WO2020194542A1 - 潤滑油組成物およびその製造方法 - Google Patents
潤滑油組成物およびその製造方法 Download PDFInfo
- Publication number
- WO2020194542A1 WO2020194542A1 PCT/JP2019/012997 JP2019012997W WO2020194542A1 WO 2020194542 A1 WO2020194542 A1 WO 2020194542A1 JP 2019012997 W JP2019012997 W JP 2019012997W WO 2020194542 A1 WO2020194542 A1 WO 2020194542A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lubricating oil
- oil composition
- olefin
- ethylene
- carbon atoms
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M169/00—Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
- C10M169/04—Mixtures of base-materials and additives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M143/00—Lubricating compositions characterised by the additive being a macromolecular hydrocarbon or such hydrocarbon modified by oxidation
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M107/00—Lubricating compositions characterised by the base-material being a macromolecular compound
- C10M107/02—Hydrocarbon polymers; Hydrocarbon polymers modified by oxidation
- C10M107/04—Polyethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/04—Polymerisation in solution
- C08F2/06—Organic solvent
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F210/00—Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F210/04—Monomers containing three or four carbon atoms
- C08F210/06—Propene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F210/00—Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F210/16—Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/42—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
- C08F4/44—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
- C08F4/60—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
- C08F4/62—Refractory metals or compounds thereof
- C08F4/64—Titanium, zirconium, hafnium or compounds thereof
- C08F4/659—Component covered by group C08F4/64 containing a transition metal-carbon bond
- C08F4/65912—Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/42—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
- C08F4/44—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
- C08F4/60—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
- C08F4/62—Refractory metals or compounds thereof
- C08F4/64—Titanium, zirconium, hafnium or compounds thereof
- C08F4/659—Component covered by group C08F4/64 containing a transition metal-carbon bond
- C08F4/6592—Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/42—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
- C08F4/44—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
- C08F4/60—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
- C08F4/62—Refractory metals or compounds thereof
- C08F4/64—Titanium, zirconium, hafnium or compounds thereof
- C08F4/659—Component covered by group C08F4/64 containing a transition metal-carbon bond
- C08F4/6592—Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
- C08F4/65922—Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not
- C08F4/65927—Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not two cyclopentadienyl rings being mutually bridged
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M101/00—Lubricating compositions characterised by the base-material being a mineral or fatty oil
- C10M101/02—Petroleum fractions
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M105/00—Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
- C10M105/08—Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen
- C10M105/32—Esters
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M107/00—Lubricating compositions characterised by the base-material being a macromolecular compound
- C10M107/02—Hydrocarbon polymers; Hydrocarbon polymers modified by oxidation
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M107/00—Lubricating compositions characterised by the base-material being a macromolecular compound
- C10M107/02—Hydrocarbon polymers; Hydrocarbon polymers modified by oxidation
- C10M107/06—Hydrocarbon polymers; Hydrocarbon polymers modified by oxidation containing propene
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M107/00—Lubricating compositions characterised by the base-material being a macromolecular compound
- C10M107/20—Lubricating compositions characterised by the base-material being a macromolecular compound containing oxygen
- C10M107/30—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M107/32—Condensation polymers of aldehydes or ketones; Polyesters; Polyethers
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M135/00—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing sulfur, selenium or tellurium
- C10M135/20—Thiols; Sulfides; Polysulfides
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M135/00—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing sulfur, selenium or tellurium
- C10M135/20—Thiols; Sulfides; Polysulfides
- C10M135/22—Thiols; Sulfides; Polysulfides containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M161/00—Lubricating compositions characterised by the additive being a mixture of a macromolecular compound and a non-macromolecular compound, each of these compounds being essential
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/42—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
- C08F4/44—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
- C08F4/60—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
- C08F4/62—Refractory metals or compounds thereof
- C08F4/64—Titanium, zirconium, hafnium or compounds thereof
- C08F4/659—Component covered by group C08F4/64 containing a transition metal-carbon bond
- C08F4/65908—Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an ionising compound other than alumoxane, e.g. (C6F5)4B-X+
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2203/00—Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
- C10M2203/10—Petroleum or coal fractions, e.g. tars, solvents, bitumen
- C10M2203/1006—Petroleum or coal fractions, e.g. tars, solvents, bitumen used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2205/00—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
- C10M2205/02—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
- C10M2205/022—Ethene
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2205/00—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
- C10M2205/02—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
- C10M2205/022—Ethene
- C10M2205/0225—Ethene used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2205/00—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
- C10M2205/02—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
- C10M2205/024—Propene
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2205/00—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
- C10M2205/02—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
- C10M2205/026—Butene
- C10M2205/0265—Butene used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2205/00—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
- C10M2205/02—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
- C10M2205/028—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms
- C10M2205/0285—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/28—Esters
- C10M2207/283—Esters of polyhydroxy compounds
- C10M2207/2835—Esters of polyhydroxy compounds used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/08—Thiols; Sulfides; Polysulfides; Mercaptals
- C10M2219/082—Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2020/00—Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
- C10N2020/01—Physico-chemical properties
- C10N2020/011—Cloud point
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2020/00—Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
- C10N2020/01—Physico-chemical properties
- C10N2020/02—Viscosity; Viscosity index
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2020/00—Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
- C10N2020/01—Physico-chemical properties
- C10N2020/04—Molecular weight; Molecular weight distribution
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/02—Pour-point; Viscosity index
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/06—Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/10—Inhibition of oxidation, e.g. anti-oxidants
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/68—Shear stability
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/04—Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2070/00—Specific manufacturing methods for lubricant compositions
Definitions
- the present invention relates to a lubricating oil composition and a method for producing the same. More specifically, the present invention relates to a lubricating oil composition containing a specific component and mainly used for industrial machinery and transportation machinery, and a method for producing the same.
- one of the countermeasures is to reduce the power consumption and fuel consumption of industrial machinery and transportation machinery in factories and transportation companies.
- further power saving and fuel saving effects are required by various lubricating oils used for these.
- Lubricating oil products generally have a so-called temperature dependence of viscosity, in which the viscosity changes significantly when the temperature changes. Since the operating temperature of equipment in which lubricating oil is used may change significantly, it is preferable that the temperature dependence of viscosity is small. Therefore, for the lubricating oil, a certain polymer soluble in the lubricating oil base is used as the viscosity improving agent for the purpose of reducing the temperature dependence of the viscosity. In recent years, an ⁇ -olefin polymer has been widely used as such a viscosity improver, and various further improvements have been made in order to further improve the performance balance of the lubricating oil.
- Patent Document 1 The viscosity index improver as described above is generally used to maintain an appropriate viscosity at high temperatures.
- a viscosity improver is required.
- In general lubricating oil applications in order to obtain excellent low-temperature characteristics, it is advantageous to keep the concentration of the polymer contained as low as possible, including in terms of economy. Therefore, a polymer having as high a molecular weight as possible.
- the method using is known. However, ⁇ -olefin polymers having a high molecular weight tend to be disadvantageous in terms of shear stability.
- mineral oils are classified into three stages of groups (I) to (III) according to the API quality classification, and poly- ⁇ -olefin (PAO) is group (IV) and others are group (V). ).
- PAO poly- ⁇ -olefin
- group (IV) and others are group (V).
- group (V) poly- ⁇ -olefin
- group (II) and (III) mineral oil or poly-
- the usage rate of synthetic oils such as ⁇ -olefins is increasing.
- long life and high durability are also required for industrial lubricating oil applications, and the above-mentioned group (III) mineral oils or poly- ⁇ -olefins are used.
- shear stability is strongly required as a main parameter of durability. It is difficult to meet the shear stability required here with a conventional high molecular weight type viscosity modifier, and a relatively low molecular weight ⁇ -olefin polymer such as polybutene is used. However, there was room for improvement in the viscosity characteristics of polybutene, especially in sufficient fluidity at low temperatures, depending on the application.
- the extreme pressure agent is a component that chemically reacts with a material forming a friction surface such as a machine to form a pressure resistant film on the friction surface. Since the material of these friction surfaces is often metal, the extreme pressure agent tends to be a highly polar component.
- the problem to be solved by the present invention is to obtain an industrial lubricating oil having excellent compatibility with an extreme pressure agent, an excellent balance between viscosity characteristics and shear stability, and excellent durability and heat-resistant oxidation stability. To provide.
- the present inventors have obtained an ethylene / ⁇ -olefin copolymer produced by using a specific catalyst, and a specific viscosity, viscosity index, and pour point used as needed.
- the present invention has been completed by finding that the above-mentioned problems can be solved by combining a specific extreme pressure agent with one or more synthetic oils and / or mineral oils having the above. ..
- Method ( ⁇ ) It is selected from the group consisting of (a) a crosslinked metallocene compound represented by the following formula 1, (b) (i) an organoaluminum oxy compound, and (ii) a compound that reacts with the crosslinked metallocene compound to form an ion pair.
- R 1 , R 2 , R 3 , R 4 , R 5 , R 8 , R 9 and R 12 are independently hydrogen atoms, hydrocarbon groups or silicon-containing hydrocarbon groups and are adjacent to each other. A plurality of groups are optionally connected to each other to form a ring structure.
- R 6 and R 11 are identical to each other and are hydrogen atoms, hydrocarbon groups or silicon-containing hydrocarbon groups.
- R 7 and R 10 are identical to each other and are hydrogen atoms, hydrocarbon groups or silicon-containing hydrocarbon groups.
- R 6 and R 7 optionally combine with hydrocarbons having 2 to 3 carbon atoms to form a ring structure.
- R 11 and R 10 optionally combine with hydrocarbons having 2 to 3 carbon atoms to form a ring structure.
- R 6 , R 7 , R 10 and R 11 are not hydrogen atoms at the same time;
- Y is a carbon atom or a silicon atom;
- R 13 and R 14 are independently aryl groups;
- M is Ti, Zr or Hf;
- Q is a neutral ligand that can independently coordinate to a halogen, a hydrocarbon group, an anionic ligand or a lone electron pair;
- j is an integer of 1 to 4.
- At least one of the substituents (R 1 , R 2 , R 3 and R 4 ) bonded to the cyclopentadienyl group of the metallocene compound represented by the above formula 1 is a hydrocarbon group having 4 or more carbon atoms.
- the substituent (R 2 or R 3 ) bonded to the 3-position of the cyclopentadienyl group of the metallocene compound represented by the above formula 1 is any of [1] to [3] which is a hydrocarbon group.
- [5] The lubricating oil composition according to [4], wherein the hydrocarbon group (R 2 or R 3 ) bonded to the 3-position of the cyclopentadienyl group of the metallocene compound represented by the above formula 1 is an n-butyl group. object.
- [7] The lubricating oil composition according to any one of [1] to [6], wherein the compound forming an ion pair by reacting with the crosslinked metallocene compound is a compound represented by the following formula 6.
- R e + is, H +, carbenium cation, oxonium cation, ammonium cation, a ferrocenium cation having a phosphonium cation, a cycloheptyltrienyl cation or a transition metal,
- R f ⁇ R i is , Each independently is a hydrocarbon group having 1 to 20 carbon atoms.
- B-1) The kinematic viscosity at 100 ° C.
- the lubricating oil composition according to [10], wherein the component (B) is a synthetic oil (D) that satisfies all of the following requirements (D-1) to (D-3). (D-1) The kinematic viscosity at 100 ° C.
- the lubricating oil composition according to [10], wherein the component (B) is a mineral oil (E) that satisfies all of the following requirements (E-1) to (E-3). (E-1) The kinematic viscosity at 100 ° C.
- the component (B) satisfies all the requirements of the following (C-1) to (C-3) synthetic oil (C) and the following (D-1) to (D-3).
- (C-1) The kinematic viscosity at 100 ° C.
- the viscosity index is 20 to 120 mm 2 / s (C-2)
- the viscosity index is 120 or more (C-3)
- the pour point is -30 ° C or less (D) -1)
- the kinematic viscosity at 100 ° C is 3 to 10 mm 2 / s (D-2)
- the viscosity index is 120 or more (D-3)
- the pour point is -40 ° C or less (E-1) ) The kinematic viscosity at 100 ° C.
- (A) -1) A liquid random copolymer of ethylene and ⁇ -olefin that satisfies all the requirements of (A-5), and (A-1) Containing 40 to 60 mol% of ethylene units and 60 to 40 mol% of ⁇ -olefin units having 3 to 20 carbon atoms (A-2) Measured by gel permeation chromatography (GPC) , 500-10,000 number average molecular weight (Mn), and 3 or less molecular weight distribution (Mw / Mn, Mw is weight average molecular weight) (A-3) 30-5,000 mm 2 / s Have a kinematic viscosity of 100 ° C.
- A-4) Have a flow point of 30 to -45 ° C.
- A-5) Have a bromine value of 0.1 g / 100 g or less
- F At least one adjacent to sulfur
- the lubricating oil composition according to any one of [1] to [17], wherein the lubricating oil composition is a gear oil composition.
- a polymer of ⁇ -olefin having 3 to 6 carbon atoms is mixed, and the kinematic viscosity at 40 ° C. is 450 to 51,000 mm 2 / s, and the sulfur content is 0.1 to 5 parts by weight.
- a method for producing a lubricating oil composition which comprises a step of producing the lubricating oil composition.
- Method ( ⁇ ) It is selected from the group consisting of (a) a crosslinked metallocene compound represented by the following formula 1, (b) (i) an organoaluminum oxy compound, and (ii) a compound that reacts with the crosslinked metallocene compound to form an ion pair.
- R 1 , R 2 , R 3 , R 4 , R 5 , R 8 , R 9 and R 12 are independently hydrogen atoms, hydrocarbon groups or silicon-containing hydrocarbon groups and are adjacent to each other. A plurality of groups are optionally connected to each other to form a ring structure.
- R 6 and R 11 are identical to each other and are hydrogen atoms, hydrocarbon groups or silicon-containing hydrocarbon groups.
- R 7 and R 10 are identical to each other and are hydrogen atoms, hydrocarbon groups or silicon-containing hydrocarbon groups.
- R 6 and R 7 optionally combine with hydrocarbons having 2 to 3 carbon atoms to form a ring structure.
- R 11 and R 10 optionally combine with hydrocarbons having 2 to 3 carbon atoms to form a ring structure.
- R 6 , R 7 , R 10 and R 11 are not hydrogen atoms at the same time;
- Y is a carbon atom or a silicon atom;
- R 13 and R 14 are independently aryl groups;
- M is Ti, Zr or Hf;
- Q is a neutral ligand that can independently coordinate to a halogen, a hydrocarbon group, an anionic ligand or a lone electron pair;
- j is an integer of 1 to 4.
- the lubricating oil composition of the present invention is excellent in compatibility while containing a sulfur compound suitable as an extreme pressure agent, that is, it exhibits a liquid excellent in transparency, and is also excellent in viscosity characteristics and shear stability. It is a lubricating oil composition that is excellent in energy saving and resource saving, and also has excellent durability and heat-resistant oxidation stability. Therefore, it is suitable as an industrial lubricating oil, particularly a gear oil.
- the lubricating oil composition of the present invention is also described as a liquid random copolymer of ethylene and ⁇ -olefin produced by the following method ( ⁇ ) (also referred to as “ethylene / ⁇ -olefin copolymer (A)” in the present specification. ) And a sulfur compound (F) that meets specific requirements.
- ⁇ also referred to as “ethylene / ⁇ -olefin copolymer (A)” in the present specification.
