下のようにして測定した。分離カラムとして、TSKgel SuperMultiporeHZ−M(4本)を用い、カラム温度を40℃とし、移動相にはテトラヒドロフラン(和光純薬社製)を用い、展開速度を0.35ml/分とし、試料濃度を5.5g/Lとし、試料注入量を20マイクロリットルとし、検出器として示差屈折計を用いた。標準ポリスチレンとしては、東ソー社製(PStQuick MP−M)のものを用いた。汎用校正の手順に従い、ポリスチレン分子量換算として重量平均分子量(Mw)並びに数平均分子量(Mn)を算出し、これらの値から分子量分布(Mw/Mn)を算出した。
<不飽和結合量>
o−ジクロロベンゼン−d4を測定溶媒とし、測定温度120℃、スペクトル幅20ppm、パルス繰り返し時間7.0秒、かつパルス幅6.15μsec(45oパルス)の測定条件下にて、1H−NMRスペクトル(400 MHz、日本電子ECX400P)を測定した。ケミカルシフト基準には、溶媒ピーク(オルトジクロロベンゼン 7.1ppm)を用い、0〜3ppmに観測されるメインピークと、4〜6ppmに観測されるビニル、ビニリデン、二置換オレフィンおよび三置換オレフィンに由来するピークの積分値の比率より、炭素原子1000個当たりの不飽和結合量(個/1000C)を算出した。
<融点>
セイコーインスツルメント社X−DSC−7000を用い、簡易密閉できるアルミサンプルパンに約8mgのエチレン−α−オレフィン共重合体を入れてDSCセルに配置し、DSCセルを窒素雰囲気下にて室温から150℃まで10℃/分で昇温し、次いで、150℃で5分間保持した後、10℃/分で降温し、DSCセルを−100℃まで冷却した(降温過程)。次いで、100℃で5分間保持した後、10℃/分で昇温し、昇温過程で得られるエンタルピー曲線が極大値を示す温度を融点(Tm)とし、融解に伴う吸熱量の総和を融解熱量(ΔH)とした。ピークが観測されないか、融解熱量(ΔH)の値が1J/g以下の場合、融点(Tm)は観測されないとみなした。融点(Tm)、および融解熱量(ΔH)の求め方はJIS K7121に基づいた。
<含有塩素量>
サーモフィッシャーサイエンティフィック社ICS−1600を用い、エチレン−α−オレフィン共重合体を、試料ボートに入れてAr/O2気流中、燃焼炉設定温度900℃にて燃焼分解した。このときの発生ガスを吸収液に吸収させ、イオンクロマトグラフ法にて定量した。
<粘度特性>
100℃動粘度および粘度指数は、JIS K2283に記載の方法により、測定、算出した。
<HTHS粘度>
HTHS粘度はASTM D4683に記載の方法により150℃において測定した。
<CCS粘度>
CCS粘度はASTM D5293に記載の方法により−10℃、−15℃、−20℃、−25℃または−30℃において測定した。
<MR粘度>
MR粘度はASTM D4684に記載の方法により−15℃、−20℃、−25℃、−30℃または−35℃において測定した。
<剪断試験後粘度低下率>
ASTM D6278に記載の方法によりBoschインジェクターを用いたKurt Orbahn剪断試験にて90サイクルの試験を行い、下式で表される剪断による100℃動粘度の低下率(剪断試験粘度低下率)を評価した。
剪断試験粘度低下率(%)=(剪断前の100℃動粘度−剪断後の100℃動粘度)/剪断前の100℃動粘度×100
[エチレン−α−オレフィン共重合体(C)の製造]
エチレン−α−オレフィン共重合体(C)は以下の重合例に従い製造した。なお、得られたエチレン−α−オレフィン共重合体(C)について、必要に応じて、下記方法で水添操作を実施した。
<水添操作>
内容積1Lのステンレス製オートクレーブに0.5質量%Pd/アルミナ触媒のヘキサン溶液100mLおよびエチレン−α−オレフィン共重合体の30質量%ヘキサン溶液500mLを加え、オートクレーブを密閉した後、窒素置換を行なった。次いで、撹拌をしながら140℃まで昇温し、系内を水素置換した後、水素で1.5MPaまで昇圧して15分間水添反応を実施した。
<メタロセン化合物の合成>
〔合成例1〕
[メチルフェニルメチレン(η5−シクロペンタジエニル)(η5−2,7−ジ−t−ブチルフルオレニル)]ジルコニウムジクロリドの合成
(i)6−メチル−6−フェニルフルベンの合成
窒素雰囲気下、200mL三口フラスコにリチウムシクロペンタジエン7.3g (101.6mmol)および脱水テトラヒドロフラン100mLを加えて攪拌した。溶液をアイスバスで冷却し、アセトフェノン15.0g(111.8mmol)を滴下した。その後、室温で20時間攪拌し、得られた溶液を希塩酸水溶液でクエンチした。ヘキサン100mLを加えて可溶分を抽出し、この有機層を水、飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥した。その後、溶媒を留去し、得られた粘性液体をカラムクロマトグラフィー(ヘキサン)で分離し、目的物(赤色粘性液体)を得た。
(ii)メチル(シクロペンタジエニル)(2,7−ジ−t−ブチルフルオレニル)(フェニル)メタンの合成