- F sulfur compound
- Method ( ⁇ ) It is selected from the group consisting of (a) a crosslinked metallocene compound represented by the following formula 1, (b) (i) an organoaluminum oxy compound, and (ii) a compound that reacts with the crosslinked metallocene compound to form an ion pair.
- R 1 , R 2 , R 3 , R 4 , R 5 , R 8 , R 9 and R 12 are independently hydrogen atoms, hydrocarbon groups or silicon-containing hydrocarbon groups and are adjacent to each other. A plurality of groups are optionally connected to each other to form a ring structure.
- R 6 and R 11 are identical to each other and are hydrogen atoms, hydrocarbon groups or silicon-containing hydrocarbon groups.
- R 7 and R 10 are identical to each other and are hydrogen atoms, hydrocarbon groups or silicon-containing hydrocarbon groups.
- R 6 and R 7 optionally combine with hydrocarbons having 2 to 3 carbon atoms to form a ring structure.
- R 11 and R 10 optionally combine with hydrocarbons having 2 to 3 carbon atoms to form a ring structure.
- R 6 , R 7 , R 10 and R 11 are not hydrogen atoms at the same time;
- Y is a carbon atom or a silicon atom;
- R 13 and R 14 are independently aryl groups;
- M is Ti, Zr or Hf;
- Q is a neutral ligand that can independently coordinate to a halogen, a hydrocarbon group, an anionic ligand or a lone electron pair;
- j is an integer of 1 to 4.
- the hydrocarbon group has 1 to 20, preferably 1 to 15, more preferably 4 to 10, and means, for example, an alkyl group, an aryl group, or the like, and the aryl group has 6 carbon atoms. It is ⁇ 20, preferably 6 ⁇ 15.
- silicon-containing hydrocarbon group examples include an alkyl group or an aryl group having 3 to 20 carbon atoms containing 1 to 4 silicon atoms, and more specifically, a trimethylsilyl group and a tert-butyldimethylsilyl group. , Triphenylsilyl group and the like.
- the cyclopentadienyl group may be substituted or unsubstituted.
- the substituents (R 1 , R 2 , R 3 and R 4 ) bonded to the cyclopentadienyl group is a hydrocarbon group.
- the substituent (R 1 , R 2 , R 3 and R 4 ) is a hydrocarbon group having 4 or more carbon atoms.
- the substituent (R 2 or R 3 ) bonded to the 3-position of the cyclopentadienyl group is a hydrocarbon group having 4 or more carbon atoms (for example, an n-butyl group).
- R 1 , R 2 , R 3 and R 4 are substituents (ie, not hydrogen atoms), the above substituents may be the same or different, with at least one substituent being carbon. It is preferably a hydrocarbon group of several 4 or more.
- R 6 and R 11 bonded to the fluorenyl group are the same, R 7 and R 10 are the same, but R 6 , R 7 , R 10 and R 11 are simultaneously. Is not a hydrogen atom.
- R 6 nor R 11 is preferably a hydrogen atom, and more preferably all of R 6 , R 7 , R 10 and R 11 are hydrogen. Not an atom.
- R 6 and R 11 attached to the 2- and 7 positions of the fluorenyl group are the same hydrocarbon groups having 1 to 20 carbon atoms, preferably all tert-butyl groups, and R 7 and R 10 are.
- the main chain portion (bonding portion, Y) connecting the cyclopentadienyl group and the fluorenyl group is a single carbon as a structural cross-linking portion that imparts steric rigidity to the crosslinked metallocene compound represented by the formula 1. It is a cross-linked portion of two covalent bonds containing an atom or a silicon atom.
- the crosslinked atom (Y) in the crosslinked portion has two aryl groups (R 13 and R 14 ) which may be the same or different. Therefore, the cyclopentadienyl group and the fluorenyl group are bonded by a covalently bonded cross-linked portion containing an aryl group.
- aryl groups include phenyl groups, naphthyl groups, anthracenyl groups, and substituted aryl groups, which are substituents on one or more aromatic hydrogens (sp type 2 hydrogen) of phenyl, naphthyl or anthracenyl groups. It is formed by substitution.).
- substituent contained in the substituted aryl group include a hydrocarbon group having 1 to 20 carbon atoms, a silicon-containing hydrocarbon group having 1 to 20 carbon atoms, a halogen atom and the like, and a phenyl group is preferable.
- R 13 and R 14 are preferably the same from the viewpoint of ease of production.
- Q is preferably a halogen atom or a hydrocarbon group having 1 to 10 carbon atoms.
- the halogen atom include fluorine, chlorine, bromine and iodine
- examples of the hydrocarbon group having 1 to 10 carbon atoms include methyl, ethyl, n-propyl, isopropyl, 2-methylpropyl and 1,1-dimethylpropyl.
- Examples include compounds in which the zirconium atom of these compounds is replaced with a hafnium atom or compounds in which a chloro ligand is replaced with a methyl group, but the crosslinked metallocene compound (a) is not limited to these examples.
- organoaluminum oxy compound used in the catalyst system in the present invention conventional aluminoxane can be used.
- a linear or cyclic aluminoxane represented by the following formulas 2 to 5 can be used.
- the organoaluminum oxy compound may contain a small amount of the organoaluminum compound.
- R is independently a hydrocarbon group having 1 to 10 carbon atoms
- Rx is independently a hydrocarbon group having 2 to 20 carbon atoms
- m and n are independently 2 or more. It is preferably an integer of 3 or more, more preferably 10 to 70, and most preferably 10 to 50.
- R c is a hydrocarbon group having 1 to 10 carbon atoms
- R d is independently a hydrogen atom, a halogen atom or a hydrocarbon group having 1 to 10 carbon atoms.
- R is a methyl group (Me) of an organoaluminum oxy compound conventionally called "methylaluminoxane”.
- methylaluminoxane Since the methylaluminoxane is easily available and has high polymerization activity, it is generally used as an activator in polyolefin polymerization.
- methylaluminoxane has been used as a solution of environmentally undesirable aromatic hydrocarbons such as toluene or benzene because it is difficult to dissolve in saturated hydrocarbons. Therefore, in recent years, as an aluminoxane dissolved in a saturated hydrocarbon, a flexible body of methylaluminoxane represented by the formula 4 has been developed and used.
- the modified methylaluminoxane represented by the formula 4 is prepared using alkylaluminum other than trimethylaluminum and trimethylaluminum as shown in US Pat. No. 4,960,878 and US Pat.
- No. 5,041,584, for example. Prepared using trimethylaluminum and triisobutylaluminum.
- Aluminoxane having Rx as an isobutyl group is commercially available in the form of a saturated hydrocarbon solution under the trade names of MMAO and TMAO. (See Tosoh Finechem Corporation, Tosoh Research & Technology Review, Vol 47, 55 (2003)).
- Examples of the compound (ii) that reacts with the crosslinked metallocene compound to form an ion pair (hereinafter, referred to as “ionic compound” as necessary) contained in the catalyst system include Lewis acid, an ionic compound, and borane.
- Bolan compounds and carborane compounds can be used, and these are Korean Patent No. 10-0551147, JP-A-1-501950, JP-A-3-179005, JP-A-3-179006, JP-A-3-207703. It is described in Japanese Patent Application Laid-Open No. 3-207704, US Patent No. 5321106, and the like.
- a heteropoly compound, an isopoly compound, or the like can be used, and the ionic compound described in JP-A-2004-51676 can be used.
- the ionic compound may be used alone or in admixture of two or more. More specifically, examples of Lewis acids include compounds represented by BR 3 (R is fluoride, substituted or unsubstituted alkyl groups having 1 to 20 carbon atoms (such as methyl groups), substituted or substituted.
- An unsubstituted aryl group having 6 to 20 carbon atoms can be mentioned, and examples thereof include trifluoroborone, triphenylboron, tris (4-fluorophenyl) boron, and tris (3,5-difluoro). Examples include phenyl) boron, tris (4-fluorophenyl) boron, tris (pentafluorophenyl) boron, and tris (p-tolyl) boron.
- the ionic compound is used, the amount used and the amount of sludge generated are relatively small as compared with the organoaluminum oxy compound, which is economically advantageous.
- the compound represented by the following formula 6 is preferably used as the ionic compound.
- R e + is H +, carbenium cation, oxonium cation, ammonium cation, a ferrocenium cation having a phosphonium cation, cycloheptyltrienyl cation, or a transition metal
- R f ⁇ R i is Each is independently an organic group, preferably a hydrocarbon group having 1 to 20 carbon atoms, more preferably an aryl group, for example, a pentafluorophenyl group.
- Examples of the carbenium cation include tris (methylphenyl) carbenium cation, tris (dimethylphenyl) carbenium cation and the like, and examples of the ammonium cation include dimethylanilinium cation and the like.
- the compound represented by the above formula 6 is preferably N, N-dialkylanilinium salt, specifically N, N-dimethylanilinium tetraphenylborate, N, N-dimethylanilinium tetrakis (pentafluorophenyl).
- N, N-Dimethylanilinium Tetraphenyl (3,5-Ditrifluoromethylphenyl) Borate, N, N-Diethylanilinium Tetraphenyl Borate, N, N-Diethylanilinium Tetraphenyl (Pentafluorophenyl) Borate, N, N-diethylanilinium tetrakis (3,5-ditrifluoromethylphenyl) borate, N, N-2,4,6-pentamethylanilinium tetraphenylborate, N, N-2,4,6-pentamethylanilinium Examples include tetrakis (pentafluorophenyl) borate.
- the catalyst system used in the present invention further contains (c) an organoaluminum compound, if necessary.
- the organoaluminum compound plays a role of activating the crosslinked metallocene compound, the organoaluminum oxy compound, the ionic compound and the like.
- organoaluminum compound preferably, organoaluminum represented by the following formula 7 and a complex alkylated product of a Group 1 metal represented by the following formula 8 and aluminum can be used.
- M 2 AlR a 4 ...
- Ra is a hydrocarbon group having 1 to 15 carbon atoms, preferably 1 to 4 carbon atoms.
- organoaluminum compound represented by the formula 7 examples include easily available trimethylaluminum and triisobutylaluminum.
- alkyl complex compound of the Group 1 metal represented by the formula 8 and aluminum examples include LiAl (C 2 H 5 ) 4 , LiAl (C 7 H 15 ) 4, and the like.
- a compound similar to the compound represented by the formula 7 can be used.
- an organoaluminum compound in which at least two aluminum compounds are bonded via a nitrogen atom such as (C 2 H 5 ) 2 AlN (C 2 H 5 ) Al (C 2 H 5 ) 2 , can be used.
- the amount of the (a) crosslinked metallocene compound represented by the formula 1 is preferably 5 to 50% by weight based on the total catalyst composition. Is. And preferably, (b) (i) the amount of the organoaluminum oxy compound is 50 to 500 equivalents with respect to the number of moles of the crosslinked metallocene compound used, and (b) (ii) react with the crosslinked metallocene compound.
- the amount of the compound forming an ion pair is 1 to 5 equivalents with respect to the number of moles of the crosslinked metallocene compound used, and (c) the amount of the organoaluminum compound is the number of moles of the crosslinked metallocene compound used. 5 to 100 equivalents.
- the catalyst system used in the present invention may have, for example, the following [1] to [4].
- [1] A crosslinked metallocene compound represented by the formula 1 (a), and (b) (i) an organoaluminum oxy compound
- [2] a crosslinked metallocene compound represented by the formula 1 (b) (i) organic. Aluminum oxy compounds, and (c) organoaluminum compounds.
- [3] A crosslinked metallocene compound represented by the formula 1 (a), (b) (ii) a compound that reacts with the crosslinked metallocene compound to form an ion pair, and (c) an organoaluminum compound.
- [4] A crosslinked metallocene compound represented by (a) formula 1, (b) (i) an organoaluminum oxy compound, and (ii) a compound that reacts with the crosslinked metallocene compound to form an ion pair.
- the crosslinked metallocene compound represented by the formula 1 (component (a)), (b) (i) organoaluminum oxy compound (component (b)), (ii) react with the crosslinked metallocene compound to form an ion pair.
- the organoaluminum compound (component (c)) is introduced into the starting material monomer (mixture of ethylene and ⁇ -olefin having 3 to 20 carbon atoms) in an arbitrary order. May be good.
- the components (a), (b) and / or (c) are introduced alone or in any order into a polymerization reactor packed with raw material monomers.
- at least two of the components (a), (b) and / or (c) are mixed, and then the mixed catalyst composition is introduced into a polymerization reactor packed with raw material monomers.
- the ethylene- ⁇ -olefin copolymer (C) is prepared by solution polymerization of ethylene and an ⁇ -olefin having 3 to 20 carbon atoms under the catalyst system.
- the ⁇ -olefin having 3 to 20 carbon atoms include linear ⁇ -olefins such as propylene, 1-butene, 1-pentene and 1-hexene, isobutylene, 3-methyl-1-butene and 4-methyl-1-.
- One or more of branched ⁇ -olefins such as penten and mixtures thereof can be used.
- one or more ⁇ -olefins having 3 to 6 carbon atoms can be used, and more preferably propylene can be used.
- the solution polymerization can be carried out by using an inert solvent such as propane, butane or hexane, or the olefin monomer itself as a medium.
- an inert solvent such as propane, butane or hexane, or the olefin monomer itself as a medium.
- the copolymerization temperature is usually 80 to 150 ° C., preferably 90 to 120 ° C.
- the copolymerization pressure is usually atmospheric pressure to 500 kgf / cm 2 .
- the pressure is preferably atmospheric pressure to 50 kgf / cm 2 , and these may vary depending on the reaction material, reaction conditions, and the like.
- Polymerization can be carried out in batch, semi-continuous or continuous, preferably continuous.
- the ethylene- ⁇ -olefin copolymer (C) has a liquid phase at room temperature and has a structure in which ⁇ -olefin units are uniformly distributed in the copolymer chain.
- the ethylene- ⁇ -olefin copolymer (C) contains, for example, 60-40 mol%, preferably 45-55 mol%, ethylene units derived from ethylene, and, for example, 40-60 mol%, preferably 45-55 mol%. It contains 55 mol% of 3 to 20 carbon ⁇ -olefin units derived from 3 to 20 carbon ⁇ -olefins.
- the number average molecular weight (Mn) of the ethylene- ⁇ -olefin copolymer (C) is, for example, 500 to 10,000, preferably 800 to 6,000, and the molecular weight distribution (Mw / Mn, Mw are weight average molecular weights). ) Is, for example, 3 or less, preferably 2 or less.
- the number average molecular weight (Mn) and molecular weight distribution (Mw / Mn) are measured by gel permeation chromatography (GPC).
- the ethylene- ⁇ -olefin copolymer (A) has a kinematic viscosity at 100 ° C. of, for example, 30 to 5,000, preferably 50 to 3,000 mm 2 / s, for example, 30 to -45 ° C., preferably 20 to -35. It has a pour point of ° C., for example, a bromine value of 0.1 g / 100 g or less.
- the crosslinked metallocene compound represented by the formula 1 has a particularly high polymerization activity against the copolymerization of ethylene and ⁇ -olefin, and by using this crosslinked metallocene compound, the polymerization is selectively stopped by introducing hydrogen to the molecular terminal. The unsaturated bond of the obtained ethylene- ⁇ -olefin copolymer (A) is reduced. Further, since the ethylene- ⁇ -olefin copolymer (A) has high random copolymerizability, it has a controlled molecular weight distribution and is excellent in shear stability and viscosity characteristics.
- the lubricating oil composition containing the ethylene / ⁇ -olefin copolymer used in the present invention has an excellent balance between viscosity characteristics and shear stability, and is also excellent in durability and heat-resistant oxidation stability.
- Other lubricating oil materials can be used in the present invention as needed.
- the component (B) that satisfies all of the following requirements (B-1) to (B-3) can be used.
- the kinematic viscosity at 100 ° C. is 3 to 120 mm 2 / s, preferably 4 to 110 mm 2 / s.
- the viscosity index is 90 or more, preferably 95 or more (B-).
- the pour point is -10 ° C or lower, preferably -15 ° C or lower.
- the component (B) is a component other than the ethylene / ⁇ -olefin copolymer (A) and the ⁇ -olefin polymer (G) having 3 to 6 carbon atoms.
- a lubricating oil material examples include synthetic oils and mineral oils such as the following components (C) to (E).
- the mineral oil (E) used as needed in the present invention is known as a so-called lubricating oil base material.
- Lubricating oil substrates are defined by the API (American Petroleum Institute) classification and are classified into each group. Table 1 shows the characteristics of the lubricating oil base material.
- Mineral oil as a lubricating oil base material is generally used after undergoing a refining process such as dewaxing, and is composed of three grades depending on the refining method.
- the mineral oil (E) has the following characteristics (E-1) to (E-3) and belongs to the groups (I) to (III) of the API quality classification, preferably (III). It is preferably a high viscosity index mineral oil refined by a method or the like.
- the kinematic viscosity at 100 ° C. is 3 to 40 mm 2 / s, preferably 5 to 35 mm 2 / s.
- the viscosity index is 90 or more, preferably 95 or more (E-).
- the pour point is -10 ° C or lower, preferably -15 ° C or lower.
- the synthetic oil (D) used as necessary in the present invention has the following characteristics (D-1) to (D-3).
- Poly ⁇ -olefin (PAO) having a relatively low viscosity and / or a polyol ester or a fatty acid ester is preferable.
- the kinematic viscosity at 100 ° C. is 3 to 10 mm 2 / s, preferably 4 to 8 mm 2 / s.
- the viscosity index is 120 or more, preferably 125 or more (D-).
- the pour point is ⁇ 40 ° C. or lower, preferably ⁇ 50 ° C. or lower.
- the poly- ⁇ -olefin (PAO) belonging to group (IV) in Table 1 uses ⁇ -olefin having 8 or more carbon atoms as a raw material monomer at least. Examples of the hydrocarbon polymer obtained by polymerization include polydecene obtained by polymerizing decene-1. Such a poly- ⁇ -olefin is a more preferred embodiment of the synthetic oil (D).
- Such ⁇ -olefin oligomers can be produced by Ziegler catalyst, cationic polymerization catalyzed by Lewis acid, thermal polymerization, or radical polymerization. Of course, it can also be obtained by polymerizing the corresponding olefin in the presence of the catalyst described in Patent Document 1 described above.
- Examples of the base oil belonging to the group (V) in Table 1 include alkylbenzenes, alkylnaphthalene, and ester oils.
- Alkylbenzenes and alkylnaphthalene are usually mostly dialkylbenzenes or dialkylnaphthalene having an alkyl chain length of 6 to 14 carbon atoms, and such alkylbenzenes or alkylnaphthalene are free of benzene or naphthalene and olefins.
- the alkylated olefin used in the production of alkylbenzenes or alkylnaphthalene may be a linear or branched olefin or a combination thereof.
- Esters include monoesters made from monobasic acids and alcohols; diesters made from dibasic acids and alcohols, or diols and monobasic acids or acid mixtures; diols, triols (eg, trimethylolpropane). ), Tetraol (for example, pentaerythritol), hexaol (for example, dipentaerythritol) and the like, and a polyol ester produced by reacting a monobasic acid or an acid mixture with each other.
- esters examples include tridecylpelargonate, di-2-ethylhexyl adipate, di-2-ethylhexyl azelate, trimethylolpropane triheptanoate, pentaerythritol tetraheptanoate and the like.
- the synthetic oil (C) used as needed in the present invention is a poly- ⁇ -olefin (PAO) that satisfies the following characteristics (C-1) to (C-3) and belongs to the group (IV).
- a synthetic oil such as an ester belonging to the group (V) may be contained.
- the kinematic viscosity at 100 ° C. is 20 to 120 mm2 / s, preferably 30 to 110 mm 2 / s.
- the viscosity index is 120 or more, preferably 130 or more (C-3).
- the flow point is ⁇ 30 ° C. or lower, preferably ⁇ 35 ° C. or lower.
- the components (B) preferably used as the low-viscosity lubricating oil base material in the present invention are synthetic oils (C) and (D).
- the mineral oil (E) is composed of one or more kinds of components selected from the mineral oil (E), and may be one or more kinds of each of the synthetic oil (C), (D) and the mineral oil (E), or the synthetic oil ( It may be a mixture of C) or (D) and mineral oil (E).
- the sum of the ethylene / ⁇ -olefin copolymer (A) and the sulfur compound (F) described later is 100 parts by weight, preferably 2 to 80 parts by weight, more preferably.
- the saturated hydrocarbon content of the above components (A) to (E) with respect to the entire hydrocarbon component is preferably 80% by weight or more. It is more preferably 90% or more, further preferably 95% or more, and particularly preferably 96% or more.
- the ⁇ -olefin polymer (G) having 3 to 6 carbon atoms used as needed in the present invention is an ⁇ -olefin having a structural unit of more than 70 mol% of the ⁇ -olefin selected from the ⁇ -olefins having 3 to 6 carbon atoms.
- the entire lubricating oil composition is 100 parts by weight, it is a polymer, and is 15 parts by weight or less, preferably 12 parts by weight or less, more preferably 10 parts by weight or less, still more preferably 5 parts by weight or less, and particularly preferably 2 parts by weight. It is less than the weight part.
- the preferred lower limit is 0 parts by weight.
- the sulfur compound (F) used in the present invention is characterized in that the carbon atom adjacent to sulfur is a secondary to tertiary carbon.
- Examples of such a carbon-containing substituent include an isopropyl group (i-Pr), an s-butyl group (s-Bu), a t-butyl group (t-Bu), a 2-hexyl group, a 3-hexyl group, and 2 -Methyl-2-pentyl group, 3-methyl-3-pentyl group and the like can be mentioned.
- the sulfur compound (F) having a substituent having such a structure is generally used as an extreme pressure agent, and has a surprisingly strong polarity while maintaining the above-mentioned ethylene / ⁇ -olefin copolymer (the above-mentioned ethylene / ⁇ -olefin copolymer). It is possible to form a lubricating oil composition having good compatibility with A) and excellent transparency. Further, the sulfur compound (F) does not easily lose its compatibility even if various oil agents have high viscosities, and tends to easily obtain a highly transparent product as a lubricating oil composition described later. It is considered that this compatibility between compatibility and polarity is derived from the structure of the bulky hydrocarbon-containing substituent.
- the sulfur compound (F) used in the present invention has a carbon atom number ratio to sulfur of preferably 1.5 to 20, more preferably 1.8 to 15, and particularly preferably 2 to 10. Since the sulfur compound satisfying such a range has a strong polarity, it is considered that it has a strong interaction with the surface of a gear of a metal device, for example, and can form a strong film.
- the polarity may be insufficient, while if the atomic number ratio is too low, the compatibility with the ethylene / ⁇ -olefin copolymer (A) may decrease.
- a compound having a structure having the above-mentioned secondary to tertiary structure hydrocarbon substituents at both ends of the sulfur chain can be mentioned as a preferable example.
- the lubricating oil composition of the present invention has a sulfur content of 0.1 to 5 parts by weight, preferably 0.5 to 4 parts by weight, more preferably 0.5 parts by weight, when the total amount of the lubricating oil composition is 100 parts by weight. It is 1 to 3 parts by weight.
- the lubricating oil composition of the present invention contains the ethylene / ⁇ -olefin copolymer (A) and is selected from synthetic oil (C), synthetic oil (D), mineral oil (E) and the like, if necessary. It is preferable to contain the component (B) containing at least one type. Further, the lubricating oil composition of the present invention contains the sulfur compound (F). These content ratios are as described above.
- the lubricating oil composition of the present invention contains, if necessary, known additives such as a pour point lowering agent, an extreme pressure agent, an antiwear additive, an oily agent, an antioxidant, a rust inhibitor, and a corrosion inhibitor. It can be blended in a ratio of 20 parts by weight or less with respect to parts by weight.
- Such a lubricating oil composition is characterized by exhibiting excellent viscosity characteristics and shear stability in a well-balanced manner.
- Examples of the flow point lowering agent include a polymer or copolymer of alkyl methacrylate, a polymer or copolymer of alkyl acrylate, a polymer or copolymer of alkyl fumarate, and a polymer or copolymer of alkyl maleate. , Alkyl aromatic compounds and the like.
- a polymethacrylate-based pour point lowering agent which is a pour point lowering agent containing a polymer or copolymer of alkyl methacrylate, is particularly preferable, and the alkyl group of alkyl methacrylate preferably has 12 to 20 carbon atoms and its content.
- pour point depressants are commercially available as pour point depressants.
- commercially available brand names include Sanyo Kasei Co., Ltd.'s Acluve 146 and Acluve 136, Toho Chemical Co., Ltd.'s Leblanc 141, Leblanc 171 and the like.
- These components can be used by dissolving or diluting them in mineral oil, esters, etc.
- the preferred concentration is 10 to 80%, more preferably 30 to 70%.
- Examples of extreme pressure agents include olefin sulfides, fats and oils sulfides, sulfides, phosphate esters, phosphite esters, phosphate ester amine salts, phosphite ester amine salts, and the like, in addition to the above-mentioned sulfur compounds.
- These components can be used by being dissolved or diluted in an ester or a solvent containing the above-mentioned olefin polymer.
- the preferred concentration is 10 to 80%, more preferably 30 to 70%.
- friction modifier examples include organometallic friction modifiers typified by organic molybdenum compounds such as molybdenum dithiophosphate and molybdenum dithiocarbamate.
- These components can be used by being dissolved in an ester or the like or diluted.
- the preferred concentration is 10 to 80%, more preferably 30 to 70%.
- oily agent examples include fatty acids having an alkyl group having 8 to 22 carbon atoms, fatty acid esters, higher alcohols and the like.
- antioxidants include phenolic antioxidants such as 2,6-di-t-butyl-4 methylphenol; amine-based antioxidants such as dioctyldiphenylamine.
- defoaming agent examples include silicon-based defoaming agents such as dimethylsiloxane and silica gel dispersion; alcohol and ester-based defoaming agents.
- These components can be used by being dissolved in an ester or the like or diluted.
- the preferred concentration is 10 to 80%, more preferably 30 to 70%.
- rust preventive agent examples include carboxylic acid, carboxylic acid salt, ester, phosphoric acid and the like.
- corrosion inhibitor examples include benzotriazole and its derivatives, thiazole compounds and the like.
- examples of the corrosion inhibitor include benzotriazole-based, thiadiazole-based, and imidazole-based compounds.
- the lubricating oil composition of the present invention is particularly excellent in viscosity characteristics and shear stability, and is also excellent in durability and heat-resistant oxidation stability, and is effective as an industrial lubricating oil.
- the lubricating oil composition of the present invention has a kinematic viscosity at 40 ° C. in the range of 450 to 51,000 mm2 / s.
- the industrial lubricating oil has a viscosity range of ISO-500 to ISO-46,000, and is particularly effective as an open gear oil.
- the lubricating oil composition of the present invention can be suitably used as an industrial lubricating oil for various industrial machines and transportation machines. It is particularly suitable for gear oil. Further, it can be suitably used as a gear oil for construction machinery.
- the lubricating oil composition of the present invention is expected to be excellent in the ability to form a film on a metal surface, has high lubricating performance, and can be a lubricating oil having excellent transparency even at low temperatures. With continuous use, the transparency tends to decrease gradually, but on the contrary, the transparency can be used as an index of deterioration and replacement time. Therefore, transparency is also one of the important performances for lubricating oil.
- P E represents the molar fraction of the ethylene component
- P O is ⁇ - olefin indicates molar fraction of component
- the molar fraction of P OE is the total dyad chain ethylene - ⁇ - olefin chain Shows the rate.
- a sample concentration of 50 to 60 mg / 0.5 mL and a measurement temperature of room temperature to 120 ° C. were appropriately selected.
- the observation nucleus is 1 H (400 MHz)
- the sequence is a single pulse
- the pulse width is 5.12 ⁇ sec (45 ° pulse)
- the repetition time is 7.0 seconds
- the number of integrations is 500 or more
- 7.10 ppm is the standard for chemical shift. Measured as a value. Peaks such as 1H derived from vinyl groups, methyl groups, etc. were assigned by a conventional method, and the saturated hydrocarbon content was calculated together with the above-mentioned ethylene content results.
- ISO6800 Formulation was made so that the kinematic viscosity (40 ° C.) was 6800 ⁇ 680 mm 2 / s.
- ISO 10000 The mixture was prepared so that the kinematic viscosity (40 ° C.) was 10000 ⁇ 1000 mm 2 / s.
- Liquid Chromatography Equipment Waters 515 HPLC Pump Sampling equipment: Waters 717plus Autosampler equipment Mobile phase: THF (stabilizer-containing, liquid chromatography grade) Column: One PL MIXED-D and one PL 500 ⁇ were connected in series.
- Shear stability is a measure of kinematic viscosity loss due to shearing of the copolymer component in the lubricating oil at the metal sliding part and breaking of the molecular chain.
- Score A Transparent
- Score B Slightly cloudy
- Score C Cloudy
- Extreme pressure agent analysis (GC / MS method) The structure of the sulfur compound contained in the extreme pressure agent was measured by the so-called GC / MS method in which gas chromatography and a mass spectrometer were used in combination. The measurement conditions are as follows. Equipment: JMs-Q1000GC K9 type equipment manufactured by JEOL Ltd. Column: DB5MS + DG (inner diameter: 0.25 mm, length: 30 m) Column temperature control pattern: The temperature was maintained at 40 ° C. for 3 minutes, the temperature was raised at a rate of 10 ° C./min, and after reaching 320 ° C., the temperature was maintained for 29 minutes to complete the process.
- Heat-resistant oxidation stability was based on the method of the lubricating oil acid value stability test for internal combustion engines described in JIS K2514, and the lacquer degree after 72 hours of the test time was evaluated.
- Table 2 summarizes the components such as the lubricating oil base used in Examples and Comparative Examples.
- dienyl) a (eta 5-2,7-di -t- butyl-fluorenyl)] zirconium dichloride 0.00230mmol polymerization was initiated by charging the polymerization reactor those premixed for at least 15 minutes in toluene After that, continuous supply of ethylene, propylene, and hydrogen was continued, and polymerization was carried out at 50 ° C. for 15 minutes. After stopping the polymerization by adding a small amount of isobutyl alcohol into the system, the unreacted monomer was purged.
- the obtained polymer solution was washed 3 times with 100 mL of 0.2 mol / l hydrochloric acid and then 3 times with 100 mL of distilled water, dried with magnesium sulfate, and the solvent was distilled off under reduced pressure.
- the obtained polymer was 80. It was dried overnight under reduced pressure at ° C. to obtain 1.43 g of an ethylene-propylene copolymer.
- the ethylene content of the obtained polymer (polymer 1) was 52.4 mol%, Mw was 13,600, and Mw / The Mn was 1.9, the B value was 1.2, and the kinematic viscosity at 100 ° C. was 2,000 mm 2 / s.