窒素雰囲気下、100mL三口フラスコに2,7−ジ−t−ブチルフルオレン2.01g(7.20mmol)および脱水t−ブチルメチルエーテル50mLを添加した。氷浴で冷却しながらn−ブチルリチウム/ヘキサン溶液(1.65M)4.60mL(7.59mmol)を徐々に添加し、室温で16時間攪拌した。6−メチル−6−フェニルフルベン1.66g(9.85mmol)を添加した後、加熱還流下で1時間攪拌した。氷浴で冷却しながら水50mLを徐々に添加し、得られた二層の溶液を200mL分液漏斗に移した。ジエチルエーテル50mLを加えて数回振った後水層を除き、有機層を水50mLで3回、飽和食塩水50mLで1回洗浄した。無水硫酸マグネシウムで30分間乾燥した後、減圧下で溶媒を留去した。少量のヘキサンを加えて得た溶液に超音波を当てたところ固体が析出したので、これを採取して少量のヘキサンで洗浄した。減圧下で乾燥し、白色固体としてメチル(シクロペンタジエニル)(2,7−ジ−t−ブチルフルオレニル)(フェニル)メタン2.83gを得た。
(iii)[メチルフェニルメチレン(η5−シクロペンタジエニル)(η5−2,7−ジ−t−ブチルフルオレニル)]ジルコニウムジクロリドの合成
窒素雰囲気下、100mLシュレンク管にメチル(シクロペンタジエニル)(2,7−ジ−t−ブチルフルオレニル)(フェニル)メタン1.50g(3.36mmol)、脱水トルエン50mLおよびTHF 570μL(7.03mmol)を順次添加した。氷浴で冷却しながらn−ブチルリチウム/ヘキサン溶液(1.65M)4.20mL(6.93mmol)を徐々に添加し、45℃で5時間攪拌した。減圧下で溶媒を留去し、脱水ジエチルエーテル40mLを添加して赤色溶液とした。メタノール/ドライアイス浴で冷却しながら四塩化ジルコニウム 728mg(3.12mmol)を添加し、室温まで徐々に昇温しながら16時間攪拌したところ、赤橙色スラリーが得られた。減圧下で溶媒を留去して得られた固体をグローブボックス内に持ち込み、ヘキサンで洗浄した後、ジクロロメタンで抽出した。減圧下で溶媒を留去して濃縮した後、少量のヘキサンを加え、−20℃で放置したところ赤橙色固体が析出した。この固体を少量のヘキサンで洗浄した後、減圧下で乾燥することにより、赤橙色固体として[メチルフェニルメチレン(η5−シクロペンタジエニル)(η5−2,7−ジ−t−ブチルフルオレニル)]ジルコニウムジクロリド1.20gを得た。
〔合成例2〕
[エチレン(η5−シクロペンタジエニル)(η5−2,7−ジ−t−ブチルフルオレニル)]ジルコニウムジクロリドの合成
[エチレン(η5−シクロペンタジエニル)(η5−2,7−ジ−t−ブチルフルオレニル)]ジルコニウムジクロリドは、特許第4367687号公報に記載の方法で合成した。
<重合例1>
充分に窒素置換した内容積1Lのガラス製重合器にヘプタン250mLを装入し、系内の温度を50℃に昇温した後、エチレンを25L/hr、プロピレンを75L/hr、水素を100L/hrの流量で連続的に重合器内に供給し、撹拌回転数600rpmで撹拌した。次にトリイソブチルアルミニウム0.2mmolを重合器に装入し、次いでMMAO0.688mmolと[エチレン(η5−シクロペンタジエニル)(η5−2,7−ジ−t−ブチルフルオレニル)]ジルコニウムジクロリド0.00230mmolをトルエン中で15分以上予備混合したものを重合器に装入することにより重合を開始した。その後、エチレン、プロピレン、水素の連続的供給を継続し、50℃で15分間重合を行った。少量のイソブチルアルコールを系内に添加することにより重合を停止した後、未反応のモノマーをパージした。得られたポリマー溶液を、0.2mol/lの塩酸100mLで3回、次いで蒸留水100mLで3回洗浄し、硫酸マグネシウムで乾燥後、溶媒を減圧留去した。得られたポリマーを80℃の減圧下で一晩乾燥し、エチレン−プロピレン共重合体1.43gを得た。さらに、このエチレン−プロピレン共重合体に対して水添操作を施した。
以上の操作により得られたポリマーの不飽和結合量は0.1個/1000C未満、塩素含量は0.1ppm未満、エチレン含有量は48.4mol%、Mwは13,628、Mw/Mnは1.9、B値は1.2、100℃動粘度は2,040mm2/sであり、融点(融解ピーク)は観測されなかった。
<重合例2>
充分に窒素置換した内容積2Lのステンレス製オートクレーブにヘプタン910mLおよびプロピレン45gを装入し、系内の温度を130℃に昇温した後、水素2.24MPa、エチレン0.09MPaを供給することにより全圧を3MPaGとした。次にトリイソブチルアルミニウム0.4mmol、[メチルフェニルメチレン(η5−シクロペンタジエニル)(η5−2,7−ジ−t−ブチルフルオレニル)]ジルコニウムジクロリド 0.0006mmolおよびN,N−ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート0.006mmolを窒素で圧入し、攪拌回転数を400rpmにすることにより重合を開始した。その後、エチレンのみを連続的に供給することにより全圧を3MPaGに保ち、130℃で5分間重合を行った。少量のエタノールを系内に添加することにより重合を停止した後、未反応のエチレン、プロピレン、水素をパージした。得られたポリマー溶液を、0.2mol/lの塩酸1000mLで3回、次いで蒸留水1000mLで3回洗浄し、硫酸マグネシウムで乾燥後、溶媒を減圧留去した。得られたポリマーを80℃の減圧下で一晩乾燥した後、さらに神鋼パンテック製2−03型薄膜蒸留装置を用いて、減圧度を400Paに保持し、設定温度180℃、流量3.1ml/minにて薄膜蒸留を行い、エチレン−プロピレン共重合体22.2gを得た。さらに、このエチレン−プロピレン共重合体に対して水添操作を施した。