- the obtained polymer solution was washed 3 times with 100 mL of 0.2 mol / l hydrochloric acid and then 3 times with 100 mL of distilled water, dried over magnesium sulfate, and the solvent was evaporated under reduced pressure.
- the obtained polymer was dried under reduced pressure at 80 ° C. overnight to obtain 1.43 g of an ethylene-propylene copolymer.
- the ethylene content of the obtained polymer (polymer 2) is 52.1 mol%, Mw is 13,800, Mw / Mn is 2.0, B value is 1.2, and 100 ° C. kinematic viscosity is 2,000 mm. It was 2 / s.
- the polymerization was stopped by adding a small amount of isobutyl alcohol into the system, and then the unreacted monomer was purged.
- the obtained polymer solution was added to 0.2 mol / mol /.
- the mixture was washed 3 times with 100 mL of 1 hydrochloric acid and then 3 times with 100 mL of distilled water, dried with magnesium sulfate, and the solvent was distilled off under reduced pressure.
- the obtained polymer was dried overnight under reduced pressure at 80 ° C. and ethylene-propylene. 0.77 g of the copolymer was obtained.
- the ethylene content of the obtained polymer (polymer 3) was 48.8 mol%, Mw was 4,100, Mw / Mn was 1.7, and B value was 1.2.
- the kinematic viscosity at 100 ° C. was 100 mm 2 / s.
- the obtained polymer solution was washed 3 times with 100 mL of 0.2 mol / l hydrochloric acid and then 3 times with 100 mL of distilled water, dried over magnesium sulfate, and the solvent was evaporated under reduced pressure.
- the obtained polymer was dried under reduced pressure at 80 ° C. overnight to obtain 0.77 g of an ethylene-propylene copolymer.
- the ethylene content of the obtained polymer (polymer 4) was 48.7 mol%, Mw was 4,200, Mw / Mn was 1.8, B value was 1.2, and 100 ° C. kinematic viscosity was 100 mm 2 / s. there were.
- Example 1 As the ethylene / propylene copolymer (A) as a viscosity modifier, 93.0% by weight of the polymer 3 obtained in Polymerization Example 3 is a polyol ester classified into the API group (V) (TMTC manufactured by BFS). Was blended with 5.0% by weight and 2.0% by weight of an extreme pressure agent HITEC TM -3339 (manufactured by AFTON) was blended to prepare a viscosity equivalent to ISO1000. Table 3 shows the physical properties of the lubricating oil of the compounded oil.
- V API group
- Example 2 As the ethylene / propylene copolymer (A), the polymer 1 obtained in Polymerization Example 1 was 9.5% by weight, the polymer 3 obtained in Polymerization Example 3 was 83.5% by weight, and the synthetic oil (D). As a result, 5.0% by weight of a polyol ester (TMTC manufactured by BFS) and 2.0% by weight of an extreme pressure agent HITEC (trademark) -3339 (manufactured by AFTON) were blended to prepare a viscosity equivalent to ISO2200. Table 3 shows the physical properties of the lubricating oil of the compounded oil.
- TMTC polyol ester
- HITEC extreme pressure agent
- Example 3 As the ethylene / propylene copolymer (A), 28.0% by weight of the copolymer 1 obtained in Polymerization Example 1 and 65.0% by weight of the polymer 3 obtained in Polymerization Example 3 were used. It was blended in the same manner as in Example 2 and adjusted to a viscosity equivalent to ISO3200. Table 3 shows the physical properties of the lubricating oil of the compounded oil.
- Example 4 Examples of the ethylene / propylene copolymer (A) except that the polymer 1 obtained in Polymerization Example 1 was used in an amount of 48.0% by weight and the polymer 3 obtained in Polymerization Example 3 was used in an amount of 45.0% by weight. It was blended in the same manner as in 2 to prepare a viscosity equivalent to ISO6800. Table 3 shows the physical properties of the lubricating oil of the compounded oil.
- Example 5 As the ethylene / propylene copolymer (A), the polymer 1 obtained in Polymerization Example 1 was 4.0% by weight, the polymer 3 obtained in Polymerization Example 3 was 84.0% by weight, and the synthetic oil (D) was used. As a result, 10.0% by weight of poly- ⁇ -olefin (NEXBASE 2006 manufactured by CHEVRON) and 2.0% by weight of an extreme pressure agent HITEC TM -3339 (manufactured by AFTON) were blended to prepare a viscosity equivalent to ISO1000. Table 3 shows the physical properties of the lubricating oil of the compounded oil.
- poly- ⁇ -olefin NEXBASE 2006 manufactured by CHEVRON
- HITEC TM -3339 manufactured by AFTON
- Example 6 Examples of the ethylene / propylene copolymer (A) except that the polymer 1 obtained in Polymerization Example 1 was used in an amount of 30.0% by weight and the polymer 3 obtained in Polymerization Example 3 was used in an amount of 58.0% by weight. It was blended in the same manner as in No. 5 to prepare a viscosity equivalent to ISO3200. Table 3 shows the physical properties of the lubricating oil of the compounded oil.
- Example 7 As the ethylene / propylene copolymer (A), the polymer 1 obtained in Polymerization Example 1 was 10.0% by weight, the polymer 3 obtained in Polymerization Example 3 was 73.0% by weight, and the synthetic oil (D). As a result, 10.0% by weight of poly- ⁇ -olefin (NEXBASE 2006 manufactured by CHEVRON), 5.0% by weight of polyol ester (TMTC manufactured by BFS), and extreme pressure agent HITEC (trademark) -3339 (manufactured by AFTON) were added. 0% by weight was blended to prepare a viscosity equivalent to ISO1000. Table 3 shows the physical properties of the lubricating oil of the compounded oil.
- TMTC polyol ester
- HITEC extreme pressure agent HITEC
- Example 8 Examples of the ethylene / propylene copolymer (A) except that the polymer 1 obtained in Polymerization Example 1 was used in an amount of 30.0% by weight and the polymer 3 obtained in Polymerization Example 3 was used in an amount of 53.0% by weight. It was blended in the same manner as in No. 7 to prepare a viscosity equivalent to ISO2200. Table 3 shows the physical properties of the lubricating oil of the compounded oil.
- Example 9 As the ethylene / propylene copolymer (A), the polymer 1 obtained in Polymerization Example 1 was 18.0% by weight, and as the synthetic oil (C), a high-viscosity poly ⁇ -olefin (DURASYN180 manufactured by INEOS) was 80.0. A viscosity equivalent to ISO2200 was prepared by blending 2.0% by weight and 2.0% by weight of an extreme pressure agent HITEC TM -3339 (manufactured by AFTON). Table 3 shows the physical properties of the lubricating oil of the compounded oil.
- HITEC TM -3339 manufactured by AFTON
- Example 10 As the ethylene / propylene copolymer (A), the polymer 1 obtained in Polymerization Example 1 was 27.0% by weight, and as the synthetic oil (C), a high-viscosity poly ⁇ -olefin (DURASYN180 manufactured by INEOS) was 71.0. It was blended in the same manner as in Example 9 except that it was used in% by weight, and the viscosity was adjusted to ISO 3200. Table 3 shows the physical properties of the lubricating oil of the compounded oil.
- Example 11 As the ethylene / propylene copolymer (A), the polymer 1 obtained in Polymerization Example 1 was 20.0% by weight, and as the synthetic oil (C), a high-viscosity poly ⁇ -olefin (DURASYN180 manufactured by INEOS) was 73.0. ISO2200 equivalent by blending 5.0% by weight of polyol ester (TMTC manufactured by BFS) and 2.0% by weight of extreme pressure agent HITEC TM -3339 (manufactured by AFTON) as synthetic oil (D). Adjusted to viscosity. Table 3 shows the physical properties of the lubricating oil of the compounded oil.
- TMTC polyol ester
- HITEC TM -3339 manufactured by AFTON
- Example 12 As the ethylene / propylene copolymer (A), the polymer 1 obtained in Polymerization Example 1 was 30.0% by weight, and as the synthetic oil (C), a high-viscosity poly ⁇ -olefin (DURASYN180 manufactured by INEOS) was 63.0. It was blended in the same manner as in Example 11 except that it was used in% by weight, and the viscosity was adjusted to ISO 3200. Table 3 shows the physical properties of the lubricating oil of the compounded oil.
- Example 13 As the ethylene / propylene copolymer (A), the polymer 1 obtained in Polymerization Example 1 was 30.0% by weight, and as the synthetic oil (C), a high-viscosity poly ⁇ -olefin (DURASYN180 manufactured by INEOS) was 53.0.
- %% by weight 10.0% by weight of low-viscosity poly ⁇ -olefin (NEXBASE 2006 manufactured by CHEVRON) as synthetic oil (D), 5.0% by weight of polyol ester (TMTC manufactured by BFS) as synthetic oil (D), polar A pressure agent HITEC (trademark) -3339 (manufactured by AFTON) was blended in an amount of 2.0% by weight to prepare a viscosity equivalent to ISO2200.
- Table 3 shows the physical properties of the lubricating oil of the compounded oil.
- Example 14 As the ethylene / propylene copolymer (A), the polymer 1 obtained in Polymerization Example 1 was 40.0% by weight, and as the synthetic oil (C), a high-viscosity poly ⁇ -olefin (DURASYN180 manufactured by INEOS) was 43.0. It was blended in the same manner as in Example 13 except that it was used in% by weight, and the viscosity was adjusted to ISO 3200. Table 3 shows the physical properties of the lubricating oil of the compounded oil.
- Example 15 As the ethylene / propylene copolymer (A), the polymer 1 obtained in Polymerization Example 1 was 20.0% by weight, and as the mineral oil (E), Brightstock (N460 manufactured by JX) was 78.0% by weight. A pressure agent HITEC (trademark) -3339 (manufactured by AFTON) was blended in an amount of 2.0% by weight to prepare a viscosity equivalent to ISO2200. Table 3 shows the physical properties of the lubricating oil of the compounded oil.
- Example 16 40.0% by weight of the polymer 1 obtained in Polymerization Example 1 was used as the ethylene / propylene copolymer (A), and 58.0% by weight of Brightstock (N460 manufactured by JX) was used as the mineral oil (E). Except for the above, the mixture was blended in the same manner as in Example 15 to prepare a viscosity equivalent to ISO4600. Table 3 shows the physical properties of the lubricating oil of the compounded oil.
- Comparative Example 1 20.0% by weight of polybutene (JX HV-1900) as a viscosity modifier, 78.0% by weight of the polymer 3 obtained in Polymerization Example 3 as an ethylene / propylene copolymer (A), and an extreme pressure agent HITEC. 2.0% by weight of (trademark) -3339 (manufactured by AFTON) was blended to prepare a viscosity equivalent to ISO2200.
- Table 4 shows the physical properties of the lubricating oil of the compounded oil.
- Comparative Example 2 Same as Comparative Example 1 except that 42.0% by weight of polybutene (HV-1900 manufactured by JX) and 56.0% by weight of the polymer 3 obtained in Polymerization Example 3 were used as the ethylene / propylene copolymer (A). And adjusted to a viscosity equivalent to ISO6800.
- Table 4 shows the physical properties of the lubricating oil of the compounded oil.
- Example 9 The polymer 3 was blended in the same manner as in Example 1 except that the polymer 3 was changed to the polymer 4 obtained in Polymerization Example 4, and blended and prepared to have a viscosity equivalent to ISO1000.
- Table 4 shows the physical properties of the lubricating oil of the compounded oil.
- Example 13 The polymer 1 was blended in the same manner as in Example 14 except that the polymer 1 was changed to the polymer 2 obtained in Polymerization Example 2, and the viscosity was adjusted to ISO 3200.
- Table 4 shows the physical properties of the lubricating oil of the compounded oil.
- Example 14 The polymer 1 was blended in the same manner as in Example 15 except that the polymer 1 was changed to the polymer 2 obtained in Polymerization Example 2, and the viscosity was adjusted to ISO 2200.