以上の操作により得られたポリマーの不飽和結合量は0.1個/1000C未満、塩素含量は0.1ppm未満、エチレン含有量は51.9mol%、Mwは2,680、Mw/Mnは1.4、B値は1.2、100℃動粘度は40mm2/sであり、融点(融解ピーク)は観測されなかった。
<重合例3>
充分窒素置換した容量2リットルの攪拌翼付連続重合反応器に、脱水精製したヘキサン1リットルを張り、96mmol/Lに調製した、エチルアルミニウムセスキクロリド(Al(C251.5・Cl1.5)のヘキサン溶液を500ml/hの量で連続的に1時間供給した後、更に触媒として16mmol/lに調製したVO(OC25)Cl2のヘキサン溶液を500ml/hの量で、ヘキサンを500ml/hの量で連続的に供給した。一方重合器上部から、重合液器内の重合液が常に1リットルになるように重合液を連続的に抜き出した。次にバブリング管を用いてエチレンガスを47L/hの量で、プロピレンガスを47L/hの量で水素ガスを20L/hの量で供給した。共重合反応は、重合器外部に取り付けられたジャケットに冷媒を循環させることにより35℃で行った。
上記条件にて得られたエチレン−プロピレン共重合体を含む重合溶液を、0.2mol/lの塩酸100mLで3回、次いで蒸留水100mLで3回洗浄し、硫酸マグネシウムで乾燥後、溶媒を減圧留去した。得られたポリマーを130℃の減圧下で一晩乾燥した。得られたエチレン−プロピレン共重合体のエチレン含有量は54.9mol%、Mwは14,036、Mw/Mnは2.0、B値は1.2、100℃動粘度は2,100mm2/sであった。また、不飽和結合量は0.1個/1000Cであり、塩素含量は20ppmであり、融点(融解ピーク)は観測されなかった。
[内燃機関用潤滑油組成物の調製]
以下の潤滑油組成物の調製において用いられたエチレン−α−オレフィン共重合体(C)以外の成分は以下のとおりである。
潤滑油基油;鉱物油(A)として以下の潤滑油基油を用いた。
鉱物油−A:100℃動粘度が6.8mm2/s、粘度指数が97、流動点が−12.5℃であるAPI Group I鉱物油(JX日鉱日石社製スーパーオイルN−46)
鉱物油−B:100℃動粘度が8.8mm2/s、粘度指数が101、流動点が−12.5℃であるAPI Group I鉱物油(JX日鉱日石社製スーパーオイルN−68)
鉱物油−C:100℃動粘度が5.3mm2/s、粘度指数が106、流動点が−12.5℃であるAPI Group I鉱物油(JX日鉱日石社製スーパーオイルN−32)
鉱物油−D:100℃動粘度が4.2mm2/s、粘度指数が122、流動点が−15℃であるAPI Group III鉱物油(SK Lubricants社製Yubase−4)
鉱物油−E:100℃動粘度が6.5mm2/s、粘度指数が131、流動点が−12℃であるAPI Group III鉱物油(SK Lubricants社製Yubase−6)
合成油(B);合成油(B)として以下の潤滑油基油を用いた。
合成油−A:100℃動粘度が4.0mm2/s、粘度指数が123、流動点が−60℃以下である合成油ポリ−α−オレフィン(Neste社製NEXBASE2004)
合成油−B:100℃動粘度が5.8mm2/s、粘度指数が138、流動点が−60℃以下である合成油ポリ−α−オレフィン(Neste社製NEXBASE2006)
合成油−C:脂肪酸エステルである、100℃動粘度が3.7mm2/s、粘度指数が156、流動点が−60℃以下である大八化学社製ジイソデシルアジペート
DIパッケージ(DI);Infineum社製P−5202
流動点降下剤(PPD);BASF社製IRGAFLO 720P
ブライトストック;100℃動粘度が29.9mm2/s、粘度指数が97、流動点が−10.0℃であるAPI Group I鉱物油(JX日鉱日石社製ブライトストックN460)
<内燃機関用潤滑油組成物>
[実施例1]
潤滑油基油として鉱物油(A)である鉱物油−Aおよび鉱物油−Bを、エチレン−α−オレフィン共重合体(C)として重合例1で得られた共重合体(重合体1)を用い、これらと、DIパッケージ(DI)、および流動点降下剤(PPD)とを常法により混合して、内燃機関油用潤滑油組成物を調製した。それぞれの成分の添加量、および得られた潤滑油組成物の物性等は表3に示す通りである。また、潤滑油組成物は、HTHS粘度は3.7mPa・s以上、−20℃におけるMR粘度は60,000mPa・s未満であり、SAEエンジン油粘度規格20W−40を満足していた。
[実施例2]
潤滑油基油として鉱物油(A)である鉱物油−Aおよび鉱物油−Bを、エチレン−α−オレフィン共重合体(C)として重合体1を用い、これらと、DIパッケージ(DI)、および流動点降下剤(PPD)とを常法により混合して、内燃機関油用潤滑油組成物を調製した。それぞれの成分の添加量、および得られた潤滑油組成物の物性は表3に示す通りである。また、潤滑油組成物は、HTHS粘度は3.7mPa・s以上、−20℃におけるMR粘度は60,000mPa・s未満であり、SAEエンジン油粘度規格20W−50を満足していた。
[実施例3]
潤滑油基油として鉱物油(A)である鉱物油−Aおよび鉱物油−Bを、エチレン−α−オレフィン共重合体(C)として重合体1を用い、これらと、DIパッケージ(DI)、および流動点降下剤(PPD)とを常法により混合して、内燃機関油用潤滑油組成物を調製した。それぞれの成分の添加量、および得られた潤滑油組成物の物性は表3に示す通りである。また、潤滑油組成物は、HTHS粘度は3.7mPa・s以上、−15℃におけるMR粘度は60,000mPa・s未満であり、SAEエンジン油粘度規格25W−60を満足していた。
[実施例4]
潤滑油基油として鉱物油(A)である鉱物油−Cを、エチレン−α−オレフィン共重合体(C)として重合体1を用い、これらと、DIパッケージ(DI)、および流動点降下剤(PPD)とを常法により混合して、内燃機関油用潤滑油組成物を調製した。それぞれの成分の添加量、および得られた潤滑油組成物の物性は表3に示す通りである。また、潤滑油組成物は、HTHS粘度は3.7mPa・s以上、−20℃におけるMR粘度は60,000mPa・s未満であり、SAEエンジン油粘度規格20W−40を満足していた。
[実施例5]
潤滑油基油として鉱物油(A)である鉱物油−Cを、エチレン−α−オレフィン共重合体(C)として重合体1を用い、これらと、DIパッケージ(DI)、および流動点降下剤(PPD)とを常法により混合して、内燃機関油用潤滑油組成物を調製した。それぞれの成分の添加量、および得られた潤滑油組成物の物性は表3に示す通りである。また、潤滑油組成物は、HTHS粘度は3.7mPa・s以上、−20℃におけるMR粘度は60,000mPa・s未満であり、SAEエンジン油粘度規格20W−50を満足していた。
[実施例6]
潤滑油基油として鉱物油(A)である鉱物油−Cを、エチレン−α−オレフィン共重合体(C)として重合体1を用い、これらと、DIパッケージ(DI)、および流動点降下剤(PPD)とを常法により混合して、内燃機関油用潤滑油組成物を調製した。それぞれの成分の添加量、および得られた潤滑油組成物の物性等は表3に示す通りである。また、潤滑油組成物は、HTHS粘度は3.7mPa・s以上、−20℃におけるMR粘度は60,000mPa・s未満であり、SAEエンジン油粘度規格20W−60を満足していた。
[比較例1]
潤滑油基油として鉱物油(A)である鉱物油−Aおよび鉱物油−Bを用い、エチレン−α−オレフィン共重合体(C)を用いずブライトストックを用い、これらと、DIパッケージ(DI)、および流動点降下剤(PPD)とを常法により混合して、内燃機関油用潤滑油組成物を調製した。それぞれの成分の添加量、および得られた潤滑油組成物の物性等は表3に示す通りである。また、潤滑油組成物は、HTHS粘度は3.7mPa・s以上、−20℃におけるMR粘度は60,000mPa・s未満であり、SAEエンジン油粘度規格25W−40を満足していた。
[比較例2]
潤滑油基油として鉱物油(A)である鉱物油−Aおよび鉱物油−Bを用い、エチレン−α−オレフィン共重合体(C)を用いずブライトストックを用い、これらと、DIパッケージ(DI)、および流動点降下剤(PPD)とを常法により混合して、内燃機関油用潤滑油組成物を調製した。それぞれの成分の添加量、および得られた潤滑油組成物の物性等は表3に示す通りである。また、潤滑油組成物は、HTHS粘度は3.7mPa・s以上、−15℃におけるMR粘度は60,000mPa・s未満であり、SAEエンジン油粘度規格25W−50を満足していた。
Figure 2016098342
SAE粘度規格40を満たす実施例1と比較例1とを、およびSAE粘度規格50を満たす実施例2と比較例2とを比較すると、実施例1および実施例2はSAE粘度規格20Wを満たすのに対し、比較例1および比較例2はSAE粘度規格20WのCCS粘度規格を満足せずSAE粘度規格25Wとなる。すなわち、実施例1は、従来技術である比較例1に対し低温流動性が優れ、さらに粘度指数も優れているためエンジン始動時の省燃費性能が大きく優れる。
また、実施例3と比較例2とを比較すると、実施例3は、比較例2に対し100℃動粘度が高いにも拘らずCCS粘度が低く、内燃機関の省燃費向上に大きく寄与できることがわかる。さらに実施例4〜6の潤滑油は高い粘度指数と優れたCCS粘度を有し、実施例6ではSAE粘度規格20W−60が実現できる。
[実施例7]
潤滑油基油として鉱物油(A)である鉱物油−Dおよび鉱物油−Eを、エチレン−α−オレフィン共重合体(C)として重合体1を用い、これらと、DIパッケージ(DI)、および流動点降下剤(PPD)とを常法により混合して、内燃機関油用潤滑油組成物を調製した。それぞれの成分の添加量、および得られた潤滑油組成物の物性等は表4に示す通りである。また、潤滑油組成物は、HTHS粘度は3.7mPa・s以上、−25℃におけるMR粘度は60,000mPa・s未満であり、SAEエンジン油粘度規格15W−40を満足していた。
[実施例8]
潤滑油基油として鉱物油(A)である鉱物油−Dおよび鉱物油−Eを、エチレン−α−オレフィン共重合体(C)として重合体1を用い、これらと、DIパッケージ(DI)、および流動点降下剤(PPD)とを常法により混合して、内燃機関油用潤滑油組成物を調製した。それぞれの成分の添加量、および得られた潤滑油組成物の物性等は表4に示す通りである。また、潤滑油組成物は、HTHS粘度は3.7mPa・s以上、−25℃におけるMR粘度は60,000mPa・s未満であり、SAEエンジン油粘度規格15W−50を満足していた。
[実施例9]
潤滑油基油として鉱物油(A)である鉱物油−Dおよび鉱物油−Eを、エチレン−α−オレフィン共重合体(C)として重合体1を用い、これらと、DIパッケージ(DI)、および流動点降下剤(PPD)とを常法により混合して、内燃機関油用潤滑油組成物を調製した。それぞれの成分の添加量、および得られた潤滑油組成物の物性等は表4に示す通りである。また、潤滑油組成物は、HTHS粘度は3.7mPa・s以上、−20℃におけるMR粘度は60,000mPa・s未満であり、SAEエンジン油粘度規格20W−60を満足していた。