- Table 4 shows the physical properties of the lubricating oil of the compounded oil.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- General Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Emergency Medicine (AREA)
- Lubricants (AREA)
Abstract
Description
上記のような粘度指数向上剤は、一般に高温時に適正な粘度を保持するために用いられる。一方、最近では、環境負荷低減の一環として省エネ・省資源が強く思考される中で、特に低温時の粘度上昇を低く抑え(低温特性に優れる)、更には耐久性、耐熱酸化安定性に優れる粘度改良剤が求められている。一般の潤滑油用途においては、優れた低温特性を得るためには、含まれる重合体の濃度をできるだけ低く抑えることが、経済性の面も含めて有利であることなどから、できるだけ高分子量のポリマーを用いる方法が知られている。しかしながら、分子量の高いαオレフィン重合体は剪断安定性の面では不利な傾向がある。
[1] (A)以下の方法(α)により製造されるエチレンとα-オレフィンとの液状ランダム共重合体と、
(F)硫黄に隣接する少なくとも一つの炭化水素基が2級または3級の炭化水素基である硫黄含有化合物と、
任意成分として(G)炭素数3~6のαオレフィンの重合体とを含み、
40℃動粘度が450~51,000mm2/sであり、
硫黄の含有率が、0.1~5重量部であることを特徴とする潤滑油組成物。
(方法(α))
(a)下記式1で表される架橋メタロセン化合物、ならびに
(b)(i)有機アルミニウムオキシ化合物、および
(ii)前記架橋メタロセン化合物と反応してイオン対を形成する化合物
からなる群から選択される少なくとも1つの化合物
を含む触媒系の下で、エチレンと炭素数3~20のα-オレフィンとの溶液重合を行う工程を含む、
エチレンとα-オレフィンとの液状ランダム共重合体を製造するための方法(α)
R6およびR11は、互いに同一であり、水素原子、炭化水素基またはケイ素含有炭化水素基であり、
R7およびR10は、互いに同一であり、水素原子、炭化水素基またはケイ素含有炭化水素基であり、
R6およびR7は、任意に、炭素数2~3の炭化水素と結合して環構造を形成し、
R11およびR10は、任意に、炭素数2~3の炭化水素と結合して環構造を形成し、
R6、R7、R10およびR11は、同時には水素原子ではなく;
Yは、炭素原子またはケイ素原子であり;
R13およびR14は、独立してアリール基であり;
Mは、Ti、ZrまたはHfであり;
Qは、独立してハロゲン、炭化水素基、アニオン性配位子または孤立電子対に配位可能な中性配位子であり;
jは、1~4の整数である。〕
[2] 上記式1で表されるメタロセン化合物のシクロペンタジエニル基に結合した置換基(R1、R2、R3およびR4)のうちの少なくとも1つが炭素数4以上の炭化水素基である[1]に記載の潤滑油組成物。
[3] R6およびR11が同一であり、炭素数1~20の炭化水素基である[1]または[2]に記載の潤滑油組成物。
[4] 上記式1で表されるメタロセン化合物のシクロペンタジエニル基の3位に結合した置換基(R2またはR3)が炭化水素基である[1]~[3]のいずれかに記載の潤滑油組成物。
[5] 上記式1で表されるメタロセン化合物のシクロペンタジエニル基の3位に結合した炭化水素基(R2またはR3)がn-ブチル基である[4]に記載の潤滑油組成物。
[6] 上記式1で表されるメタロセン化合物のフルオレニル基の2位および7位に結合した置換基(R6およびR11)がすべてtert-ブチル基である[1]~[5]のいずれかに記載の潤滑油組成物。
[7] 前記架橋メタロセン化合物と反応してイオン対を形成する前記化合物が、下記式6で表される化合物である[1]~[6]のいずれかに記載の潤滑油組成物。
[8] 前記アンモニウムカチオンがジメチルアニリニウムカチオンである[7]に記載の潤滑油組成物。
[9] 前記触媒系がトリメチルアルミニウムおよびトリイソブチルアルミニウムからなる群から選択される有機アルミニウム化合物をさらに含む[7]または[8]に記載の潤滑油組成物。
[10] 更に下記(B-1)~(B-3)の要件を全て満たす成分(B)を含むことを特徴とする[1]~[9]のいずれかに記載の潤滑油組成物。
(B-1)100℃における動粘度が3~120mm2/s以下であること
(B-2)粘度指数が90以上であること
(B-3)流動点が-10℃以下であること
[11] 前記成分(B)が、下記(C-1)~(C-3)の要件を全て満たす合成油(C)であることを特徴とする[10]に記載の潤滑油組成物。
(C-1)100℃における動粘度が20~120mm2/sであること
(C-2)粘度指数が120以上であること
(C-3)流動点が-30℃以下であること
[12] 前記成分(B)が、下記(D-1)~(D-3)の要件を全て満たす合成油(D)であることを特徴とする[10]に記載の潤滑油組成物。
(D-1)100℃における動粘度が3~10mm2/sであること
(D-2)粘度指数が120以上であること
(D-3)流動点が-40℃以下であること
[13] 前記成分(B)が、下記(E-1)~(E-3)の要件を全て満たす鉱物油(E)であることを特徴とする[10]に記載の潤滑油組成物。
(E-1)100℃における動粘度が3~40mm2/sであること
(E-2)粘度指数が90以上であること
(E-3)流動点が-10℃以下であること
[14] 前記成分(C)および/または成分(D)が、炭素数8~20のαオレフィン重合体および/またはエステル化合物からなる合成油である[11]または[12]に記載の潤滑油組成物。
[15] 前記成分(E)がAPI品質分類のグループ(I)、(II)および(III)から選ばれる1種類以上の鉱物油であることを特徴とする[13]に記載の潤滑油組成物。
[16] 前記成分(B)が、下記(C-1)~(C-3)の要件を全て満たす合成油(C)、下記(D-1)~(D-3)の要件を全て満たす合成油(D)、および下記(E-1)~(E-3)の要件を全て満たす鉱物油(E)から選ばれる1種類以上であり、
成分(A)~(E)全体に対する飽和炭化水素含有率が80重量%以上である
ことを特徴とする[10]に記載の潤滑油組成物。
(C-1)100℃における動粘度が20~120mm2/sであること
(C-2)粘度指数が120以上であること
(C-3)流動点が-30℃以下であること
(D-1)100℃における動粘度が3~10mm2/sであること
(D-2)粘度指数が120以上であること
(D-3)流動点が-40℃以下であること
(E-1)100℃における動粘度が3~40mm2/sであること
(E-2)粘度指数が90以上であること
(E-3)流動点が-10℃以下であること
[17] 下記(A-1)~(A-5)の要件を全て満たすエチレンとα-オレフィンとの液状ランダム共重合体と、
(A-1)エチレン単位を40~60モル%、および炭素数3~20のα-オレフィン単位を60~40モル%含有すること
(A-2)ゲル浸透クロマトグラフィー(GPC)により測定される、500~10,000の数平均分子量(Mn)、および3以下の分子量分布(Mw/Mn、Mwは重量平均分子量である。)を有すること
(A-3)30~5,000mm2/sの100℃動粘度を有すること
(A-4)30~-45℃の流動点を有すること
(A-5)0.1g/100g以下の臭素価を有すること
(F)硫黄に隣接する少なくとも一つの炭化水素基が、2級または3級の炭化水素基である硫黄含有化合物と、
任意成分として(G)炭素数3~6のαオレフィンの重合体を含み、
40℃動粘度が962~4570mm2/sであり、
硫黄の含有率が、0.1~5重量部であることを特徴とする潤滑油組成物。
[18] 前記潤滑油組成物が、ギヤ油組成物である[1]~[17]のいずれかに記載の潤滑油組成物。
[19] 以下の方法(α)により(A)エチレンとα-オレフィンとの液状ランダム共重合体を製造する工程、および
前記(A)液状ランダム共重合体と、(F)硫黄に隣接する少なくとも一つの炭化水素基が2級または3級の炭化水素基である硫黄含有化合物と、(B)下記(B-1)~(B-3)の要件を全て満たす成分(B)と、任意成分として(G)炭素数3~6のαオレフィンの重合体とを混合して、40℃動粘度が450~51,000mm2/s、硫黄の含有率が、0.1~5重量部である潤滑油組成物を製造する工程
を含む、潤滑油組成物の製造方法。
(方法(α))
(a)下記式1で表される架橋メタロセン化合物、ならびに
(b)(i)有機アルミニウムオキシ化合物、および
(ii)前記架橋メタロセン化合物と反応してイオン対を形成する化合物
からなる群から選択される少なくとも1つの化合物
を含む触媒系の下で、エチレンと炭素数3~20のα-オレフィンとの溶液重合を行う工程を含む、
エチレンとα-オレフィンとの液状ランダム共重合体を製造するための方法(α)
R6およびR11は、互いに同一であり、水素原子、炭化水素基またはケイ素含有炭化水素基であり、
R7およびR10は、互いに同一であり、水素原子、炭化水素基またはケイ素含有炭化水素基であり、
R6およびR7は、任意に、炭素数2~3の炭化水素と結合して環構造を形成し、
R11およびR10は、任意に、炭素数2~3の炭化水素と結合して環構造を形成し、
R6、R7、R10およびR11は、同時には水素原子ではなく;
Yは、炭素原子またはケイ素原子であり;
R13およびR14は、独立してアリール基であり;
Mは、Ti、ZrまたはHfであり;
Qは、独立してハロゲン、炭化水素基、アニオン性配位子または孤立電子対に配位可能な中性配位子であり;
jは、1~4の整数である。〕
[エチレン・αオレフィン共重合体(A)]
本発明におけるエチレン・αオレフィン共重合体(A)は、以下の方法(α)により製造されるエチレンとα-オレフィンとの液状ランダム共重合体(A)である。
(方法(α))
(a)下記式1で表される架橋メタロセン化合物、ならびに
(b)(i)有機アルミニウムオキシ化合物、および
(ii)前記架橋メタロセン化合物と反応してイオン対を形成する化合物
からなる群から選択される少なくとも1つの化合物
を含む触媒系の下で、エチレンと炭素数3~20のα-オレフィンとの溶液重合を行う工程を含む、
エチレンとα-オレフィンとの液状ランダム共重合体を製造するための方法(α)
R6およびR11は、互いに同一であり、水素原子、炭化水素基またはケイ素含有炭化水素基であり、
R7およびR10は、互いに同一であり、水素原子、炭化水素基またはケイ素含有炭化水素基であり、
R6およびR7は、任意に、炭素数2~3の炭化水素と結合して環構造を形成し、
R11およびR10は、任意に、炭素数2~3の炭化水素と結合して環構造を形成し、
R6、R7、R10およびR11は、同時には水素原子ではなく;
Yは、炭素原子またはケイ素原子であり;
R13およびR14は、独立してアリール基であり;
Mは、Ti、ZrまたはHfであり;
Qは、独立してハロゲン、炭化水素基、アニオン性配位子または孤立電子対に配位可能な中性配位子であり;
jは、1~4の整数である。〕
ここで、前記炭化水素基は、炭素数が1~20、好ましくは1~15、より好ましくは4~10であり、例えばアルキル基、アリール基等を意味し、アリール基は、炭素数が6~20、好ましくは6~15である。
(i)シクロペンタジエニル基に結合した置換基(R1、R2、R3およびR4)のうち少なくとも1つが炭化水素基であることが好ましく、
(ii)置換基(R1、R2、R3およびR4)のうち少なくとも1つが炭素数4以上の炭化水素基であることがより好ましく、
(iii)シクロペンタジエニル基の3位に結合した置換基(R2またはR3)が炭素数4以上の炭化水素基(例えば、n-ブチル基)であることが最も好ましい。
エチレン[η5-(3-tert-ブチル-5-メチルシクロペンタジエニル)](η5-フルオレニル)ジルコニウムジクロリド、エチレン[η5-(3-tert-ブチル-5-メチルシクロペンタジエニル)][η5-(3,6-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、エチレン[η5-(3-tert-ブチル-5-メチルシクロペンタジエニル)][η5-(2,7-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、エチレン[η5-(3-tert-ブチル-5-メチルシクロペンタジエニル)](オクタメチルオクタヒドロジベンズフルオレニル)ジルコニウムジクロリド、エチレン[η5-(3-tert-ブチル-5-メチルシクロペンタジエニル)](ベンゾフルオレニル)ジルコニウムジクロリド、エチレン[η5-(3-tert-ブチル-5-メチルシクロペンタジエニル)](ジベンゾフルオレニル)ジルコニウムジクロリド、エチレン[η5-(3-tert-ブチル-5-メチルシクロペンタジエニル)](オクタヒドロジベンゾフルオレニル)ジルコニウムジクロリド、エチレン[η5-(3-tert-ブチル-5-メチルシクロペンタジエニル)][η5-(2,7-ジフェニル-3,6-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、エチレン[η5-(3-tert-ブチル-5-メチルシクロペンタジエニル)][η5-(2,7-ジメチル-3,6-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、
エチレン[η5-(3-tert-ブチルシクロペンタジエニル)](η5-フルオレニル)ジルコニウムジクロリド、エチレン[η5-(3-tert-ブチルシクロペンタジエニル)][η5-(3,6-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、エチレン[η5-(3-tert-ブチルシクロペンタジエニル)][η5-(2,7-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、エチレン[η5-(3-tert-ブチルシクロペンタジエニル)](オクタメチルオクタヒドロジベンズフルオレニル)ジルコニウムジクロリド、エチレン[η5-(3-tert-ブチルシクロペンタジエニル)](ベンゾフルオレニル)ジルコニウムジクロリド、エチレン[η5-(3-tert-ブチルシクロペンタジエニル)](ジベンゾフルオレニル)ジルコニウムジクロリド、エチレン[η5-(3-tert-ブチルシクロペンタジエニル)](オクタヒドロジベンゾフルオレニル)ジルコニウムジクロリド、エチレン[η5-(3-tert-ブチルシクロペンタジエニル)][η5-(2,7-ジフェニル-3,6-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、エチレン[η5-(3-tert-ブチルシクロペンタジエニル)][η5-(2,7-ジメチル-3,6-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、
エチレン[η5-(3-n-ブチルシクロペンタジエニル)](η5-フルオレニル)ジルコニウムジクロリド、エチレン[η5-(3-n-ブチルシクロペンタジエニル)][η5-(3,6-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、エチレン[η5-(3-n-ブチルシクロペンタジエニル)][η5-(2,7-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、エチレン[η5-(3-n-ブチルシクロペンタジエニル)](オクタメチルオクタヒドロジベンズフルオレニル)ジルコニウムジクロリド、エチレン[η5-(3-n-ブチルシクロペンタジエニル)](ベンゾフルオレニル)ジルコニウムジクロリド、エチレン[η5-(3-n-ブチルシクロペンタジエニル)](ジベンゾフルオレニル)ジルコニウムジクロリド、エチレン[η5-(3-n-ブチルシクロペンタジエニル)](オクタヒドロジベンゾフルオレニル)ジルコニウムジクロリド、エチレン[η5-(3-n-ブチルシクロペンタジエニル)][η5-(2,7-ジフェニル-3,6-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、エチレン[η5-(3-n-ブチルシクロペンタジエニル)][η5-(2,7-ジメチル-3,6-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、
ジフェニルメチレン[η5-(3-tert-ブチル-5-メチルシクロペンタジエニル)](η5-フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン[η5-(3-tert-ブチル-5-メチルシクロペンタジエニル)][η5-(3,6-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、ジフェニルメチレン[η5-(3-tert-ブチル-5-メチルシクロペンタジエニル)][η5-(2,7-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、ジフェニルメチレン[η5-(3-tert-ブチル-5-メチルシクロペンタジエニル)](オクタメチルオクタヒドロジベンズフルオレニル)ジルコニウムジクロリド、ジフェニルメチレン[η5-(3-tert-ブチル-5-メチルシクロペンタジエニル)](ベンゾフルオレニル)ジルコニウムジクロリド、ジフェニルメチレン[η5-(3-tert-ブチル-5-メチルシクロペンタジエニル)](ジベンゾフルオレニル)ジルコニウムジクロリド、ジフェニルメチレン[η5-(3-tert-ブチル-5-メチルシクロペンタジエニル)](オクタヒドロジベンゾフルオレニル)ジルコニウムジクロリド、ジフェニルメチレン[η5-(3-tert-ブチル-5-メチルシクロペンタジエニル)][η5-(2,7-ジフェニル-3,6-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、ジフェニルメチレン[η5-(3-tert-ブチル-5-メチルシクロペンタジエニル)][η5-(2,7-ジメチル-3,6-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、