[実施例10]
潤滑油基油として合成油(B)である合成油−Aおよび合成油−Cを、エチレン−α−オレフィン共重合体(C)として重合体1を用い、これらと、DIパッケージ(DI)とを常法により混合して、内燃機関油用潤滑油組成物を調製した。それぞれの成分の添加量、および得られた潤滑油組成物の物性等は表4に示す通りである。また、潤滑油組成物は、HTHS粘度は3.7mPa・s以上、−35℃におけるMR粘度は60,000mPa・s未満であり、SAEエンジン油粘度規格5W−40を満足していた。
[実施例11]
潤滑油基油として合成油(B)である合成油−Aおよび合成油−Cを、エチレン−α−オレフィン共重合体(C)として重合体1を用い、これらと、DIパッケージ(DI)とを常法により混合して、内燃機関油用潤滑油組成物を調製した。それぞれの成分の添加量、および得られた潤滑油組成物の物性等は表4に示す通りである。また、潤滑油組成物は、HTHS粘度は3.7mPa・s以上、−30℃におけるMR粘度は60,000mPa・s未満であり、SAEエンジン油粘度規格10W−50を満足していた。
[実施例12]
潤滑油基油として合成油(B)である合成油−Aおよび合成油−Cを、エチレン−α−オレフィン共重合体(C)として重合体1を用い、これらと、DIパッケージ(DI)とを常法により混合して、内燃機関油用潤滑油組成物を調製した。それぞれの成分の添加量、および得られた潤滑油組成物の物性等は表4に示す通りである。また、潤滑油組成物は、HTHS粘度は3.7mPa・s以上、−25℃におけるMR粘度は60,000mPa・s未満であり、SAEエンジン油粘度規格15W−60を満足していた。
[実施例13]
潤滑油基油として合成油(B)である合成油−Bおよび合成油−Cを、エチレン−α−オレフィン共重合体(C)として重合体1を用い、これらと、DIパッケージ(DI)とを常法により混合して、内燃機関油用潤滑油組成物を調製した。それぞれの成分の添加量、および得られた潤滑油組成物の物性等は表4に示す通りである。また、潤滑油組成物は、HTHS粘度は3.7mPa・s以上、−30℃におけるMR粘度は60,000mPa・s未満であり、SAEエンジン油粘度規格10W−40を満足していた。
[実施例14]
潤滑油基油として合成油(B)である合成油−Bおよび合成油−Cを、エチレン−α−オレフィン共重合体(C)として重合体1を用い、これらと、DIパッケージ(DI)とを常法により混合して、内燃機関油用潤滑油組成物を調製した。それぞれの成分の添加量、および得られた潤滑油組成物の物性等は表4に示す通りである。また、潤滑油組成物は、HTHS粘度は3.7mPa・s以上、−25℃におけるMR粘度は60,000mPa・s未満であり、SAEエンジン油粘度規格15W−50を満足していた。
[実施例15]
潤滑油基油として合成油(B)である合成油−Bおよび合成油−Cを、エチレン−α−オレフィン共重合体(C)として重合体1を用い、これらと、DIパッケージ(DI)とを常法により混合して、内燃機関油用潤滑油組成物を調製した。それぞれの成分の添加量、および得られた潤滑油組成物の物性等は表4に示す通りである。また、潤滑油組成物は、HTHS粘度は3.7mPa・s以上、−20℃におけるMR粘度は60,000mPa・s未満であり、SAEエンジン油粘度規格20W−60を満足していた。
[実施例16]
潤滑油基油として合成油(B)である合成油−Aおよび合成油−Cを、エチレン−α−オレフィン共重合体(C)として重合例2で得られた共重合体(重合体2)を用い、これらと、DIパッケージ(DI)とを常法により混合して、内燃機関油用潤滑油組成物を調製した。それぞれの成分の添加量、および得られた潤滑油組成物の物性等は表4に示す通りである。また、潤滑油組成物は、HTHS粘度は3.7mPa・s以上、−30℃におけるMR粘度は60,000mPa・s未満であり、SAEエンジン油粘度規格10W−40を満足していた。
[実施例17]
潤滑油基油として合成油(B)である合成油−Aおよび合成油−Cを、エチレン−α−オレフィン共重合体(C)として重合体2を用い、これらと、DIパッケージ(DI)とを常法により混合して、内燃機関油用潤滑油組成物を調製した。それぞれの成分の添加量、および得られた潤滑油組成物の物性等は表4に示す通りである。また、潤滑油組成物は、HTHS粘度は3.7mPa・s以上、−25℃におけるMR粘度は60,000mPa・s未満であり、SAEエンジン油粘度規格15W−50を満足していた。
[実施例18]
潤滑油基油として鉱物油(A)である鉱物油−Dおよび鉱物油−Eを、エチレン−α−オレフィン共重合体(C)として重合例3で得られた共重合体(重合体3)を用い、これらと、DIパッケージ(DI)、および流動点降下剤(PPD)とを常法により混合して、内燃機関油用潤滑油組成物を調製した。それぞれの成分の添加量、および得られた潤滑油組成物の物性等は表4に示す通りである。また、潤滑油組成物は、HTHS粘度は3.7mPa・s以上、−20℃におけるMR粘度は60,000mPa・s未満であり、SAEエンジン油粘度規格20W−60を満足していた。
Figure 2016098342
実施例7〜18に示す通り、本発明の潤滑油組成物は高い剪断安定性を維持し、極めて優れた粘度指数、ならびに、CCS粘度およびMR粘度で示される優れた低温流動性を示す。