ジフェニルメチレン[η5-(3-tert-ブチルシクロペンタジエニル)](η5-フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン[η5-(3-tert-ブチルシクロペンタジエニル)][η5-(3,6-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、ジフェニルメチレン[η5-(3-tert-ブチルシクロペンタジエニル)][η5-(2,7-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、ジフェニルメチレン[η5-(3-tert-ブチルシクロペンタジエニル)](オクタメチルオクタヒドロジベンズフルオレニル)ジルコニウムジクロリド、ジフェニルメチレン[η5-(3-tert-ブチルシクロペンタジエニル)](ベンゾフルオレニル)ジルコニウムジクロリド、ジフェニルメチレン[η5-(3-tert-ブチルシクロペンタジエニル)](ジベンゾフルオレニル)ジルコニウムジクロリド、ジフェニルメチレン[η5-(3-tert-ブチルシクロペンタジエニル)](オクタヒドロジベンゾフルオレニル)ジルコニウムジクロリド、ジフェニルメチレン[η5-(3-tert-ブチルシクロペンタジエニル)][η5-(2,7-ジフェニル-3,6-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、ジフェニルメチレン[η5-(3-tert-ブチルシクロペンタジエニル)][η5-(2,7-ジメチル-3,6-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、
ジフェニルメチレン[η5-(3-n-ブチルシクロペンタジエニル)](η5-フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン[η5-(3-n-ブチルシクロペンタジエニル)][η5-(3,6-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、ジフェニルメチレン[η5-(3-n-ブチルシクロペンタジエニル)][η5-(2,7-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、ジフェニルメチレン[η5-(3-n-ブチルシクロペンタジエニル)](オクタメチルオクタヒドロジベンズフルオレニル)ジルコニウムジクロリド、ジフェニルメチレン[η5-(3-n-ブチルシクロペンタジエニル)](ベンゾフルオレニル)ジルコニウムジクロリド、ジフェニルメチレン[η5-(3-n-ブチルシクロペンタジエニル)](ジベンゾフルオレニル)ジルコニウムジクロリド、ジフェニルメチレン[η5-(3-n-ブチルシクロペンタジエニル)](オクタヒドロジベンゾフルオレニル)ジルコニウムジクロリド、ジフェニルメチレン[η5-(3-n-ブチルシクロペンタジエニル)][η5-(2,7-ジフェニル-3,6-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、ジフェニルメチレン[η5-(3-n-ブチルシクロペンタジエニル)][η5-(2,7-ジメチル-3,6-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、
ジ(p-トリル)メチレン[η5-(3-tert-ブチル-5-メチルシクロペンタジエニル)](η5-フルオレニル)ジルコニウムジクロリド、ジ(p-トリル)メチレン[η5-(3-tert-ブチル-5-メチルシクロペンタジエニル)][η5-(3,6-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、ジ(p-トリル)メチレン[η5-(3-tert-ブチル-5-メチルシクロペンタジエニル)][η5-(2,7-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、ジ(p-トリル)メチレン[η5-(3-tert-ブチル-5-メチルシクロペンタジエニル)](オクタメチルオクタヒドロジベンズフルオレニル)ジルコニウムジクロリド、ジ(p-トリル)メチレン[η5-(3-tert-ブチル-5-メチルシクロペンタジエニル)](ベンゾフルオレニル)ジルコニウムジクロリド、ジ(p-トリル)メチレン[η5-(3-tert-ブチル-5-メチルシクロペンタジエニル)](ジベンゾフルオレニル)ジルコニウムジクロリド、ジ(p-トリル)メチレン[η5-(3-tert-ブチル-5-メチルシクロペンタジエニル)](オクタヒドロジベンゾフルオレニル)ジルコニウムジクロリド、ジ(p-トリル)メチレン[η5-(3-tert-ブチル-5-メチルシクロペンタジエニル)][η5-(2,7-ジフェニル-3,6-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、ジ(p-トリル)メチレン[η5-(3-tert-ブチル-5-メチルシクロペンタジエニル)][η5-(2,7-ジメチル-3,6-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、
ジ(p-トリル)メチレン[η5-(3-tert-ブチルシクロペンタジエニル)](η5-フルオレニル)ジルコニウムジクロリド、ジ(p-トリル)メチレン[η5-(3-tert-ブチルシクロペンタジエニル)][η5-(3,6-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、ジ(p-トリル)メチレン[η5-(3-tert-ブチルシクロペンタジエニル)][η5-(2,7-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、ジ(p-トリル)メチレン[η5-(3-tert-ブチルシクロペンタジエニル)](オクタメチルオクタヒドロジベンズフルオレニル)ジルコニウムジクロリド、ジ(p-トリル)メチレン[η5-(3-tert-ブチルシクロペンタジエニル)](ベンゾフルオレニル)ジルコニウムジクロリド、ジ(p-トリル)メチレン[η5-(3-tert-ブチルシクロペンタジエニル)](ジベンゾフルオレニル)ジルコニウムジクロリド、ジ(p-トリル)メチレン[η5-(3-tert-ブチルシクロペンタジエニル)](オクタヒドロジベンゾフルオレニル)ジルコニウムジクロリド、ジ(p-トリル)メチレン[η5-(3-tert-ブチルシクロペンタジエニル)][η5-(2,7-ジフェニル-3,6-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、ジ(p-トリル)メチレン[η5-(3-tert-ブチルシクロペンタジエニル)][η5-(2,7-ジメチル-3,6-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、
ジ(p-トリル)メチレン[η5-(3-n-ブチルシクロペンタジエニル)](η5-フルオレニル)ジルコニウムジクロリド、ジ(p-トリル)メチレン[η5-(3-n-ブチルシクロペンタジエニル)][η5-(3,6-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、ジ(p-トリル)メチレン[η5-(3-n-ブチルシクロペンタジエニル)][η5-(2,7-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、ジ(p-トリル)メチレン[η5-(3-n-ブチルシクロペンタジエニル)](オクタメチルオクタヒドロジベンズフルオレニル)ジルコニウムジクロリド、ジ(p-トリル)メチレン[η5-(3-n-ブチルシクロペンタジエニル)](ベンゾフルオレニル)ジルコニウムジクロリド、ジ(p-トリル)メチレン[η5-(3-n-ブチルシクロペンタジエニル)](ジベンゾフルオレニル)ジルコニウムジクロリド、ジ(p-トリル)メチレン[η5-(3-n-ブチルシクロペンタジエニル)](オクタヒドロジベンゾフルオレニル)ジルコニウムジクロリド、ジ(p-トリル)メチレン[η5-(3-n-ブチルシクロペンタジエニル)](2,7-ジフェニル-3,6-ジ-tert-ブチルフルオレニル)ジルコニウムジクロリド、ジ(p-トリル)メチレン[η5-(3-n-ブチルシクロペンタジエニル)][η5-(2,7-ジメチル-3,6-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド等が挙げられる。
式7において、Ra及びRbは、それぞれ独立に、炭素数1~15、好ましくは炭素数1~4の炭化水素基であり、Xはハロゲン原子であり、mは0<m≦3の整数であり、nは0≦n≦3の整数であり、pは0<p≦3の整数であり、qは0≦q<3の整数であり、m+n+p+q=3である。
式8において、M2はLi、NaまたはKを表し、Raは炭素数1~15、好ましくは炭素数1~4の炭化水素基である。
[1](a)式1で表される架橋メタロセン化合物、および(b)(i)有機アルミニウムオキシ化合物
[2](a)式1で表される架橋メタロセン化合物、(b)(i)有機アルミニウムオキシ化合物、および(c)有機アルミニウム化合物。
[3](a)式1で表される架橋メタロセン化合物、(b)(ii)前記架橋メタロセン化合物と反応してイオン対を形成する化合物、および(c)有機アルミニウム化合物。
[4](a)式1で表される架橋メタロセン化合物、ならびに(b)(i)有機アルミニウムオキシ化合物、および(ii)前記架橋メタロセン化合物と反応してイオン対を形成する化合物。
[潤滑油基材]
本発明で必要に応じて他の潤滑油材料を使用することができる。好ましくは、下記(B-1)~(B-3)の要件を全て満たす成分(B)を使用することができる。
(B-2)粘度指数が90以上、好ましくは95以上であること
(B―3)流動点が-10℃以下、好ましくは-15℃以下であること。
(E-2)粘度指数が90以上、好ましくは95以上であること
(E-3)流動点が-10℃以下、好ましくは-15℃以下であること
本発明に必要に応じて用いられる合成油(D)は、下記(D-1)~(D-3)の特性を有するものであり、比較的低粘度のポリα-オレフィン(PAO)および/またはポリオールエステルや脂肪酸エステルなどが好ましい。
(D-2)粘度指数が120以上、好ましくは125以上であること
(D-3)流動点が-40℃以下、好ましくは-50℃以下であること
表1におけるグループ(IV)に属するポリα-オレフィン(PAO)は、炭素数8以上のα-オレフィンを少なくとも原料モノマーとして重合して得られる炭化水素ポリマーであって、例えばデセン-1を重合して得られるポリデセンなどが例示される。このようなポリαオレフィンが、さらに好ましい合成油(D)の態様である。
(C-2)粘度指数が120以上、好ましくは130以上であること
(C-3)流動点が-30℃以下、好ましくは-35℃以下であること
なお、本発明における低粘度の潤滑油基材として好適に用いられる成分(B)は、合成油(C)、(D)または鉱物油(E)から選ばれる1種類以上の成分からなり、合成油(C)、(D)および鉱物油(E)それぞれ1種類ないし2種類以上であってもよく、また、合成油(C)または(D)と鉱油(E)との混合物であってもよい。
[硫黄化合物(F)]
本発明に用いられる硫黄化合物(F)は、硫黄に隣接する炭素原子が、2級ないし3級炭素であることを特徴とする。このような炭素を含む置換基としては、イソプロピル基(i-Pr)、s-ブチル基(s-Bu)、t-ブチル基(t-Bu)、2-ヘキシル基、3-ヘキシル基、2-メチル-2-ペンチル基、3-メチル-3-ペンチル基などを挙げることができる。
本発明の潤滑油組成物は、硫黄の含有率が、潤滑油組成物の総量を100重量部とした場合、0.1~5重量部、好ましくは0.5~4重量部、更に好ましくは1~3重量部である。
[潤滑油組成物]
本発明の潤滑油組成物は、前記エチレン・α-オレフィン共重合体(A)を含み、必要に応じて合成油(C)、合成油(D)および、鉱物油(E)などから選ばれる1種類以上を含む成分(B)を含むことが好ましい。また本発明の潤滑油組成物は、前記硫黄化合物(F)が含まれる。これらの含有比率は、前述の通りである。
流動点降下剤としては、メタクリル酸アルキルの重合体または共重合体、アクリル酸アルキルの重合体または共重合体、フマル酸アルキルの重合体または共重合体、マレイン酸アルキルの重合体または共重合体、アルキル芳香族系の化合物などを挙げることができる。この中でも特にメタクリル酸アルキルの重合体または共重合体を含む流動点降下剤であるポリメタクリレート系流動点降下剤が好ましく、メタクリル酸アルキルのアルキル基の炭素数は12~20が好ましく、その含有量は組成物全量の0.05~2重量%である。これらは、流動点降下剤として市販されているものを入手することができる。例えば市販の銘柄名としては三洋化成社製アクルーブ146、アクルーブ136、東邦化学社製ルブラン141、ルブラン171などが挙げられる。
極圧剤としては、前述の硫黄化合物の他に、硫化オレフィン、硫化油脂、スルフィド類、リン酸エステル、亜リン酸エステル、リン酸エステルアミン塩、亜リン酸エステルアミン塩などが挙げられる。
摩擦調整剤としては、モリブデンジチオホスフェート、モリブデンジチオカーバメートなどの有機モリブデン化合物に代表される有機金属系摩擦調整剤が挙げられる。
酸化防止剤として具体的には、2,6-ジ-t-ブチル-4メチルフェノールなどのフェノール系酸化防止剤;ジオクチルジフェニルアミンなどのアミン系酸化防止剤などが挙げられる。
錆止め剤としては、カルボン酸、カルボン酸塩、エステル、リン酸などが挙げられる。また、腐食防止剤としては、ベンゾトリアゾールとその誘導体、チアゾール系化合物などを挙げることができる。
日本電子LA500型核磁気共鳴装置を用い、オルトジクロルベンゼンとベンゼン-d6との混合溶媒(オルトジクロルベンゼン/ベンゼン-d6=3/1~4/1(体積比))中、120℃、パルス幅45°パルス、パルス繰り返し時間5.5秒で測定した。繰り返し測定回数は、1000回以上、好ましくは10000回以上である。
o-ジクロロベンゼン/ベンゼン-d6(4/1[vol/vol%])を測定溶媒とし、測定温度120℃、スペクトル幅250ppm、パルス繰り返し時間5.5秒、かつパルス幅4.7μ秒(45oパルス)の測定条件下(100MHz、日本電子ECX400P)、または測定温度120℃、スペクトル幅250ppm、パルス繰り返し時間5.5秒、かつパルス幅5.0μ秒(45oパルス)の測定条件下(125 MHz、ブルカー・バイオスピンAVANCEIIIcryo-500)にて13C-NMRスペクトルを測定し、下記式[1]に基づきB値を算出した。
日本電子(株)製ECX400型核磁気共鳴装置を用い、溶媒は重水素化オルトジクロロベンゼン、重水素化クロロホルム、重水素化ベンゼンを適宜使用した。
[動粘度(40℃、100℃)]
ASTM D 445に基づいて測定を行った。なお、本実施例では配合油の粘度を各ISO分類に基づいて以下のように調整した。
(4)ISO3200:動粘度(40℃)が3200±320mm2/sになるように配合調製した。
(7)ISO10000:動粘度(40℃)が10000±1000mm2/sになるように配合調製した。
[粘度指数]
粘度指数は、JIS K2283に記載の方法により、測定、算出した。
下記の液体クロマトグラフィー用ポンプ、サンプリング装置、ゲルパーミエーションクロマトグラフィー(GPC)用カラム、示差屈折率検出器(RI検出器)を連結し、GPC測定を行い決定した。
サンプリング装置:Waters社製717plus Autosampler装置
移動相:THF(安定剤含有、液体クロマトグラフィー用グレード)
カラム:PL社製MIXED-D 1本とPL社製500Å 1本とを直列連結した。
移動相流速;1.0mL/分
測定温度;常温
検量線用標準サンプル:PL社製EasiCal PS-1
KRL剪断試験機を用いてCEC-L-45(CEC:欧州の自動車用燃料・潤滑油試験法の管理機構)に基づいて試験を行い、40℃の粘度の低下率を評価した。
配合油を60℃の温度で加熱攪拌後、10日経過後の外観を観察し、以下の評点で評価した。
[極圧剤の分析(GC/MS法)]
極圧剤に含まれる硫黄化合物の構造をガスクロマトグラフィーと質量分析計とを併用した所謂GC/MS法で測定した。測定条件を下記した。
装置:日本電子製Jms-Q1000GC K9型装置
カラム:DB5MS+DG(内径:0.25mm、長さ:30m)
カラム温度制御パターン : 40℃で3分保持し、10℃/分の速度で昇温し、320℃に達した後、29分保持して終了とした。
サンプル注入温度: 280℃、スプリット(1/20)
サンプル注入量 : 1μL(希釈溶媒:ヘキサン)
イオン化法 : EI(電子イオン化)、イオン化温度:200℃
耐熱酸化安定性はJIS K2514に記載の内燃機関用潤滑油酸価安定度試験の方法に準拠し、試験時間72時間後のラッカー度を評価した。
実施例、比較例で使用する潤滑油基剤などの成分について、表2に纏めた。
・AFTON社製HITEC(商標)-3339
硫黄含有率:32.6重量%、リン含有率:1.19重量%(カタログ値)
前記GC/MS法により、含硫黄成分としてジ-t-ブチルポリスルフィドが検出された。その他に鉱物油を示唆する成分が含まれていた。
・AFTON社製HITEC(商標)343
前記GC/MS法により、二級、三級のアルキル基を有する硫黄化合物を示唆するピークは検出されなかった。
[重合例1]
充分に窒素置換した内容積1Lのガラス製重合器にヘプタン250mLを装入し、系内の温度を50℃に昇温した後、エチレンを25L/hr、プロピレンを75L/hr、水素を100L/hrの流量で連続的に重合器内に供給し、撹拌回転数600rpmで撹拌した。次にトリイソブチルアルミニウム0.2mmolを重合器に装入し、およびN,N-ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート0.023mmolと[ジフェニルメチレン(η5-(3-n-ブチルシクロペンタジエニル)(η5-2,7-ジ-t-ブチルフルオレニル)]ジルコニウムジクロリド0.00230mmolをトルエン中で15分以上予備混合したものを重合器に装入することにより重合を開始した。その後、エチレン、プロピレン、水素の連続的供給を継続し、50℃で15分間重合を行った。少量のイソブチルアルコールを系内に添加することにより重合を停止した後、未反応のモノマーをパージした。得られたポリマー溶液を、0.2mol/lの塩酸100mLで3回、次いで蒸留水100mLで3回洗浄し、硫酸マグネシウムで乾燥後、溶媒を減圧留去した。得られたポリマーを80℃の減圧下で一晩乾燥し、エチレン-プロピレン共重合体1.43gを得た。得られたポリマー(重合体1)のエチレン含有量は52.4mol%、Mwは13,600、Mw/Mnは1.9、B値は1.2であり、100℃動粘度は2,000mm2/sであった。