Claims (7)

  1. 潤滑油基油と、以下の(C1)〜(C5)の特徴を有するエチレン−α−オレフィン共重合体(C)とを含有し、100℃における動粘度が12.5mm2/s以上26.1mm2/s未満であり、
    前記潤滑油基油が、以下の(A1)〜(A3)の特徴を有する鉱物油(A)、および/または(B1)〜(B3)の特徴を有する合成油(B)からなる
    内燃機関用潤滑油組成物。
    (A1)100℃における動粘度が2〜10mm2/sであること
    (A2)粘度指数が95以上であること
    (A3)流動点が−10℃以下であること
    (B1)100℃における動粘度が1〜10mm2/sであること
    (B2)粘度指数が120以上であること
    (B3)流動点が−30℃以下であること
    (C1)エチレン含有率が30〜85モル%の範囲にあること
    (C2)100℃における動粘度が10〜5,000mm2/sであること
    (C3)ゲルパーミエーションクロマトグラフィー(GPC)により測定し、ポリスチレン換算により得られた分子量において、分子量分布(Mw/Mn)が2.5以下であること
    (C4)下記式[1]
    Figure 2016098342
    (式中、PEはエチレン成分の含有モル分率を示し、POはα−オレフィン成分の含有モル分率を示し、POEは全dyad連鎖のエチレン−α−オレフィン連鎖のモル分率を示す。)
    で表されるB値が、1.1以上であること
    (C5)1H−NMRにより測定した不飽和結合量が炭素原子1000個あたり0.5個未満であること
  2. 前記エチレン−α−オレフィン共重合体(C)のエチレン含有率が40〜70モル%の範囲にある請求項1に記載の内燃機関用潤滑油組成物。
  3. 前記エチレン−α−オレフィン共重合体(C)の100℃における動粘度が35〜2,500mm2/sである請求項1または2に記載の内燃機関用潤滑油組成物。
  4. 前記エチレン−α−オレフィン共重合体(C)のα−オレフィンがプロピレンである請求項1〜3のいずれかに記載の内燃機関用潤滑油組成物。
  5. 前記合成油(B)として、エステル、およびエステル以外の合成油を含有する請求項1〜4のいずれかに記載の内燃機関用潤滑油組成物。
  6. 請求項1〜5のいずれかに記載の内燃機関用潤滑油組成物からなるディーゼルエンジン油。
  7. 少なくとも20mg−KOH/gの全塩基価を有する請求項1〜5のいずれかに記載の内燃機関用潤滑油組成物。
JP2014237787A 2014-11-25 2014-11-25 潤滑油組成物 Active JP6326355B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014237787A JP6326355B2 (ja) 2014-11-25 2014-11-25 潤滑油組成物

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014237787A JP6326355B2 (ja) 2014-11-25 2014-11-25 潤滑油組成物

Publications (2)

Publication Number Publication Date
JP2016098342A true JP2016098342A (ja) 2016-05-30
JP6326355B2 JP6326355B2 (ja) 2018-05-16

Family

ID=56075599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014237787A Active JP6326355B2 (ja) 2014-11-25 2014-11-25 潤滑油組成物

Country Status (1)

Country Link
JP (1) JP6326355B2 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109957440A (zh) * 2019-02-18 2019-07-02 江苏拉雅科技有限公司 柴油机润滑油组合物及其制备方法
CN109957441A (zh) * 2019-02-18 2019-07-02 江苏拉雅科技有限公司 一种柴油机用润滑油及其制备方法
CN110072981A (zh) * 2017-01-16 2019-07-30 三井化学株式会社 汽车齿轮用润滑油组合物
JP2020076056A (ja) * 2018-10-12 2020-05-21 三洋化成工業株式会社 粘度指数向上剤及び潤滑油組成物
WO2020194544A1 (ja) * 2019-03-26 2020-10-01 三井化学株式会社 工業ギア用潤滑油組成物およびその製造方法
WO2020194543A1 (ja) 2019-03-26 2020-10-01 三井化学株式会社 内燃機関用潤滑油組成物およびその製造方法
US20220169938A1 (en) * 2019-03-26 2022-06-02 Mitsui Chemicals, Inc. Lubrication oil composition and method for producing same
CN114574271A (zh) * 2022-03-04 2022-06-03 洛阳轻捷润滑油科技有限公司 一种用于大排量重型摩托车的润滑油及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62121710A (ja) * 1985-11-21 1987-06-03 Mitsui Petrochem Ind Ltd 液状エチレン系ランダム共重合体およびその用途
JP2000351813A (ja) * 1999-04-09 2000-12-19 Mitsui Chemicals Inc エチレン・α−オレフィン共重合体およびその製造方法ならびにその用途
JP2002356693A (ja) * 2001-05-29 2002-12-13 Mitsui Chemicals Inc 潤滑油組成物
JP2002356692A (ja) * 2001-05-29 2002-12-13 Mitsui Chemicals Inc 潤滑油用粘度調整剤および潤滑油組成物
JP2010070593A (ja) * 2008-09-16 2010-04-02 Mitsui Chemicals Inc 低粘度エンジン油組成物
JP2011190377A (ja) * 2010-03-16 2011-09-29 Mitsui Chemicals Inc 潤滑油組成物
JP2013506036A (ja) * 2009-09-28 2013-02-21 三井化学株式会社 潤滑油用粘度調整剤、潤滑油用添加剤組成物、および潤滑油組成物
JP2013129835A (ja) * 2011-12-21 2013-07-04 Infineum Internatl Ltd 潤滑油組成物のための粘度指数向上剤
JP2013249399A (ja) * 2012-06-01 2013-12-12 Mitsui Chemicals Inc α−オレフィン(共)重合体およびそれを含有する潤滑油組成物