充分に窒素置換した内容積1Lのガラス製重合器にヘプタン250mLを装入し、系内の温度を50℃に昇温した後、エチレンを25L/hr、プロピレンを75L/hr、水素を100L/hrの流量で連続的に重合器内に供給し、撹拌回転数600rpmで撹拌した。次にトリイソブチルアルミニウム0.2mmolを重合器に装入し、次いでMMAO0.688mmolとジメチルシリルビス(インデニル)ジルコニウムジクロリド0.00230mmolをトルエン中で15分以上予備混合したものを重合器に装入することにより重合を開始した。その後、エチレン、プロピレン、水素の連続的供給を継続し、50℃で15分間重合を行った。少量のイソブチルアルコールを系内に添加することにより重合を停止した後、未反応のモノマーをパージした。得られたポリマー溶液を、0.2mol/lの塩酸100mLで3回、次いで蒸留水100mLで3回洗浄し、硫酸マグネシウムで乾燥後、溶媒を減圧留去した。得られたポリマーを80℃の減圧下で一晩乾燥し、エチレン-プロピレン共重合体1.43gを得た。得られたポリマー(重合体2)のエチレン含有量は52.1mol%、Mwは13,800、Mw/Mnは2.0、B値は1.2であり、100℃動粘度は2,000mm2/sであった。
充分に窒素置換した内容積1Lのガラス製重合器にデカン250mLを装入し、系内の温度を130℃に昇温した後、エチレンを25L/hr、プロピレンを75L/hr、水素を100L/hrの流量で連続的に重合器内に供給し、撹拌回転数600rpmで撹拌した。次にトリイソブチルアルミニウム0.2mmolを重合器に装入し、次いでMMAO1.213mmolと[[ジフェニルメチレン(η5-(3-n-ブチルシクロペンタジエニル)(η5-2,7-ジ-t-ブチルフルオレニル)]ジルコニウムジクロリド0.00402mmolをトルエン中で15分以上予備混合したものを重合器に装入することにより重合を開始した。その後、エチレン、プロピレン、水素の連続的供給を継続し、130℃で15分間重合を行った。少量のイソブチルアルコールを系内に添加することにより重合を停止した後、未反応のモノマーをパージした。得られたポリマー溶液を、0.2mol/lの塩酸100mLで3回、次いで蒸留水100mLで3回洗浄し、硫酸マグネシウムで乾燥後、溶媒を減圧留去した。得られたポリマーを80℃の減圧下で一晩乾燥し、エチレン-プロピレン共重合体0.77 gを得た。得られたポリマー(重合体3)のエチレン含有量は48.8mol%、Mwは4,100、Mw/Mnは1.7、B値は1.2、100℃動粘度は100mm2/sであった。
充分に窒素置換した内容積1Lのガラス製重合器にデカン250mLを装入し、系内の温度を130℃に昇温した後、エチレンを25L/hr、プロピレンを75L/hr、水素を100L/hrの流量で連続的に重合器内に供給し、撹拌回転数600rpmで撹拌した。次にトリイソブチルアルミニウム0.2mmolを重合器に装入し、次いでMMAO1.213mmolとジメチルシリルビス(インデニル)ジルコニウムジクロリド0.00402mmolをトルエン中で15分以上予備混合したものを重合器に装入することにより重合を開始した。その後、エチレン、プロピレン、水素の連続的供給を継続し、130℃で15分間重合を行った。少量のイソブチルアルコールを系内に添加することにより重合を停止した後、未反応のモノマーをパージした。得られたポリマー溶液を、0.2mol/lの塩酸100mLで3回、次いで蒸留水100mLで3回洗浄し、硫酸マグネシウムで乾燥後、溶媒を減圧留去した。得られたポリマーを80℃の減圧下で一晩乾燥し、エチレン-プロピレン共重合体0.77 gを得た。得られたポリマー(重合体4)のエチレン含有量は48.7mol%、Mwは4,200、Mw/Mnは1.8、B値は1.2、100℃動粘度は100mm2/sであった。
粘度調整剤としてのエチレン・プロピレン共重合体(A)として、重合例3で得られた重合体3を93.0重量%、APIグループ(V)に分類されるポリオールエステル(BFS社製TMTC)を5.0重量%、極圧剤HITEC(商標)-3339(AFTON社製)を2.0重量%配合して、ISO1000相当粘度に調製した。配合油の潤滑油物性を表3に示す。
エチレン・プロピレン共重合体(A)として、重合例1で得られた重合体1を9.5重量%、重合例3で得られた重合体3を83.5重量%、合成油(D)としてポリオールエステル(BFS社製TMTC)を5.0重量%、極圧剤HITEC(商標)-3339(AFTON社製)を2.0重量%配合して、ISO2200相当粘度に調製した。配合油の潤滑油物性を表3に示す。
エチレン・プロピレン共重合体(A)として、重合例1で得られた共重合体1を28.0重量%、重合例3で得られた重合体3を65.0重量%用いた以外は実施例2と同様に配合して、ISO3200相当粘度に調整した。配合油の潤滑油物性を表3に示す。
エチレン・プロピレン共重合体(A)として、重合例1で得られた重合体1を48.0重量%、重合例3で得られた重合体3を45.0重量%用いた以外は実施例2と同様に配合して、ISO6800相当粘度に調製した。配合油の潤滑油物性を表3に示す。
エチレン・プロピレン共重合体(A)として、重合例1で得られた重合体1を4.0重量%、重合例3で得られた重合体3を84.0重量%、合成油(D)としてポリα-オレフィン(CHEVRON社製NEXBASE2006)を10.0重量%、極圧剤HITEC(商標)-3339(AFTON社製)を2.0重量%配合して、ISO1000相当粘度に調製した。配合油の潤滑油物性を表3に示す。
エチレン・プロピレン共重合体(A)として、重合例1で得られた重合体1を30.0重量%、重合例3で得られた重合体3を58.0重量%用いた以外は実施例5と同様に配合して、ISO3200相当粘度に調製した。配合油の潤滑油物性を表3に示す。
エチレン・プロピレン共重合体(A)として、重合例1で得られた重合体1を10.0重量%、重合例3で得られた重合体3を73.0重量%、合成油(D)としてポリα-オレフィン(CHEVRON社製NEXBASE2006)を10.0重量%およびポリオールエステル(BFS社製TMTC)を5.0重量%、極圧剤HITEC(商標)-3339(AFTON社製)を2.0重量%配合して、ISO1000相当粘度に調製した。配合油の潤滑油物性を表3に示す。
エチレン・プロピレン共重合体(A)として、重合例1で得られた重合体1を30.0重量%、重合例3で得られた重合体3を53.0重量%用いた以外は実施例7と同様に配合してISO2200相当粘度に調製した。配合油の潤滑油物性を表3に示す。
エチレン・プロピレン共重合体(A)として、重合例1で得られた重合体1を18.0重量%、合成油(C)として高粘度ポリα-オレフィン(INEOS社製DURASYN180)を80.0重量%、極圧剤HITEC(商標)-3339(AFTON社製)を2.0重量%配合して、ISO2200相当粘度に調製した。配合油の潤滑油物性を表3に示す。
エチレン・プロピレン共重合体(A)として、重合例1で得られた重合体1を27.0重量%、合成油(C)として高粘度ポリα-オレフィン(INEOS社製DURASYN180)を71.0重量%用いた以外は実施例9と同様に配合し、ISO3200相当粘度に調製した。配合油の潤滑油物性を表3に示す。
エチレン・プロピレン共重合体(A)として、重合例1で得られた重合体1を20.0重量%、合成油(C)として高粘度ポリα-オレフィン(INEOS社製DURASYN180)を73.0重量%、合成油(D)としてポリオールエステル(BFS社製TMTC)を5.0重量%、極圧剤HITEC(商標)-3339(AFTON社製)を2.0重量%配合して、ISO2200相当粘度に調製した。配合油の潤滑油物性を表3に示す。
エチレン・プロピレン共重合体(A)として、重合例1で得られた重合体1を30.0重量%、合成油(C)として高粘度ポリα-オレフィン(INEOS社製DURASYN180)を63.0重量%用いた以外は実施例11と同様に配合し、ISO3200相当粘度に調製した。配合油の潤滑油物性を表3に示す。
エチレン・プロピレン共重合体(A)として、重合例1で得られた重合体1を30.0重量%、合成油(C)として高粘度ポリα-オレフィン(INEOS社製DURASYN180)を53.0重量%、合成油(D)として低粘度ポリα-オレフィン(CHEVRON社製NEXBASE2006)を10.0重量%、合成油(D)としてポリオールエステル(BFS社製TMTC)を5.0重量%、極圧剤HITEC(商標)-3339(AFTON社製)を2.0重量%配合して、ISO2200相当粘度に調製した。配合油の潤滑油物性を表3に示す。
エチレン・プロピレン共重合体(A)として、重合例1で得られた重合体1を40.0重量%、合成油(C)として高粘度ポリα-オレフィン(INEOS社製DURASYN180)を43.0重量%用いた以外は実施例13と同様に配合し、ISO3200相当粘度に調製した。配合油の潤滑油物性を表3に示す。
エチレン・プロピレン共重合体(A)として、重合例1で得られた重合体1を20.0重量%、鉱物油(E)としてブライトストック(JX社製N460)を78.0重量%、極圧剤HITEC(商標)-3339(AFTON社製)を2.0重量%配合して、ISO2200相当粘度に調製した。配合油の潤滑油物性を表3に示す。
エチレン・プロピレン共重合体(A)として、重合例1で得られた重合体1を40.0重量%、鉱物油(E)としてブライトストック(JX社製N460)を58.0重量%用いた以外は実施例15と同様に配合し、ISO4600相当粘度に調製した。配合油の潤滑油物性を表3に示す。
粘度調整剤としてポリブテン(JX社HV-1900)を20.0重量%、エチレン・プロピレン共重合体(A)として重合例3で得られた重合体3を78.0重量%、極圧剤HITEC(商標)-3339(AFTON社製)を2.0重量%配合して、ISO2200相当粘度に調製した。配合油の潤滑油物性を表4に示す。
ポリブテン(JX社HV-1900)を42.0重量%、エチレン・プロピレン共重合体(A)として重合例3で得られた重合体3を56.0重量%用いた以外は比較例1と同様に配合し、ISO6800相当粘度に調製した。配合油の潤滑油物性を表4に示す。
極圧剤としてHITEC(商標)-3339(AFTON社製)をHITEC(商標)343(同社)に変えた以外は実施例1と同様に配合し、ISO1000相当粘度に調製した。配合油の相溶性評価結果を表4に示す。
極圧剤としてHITEC(商標)-3339(AFTON社製)をHITEC(商標)343(同社)に変えた以外は実施例2と同様に配合し、ISO2200相当粘度に調製した。配合油の相溶性評価結果を表4に示す。
極圧剤としてHITEC(商標)-3339(AFTON社製)をHITEC(商標)343(同社)に変えた以外は実施例3と同様に配合し、ISO3200相当粘度に調製した。配合油の相溶性評価結果を表4に示す。
極圧剤としてHITEC(商標)-3339(AFTON社製)をHITEC(商標)343(同社)に変えた以外は実施例4と同様に配合し、ISO6800相当粘度に調製した。配合油の相溶性評価結果を表4に示す。
極圧剤としてHITEC(商標)-3339(AFTON社製)をHITEC(商標)343(同社)に変えた以外は実施例15と同様に配合し、ISO2200相当粘度に調製した。配合油の相溶性評価結果を表4に示す。
極圧剤としてHITEC(商標)-3339(AFTON社製)をHITEC(商標)343(同社)に変えた以外は実施例16と同様に配合し、ISO4600相当粘度に調製した。配合油の相溶性評価結果を表4に示す。
重合体3を重合例4で得られた重合体4に変えた以外は実施例1と同様に配合し、ISO1000相当粘度に配合調製した。配合油の潤滑油物性を表4に示す。
重合体1を重合例2で得られた重合体2に変え、重合体3を重合例4で得られた重合体4に変えた以外は実施例2と同様に配合し、ISO2200相当粘度に配合調製した。配合油の潤滑油物性を表4に示す。
重合体1を重合例2で得られた重合体2に変え、重合体3を重合例4で得られた重合体4に変えた以外は実施例4と同様に配合し、ISO6800相当粘度に配合調製した。配合油の潤滑油物性を表4に示す。
重合体1を重合例2で得られた重合体2に変え、重合体3を重合例4で得られた重合体4に変えた以外は実施例8と同様に配合し、ISO2200相当粘度に配合調製した。配合油の潤滑油物性を表4に示す。
重合体1を重合例2で得られた重合体2に変えた以外は実施例14と同様に配合し、ISO3200相当粘度に配合調製した。配合油の潤滑油物性を表4に示す。
重合体1を重合例2で得られた重合体2に変えた以外は実施例15と同様に配合し、ISO2200相当粘度に配合調製した。配合油の潤滑油物性を表4に示す。
Claims (19)
- (A)以下の方法(α)により製造されるエチレンとα-オレフィンとの液状ランダム共重合体と、
(F)硫黄に隣接する少なくとも一つの炭化水素基が2級または3級の炭化水素基である硫黄含有化合物と、
任意成分として(G)炭素数3~6のαオレフィンの重合体とを含み、
40℃動粘度が450~51,000mm2/sであり、
硫黄の含有率が、0.1~5重量部であることを特徴とする潤滑油組成物。
(但し、潤滑油組成物の総量を100重量部とする。)
(方法(α))
(a)下記式1で表される架橋メタロセン化合物、ならびに
(b)(i)有機アルミニウムオキシ化合物、および
(ii)前記架橋メタロセン化合物と反応してイオン対を形成する化合物
からなる群から選択される少なくとも1つの化合物
を含む触媒系の下で、エチレンと炭素数3~20のα-オレフィンとの溶液重合を行う工程を含む、
エチレンとα-オレフィンとの液状ランダム共重合体を製造するための方法(α)
R6およびR11は、互いに同一であり、水素原子、炭化水素基またはケイ素含有炭化水素基であり、
R7およびR10は、互いに同一であり、水素原子、炭化水素基またはケイ素含有炭化水素基であり、
R6およびR7は、任意に、炭素数2~3の炭化水素と結合して環構造を形成し、
R11およびR10は、任意に、炭素数2~3の炭化水素と結合して環構造を形成し、
R6、R7、R10およびR11は、同時には水素原子ではなく;
Yは、炭素原子またはケイ素原子であり;
R13およびR14は、独立してアリール基であり;
Mは、Ti、ZrまたはHfであり;
Qは、独立してハロゲン、炭化水素基、アニオン性配位子または孤立電子対に配位可能な中性配位子であり;
jは、1~4の整数である。〕 - 上記式1で表されるメタロセン化合物のシクロペンタジエニル基に結合した置換基(R1、R2、R3およびR4)のうちの少なくとも1つが炭素数4以上の炭化水素基である請求項1に記載の潤滑油組成物。
- R6およびR11が同一であり、炭素数1~20の炭化水素基である請求項1または2に記載の潤滑油組成物。
- 上記式1で表されるメタロセン化合物のシクロペンタジエニル基の3位に結合した置換基(R2またはR3)が炭化水素基である請求項1~3のいずれか一項に記載の潤滑油組成物。
- 上記式1で表されるメタロセン化合物のシクロペンタジエニル基の3位に結合した炭化水素基(R2またはR3)がn-ブチル基である請求項4に記載の潤滑油組成物。
- 上記式1で表されるメタロセン化合物のフルオレニル基の2位および7位に結合した置換基(R6およびR11)がすべてtert-ブチル基である請求項1~5のいずれか一項に記載の潤滑油組成物。
- 前記アンモニウムカチオンがジメチルアニリニウムカチオンである請求項7に記載の潤滑油組成物。
- 前記触媒系がトリメチルアルミニウムおよびトリイソブチルアルミニウムからなる群から選択される有機アルミニウム化合物をさらに含む請求項7または8に記載の潤滑油組成物。
- 更に下記(B-1)~(B-3)の要件を全て満たす成分(B)を含むことを特徴とする請求項1に記載の潤滑油組成物。
(B-1)100℃における動粘度が3~120mm2/s以下であること
(B-2)粘度指数が90以上であること
(B-3)流動点が-10℃以下であること - 前記成分(B)が、下記(C-1)~(C-3)の要件を全て満たす合成油(C)であることを特徴とする請求項10に記載の潤滑油組成物。
(C-1)100℃における動粘度が20~120mm2/sであること
(C-2)粘度指数が120以上であること
(C-3)流動点が-30℃以下であること - 前記成分(B)が、下記(D-1)~(D-3)の要件を全て満たす合成油(D)であることを特徴とする請求項10に記載の潤滑油組成物。
(D-1)100℃における動粘度が3~10mm2/sであること
(D-2)粘度指数が120以上であること
(D-3)流動点が-40℃以下であること - 前記成分(B)が、下記(E-1)~(E-3)の要件を全て満たす鉱物油(E)であることを特徴とする請求項10に記載の潤滑油組成物。
(E-1)100℃における動粘度が3~40mm2/sであること
(E-2)粘度指数が90以上であること
(E-3)流動点が-10℃以下であること - 前記成分(C)および/または成分(D)が、炭素数8~20のαオレフィン重合体および/またはエステル化合物からなる合成油である請求項11または12に記載の潤滑油組成物。
- 前記成分(E)がAPI品質分類のグループ(I)、(II)および(III)から選ばれる1種類以上の鉱物油であることを特徴とする請求項13に記載の潤滑油組成物。
- 前記成分(B)が、下記(C-1)~(C-3)の要件を全て満たす合成油(C)、下記(D-1)~(D-3)の要件を全て満たす合成油(D)、および下記(E-1)~(E-3)の要件を全て満たす鉱物油(E)から選ばれる1種類以上であり、
成分(A)~(E)全体に対する飽和炭化水素含有率が80重量%以上である
ことを特徴とする請求項1~9のいずれかに記載の潤滑油組成物。
(C-1)100℃における動粘度が20~120mm2/sであること
(C-2)粘度指数が120以上であること
(C-3)流動点が-30℃以下であること
(D-1)100℃における動粘度が3~10mm2/sであること
(D-2)粘度指数が120以上であること
(D-3)流動点が-40℃以下であること
(E-1)100℃における動粘度が3~40mm2/sであること
(E-2)粘度指数が90以上であること
(E-3)流動点が-10℃以下であること - 下記(A-1)~(A-5)の要件を全て満たすエチレンとα-オレフィンとの液状ランダム共重合体と、
(A-1)エチレン単位を40~60モル%、および炭素数3~20のα-オレフィン単位を60~40モル%含有すること