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62121710A (ja) * 1985-11-21 1987-06-03 Mitsui Petrochem Ind Ltd 液状エチレン系ランダム共重合体およびその用途
JP2000351813A (ja) * 1999-04-09 2000-12-19 Mitsui Chemicals Inc エチレン・α−オレフィン共重合体およびその製造方法ならびにその用途
US6459005B1 (en) * 1999-04-09 2002-10-01 Mutsui Chemicals, Inc. Ethylene/α-olefin copolymer, method for producing the same, and use thereof
JP2002356693A (ja) * 2001-05-29 2002-12-13 Mitsui Chemicals Inc 潤滑油組成物
JP2002356692A (ja) * 2001-05-29 2002-12-13 Mitsui Chemicals Inc 潤滑油用粘度調整剤および潤滑油組成物
JP2010070593A (ja) * 2008-09-16 2010-04-02 Mitsui Chemicals Inc 低粘度エンジン油組成物
JP2013506036A (ja) * 2009-09-28 2013-02-21 三井化学株式会社 潤滑油用粘度調整剤、潤滑油用添加剤組成物、および潤滑油組成物
JP2011190377A (ja) * 2010-03-16 2011-09-29 Mitsui Chemicals Inc 潤滑油組成物
JP2013129835A (ja) * 2011-12-21 2013-07-04 Infineum Internatl Ltd 潤滑油組成物のための粘度指数向上剤
JP2013249399A (ja) * 2012-06-01 2013-12-12 Mitsui Chemicals Inc α−オレフィン(共)重合体およびそれを含有する潤滑油組成物

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110072981A (zh) * 2017-01-16 2019-07-30 三井化学株式会社 汽车齿轮用润滑油组合物
CN110072981B (zh) * 2017-01-16 2022-02-25 三井化学株式会社 汽车齿轮用润滑油组合物
JP2020076056A (ja) * 2018-10-12 2020-05-21 三洋化成工業株式会社 粘度指数向上剤及び潤滑油組成物
CN109957440A (zh) * 2019-02-18 2019-07-02 江苏拉雅科技有限公司 柴油机润滑油组合物及其制备方法
CN109957441A (zh) * 2019-02-18 2019-07-02 江苏拉雅科技有限公司 一种柴油机用润滑油及其制备方法
CN113574149A (zh) * 2019-03-26 2021-10-29 三井化学株式会社 内燃机用润滑油组合物及其制造方法
WO2020194543A1 (ja) 2019-03-26 2020-10-01 三井化学株式会社 内燃機関用潤滑油組成物およびその製造方法
KR20210139402A (ko) 2019-03-26 2021-11-22 미쓰이 가가쿠 가부시키가이샤 내연 기관용 윤활유 조성물 및 그의 제조 방법
WO2020194544A1 (ja) * 2019-03-26 2020-10-01 三井化学株式会社 工業ギア用潤滑油組成物およびその製造方法
US20220169938A1 (en) * 2019-03-26 2022-06-02 Mitsui Chemicals, Inc. Lubrication oil composition and method for producing same
US20220186134A1 (en) * 2019-03-26 2022-06-16 Mitsui Chemicals, Inc. Lubricating oil composition for internal combustion engines and method for producing the same
CN114574271A (zh) * 2022-03-04 2022-06-03 洛阳轻捷润滑油科技有限公司 一种用于大排量重型摩托车的润滑油及其制备方法
CN114574271B (zh) * 2022-03-04 2023-10-27 洛阳轻捷润滑油科技有限公司 一种用于大排量重型摩托车的润滑油及其制备方法

Also Published As

Publication number Publication date
JP6326355B2 (ja) 2018-05-16

Similar Documents

Publication Publication Date Title
JP6618891B2 (ja) エチレン/α−オレフィン共重合体および潤滑油
JP6326355B2 (ja) 潤滑油組成物
JP6320262B2 (ja) 潤滑油組成物
JP6741790B2 (ja) 自動車ギア用潤滑油組成物
JP6326337B2 (ja) 工業ギア用潤滑油組成物
JP6326340B2 (ja) グリース組成物
JP6392055B2 (ja) 潤滑油組成物
JP2016102157A (ja) 水分散体組成物
JP6326339B2 (ja) 作動油用潤滑油組成物
JP6326354B2 (ja) 潤滑油組成物
JP6490086B2 (ja) 潤滑油組成物
JP6773567B2 (ja) 自動車ギア用潤滑油組成物
JP6326338B2 (ja) 圧縮機油用潤滑油組成物
JP6496523B2 (ja) 潤滑油組成物およびその用途
JP6773566B2 (ja) 自動車ギア用潤滑油組成物
JP6840544B2 (ja) 自動車変速機用潤滑油組成物
JP2023096880A (ja) 自動車変速機用潤滑油組成物
WO2023002947A1 (ja) 潤滑油用粘度調整剤および作動油用潤滑油組成物
WO2023167307A1 (ja) 潤滑油組成物

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180416

R150 Certificate of patent or registration of utility model

Ref document number: 6326355

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250