(A-2)ゲル浸透クロマトグラフィー(GPC)により測定される、500~10,000の数平均分子量(Mn)、および3以下の分子量分布(Mw/Mn、Mwは重量平均分子量である。)を有すること
(A-3)30~5,000mm2/sの100℃動粘度を有すること
(A-4)30~-45℃の流動点を有すること
(A-5)0.1g/100g以下の臭素価を有すること
(F)硫黄に隣接する少なくとも一つの炭化水素基が、2級または3級の炭化水素基である硫黄含有化合物と、
任意成分として(G)炭素数3~6のαオレフィンの重合体とを含み、
40℃動粘度が450~51,000mm2/sであり、
硫黄の含有率が、0.1~5重量部であることを特徴とする潤滑油組成物。
(但し、潤滑油組成物の総量を100重量部とする。) - 前記潤滑油組成物が、ギヤ油組成物である請求項1~17のいずれかに記載の潤滑油組成物。
- 以下の方法(α)により(A)エチレンとα-オレフィンとの液状ランダム共重合体を製造する工程、および
前記(A)液状ランダム共重合体と、(F)硫黄に隣接する少なくとも一つの炭化水素基が2級または3級の炭化水素基である硫黄含有化合物と、任意成分として(G)炭素数3~6のαオレフィンの重合体とを混合して、40℃動粘度が450~51,000mm2/sであり、硫黄の含有率が0.1~5重量部である潤滑油組成物を製造する工程
を含む、潤滑油組成物の製造方法。
(方法(α))
(a)下記式1で表される架橋メタロセン化合物、ならびに
(b)(i)有機アルミニウムオキシ化合物、および
(ii)前記架橋メタロセン化合物と反応してイオン対を形成する化合物
からなる群から選択される少なくとも1つの化合物
を含む触媒系の下で、エチレンと炭素数3~20のα-オレフィンとの溶液重合を行う工程を含む、
エチレンとα-オレフィンとの液状ランダム共重合体を製造するための方法(α)
R6およびR11は、互いに同一であり、水素原子、炭化水素基またはケイ素含有炭化水素基であり、
R7およびR10は、互いに同一であり、水素原子、炭化水素基またはケイ素含有炭化水素基であり、
R6およびR7は、任意に、炭素数2~3の炭化水素と結合して環構造を形成し、
R11およびR10は、任意に、炭素数2~3の炭化水素と結合して環構造を形成し、
R6、R7、R10およびR11は、同時には水素原子ではなく;
Yは、炭素原子またはケイ素原子であり;
R13およびR14は、独立してアリール基であり;
Mは、Ti、ZrまたはHfであり;
Qは、独立してハロゲン、炭化水素基、アニオン性配位子または孤立電子対に配位可能な中性配位子であり;
jは、1~4の整数である。〕
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19920931.3A EP3950894A4 (en) | 2019-03-26 | 2019-03-26 | LUBRICANT OIL COMPOSITION AND PROCESS FOR PRODUCTION THEREOF |
US17/442,125 US20220169938A1 (en) | 2019-03-26 | 2019-03-26 | Lubrication oil composition and method for producing same |
KR1020217033659A KR20210139401A (ko) | 2019-03-26 | 2019-03-26 | 윤활유 조성물 및 그의 제조 방법 |
PCT/JP2019/012997 WO2020194542A1 (ja) | 2019-03-26 | 2019-03-26 | 潤滑油組成物およびその製造方法 |
CN201980094135.XA CN113574139A (zh) | 2019-03-26 | 2019-03-26 | 润滑油组合物及其制造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/012997 WO2020194542A1 (ja) | 2019-03-26 | 2019-03-26 | 潤滑油組成物およびその製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020194542A1 true WO2020194542A1 (ja) | 2020-10-01 |
Family
ID=72609646
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/012997 WO2020194542A1 (ja) | 2019-03-26 | 2019-03-26 | 潤滑油組成物およびその製造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20220169938A1 (ja) |
EP (1) | EP3950894A4 (ja) |
KR (1) | KR20210139401A (ja) |
CN (1) | CN113574139A (ja) |
WO (1) | WO2020194542A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115290787B (zh) * | 2022-08-03 | 2023-09-08 | 青岛海关技术中心 | 一种进口润滑油的属性鉴定方法及其在商品归类中的应用 |
Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3909432A (en) | 1973-11-26 | 1975-09-30 | Continental Oil Co | Preparation of synthetic hydrocarbon lubricants |
JPH01501950A (ja) | 1987-01-30 | 1989-07-06 | エクソン・ケミカル・パテンツ・インク | 触媒、これらの触媒の製法およびこれらの触媒を使用する重合プロセス |
US4960878A (en) | 1988-12-02 | 1990-10-02 | Texas Alkyls, Inc. | Synthesis of methylaluminoxanes |
JPH03179006A (ja) | 1989-10-10 | 1991-08-05 | Fina Technol Inc | シンジオタクチツク重合体の製造方法および製造用触媒 |
JPH03179005A (ja) | 1989-10-10 | 1991-08-05 | Fina Technol Inc | メタロセン触媒 |
US5041584A (en) | 1988-12-02 | 1991-08-20 | Texas Alkyls, Inc. | Modified methylaluminoxane |
JPH03207704A (ja) | 1989-10-30 | 1991-09-11 | Fina Technol Inc | オレフイン重合触媒 |
JPH03207703A (ja) | 1989-10-30 | 1991-09-11 | Fina Technol Inc | オレフイン重合触媒の製造法 |
US5321106A (en) | 1990-07-03 | 1994-06-14 | The Dow Chemical Company | Addition polymerization catalyst with oxidative activation |
WO2000034420A1 (fr) | 1998-12-09 | 2000-06-15 | Mitsui Chemicals, Inc. | Modificateur de viscosite pour huile lubrifiante et composition d'huile lubrifiante |
JP2004051676A (ja) | 2002-07-16 | 2004-02-19 | Mitsui Chemicals Inc | エチレン系共重合体の製造方法 |
KR100551147B1 (ko) | 2002-10-30 | 2006-02-13 | 미쯔이가가꾸가부시끼가이샤 | 저분자량 올레핀 (공)중합체의 제조에 사용되는 중합 촉매 |
US20090088543A1 (en) * | 2007-09-28 | 2009-04-02 | Chevron Phillips Chemical Company Lp | Polymerization catalysts for producing polymers with low melt elasticity |
WO2013154005A1 (ja) * | 2012-04-12 | 2013-10-17 | 三井化学株式会社 | 潤滑油組成物 |
WO2015147215A1 (ja) * | 2014-03-28 | 2015-10-01 | 三井化学株式会社 | エチレン/α-オレフィン共重合体および潤滑油 |
JP2016069406A (ja) * | 2014-09-26 | 2016-05-09 | 三井化学株式会社 | 工業ギア用潤滑油組成物 |
JP2016188318A (ja) * | 2015-03-30 | 2016-11-04 | 三井化学株式会社 | オレフィン重合用触媒ならびにそれを用いたオレフィン重合体の製造方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58501439A (ja) | 1981-04-15 | 1983-08-25 | インスチツ−ト ヒミチエスコイ フイジキ アカデミ− ナウク エスエスエスエル | 光学的多重経路装置 |
JP5796869B2 (ja) * | 2011-09-29 | 2015-10-21 | シェブロンジャパン株式会社 | 潤滑油組成物 |
KR101394943B1 (ko) * | 2012-11-19 | 2014-05-14 | 대림산업 주식회사 | 에틸렌과 알파-올레핀의 공중합체 및 그 제조방법 |
US10584302B2 (en) * | 2014-09-19 | 2020-03-10 | Idemitsu Kosan Co., Ltd. | Lubricating oil composition and method for manufacturing said lubricating oil composition |
JP6326355B2 (ja) * | 2014-11-25 | 2018-05-16 | 三井化学株式会社 | 潤滑油組成物 |
-
2019
- 2019-03-26 KR KR1020217033659A patent/KR20210139401A/ko not_active Application Discontinuation
- 2019-03-26 WO PCT/JP2019/012997 patent/WO2020194542A1/ja unknown
- 2019-03-26 US US17/442,125 patent/US20220169938A1/en not_active Abandoned
- 2019-03-26 EP EP19920931.3A patent/EP3950894A4/en not_active Withdrawn
- 2019-03-26 CN CN201980094135.XA patent/CN113574139A/zh active Pending
Patent Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3909432A (en) | 1973-11-26 | 1975-09-30 | Continental Oil Co | Preparation of synthetic hydrocarbon lubricants |
JPH01501950A (ja) | 1987-01-30 | 1989-07-06 | エクソン・ケミカル・パテンツ・インク | 触媒、これらの触媒の製法およびこれらの触媒を使用する重合プロセス |
US4960878A (en) | 1988-12-02 | 1990-10-02 | Texas Alkyls, Inc. | Synthesis of methylaluminoxanes |
US5041584A (en) | 1988-12-02 | 1991-08-20 | Texas Alkyls, Inc. | Modified methylaluminoxane |
JPH03179006A (ja) | 1989-10-10 | 1991-08-05 | Fina Technol Inc | シンジオタクチツク重合体の製造方法および製造用触媒 |
JPH03179005A (ja) | 1989-10-10 | 1991-08-05 | Fina Technol Inc | メタロセン触媒 |
JPH03207704A (ja) | 1989-10-30 | 1991-09-11 | Fina Technol Inc | オレフイン重合触媒 |
JPH03207703A (ja) | 1989-10-30 | 1991-09-11 | Fina Technol Inc | オレフイン重合触媒の製造法 |
US5321106A (en) | 1990-07-03 | 1994-06-14 | The Dow Chemical Company | Addition polymerization catalyst with oxidative activation |
WO2000034420A1 (fr) | 1998-12-09 | 2000-06-15 | Mitsui Chemicals, Inc. | Modificateur de viscosite pour huile lubrifiante et composition d'huile lubrifiante |
JP2004051676A (ja) | 2002-07-16 | 2004-02-19 | Mitsui Chemicals Inc | エチレン系共重合体の製造方法 |
KR100551147B1 (ko) | 2002-10-30 | 2006-02-13 | 미쯔이가가꾸가부시끼가이샤 | 저분자량 올레핀 (공)중합체의 제조에 사용되는 중합 촉매 |
US20090088543A1 (en) * | 2007-09-28 | 2009-04-02 | Chevron Phillips Chemical Company Lp | Polymerization catalysts for producing polymers with low melt elasticity |
WO2013154005A1 (ja) * | 2012-04-12 | 2013-10-17 | 三井化学株式会社 | 潤滑油組成物 |
WO2015147215A1 (ja) * | 2014-03-28 | 2015-10-01 | 三井化学株式会社 | エチレン/α-オレフィン共重合体および潤滑油 |
JP2016069406A (ja) * | 2014-09-26 | 2016-05-09 | 三井化学株式会社 | 工業ギア用潤滑油組成物 |
JP2016188318A (ja) * | 2015-03-30 | 2016-11-04 | 三井化学株式会社 | オレフィン重合用触媒ならびにそれを用いたオレフィン重合体の製造方法 |
Non-Patent Citations (2)
Title |
---|
See also references of EP3950894A4 |
TOSOH FINECHEM CORPORATION, TOSOH RESEARCH TECHNOLOGY REVIEW, vol. 47, 2003, pages 55 |
Also Published As
Publication number | Publication date |
---|---|
US20220169938A1 (en) | 2022-06-02 |
KR20210139401A (ko) | 2021-11-22 |
EP3950894A1 (en) | 2022-02-09 |
EP3950894A4 (en) | 2022-08-17 |
CN113574139A (zh) | 2021-10-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020194542A1 (ja) | 潤滑油組成物およびその製造方法 | |
WO2020194549A1 (ja) | 潤滑油組成物およびその製造方法 | |
WO2020194550A1 (ja) | グリース組成物およびその製造方法 | |
EP3950893B1 (en) | Lubricating oil composition for industrial gears and method for producing same | |
JP2018115229A (ja) | 自動車ギア用潤滑油組成物 | |
KR102730694B1 (ko) | 윤활유 조성물 및 그의 제조 방법 | |
WO2020194546A1 (ja) | 内燃機関用潤滑油組成物およびその製造方法 | |
WO2020194548A1 (ja) | 自動車ギア用潤滑油組成物およびその製造方法 | |
WO2020194547A1 (ja) | 自動車変速機油用潤滑油組成物およびその製造方法 | |
WO2020194543A1 (ja) | 内燃機関用潤滑油組成物およびその製造方法 | |
WO2020194545A1 (ja) | 作動油用潤滑油組成物およびその製造方法 | |
KR20210139408A (ko) | 압축기유용 윤활유 조성물 및 그의 제조 방법 | |
KR20210052038A (ko) | 에틸렌/알파-올레핀 공중합체 및 그 제조 방법 | |
JP2018115227A (ja) | 自動車ギア用潤滑油組成物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19920931 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20217033659 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2019920931 Country of ref document: EP Effective date: 20211026 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |